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1 Introduction

The idea of the conformal bootstrap is that by imposing associativity of the operator

product expansion (OPE) for local operators in a unitary conformal field theory (CFT)

one can derive constraints for the spectrum and OPE coefficients of the theory [1, 2].

For instance, for a four-point function crossing symmetry plus the structure of the OPE

expansion schematically implies figure 1. In a general CFT in higher dimensions, the

interplay between direct and crossed channels is very complicated: a given operator on

one channel will generically map to a very complicated combination of operators on the

other channel. The essence of the analytic conformal bootstrap is that for certain operators

this map is much simpler. For example, each higher dimensional CFT, strongly [3, 4] or

weakly [5] coupled possesses double trace higher spin operators which map to the identity

operator in the dual channel. In this paper we will concentrate on conformal weakly

coupled gauge theories. These theories contain towers of higher spin operators, with small

anomalous dimensions, which under crossing, and for high values of the spin, map to each

other [5, 6]:

HSτ ↔ HSτ (1.1)
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Figure 1. Crossing symmetry.

where τ denotes the twist (dimension minus the spin) of the higher spin tower. In [6]

we focused in a four-dimensional CFT, external operators of the form O[2] = Trϕ2 and

single-trace higher spin operators of the schematic form O` = Trϕ∂`ϕ, with twist two and

spin `. In perturbation theory these operators have a small anomalous dimension:

∆ = `+ 2 + γ`

It turns out crossing symmetry is powerful enough to fix the behaviour of the anomalous

dimension for large values of the spin

γ` ∼ f(g) log `

together with the OPE coefficient of O` with two external operators

C22` ∼ Γ
(

1− γ`
2

)
(1.2)

Such results [5, 6] are valid for high values of the spin but to all orders in perturbation

theory!

On [6] we have focused on correlators of identical operators. In the present paper

we will consider mixed correlators and show that (1.1) is a particular example of a more

general relation, in which two different towers of higher spin operators map to each other

HSτ ↔ HSτ ′ (1.3)

Analysing the consequences of crossing in this case is more delicate, since higher spin

operators with more than two constituent fields are highly degenerate. For τ > 2 we

find that again crossing implies a logarithmic growing for the anomalous dimensions, but

this time in the sense of a weighted average (to be defined below). Furthermore, crossing

symmetry fixes the large spin behaviour of the OPE coefficient between two scalar operators

and a higher spin operator. More precisely, we obtain the following universal behaviour

Cpq` ∼ Γ

(
∆p + ∆q − τ`

2

)
(1.4)
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for several families of operators, as will be specified below. This is a natural generalisation

of (1.2). Furthermore, note that the same structure of poles would appear in a Witten

diagram supergravity computation of the three-point function for operators of dimensions

∆p,∆q and τ`, see for instance [7–9]. However, our result arises from crossing symmetry

alone, without assuming large N or large R−charges, and is a all-loop result!

Having solved for the structure constants of higher spin operators we can study the

mixed correlators under consideration in the double null limit. Our results are in perfect

agreement with the picture of [12].

This paper is organised as follows. In the next section we show that crossing symme-

try for mixed correlators leads to relations among different higher spin towers. In section

three we derive integral relations arising from crossing symmetry for mixed correlators.

Although the method is very general, we apply it to a simple model for definiteness. We

then show how to solve such integral relations, finding constraints, to all loops in perturba-

tion theory, for the spectrum of higher spin operators and OPE coefficients of the theory.

As an interesting application, we compute the double null limit of the correlators under

consideration and compare our results to [12]. In section 4 we study in detail the case

of weakly coupled N = 4 SYM. In this case the theory possesses a global R−symmetry

and crossing symmetry acts on the representations of this symmetry as well. By consider-

ing appropriate projections we show that the equations in this case exactly reduce to the

equations previously found. We end up with a discussion of our results. Several technical

details, needed in the body of the paper, are deferred to the appendices.

2 Crossing symmetry and higher spin towers

2.1 Crossing for mixed scalar operators and higher spin towers

Let us start with a discussion of crossing relations for the most general scalar case. This

was done for instance in [10]. For four arbitrary scalar operators we can write, see [11]

〈φi(x1)φj(x2)φk(x3)φl(x4)〉 =

(
x2

24

x2
14

)∆ij
2
(
x2

14

x2
13

)∆kl
2 Gijkl(u, v)

x
∆i+∆j

12 x∆k+∆l
34

(2.1)

where ∆ij = ∆i −∆j and we have introduce the conformal cross-ratios

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

(2.2)

The full correlation function must be invariant under the exchange (1, i) ↔ (3, k),

which gives the crossing equation

v
∆j+∆k

2 Gijkl(u, v) = u
∆i+∆j

2 Gkjil(v, u) (2.3)

The function Gijkl(u, v) can be decomposed in terms of conformal blocks as

Gijkl(u, v) =
∑

O
cijOcklOg

∆ij ,∆kl

∆,` (u, v) (2.4)
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where O runs over all conformal primary operators present in the corresponding OPE and

∆, ` denote the dimension and spin of such operators. The crossing equation implies

v
∆j+∆k

2

∑

O
cijOcklOg

∆ij ,∆kl

∆,` (u, v) = u
∆i+∆j

2

∑

O
ckjOcilOg

∆kj ,∆il

∆,` (v, u) (2.5)

This is a very complicated (but powerful!) equation, as usually single operators on one

channel, are mapped to infinite, complicated combinations on the other channel. The

essence of the analytic bootstrap is that:

1. Certain towers of higher spin operators map to simple operators on the other channel:

either to isolated operators of low twist [3, 4] or to themselves [5, 6].

2. One can access this regime by considering a light-cone OPE of the four-point

correlator.

This allows to compute certain features of the spectrum and OPE coefficients of higher

spin operators exactly. The simplest example arises for identical external operators with

dimension ∆0. In this case the crossing relation reads

v∆0
∑

O
cijOcklOg∆,`(u, v) = u∆0

∑

O
ckjOcilOg∆,`(v, u) (2.6)

where we have introduced g∆,`(u, v) = g0,0
∆,`(u, v). In conformal weakly coupled gauge

theories there are towers of almost conserved higher spin currents of twist τ = ∆ − ` =

∆0 + γ`. In such a situation the crossing relation (2.6) maps the large spin sector of the

higher spin tower HSτ to itself1

HSτ ↔ HSτ (2.7)

This phenomenon was exploited in [5, 6] to find information about the spectrum and OPE

coefficients of higher spin operators. Considering instead mixed correlators we see that this

is a special case of a more general relation

HSτ ↔ HSτ ′ (2.8)

Indeed, consider the contribution to Gijkl(u, v) from operators with twist τ : Gijkl(u, v)|τ =

uτ/2h(v). If h(v) diverges as v → 0

Gijkl(u, v)|HSτ ∼
uτ/2

vα
(2.9)

then such a divergence must come from a tower of higher spin operators, of approximate

twist τ . Under crossing this term maps in the dual channel to a term of the form vτ
′/2

uβ
with

v
∆j+∆k

2
uτ/2

vα
= u

∆i+∆j
2

vτ
′/2

uβ
(2.10)

1Sometimes by “twist τ” we will refer to the twist at zero coupling, so that the real twist of the operators

is approximately τ . This is commonly done when dealing with weakly coupled gauge theory. We hope this

does not confuse the reader.
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Provided β > 0 this must correspond to an infinite tower of higher spin operators HSτ ′ .

Hence crossing leads to the relation (2.8). Studying different mixed correlators will lead to

different constraints involving towers of higher spin operators. Below we will study such

constraints in detail, but before let us discuss the properties of different higher spin towers.

2.2 Towers of higher spin operators

Although the methods which we will apply in this paper are completely general, we will

discuss a specific model for definiteness. Then in section 4 we will focus in a different model

and show that the final relation has exactly the same form. Let us consider a conformal

weakly coupled gauge theory in four dimensions, with a scalar field ϕ. The simplest gauge

invariant operators are traces of such a scalar field and its derivatives. Below we will discuss

the towers of higher spin operators that can arise in the light-cone OPE of scalar operators

formed only by scalar fields, in the regime g log `� 1.

Twist 2. These are operators of the form O(2)
` = Trϕ∂`ϕ+ · · · where the derivatives are

along a null direction. There is only one primary operator for each even spin and none with

spin odd.2 We denote such a tower by HS2. These operators are also called leading-twist

operators and their anomalous dimension grows logarithmically with the spin:

γ
(2)
` = g log `+ b(g) + · · · (2.11)

where we have defined the coupling constant g as the coefficient in front of the logarithmic

piece. All other quantities will be expressed in terms of this g.

Twist 3. These are operators of the form O(3)
I,` = Trϕ2∂`ϕ+ · · · . For both, spin odd and

even, there is a degeneracy of primary operators, see appendix C. We denote this tower

by HS3. Again, their anomalous dimension grows logarithmically with the spin, but they

grow along a band, as described in [13]. More precisely, for large spin

gρI log `+ · · · ≤ γ
(3)
I,` ≤ 2gρI log `+ · · · (2.12)

Twist 4. For twist four and higher we have a new ingredient. On one hand, there are

single-trace operators of the form O(4)
I,` = Trϕ3∂`ϕ+ · · · . There are primary operators for

both, spin odd and even. Their anomalous dimension grows logarithmically with the spin,

again along a band, schematically

γ
(4)
I,` = gρ̃I log `+ · · · (2.13)

where now 1 ≤ ρ̃I ≤ 2. In addition, there are double trace operators, of the form

[O(2),O(2)]` = O(2)
`1
∂`2O(2)

`3
, with `1 + `2 + `3 = `. For large `1 + `3 (a macroscopic fraction

of `) their anomalous dimension again grows logarithmically with the spin. The discussion

in [17] and the additivity property of [3, 4] would imply an anomalous dimension of the form

γ
(4)
DT,` ∼ g (log `1 + log `3) + · · · (2.14)

2In theories with other fields it is possible to form twist two operators with gauge bosons and fermions.

In the presence of R−symmetry one can often choose a projection such that only twist-two operators made

up of scalars contribute.
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While the regime considered in this paper is not in the range of validity [3, 4], the ideas

of [17] still apply and we expect this expansion to be true. The main difference with the

single trace case is that there are operators with very large spin whose anomalous dimension

does not grow logarithmically, the ones with small `1, `3. Of course, in a non-planar theory

there is really no distinction between single and multi-trace operators, but the behaviour

with spin will have the same features: for most operators it will grow logarithmically but

there will be some operators for which it wont. We denote the full contribution of all op-

erators HS4 and the results of this paper will still apply. Higher twists behave in a similar

way, except in general we can also have triple trace, etc.

3 Consequences of crossing symmetry

Although our methods will be general, we will focus for definiteness on a specific model.

We consider a conformal weakly coupled gauge theory in four dimensions and external

operators of the form

AL = TrϕL (3.1)

with dimension ∆ = L at tree level. We will assume for simplicity that such operators are

protected. Furthermore we denote by GL1L2L3L4(u, v) the conformal invariant part of the

correlator

〈AL1(x1)AL2(x2)AL3(x3)AL4(x4)〉

We will start by considering the simplest case of four identical operators with L = 2. This

will serve to introduce some important ingredients. Then we will proceed to discuss a more

general case.

3.1 Integral relations

Correlator G2222(u, v). Let us start by the simplest case G2222(u, v). At tree-level

we obtain

G2222(u, v) = 1 + u
(c11

v
+ c10

)
+ u2

(c22

v2
+
c21

v
+ c20

)
(3.2)

The constants cij will in general depend on the parameters of the theory, e.g. its central

charge, but their explicit form will not be relevant for us. When the coupling constant is

turned on these coefficients get dressed by logarithms, and to any order in perturbation

theory

cij → cij(log u, log v) (3.3)

where the function cij(log u, log v) is by definition the function in front of ui

vj
in a small u, v

expansion, see [5]. From the structure of divergences, and the powers of u, the contribution

c11 must come from the exchange of an infinite tower of higher spin operators with twist

two, or HS2. Furthermore c22 arises solely from the tower HS4, while c21 may receive

contributions from both, twist four operators as well as descendants of twist two operators,

see appendix A. What do these towers map to under crossing? Crossing symmetry implies

v2G2222(u, v) = u2G2222(v, u) (3.4)
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We see c22 gets mapped to the contribution from the identity operator. This is an example

of the phenomenon studied in [3, 4]. Furthermore, the contribution c11 maps to itself, so

that this corresponds to

HS2 ↔ HS2 (3.5)

More precisely, crossing symmetry implies c11(log u, log v) = c11(log v, log u). In order

to study the consequences of this relation let us follow [6] and consider both ways of

decomposing c11:

G2222(u, v)|HS2
= u

∞∑

`

c2

22O(2)
`

uγ
(2)
` /2fcoll (∆,`)(v) =

u

v
c11(log u, log v) + · · · (3.6)

G2222(v, u)|HS2
= v

∞∑

`

c2

22O(2)
`

vγ
(2)
` /2fcoll (∆,`)(u) =

v

u
c11(log v, log u) + · · · (3.7)

In order to reproduce the correct divergence at tree level in either sum we require

(
c

(0)

22O(2)
`

)2

∼ `1/2

4`
(3.8)

see appendix A. Writing
(
c

22O(2)
`

)2
=

(
c

(0)

22O(2)
`

)2

â(`) (3.9)

the condition arising from crossing can be written as

∫ ∞

0
â

(
x√
v

)
2
γ(2)

(
x√
v

)
u
γ(2)

(
x√
v

)
/2
xK0(2x)dx=

∫ ∞

0
â

(
x√
u

)
2
γ(2)

(
x√
u

)
v
γ(2)

(
x√
u

)
/2
xK0(2x)dx

(3.10)

where in â(`) and γ(2)(`) only the contributions that do not vanish at large spin are kept.

This integral relation imposes conditions on both, the spectrum and the OPE coefficients.

More precisely, at large spin [6]:

γ
(2)
` = g log `+ b(g) + · · · (3.11)

â(`) = κ(g)2−γ
(2)
` e−b(g) log `Γ2

(
1− γ

(2)
`

2

)

These results are valid to all loops in perturbation theory. Namely, to all orders in g in the

regime g log `� 1, although they resum all perturbative corrections.

Correlator Gppqq(u, v). Let us study the correlator Gppqq(u, v) and its permutations,

the most relevant case for this paper. In this case there are two distinct crossing relations

and they provide different information. Let us start by computing at zero coupling

Gppqq(u, v) = 1 +

min(p,q)∑

i=1

i∑

j=0

ui

vj
cij (3.12)

– 7 –



J
H
E
P
1
2
(
2
0
1
7
)
1
1
8

As we turn on the coupling constant cij → cij(log u, log v). By crossing symmetry we

then obtain3

Gqppq(u, v) =
u
p+q

2

vp
Gppqq(v, u) =

u
p+q

2

vp
+

min(p,q)∑

i=1

i∑

j=0

u
p+q

2
−j

vp−i
ccij (3.13)

where we have introduced the notation ccij = cij(log v, log u). Let us focus in the contribu-

tions c τ
2
τ
2
, with τ = 2, 4, · · · , 2min(p, q). From the point of view of the direct channel (3.12)

these can only arise from higher spin towers HSτ . Indeed, descendants of lower twist higher

spin towers will not produce a divergent enough term, see appendix A. From the point of

view of the dual channel (3.13) these can only arise from higher spin towers HSp+q−τ , for

the same reason. Hence, crossing relates

HSτ ↔ HSp+q−τ (3.14)

which generalises (3.5). Let us proceed as above and consider the OPE decomposition of

c τ
2
τ
2

and ccτ
2
τ
2
:

Gppqq(u,v)|HSτ =uτ/2
∑

`,I

c
ppO(τ)

I,`

c
qqO(τ)

I,`

uγ
(τ)
I,` /2fcoll (∆I,`,`)(v) (3.15)

=
uτ/2

vτ/2
c τ

2
τ
2
(logu, logv)+· · ·

Gqppq(u,v)|HSp+q−τ =u(p+q−τ)/2
∑

`,I

c
qpO(p+q−τ)

I,`

c
pqO(p+q−τ)

I,`

uγ
(p+q−τ)
I,` /2f

(q−p,p−q)
coll (∆I,`,`)

(v) (3.16)

=
u(p+q−τ)/2

vp−τ/2
c τ

2
τ
2
(logv, logu)+· · ·

so that crossing reads

∑

`,I

c
ppO(τ)

I,`

c
qqO(τ)

I,`

uγ
(τ)
I,` /2fcoll (∆I,`,`)(v)

∣∣∣∣∣∣
1

vτ/2

(3.17)

=
∑

`,I

c
qpO(p+q−τ)

I,`

c
pqO(p+q−τ)

I,`

vγ
(p+q−τ)
I,` /2f

(q−p,p−q)
coll (∆I,`,`)

(u)

∣∣∣∣∣∣
1

up−τ/2

For a fixed `, the index I labels different operators which are degenerate at tree level. Twist

two is the only non-degenerate case. The next step is to convert this relation into an integral

equation. This is a bit more subtle than before, as for each spin we have a degeneracy at

tree-level. In order to reproduce the correct divergence at tree level we must have

∑

I

c
(0)

ppO(τ)
I,`

c
(0)

qqO(τ)
I,`

∼ `τ−3/2

4`
(3.18)

∑

I

c
(0)

qpO(p+q−τ)
I,`

c
(0)

pqO(p+q−τ)
I,`

∼ `p+q−τ−3/2

4`
(3.19)

3As we turn on the coupling also new higher powers of u and v will arise, which are not included in our

formulae. Those will not be relevant for us.

– 8 –



J
H
E
P
1
2
(
2
0
1
7
)
1
1
8

The correct divergence in perturbation theory implies a similar behaviour for the quantum

OPE coefficients, so that we define

∑

I

c
ppO(τ)

I,`

c
qqO(τ)

I,`

=
`τ−3/2

4`
â(τ)(`) (3.20)

∑

I

c
qpO(p+q−τ)

I,`

c
pqO(p+q−τ)

I,`

=
`p+q−τ−3/2

4`
â(p+q−τ)(`) (3.21)

Since in general the intermediate operators on both sides of (3.17) are degenerate at tree

level, we introduce the following weighted averages on each side

〈f(`)〉L =

∑
I cppO(τ)

I,`

c
qqO(τ)

I,`

fI(`)
∑

I cppO(τ)
I,`

c
qqO(τ)

I,`

, 〈f(`)〉R =

∑
`,I cqpO(p+q−τ)

I,`

c
pqO(p+q−τ)

I,`

fI(`)
∑

`,I cqpO(p+q−τ)
I,`

c
pqO(p+q−τ)

I,`

(3.22)

Note that the two averages are with respect to different weights. Using the results of

appendix A we arrive to the following integral relation

1

Γ2
(
τ
2

)
∫ ∞

0
â(τ)

(
x√
v

)
〈2γ

(τ)
(
x√
v

)
u
γ(τ)

(
x√
v

)
2 〉Lxτ−1K0(2x)dx (3.23)

=
1

Γ(p− τ
2 )Γ(q− τ

2 )

∫ ∞

0
â(p+q−τ)

(
x√
u

)
〈2γ

(p+q−2)
(
x√
u

)
v
γ(p+q−2)

(
x√
u

)
2 〉Rxp+q−τ−1Kp−q(2x)dx

Two comments are in order. First, in the above equation we keep only terms that are not

suppressed by powers of the spin in the large spin expansions of γ(`) and â(`) on both

sides. Second, we have chosen a normalization such that in perturbation theory

â(τ) = 1 + · · · , â(p+q−τ) = 1 + · · · (3.24)

Once a solution is found, we can always multiply both sides by a function of the coupling

constant, and the resulting OPE coefficients will still be a solution. Relation (3.23) imposes

non-trivial constraints on the spectrum and OPE coefficients. It turns out these constraints

are simpler to analyse in the case in which the tower HSτ is non-degenerate, namely τ = 2.

In this case the equation reduces to

∫ ∞

0
â(2)

(
x√
v

)
2
γ(2)( x√

v
)
u
γ(2)

(
x√
v

)
2 xK0(2x)dx (3.25)

=
1

Γ(p−1)Γ(q−1)

∫ ∞

0
xp+q−3â(p+q−2)

(
x√
u

)
〈2γ

(p+q−2)
(
x√
u

)
v
γ(p+q−2)

(
x√
u

)
2 〉Kp−q(2x)dx

Below we will explicitly consider the constraints arising from this relation and comment

on the general case. Before that, however, let us comment on the other crossing relation.

Compute at tree-level

Gpqpq(u, v) = u
|q−p|

2 d00 + u
|q−p|

2
+1

(
d10 +

d11

v

)
+ · · · =

i∑

j=0

min(p,q)∑

i=0

u
|q−p|

2
+i

vj
dij (3.26)
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In the quantum theory dij → dij(log u, log v). Crossing implies

Gpqpq(u, v) =
u
p+q

2

v
p+q

2

i∑

j=0

min(p,q)∑

i=0

v
|q−p|

2
+i

uj
dcij (3.27)

So that we have a relation of the form

HS|q−p|+2m ↔ HSp+q−2m

However, there is a crucial difference with the previous case. According to the results of

appendix B:

∑

I

cpq`cpq` =
`p+q−2m−3/2

4`
(−1)`α̃0 +

`2min(p,q)−2m−3/2

4`
α1 + · · · (3.28)

so that the leading divergence as v → 0 does not arise from the leading behaviour of the

OPE coefficients but rather from a subleading term, which does not contain (−1)`. The

consequences of this are that if we were to define â(`) as above, not only the leading term

would contribute, but also terms which are suppressed in the large spin limit, provided

they contain an additional (−1)`. The same will happen with the anomalous dimension

contributions. For this reason, in the following we will focus on relations (3.23) and (3.25).

3.2 Solving the integral equation

As we have seen, relation (3.10) implies a logarithmic behaviour for the anomalous di-

mension of twist-two operators and fixes completely the large spin behaviour of the OPE

coefficients, both results valid to all loops in perturbation theory. In the following we would

like to work out the implications of (3.25).

First, note that at tree-level 〈. . .〉 = 1, â = 1, and all anomalous dimensions vanish

so that the integral relation is satisfied. As we turn on the coupling it follows that the

average anomalous dimensions for twist p+ q− 2 operators can have at most a logarithmic

behaviour, very much as for the twist two case. So that

〈γ(p+q−2)(`)〉 = 〈ρ〉 log `+ 〈β〉+ · · · , (3.29)

〈
(
γ(p+q−2)(`)

)2
〉 = 〈ρ2〉 log2 `+ 2〈ρβ〉 log `+ 〈β2〉+ · · · , (3.30)

and so on. This is consistent with the analysis of [13]. Note that due to degeneracy in

general 〈γ2〉 6= 〈γ〉2. Each of the quantities of the r.h.s. will have a coupling constant

dependence, so that

ρ = ρ1g + ρ2g
2 + · · · (3.31)

β = β1g + β2g
2 + · · · (3.32)

This is to be supplemented with the known behaviour for the anomalous dimension of twist

two operators. Crossing symmetry implies a similar logarithmic behaviour for the average
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of the OPE coefficients:

â(2)(`) = 1 + g(a10 + a11 log `) + g2(a20 + a21 log `+ a22 log2 `) + · · · (3.33)

â(p+q−2)(`) = 1 + g
(
a

(pq)
10 + a

(pq)
11 log `

)
+ g2

(
a

(pq)
20 + a

(pq)
21 log `+ a

(pq)
22 log2 `

)
+ · · · (3.34)

We could insert all the corresponding expansions into (3.25), expand order by order in

perturbation theory and work out the corresponding constraints. We can also proceed in

a more systematic way. First rewrite the integral equation as

∫ ∞

0
â(2)

(
x√
v

)
2
γ(2)( x√

v
)
u
γ(2)

(
x√
v

)
2 xK0(2x)dx (3.35)

=
1

Γ(p−1)Γ(q−1)

∫ ∞

0
yp+q−3â(p+q−2)

(
y√
u

)
〈2γ

(p+q−2)
(
y√
u

)
v
γ(p+q−2)

(
y√
u

)
2 〉Kp−q(2y)dy

with the following logarithmic behaviour for the anomalous dimensions:

γ(2)(`) = g log `+ b, (3.36)

〈(γ(p+q−2))n〉 = 〈(ρ log `+ β)n〉. (3.37)

Then introduce the following integral representations:

â(2)

(
x√
v

)
=

∫
F (2)

(
y,

x√
v

)
Kp−q(2y)dy (3.38)

â(p+q−2)

(
y√
u

)
=

∫
F (pq)

(
x,

y√
u

)
K0(2x)dx

Plugging this into (3.35) we obtain an equation of the form
∫
PL(x, y, u, v)K0(2x)Kp−q(2y)dxdy =

∫
PR(x, y, u, v)K0(2x)Kp−q(2y)dxdy (3.39)

where PL and PR have a very specific form. It turns out that to any order in perturba-

tion theory the Kernel K0(2x)Kp−q(2y) is such that the above equation actually implies

PL = PR. It turns out this implies the following remarkable property for the average of the

spectrum:

〈ρn〉 = 〈ρ〉n, 〈ρmβn〉 = 〈ρ〉m〈βn〉 (3.40)

and furthermore

〈ρ〉 = g (3.41)

So that to any order in perturbation theory the leading logarithmic behaviour of the aver-

aged anomalous dimension of the p + q − 2 higher spin operator behaves as if there were

no degeneracy and equals the anomalous dimension of twist two operators! This is not in

contradiction with [13], since here we are only talking about a weighted average and in the

limit of large spin. Furthermore, crossing also fixes

F (2)(x, ζ) = α2−g log ζ−b+βxp+q−3−b−g log ζζ−β (3.42)

F (pq)(x, ζ) = α2−g log ζx1−β−g log ζζ−b (3.43)
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with the understanding that powers of β are to be understood in an averaged sense.4 α is

an arbitrary function of the coupling constant (not fixed by crossing) but independent of

the spin. Plugging this back into the integral representations (3.38) we obtain

â(2)(`) = α(g)2−g log ζ−b+β`−βΓ

(
p− 1− 1

2
γ(2)(`)

)
Γ

(
q − 1− 1

2
γ(2)(`)

)
(3.44)

â(p+q−2)(`) = α(g)2−g log ζ`−bΓ

(
1− 1

2
γ(p+q−2)(`)

)2

(3.45)

where γ(p+q−2)(`) = g log ` + β and again, powers of β (which arise when expanding the

expression above) are to be understood in a averaged sense. Two comments are in order.

First recall a(2)(`) arose from a factorised OPE coefficient c
ppO(2)

`

c
qqO(2)

`

, so that the factor

〈`−β〉 should factorize accordingly, namely 〈`−β〉 = f(p)f(q). Furthermore note that the

rest of the answer factorises as well. Second, note that from our answer we can read off

the following universal behaviour at large spin

c
ppO(2)

`

∼ c(0)

ppO(2)
`

Γ

(
p− 1− 1

2
γ(2)(`)

)
(3.46)

Up to a prefactor which depends on the details of the theory. The result for â(p+q−2)(`)

has a similar universal behaviour (but in this case â(p+q−2)(`) is itself a sum over many

contributions), namely

c
pqO(p+q−2)

`

∼ Γ

(
1− 1

2
γ(p+q−2)(`)

)
(3.47)

The universal behaviour we have found can be summarised as follows. The OPE coefficient

between two scalar operators of weights ∆p and ∆q and a higher spin operator of (tree-level)

twist τ has the universal behaviour

c
pqO(τ)

`

∼ Γ

(
∆p + ∆q − τ − γ(τ)

`

2

)
(3.48)

where averages should be understood where it corresponds. Notice that (3.48) holds for

all cases analysed in this paper. This behaviour is also consistent with the most general

relation (3.23), but in this case the prefactor is more complicated. This structure is very

reminiscent of the result one would obtain from Witten’s diagrams in supergravity. How-

ever, in the present paper we have only analysed the consequences of crossing, without any

further assumptions.

3.3 Comparison to polygonal Wilson loops

The consecutive null limit x2
i,i+1 → 0 of correlators in conformal gauge theories was studied

in [12]. In this limit there are fast particles propagating between consecutive points and

the correlator should reduce to the expectation value of a polygonal Wilson loop. For the

particular case of a four-point function this limit coincides with the double null limit where

4For instance 2β → 〈2β〉 = 1 + 〈β〉 log 2 + · · · .
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A B

CD

∆σ

∆τ

Figure 2. As consecutive insertion points become null separated in space-time they form a rectangle

(A,B,C,D) in the (σ, τ) coordinates.

u, v → 0 at the same rate. It was argued in [12] (see section 4 of that paper) that in this

limit we should obtain

lim
u,v→0

Gconn

Gtree
conn

∼ e−
Γcusp

4
log u log v+

b1
2

log u+
b2
2

log vJ(u, v) (3.49)

where G denotes the full correlator (not only its conformal invariant part) and we focus on

a given connected contribution, so that the fast particles can frame the Wilson loop, and

divide by the corresponding connected piece at tree level. The result (3.49) can be better

understood by choosing coordinates where the insertion points are at the vertices of a large

rectangle with sides ∆τ ≈ −1/2 log u and ∆σ ≈ −1/2 log v, see figure 2.

As we approach the double null limit we have a fast moving particle going between

the different vertices of the polygon. Since this particle is coloured, it sources a colour

electric field which is extended on the rectangle (green area in figure 2). This colour

electric flux has constant energy density in the (τ, σ) plane, proportional to Γcusp, and this

produces the leading divergence in the exponential in (3.49), proportional to the area of

the rectangle. In the interacting theory the particles can interact with the flux, and there

are further terms. The simplest contribution arises due to corrections to the energies of

the propagating particles. These corrections are confined to the edge of the rectangle (red

lines in figure 2) and give rise to the subleading divergences in the exponential in (3.49),

proportional to the perimeter of rectangle. Finally, the factor J(u, v) arises from the fact

that the particles are coloured so we can have a back reaction of the colour electric field

on the propagation of the particles. Although this is in general a complicated factor some

features were studied in [12].

In the present paper we have computed the structure constants of higher spin operators

with leading twist. In particular, these operators dominate the correlator in the small u, v

limit. Consider the correlator Gppqq above. In the small u, v limit, with their ratio fixed,

only the functions cii will survive. Each function corresponds to a different connected

contribution. In particular, let us consider c11 which corresponds to

〈Ap(x1)Ap(x2)Aq(x3)Aq(x4)〉 =
c11(log u, log v)

x2p−2
12 x2

23x
2q−2
34 x2

41

+ · · · (3.50)
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Plugging (3.44) back into the l.h.s. of (3.25) we obtain

c11 ∼ e−
g
4

log u log v+ b
2

log u+β
2

log vJ(u, v) (3.51)

Recall that in our conventions Γcusp ≡ g. Hence, our result exactly agrees with (3.49)!

Furthermore note that from the point of view of the picture in [12] β in the exponent

in (3.51) arises from corrections to the energy of the particle going from A to B plus

corrections to the energy of the particle going from D to C. For the present case the first

correction should depend only on p, while the second should depend only on q, leading

to a factorised dependence, in agreement with the comment below (3.44)–(3.45). Finally,

crossing symmetry provides an all loop expression for the factor J(u, v):

J(u, v) =

∫ ∞

0
dxdyx1−β+ g

2
log uyp+q−3−b+ g

2
log ve−g log x log yK0(2x)Kp−q(2y) (3.52)

where powers of β should be understood as averages. This answer satisfies all the general

properties for J(u, v) discussed in [12]. Other terms cii will behave similarly. Hence, our

results are in perfect agreement with the correspondence proposed in [12].

4 A case with global charge: N = 4 SYM

In the simple model studied above we have ignored two important features. On one hand, a

generic gauge CFT contains fermions and gauge bosons in addition to scalars. As a result,

there will be higher spin operators also formed by non-scalar letters. In particular, some

of these will have the same quantum numbers as the higher spin operators studied above,

increasing the degeneracy. On the other hand, gauge theories can posses global symme-

tries, such that scalars and fermions are charged under this global symmetry. Projecting

in different representations may split a priori degenerate higher spin operators. In the fol-

lowing we will see how the picture introduced in sections 2 and 3 works for the particular

example of N = 4 SYM.

4.1 Higher spin towers in N = 4 SYM

Four-dimensional N = 4 SYM posses a global SU(4)R R−symmetry group. Gauge invari-

ant operators are formed by traces of the fundamental fields of the theory: scalar fields

ϕI in the 6 of SU(4)R; fermionic fields λAα and λ̄Aα̇, in the 4 and 4̄ of SU(4)R and gauge

bosons Aµ in the singlet representation; together with their derivatives. We can form the

following higher spin operators of spin `, classified by their twist and SU(4) representation:

Twist 2.

• Trϕ∂µ1 · · · ∂µ`ϕ, transforming in the 6× 6 = 1 + 15 + 20′.

• Trλ̄Γµ∂µ2 · · · ∂µ`λ, transforming in the 4× 4̄ = 1 + 15.

• TrFνµ1∂µ2 · · · ∂µ`−1
F νµ` , transforming in the 1× 1 = 1

As a result, we can consider different towers HSR2 . Note that HS20′
2 can only be formed

by scalars so that it is still non-degenerate.
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Twist 3.

• Trϕϕ∂µ1 · · · ∂µ`ϕ, transforming in the 6× 6× 6 = 3× 6 + 10 + 1̄0 + 50 + 2× 64.

• Trϕλ̄Γµ∂µ2 · · · ∂µ`λ, transforming in the 6× 4× 4̄ = 2× 6 + 10 + 1̄0 + 64.

• TrϕFνµ1∂µ2 · · · ∂µ`−1
F νµ` , transforming in the 6× 1× 1 = 6

Again, note that HS50
3 can only be made by scalars.

Twist p. A similar analysis can be performed for higher and higher twists, with a richer

and richer structure. The upshot is that the representation with Dynkin labels [0p0] and

hence HS
[0p0]
p can only be obtained from scalars. In particular 20′ and 50 correspond to

[020] and [030] respectively.

4.2 Crossing symmetry in N = 4 SYM

In four dimensional N = 4 SYM there is a class of half-BPS superconformal primary

operators, transforming in the [0, p, 0] of SU(4)R and with protected dimension ∆ = p.

They are given by

O[p](x, t) = tr1 . . . trpTr(ϕ
r1 . . . ϕrp)(x) (4.1)

where ri = 1, · · · , 6 and t is a complex six dimensional null vector which encodes the

R-symmetry structure. Superconformal symmetry fixes the structure of the four point

function of such operators to be of the form [14]

〈O[p1](x1, t1)O[p2](x2, t2)O[p3](x3, t3)O[p4](x4, t4)〉 (4.2)

=
(t1 · t2)p1+p2 (t3 · t4)p3+p4

xp1+p2
12 xp3+p4

34

(
x24t1 · t4
x14t2 · t4

)p1−p2
(
x14t1 · t3
x13t1 · t4

)p3−p4

G[p1p2p3p4](u, v, σ, τ )

where we have introduced harmonic cross ratios σ and τ defined as

σ =
t1 · t2 t3 · t4
t1 · t3 t2 · t4

= αᾱ τ =
t1 · t4 t2 · t3
t1 · t3 t2 · t4

= (1− α)(1− ᾱ) (4.3)

Such correlator can be decomposed into (p1+1)(p1+2)
2 terms, accordingly to the different

SU(4)R representation present in the OPE of [0, p1, 0] × [0, p2, 0] ⊂ [0, p3, 0] × [0, p4, 0],

where without loss of generality we assume that p1 ≤ p2 ≤ p3 ≤ p4. Each contribution,

labelled by (n,m) = [n−m, p2−p1+2m,n−m], may be decomposed in conformal blocks as

G[p1p2p3p4](u, v, σ, τ ) =
∑

0≤m≤n≤p1

a(p12,p34)
nm (u, v)Y (p12,p34)

nm (σ, τ) (4.4)

a(p12,p34)
nm (u, v) =

∑

∆,`

c
(p1,p2)
nm,∆`c

(p3,p4)
nm,∆`g

(p12,p34)
∆,` (u, v) (4.5)

where Y
(a,b)
nm (σ, τ) is written in terms of Jacobi polynomials P

(a,b)
n (x) as

Y (p12,p34)
nm (σ, τ) = −(αᾱ)p34/2+1

2(α− ᾱ)

(
P

(
p12−p34

2
,− p12−p34

2

)
n+1

(
2

α
−1

)
P

(
p12−p34

2
,− p12−p34

2

)
m

(
2

ᾱ
−1

)

+ P

(
p12−p34

2
,− p12−p34

2

)
m+1

(
2

α
− 1

)
P

(
p12−p34

2
,− p12−p34

2

)
n

(
2

ᾱ
− 1

))
(4.6)
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Moreover superconformal Ward identities imply [15]

G[p1p2p3p4](u, v, σ, τ ) = G[p1p2p3p4]
tree (u, v, σ, τ ) + F [p1p2p3p4](u, v, σ, τ )G[p1p2p3p4]

loop (u, v, gYM )

(4.7)

where the function G[p1p2p3p4]
loop (u, v, gYM ) admits a perturbative expansion in powers of gYM .

Let us stress that this factorised structure persists at any loop order.

Invariance of the four point function under the exchange (x1, t1, p1) ↔ (x3, t3, p3)

relates G[p1p2p3p4](u, v, σ, τ ) to G[p3p2p1p4](v, u, τ, σ) through

G[p1p2p3p4](u, v, σ, τ ) =
u
p1+p2

2 τ
p2+p3

2

v
p2+p3

2 σ
p1+p2

2

G[p3p2p1p4](v, u, τ, σ) (4.8)

It is easy to see from (4.8) that different SU(4)R representations will in general mix under

crossing, and a given representation in the left hand side will map into a linear combination

of all the possible representations on the right hand side. Notice however that the number of

possible representations appearing on both sides of (4.8) is the same and given by (p+1)(p+2)
2

where p is the smallest among the pi.

We would like to repeat the exercise of sections 2 and 3 for this case. In this setting

we are considering the correlators Gppqq and Gqppq, where for the rest of the discussion we

assume p ≤ q. If we consider the small u limit of Gppqq(u, v, σ, τ ) the leading contribution

(besides that of the identity operator) arises from twist two operators. As discussed above

they can transform only in three SU(4)R representations, which in our conventions we

denote by (0, 0), (1, 1) and (1, 0). Furthermore, we would like to focus in the leading

divergence as v goes to zero. We obtain

Gppqq(u,v,σ,τ )|HS2 =
u

v

τ

σ
c1 (4.9)

= a
(0,0)
00 (u,v)Y

(0,0)
00 (σ,τ)+a

(0,0)
10 (u,v)Y

(0,0)
10 (σ,τ)+a

(0,0)
11 (u,v)Y

(0,0)
11 (σ,τ)

where c1 depends on p and q and on the specific gauge group. The functions a
(0,0)
ij (u, v)

admit the following expansion

a
(0,0)
ij (u, v) =

u

v

(
ctree
ij + cloop

ij f(log u, log v, gYM )
)

(4.10)

and they can be expanded in collinear conformal blocks as in (4.4). As previously discussed,

the representation (1, 1) is the only one which is non-degenerate and contains only operators

built from scalars.5 As a consequence of crossing symmetry we can write

Gqppq(u, v, σ, τ )|HSp+q−2 = c1
up+q−2

vp−1

τp−1

σ
p+q−2

2

(4.11)

=
∑

0≤m≤n≤p−1

ã(q−p,p−q)
nm (u, v)Y (q−p,p−q)

nm (σ, τ)

5In principle the equation for representation different than (1, 1) are the same but harder to solve and

they will involve weighted averages also on the direct channel.
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The functions ã
(q−p,p−q)
nm (u, v) admit the expansion

ã
(q−p,p−q)
ij (u, v) =

up+q−2

vp−1
κ
(
ctree
ij + cloop

ij f(log v, log u, gYM )
)

(4.12)

where κ is a coefficient which depends on p and q. At this point it is clear that we can

apply the same procedure and results of the previous sections provided we project in specific

SU(4)R representations, namely

HS
(1,1)
2 ↔ HSRp+q−2

where R = [n −m, q − p + 2m,n −m], for 0 ≤ m ≤ n ≤ p − 1. So that for each of these

representations we obtain a relation exactly as (3.25).

In [15], the four point function of half-BPS operators of arbitrary dimensions have

been computed in planar N = 4 SYM up to three loops. The simplest example with

p 6= q corresponds to the correlator G2233(u, v, σ, τ ), so lets list the results for this case. By

projecting this four point function in the 20’ representation, one can perform the conformal

partial wave expansion and extract c
22O(1,1)

`

c
33O(1,1)

`

as well as γ(1,1)(`), up to two loops in

perturbation theory. Using the notation of (3.33) we obtain

a11 = − log 2 (4.13)

a22 =
1

32

(
π2 + 16 log2 2

)
(4.14)

where g is related to a =
g2
YMN

4π2 as

g = 2a− a2π2

6
+ · · · (4.15)

Now using the crossing relations (3.25) it is possible to compute the coefficients 〈β〉 and

〈β2〉 appearing in the expansions (3.29) of the weighted averages of anomalous dimension

of twist-3 operators for any of the three possible representation of SU(4)R:

〈β〉 =

(
−1

2
+ γe

)
g + · · · (4.16)

〈β2〉 =

(
1

2
− γe + γ2

e −
π2

48

)
g2 + · · · (4.17)

where γe is Euler Gamma constant. As expected from unitarity, 〈β2〉 > 〈β〉2.

We can also obtain results for general p, q. As noticed in [15, 16], three point functions

of cp1p2` properly normalised are all equal at one loop since there is only one structure at

this loop order. This allows computing 〈β〉 for generic p, q giving

〈β〉 = −1

2
(ψ0 (p− 1) + ψ0 (q − 1)) g + · · · (4.18)

where ψ0 denotes the digamma function. Note that for p = q = 2 this agrees with the finite

piece of the anomalous dimension of twist two operators in the large spin limit, while for

p = 2, q = 3 it agrees with the result given above. Furthermore, it displays the factorised

structure discussed section 3.
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5 Conclusions

In the present paper we have studied weakly coupled conformal gauge theories by analytic

bootstrap techniques. Weakly coupled gauge theories contain towers of higher spin opera-

tors of approximate twist τ . By studying crossing symmetry for mixed correlators we have

found that these towers (for large values of the spin) map to each other:

HSτ ↔ HSτ ′ (5.1)

This relation takes the form of an integral equation involving the spectrum and structure

constants of the higher spin operators. In case of twists higher than two, such operators

are degenerate and the integral relation involves weighted averages. Regarding the spec-

trum, we have found that crossing symmetry is consistent with a logarithmic behaviour,

in agreement with [13]. Regarding the structure constants our results take the form

c
pqO(τ)

`

= f (τ)
pq (`)× Γ

(
∆p + ∆q − τ − γ(τ)

`

2

)
(5.2)

Namely, a universal factor times a theory-dependent prefactor f
(τ)
pq (`). The universal factor

has a very similar structure to the one that arises when studying Witten diagrams. In

particular, it includes a series of poles that start when the full twist of the higher spin

operator equals the sum of the dimensions of the other two. In the context of large N

MSYM the appearance of analogous poles was analysed in [9, 19] and where it was shown

to be related to operator mixing. Although our results are in principle only valid in

perturbation theory (but to all loops), given the discussions in [9, 19] we expect this

structure to persist for finite γ`, at least in the planar limit. It is very interesting this

structure arises naturally by only requiring crossing symmetry. The theory-dependent

prefactor, of the schematic form f = `−β , depends on the theory under consideration and

on averages that are hard to calculate. For the simplest case this prefactor is basically

f = `−b, where b is the sub-leading/finite contribution to the anomalous dimension of twist

two operators. In this case it does not add any new analytic structure to the answer, and

we expect this to be the case in general.

Having solved for the constraints above one can then compute the mixed correlators

under consideration in the double null limit. This limit was studied in [12] where it was

shown that the expectation value of a polygonal Wilson loop should be recovered. Our

results are in perfect agreement with these expectation and furthermore they provide all

loop results for certain prefactors that are in general hard to compute.

Some open problems which we consider interesting are the following. The present paper

generalises the results of [6] to external operators with arbitrary dimension. This opens

up the possibility to compare our results with results at strong coupling, since now we can

consider ∆p and ∆q large. It would be very interesting to make a detailed comparison

to the results of [9] from string vertices. This may also allow to get a handle on the

prefactor f
(τ)
pq (`) at strong coupling, ideally to compute it exactly. Regarding this, note

that for N = 4SYM the explicit one-loop result (4.18) grows logarithmically as p or q
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becomes large. As a result `β becomes symmetric under p↔ `. It would be interesting to

understand this result.

It would be interesting to explore further the relation to Wilson loops and the picture

of [12]. The present paper offers a proof of the correlators/Wilson loop correspondence

from crossing symmetry, for the four-dimensional case and gives explicit expressions for all

ingredients involved. Can we learn more from this interplay? A related question is to under-

stand our results, and in particular the structure of poles in the universal factor, along the

lines of [12, 17]. This may provide a finite coupling understanding of the universal factor.

Over the last years there has been progress in the computation of structure constants

in planar N = 4SYM by integrability techniques. See for instance [20] for the state of

the art. Despite these developments, there are still missing ingredients if one wants to

pursue the program to all loops. The present results may be useful in such endeavours.

On one hand, the structures found in this paper should be visible in other approaches.

Furthermore, the fact that the results of this paper are valid for any length of the external

operators means that certain subtleties, such as wrapping, can be pushed away.

It would also be interesting to apply these techniques to other weakly coupled gauge

conformal field theories. An interesting example would be β−deformed N = 4 SYM.

Finally, for theories with gravity dual (known or unknown) an interesting question is

how much of the structure of the gravity dual can be understood from symmetries of CFT

correlators. Or conversely, which CFT theories can admit a gravity dual. There has been a

lot of activity in this regard, see for instance [21] for early results in this direction and [22]

for a different approach. It is remarkable that our results reproduce the pole structure of

Witten diagrams. One may wonder if this would lead to a way to define constructively the

would be gravity dual of our CFT’s.
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A Divergent contributions from HS towers

In this appendix we present the leading divergence, as v → 0, due to the exchange of higher

spin operators in the direct channel, for various situations that we describe. The results

below are heavily used in the body of the paper. The small u limit of the scalar conformal

block is given by, see e.g. [11].

g
∆ij ,∆kl

∆,` (u, v) = u
∆−`

2 f
∆ij ,∆kl

coll (∆,`)(v) (A.1)
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where the collinear part of the conformal block is given by

f
∆ij ,∆kl

coll (∆,`)(v) = (1− v)`2F1

(
1

2
(∆ + `)− 1

2
∆ij ,

1

2
(∆ + `) +

1

2
∆kl,∆ + `; 1− v

)

This result holds in general dimensions. Note that we are using conventions where we do

not include an extra (−1)` factor in the conformal block. We are interested in computing

the divergent contribution as v → 0 of the following sum
∑

`

a`f
∆ij ,∆kl

coll (∆,`)(v) (A.2)

where ∆ = ∆0 + `+ γ` and

a` =
`κ

4`
+ · · ·

As discussed in [3, 4, 12] the divergence arises from the large ` region and can be captured

by focusing in the small v/large ` region. More precisely, we take v → 0 keeping x = `
√
v

fixed. In this limit the sum over ` becomes an integral over x and we obtain

∑

`∈2Z

`κ

4`
f

∆ij ,∆kl

coll (∆0+γ`+`,`)
(v) =

1

v(3+2κ−∆ij+∆kl)/4

∫ ∞

0
dxxκ+ 1

2
2∆0+γ

√
π

K∆kl−∆ij
2

(2x)+· · · (A.3)

In the above expression we have assumed the sum runs over even spins only, which is the

case, for instance, if we have identical external operators. In general we can have a sum

over all spins. In this case:

∑

`∈Z

`κ

4`
f

∆ij ,∆kl

coll (∆0+γ`+`,`)
(v) =

2

v(3+2κ−∆ij+∆kl)/4

∫ ∞

0
dxxκ+ 1

2
2∆0+γ

√
π

K∆kl−∆ij
2

(2x)+· · · (A.4)

In some cases odd spins contribute with a negative factor respect to even spins. In such

case we do not get a divergent contribution. In other words

∑

`

(−1)`
`κ

4`
f

∆ij ,∆kl

coll (∆0+γ`+`,`)
(v) ∼ 1 (A.5)

The results above are useful to compute the leading contribution from a given tower of

higher spin operators. We may be interested in computing the divergent contribution

due to descendants of these operators. In order to compute this we first need subleading

corrections to collinear conformal blocks:

g
∆ij ,∆kl

∆,` (u, v) = u
∆−`

2 f
∆ij ,∆kl

coll (∆,`)(v) + u
∆−`

2
+1f

∆ij ,∆kl

subcoll (∆,`)(v) + · · · (A.6)

These corrections have been computed in [18] for identical external operators, in arbitrary

dimensions, and for the particular case d = 4 can be extracted from the known result for

the scalar conformal blocks. The main result to be used in the body of the paper is that

for all these cases the divergence due to descendants is of exactly the same order, namely

∑

`

`κ

4`
f

∆ij ,∆kl

subcoll (∆0+γ`+`,`)
(v) ∼ 1

v(3+2κ−∆ij+∆kl)/4
(A.7)

We expect this to be true for higher level descendants as well.
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B A tree-level case

Consider correlators G2323(u, v) and G2332(u, v) at tree-level. Let us focus in the leading

term, proportional to u3/2, in the small u expansion. One obtains

G2323(u, v) = u3/2
(a0

v
+ a1

)
+ · · · (B.1)

G2332(u, v) = u3/2

(
b0
v2

+
b1
v

)
+ · · · (B.2)

In both cases, the divergences as v → 0 arise as we sum over the tower of intermediate

states HS3. Note that the OPE coefficients entering in the expansions are related as

c32` = (−1)`c23`. Furthermore, for intermediate states of twist three, the sum over spins

runs over all natural numbers. At tree-level, we can assume an expansion of the form:

∑

I

c23`c23` =
`κ0

4`
(α0 + (−1)`α̃0) +

`κ1

4`
(α1 + (−1)`α̃1) + · · · (B.3)

∑

I

c23`c32` =
`κ0

4`
((−1)`α0 + α̃0) +

`κ1

4`
((−1)`α1 + α̃1) + · · · (B.4)

where I runs over all operators for a given spin and κ0 > κ1 will be fixed momentarily. In

order to compute the divergent behaviour we use the results of appendix A. For the first

correlator:

∑

`

a`
`κ

4`
f

(−1,−1)
coll (∆0+`,`)(v) =

α0

v(3+2κ0)/4
+

α1

v(3+2κ1)/4
+ · · · (B.5)

While for the second correlator

∑

`

(−1)`a`
`κ

4`
f−1,−1

coll (∆0+`,`)(v) =
α̃0

v(3+2κ0+2)/4
+

α̃1

v(3+2κ1+2)/4
+ · · · (B.6)

The leading divergence of the second correlator implies κ0 = 3
2 together with α̃0 ∼ b0.

Next, absence of a divergence 1/v3/2 in the first correlator implies α0 = 0. Then, the

leading divergence of the first correlator implies κ1 = 1
2 , together with α1 ∼ a0, while the

second correlator implies α̃1 = 0. The conclusion of this discussion is that, at tree-level

∑

I

c23`c23` =
`3/2

4`
(−1)`α̃0 +

`1/2

4`
α1 + · · · (B.7)

∑

I

c23`c32` =
`3/2

4`
α̃0 +

`1/2

4`
(−1)`α1 + · · · (B.8)

In the body of the paper we will be interested in a more general case, in which we con-

sider correlators of the form Gpqpq and Gqppq and the contribution from HSp+q−2m. The

discussion proceeds exactly as above. At tree-level it is possible to compute

Gpqpq|HSp+q−2m
= u

p+q−2m
2

(
d

vmin(p,q)−m + · · ·
)

(B.9)

Gqppq|HSp+q−2m
= u

p+q−2m
2

( c

vp−m
+ · · ·

)
(B.10)
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So that at tree-level

∑

I

cpq`cpq` =
`p+q−2m−3/2

4`
(−1)`α̃0 +

`2min(p,q)−2m−3/2

4`
α1 + · · · (B.11)

∑

I

cpq`cqp` =
`p+q−2m−3/2

4`
α̃0 +

`2min(p,q)−2m−3/2

4`
(−1)`α1 + · · · (B.12)

where the intermediate operator has twist p+ q− 2m. For the case p = 3, q = 2, τ = 2 this

reduces to the previous case.

C Degeneracy of twist operators

In this appendix we study the degeneracy of primary operators with fixed twist, of the form

Trϕi∂`ϕL−i (C.1)

where the derivative is along a fixed null direction. For such operators the twist coincides

with the length L. The degeneracy of such operators can be easily computed by Polya

theory. First, let us consider the single letter partition function:

Z1(q) = q + q2 + q3 + · · · = q

1− q (C.2)

which counts states of the form ∂nϕ. The multi-letter partition function, taking into ac-

count cyclycity of the trace is given by

ZL(q) =
1

L

L∑

s=1

(
Z1

(
q

L
(s,L)

))(s,L)

(C.3)

where (s, L) denotes the largest common divisor of s and L. In order to compute the

number of independent primaries, at each level we subtract the number of operators at

previous level, so that

PL(q) = (1− q)ZL(q) (C.4)

is the generating function for the number of primaries. For the first few twists we find

P2(q) =
q2

1− q2
(C.5)

P3(q) =
q3((q − 1)q + 1)

(q − 1)2 (q2 + q + 1)
(C.6)

In particular primary operators with twist two are non-degenerate and have only even spin,

while primary operators of twist three and higher are always degenerate. The degeneracy

for large values of the spin can be understood from the behaviour near q = 1. We find

dL(`) ∼ `L−2.
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