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Abstract: In global fits of parton distribution functions (PDFs) a large fraction of data

points, mostly from the HERA collider, lies in a region of x and Q2 that is sensitive to

small-x logarithmic enhancements. Thus, the proper theoretical description of these data

requires the inclusion of small-x resummation. In this work we provide all the necessary

ingredients to perform a PDF fit to deep-inelastic scattering (DIS) data which includes

small-x resummation in the evolution of PDFs and in the computation of DIS structure

functions. To this purpose, not only we include the resummation of DIS massless structure

functions, but we also consider the production of a massive final state (e.g. a charm quark),

and the consistent resummation of mass collinear logarithms through the implementation

of a variable flavour number scheme at small x. As a result, we perform the small-x

resummation of the matching conditions in PDF evolution at heavy flavour thresholds.

The resummed results are accurate at next-to-leading logarithmic (NLL) accuracy and

matched, for the first time, to next-to-next-to-leading order (NNLO). Furthermore, we

improve on our previous work by considering a novel all-order treatment of running coupling

contributions. These results, which are implemented in a new release of HELL, version

2.0, will allow to fit PDFs from DIS data at the highest possible theoretical accuracy,

NNLO+NLL, thus providing an important step forward towards precision determination

of PDFs and consequently precision phenomenology at the LHC and beyond.
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1 Introduction

The outstanding quality of the CERN Large Hadron Collider (LHC) data continuously

challenges the particle physics theoretical community to perform refined calculations with

uncertainties comparable to the ones of the experimental results. Consequently, perturba-

tive predictions for LHC processes nowadays often include radiative corrections in QCD at

next-to-next-to-leading order (NNLO) and, in some cases, N3LO [1, 2]. These remarkable

calculations have a tremendous impact on many aspects of LHC phenomenology. This can

be seen, for instance, in the context of the determination of parton distribution functions

(PDFs), where the inclusion in the fit of data points describing the transverse momentum of

Drell-Yan lepton pairs [3] or various differential distributions in top pair production [4] has

recently become possible thanks to the existence of fully differential calculations at NNLO.

Moreover, the recent completion of the NNLO QCD corrections to jet production [5, 6],

paves the way for global determinations of parton densities which are truly NNLO. On the

other hand, it is well known that fixed-order calculations fail to provide reliable results in

regions of phase space which are characterized by the presence of two or more disparate

energy scales. In such cases, large logarithmic contributions appear to any order in pertur-

bation theory, and they must be accounted for to all orders. Resummed calculations have

also seen remarkable progress in recent years, and for many observables the resummation

of next-to-next-to-leading (NNLL) logarithms of soft-collinear origin has become standard,

even reaching N3LL for a few observables [7–16].

Traditionally, resummation is not included in the calculations that are employed in

PDF fits with the argument that the observables which are considered are rather inclu-

sive and therefore not much sensitive to logarithmic enhancements. However, the LHC is

exploring a vast kinematic region in both the momentum transferred Q2 and the Bjorken

variable x = Q2/S, where
√
S is the centre-of-mass energy. It is therefore important to

assess the role of logarithmic corrections both in the small-x, i.e. high-energy, regime and

at large x, i.e. in the threshold region. For instance, the production of a lepton pair via the

Drell-Yan mechanism, which is measured by the LHCb collaboration in the forward region

and at low values of the leptons’ invariant mass, probes values of x down to 10−5 ÷ 10−6.

At the other end of the spectrum, searches for new resonances at high mass are sensitive

to PDFs in the 10−1 region.

In the past, some of us included threshold resummation in PDF fits [17] (see also

ref. [18]) and performed dedicated studies that included threshold resummation in both

coefficient functions and PDFs in the context of the production of heavy supersymmetric
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particles [19]. It has to be noted that the inclusion of threshold resummation in PDF

fits did not pose particular challenges because in the widely used MS scheme the splitting

functions that govern DGLAP evolution are not enhanced at large x [20, 21], and the effect

of threshold resummation can be included through a K-factor. The situation is radically

different if we consider small-x resummation, where both coefficient functions and splitting

functions receive single-logarithmic corrections to all orders in perturbation theory.

High-energy resummation of PDF evolution is based on the BFKL equation [22–27].

However, the correct inclusion of LL and NLL corrections to DGLAP splitting functions

is far from trivial. This problem received great attention in 1990s and early 2000s by

various groups, see refs. [28–32], refs. [33–38], and refs. [39–42] (for recent work in the

context of effective theories, see [43]). High-energy resummation of partonic cross sections

is based on the so-called kt-factorization theorem [44–51], which has been used to com-

pute high-energy cross sections for various processes: deep-inelastic scattering (DIS) [49],

heavy quark production [52], direct photon production [53, 54], Drell-Yan [55], and Higgs

production [56–58]. The formalism has been subsequently extended to rapidity [51] and

transverse momentum distributions [59, 60]. Despite the wealth of calculations, it has

proven very difficult to perform resummed phenomenology. Recently, some of us overcame

these difficulties and developed a framework and a public code named HELL (High-Energy

Large Logarithms) [61], which is based on the formalism developed by Altarelli, Ball and

Forte (ABF) [33–38], but does contain significant improvements.

In this paper we further improve on our recent work, with the goal of providing all the

necessary theoretical ingredients and numerical tools to perform a PDF fit which includes

small-x resummation in both PDF evolution and in DIS partonic coefficient functions,

including the correct treatment of the transitions at the heavy flavour thresholds, at NLL

accuracy matched, for the first time, to NNLO. This is important because DIS data still

represent the backbone of any PDF fits, and HERA data [62] do explore the small-x

region. Achieving this target requires two ingredients which are the main results of this

work. The first is the construction of a so-called “variable flavour number scheme” at the

resummed level [63], which provides coefficient functions with power-behaving mass effects

and resummation of mass collinear logarithms, as well as describing the transition of PDF

evolution at heavy quark thresholds. The second is the matching of the NLL resummed

splitting functions to their fixed-order counterparts, which is realized for the first time

up to NNLO. This requires the expansion in power of αs of the resummed result, which

proved to be non-trivial because of the way the resummed kernels are constructed. We also

correct an error present in the our previous paper [61] that we inherited from the original

ABF work [37], which has however a small phenomenological impact. More importantly, we

derive a new way to perform the resummation of running coupling effects, which streamlines

the construction of the resummed evolution kernels and solves an issue in the construction

of its αs expansion. All these improvements are included in a new release of HELL, version

2.0, which is publicly available at the webpage www.ge.infn.it/∼bonvini/hell.

We point out that the investigation of the impact of the resummation on the NNLO

fixed-order splitting functions is potentially of great phenomenological interest. It is well

known that, due to accidental zeros, the effect of small-x logarithms in the evolution is
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mild at NLO but stronger at NNLO, and will be even stronger (with two extra logarithms)

at N3LO. On top of this, comparison of theoretical predictions with experimental data

suggests that fixed-order NLO theory describes the small-x region better than NNLO,

see e.g. [64]. Indeed, the final resummed anomalous dimensions tend to have a shape

which is somewhat closer to NLO than to NNLO, as the small-x growth is greatly reduced

once resummation is performed, see e.g. [65]. Therefore, having the possibility of using

NNLO theory stabilized at small x with high-energy resummation can provide a significant

improvement in the description of the data. This is indeed observed in preliminary appli-

cations of our results [66]. Furthermore, a reliable theory of DIS at low x finds interesting

applications beyond collider physics. For instance, it is a key ingredient in the description

of ultra high-energy neutrinos from cosmic rays, see e.g. [67–69].

This paper is organized as follows. In section 2 we discuss the implementation of a

variable flavour number scheme in the context of small-x resummation, while the details

of resummation of DGLAP evolution and its expansion are collected in the two following

sections. Specifically, in section 3 we present our new realization of the resummation of

running coupling contributions, and later in section 4 we perform the perturbative expan-

sion of the various ingredients and construct our final resummed and matched splitting

functions. We present our numerical results in section 5, before concluding in section 6.

In appendix A we provide analytical results for the off-shell DIS partonic cross section

with mass dependence, while in appendix B we collect some technical details on the actual

implementation of the resummation in HELL.

2 Resummation of deep-inelastic scattering structure functions

The standard way of describing the deep-inelastic scattering of an electron off a proton

is to express the cross section in terms of structure functions that depend on the Bjorken

variable x and the momentum transfer Q2,

Fa(x,Q
2) = x

∑
i

∫ 1

x

dz

z
Ca,i

(
x

z
,
m2
c

Q2
,
m2
b

Q2
,
m2
t

Q2
, αs

)
fi(z,Q

2), (2.1)

where sum runs over all active flavours, i.e. all the partons for which we consider a parton

density. The number of active partons depends on the choice of factorization scheme and

will be discussed in section 2.1. Note that the coefficient functions also depend on the

charges of the quarks that strike the off-shell boson (left understood), as well as on the

heavy-quark masses, as indicated. For simplicity, in the above equation, we have set both

renormalization and factorization scales equal to the hard scale, µ2
R = µ2

F = Q2, so αs =

αs(Q
2). Finally, the index a denotes the type of structure function under consideration.

In our case, we will mostly consider either F2 or the longitudinal structure function FL.

Note that when Q2 ∼ m2
Z , we also have a non-negligible contribution from the parity-odd

structure function F3. This contribution is not logarithmically enhanced at small-x in the

massless case [49]; this remains true for neutral current DIS with massive quarks, however,

in charged current DIS with massive quarks a small-x logarithmic enhancement appears.

To our knowledge, the resummation of these logarithms in F3 was never considered so far.
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In order to diagonalize the convolution in eq. (2.1) we consider Mellin moments of the

structure functions

Fa(N,Q
2) ≡

∫ 1

0
dxxN−1Fa(x,Q

2) =
∑
i

Ca,i

(
N,

m2
c

Q2
,
m2
b

Q2
,
m2
t

Q2
, αs

)
fi(N,Q

2), (2.2)

where, as often done in the context of small-x resummation, we have introduced a non-

standard definition for the moments of the coefficient functions and of the parton densities:

Ca,i

(
N,

m2
c

Q2
,
m2
b

Q2
,
m2
t

Q2
, αs

)
=

∫ 1

0
dz zN Ca,i

(
z,
m2
c

Q2
,
m2
b

Q2
,
m2
t

Q2
, αs

)
, (2.3a)

fi
(
N,Q2

)
=

∫ 1

0
dz zN fi

(
z,Q2

)
. (2.3b)

The last equation implies that the DGLAP anomalous dimensions are defined as

γij(N,αs) =

∫ 1

0
dz zN Pij(z, αs), (2.4)

where Pij are the usual Altarelli-Parisi splitting functions. In particular, in momentum

space, the leading logarithmic (LL) behavior at small-z to any order n > 0 in perturbation

theory is αnsP
(n−1)
ij ∼ αns

1
z lnn−1 1

z . In Mellin space these logarithms are mapped into

poles in N = 0, which results in the following LL behavior for the anomalous dimension:

αns γ
(n−1)
ij ∼ (αs/N)n. In practice, not every entry of the anomalous dimension matrix is

LL at small-x. On the other hand, the behavior of the DIS coefficient functions in Mellin

space is αnsC
(n)
a,i ∼ αs(αs/N)n−1, i.e. the enhancement is at most next-to-leading logarithmic

(NLL). Note that some care has to be taken when considering the LO contribution C
(0)
a,i ,

which is an O(α0
s) constant in Mellin space, and hence formally LL.

In this paper we construct the NLL resummation of DIS structure functions at small-x.

In order to achieve this goal, we resum the first two towers of logarithmic contributions to

the splitting functions, while we consider only the first non-vanishing tower of logarithmic

contributions to the partonic coefficient functions. Note that in a previous work [61] we

called this NLL resummation in DIS coefficient functions just LL, underlining the fact that

it is the leading non-vanishing logarithmic enhancement. We refer to the counting of this

previous work as relative logarithmic counting (i.e. relative to the leading non-vanishing

logarithmic enhancement), while the one adopted here as absolute counting (i.e. using the

overall powers of αs and 1/N).

Henceforth, unless explicitly stated, we are going to work in Mellin space and leave

the dependence on the N variable, as well as the other variables, understood. As common

in studies of DIS, we perform a flavour decomposition. For our purposes it is enough to

separate the structure functions into a singlet and non-singlet component

Fa = F S
a + FNS

a . (2.5)

The singlet structure functions contain both gluon and quark (singlet) contributions

F S
a = Ca,g fg + CS

a,q fS , (2.6)

– 4 –
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where

fS =

nf∑
i=1

[fqi + fq̄i ], (2.7)

nf denoting the number of active quark flavours. The non-singlet structure function instead

reads, see e.g. [49, 70],

FNS
a = CNS

a,q

nf∑
i=1

e2
i

(
fqi + fq̄i −

1

nf
fS

)
, (2.8)

where ei is the electric charge of the quark qi, i.e. its coupling to the photon.1 Furthermore,

we can collect the terms proportional to the singlet PDF, obtaining

Fa = Ca,g fg + CPS
a,q fS + CNS

a,q

nf∑
i=1

e2
i (fqi + fq̄i), (2.9)

where we have defined the so-called pure-singlet coefficient function,

CPS
a,q = CS

a,q − 〈e2〉CNS
a,q , (2.10)

being 〈e2〉 the average squared charge.

In this study we consider resummed structure functions matched to their fixed-order

counterparts. To this purpose, we find useful to introduce resummed contributions, defined

as the all-order results minus its expansion to the fixed-order we are matching to,

∆nC = Cres −
n∑
k=1

αks C
res,(k), (2.11)

where we are going to typically consider matching to NLO and NNLO structure functions,

i.e. n = 1, 2, although DIS structure functions are also known, in the massless case, to

three loops [72–74]. Moreover, many of the formulae involving the resummed contribution

that we derive in what follows hold regardless of the order in perturbation theory we

are matching to. For these cases we adopt a simplified notation that omits the index

n: ∆nC → ∆C. Note also that we will sometimes write the full resummed expression

Cres as ∆0C.

2.1 Factorization schemes in presence of massive quarks

In the context of collinear factorization, mass collinear singularities due to massless quarks

must be factorized, such that perturbative coefficient functions are finite. This is the

1Here we assume that the DIS interaction is mediated by a photon, thus ignoring a possible contribution

from the Z boson, or the charged-current case in which a W is exchanged. This choice makes the discussion

here and in the following somewhat simpler, and allows to focus on the details of the resummation. Most

of what follows does not depend on this assumption, as small-x resummation affects just the singlet: in

particular, the small-x logarithmic content of the singlet and pure-singlet coefficients, eq. (2.10), is identical

(for a discussion about small-x enhancements in the non-singlet sector see, for instance, ref. [71]). The

generalization to a generic vector boson is rather straightforward, and will be presented in section 2.1.3.
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case for the up, down and strange quarks that we always consider massless. For massive

quarks, i.e. charm, bottom and top, collinear singularities are regulated by the quark mass

and they manifest themselves as logarithms of the ratio Q2/m2. Despite the fact that

the factorization of these contributions is not necessary in order to obtain finite cross-

sections, if Q2 � m2, these logarithms become large and their all-order resummation

becomes desirable in order to obtain reliable perturbative predictions. This resummation

is obtained by factorizing the mass logarithms, in the very same way as done for the

massless quarks.

Whether mass collinear logarithms are factorized or not for a given massive quark is

a choice of factorization scheme. A scheme where the collinear logarithms for the first nf
lightest quarks are factorized is called a scheme with nf active flavours. In such a scheme,

collinear logarithms are resummed for light quarks, while they are treated at fixed order

for heavy quarks, thus defining the (relative) concept of light and heavy. Note that while

obviously a heavy quark is massive, a light quark could be either massless, e.g. up, down,

strange, or massive, e.g. charm and bottom. Thus, nf can be 3, 4, 5. Note that nf = 6 is

not phenomenologically relevant, especially in the context of DIS, because the hard scale

of the process is at most comparable, but never much bigger, than the top mass and so the

top will be always treated as a heavy flavour.

In several cases, mostly in the contest of PDF fits where data span a large range in

Q2, it is convenient to define so-called variable flavour number schemes (VFNS), where the

number nf of active flavours varies as a function of Q, such that the collinear resummation

for a given massive quark is turned on only for scales where it is needed. More specifically,

a VFNS is a patch of factorization schemes with subsequent values of nf , which switches

from a value nf to the next one (nf + 1) at a given “heavy quark threshold” µh, typically

chosen of the order of the heavy quark mass. The relation between a scheme with nf active

quarks and a scheme where the mass logarithms of the (nf + 1)-th flavour are resummed,

i.e. a scheme with nf + 1 active flavours, is at the core of the construction of a VFNS and

provides the ingredients to resum the collinear logarithms of the (nf + 1)-th flavour. For a

recent review see ref. [75].

Let us consider DIS structure functions in a scheme with nf (massless or massive) active

flavours. As we increase the hard scale Q, we reach energy scales which are significantly

bigger than the mass of the (nf + 1)-th quark flavour. In this situation the nf -flavour

scheme is no longer appropriate, as potentially large collinear logarithms log(Q2/m2) are

left unresummed. A more reliable framework is then provided by a factorization scheme

in which nf + 1 flavours are considered active, i.e. they all participate to parton evolution,

having factorized, and hence resummed, their collinear behaviour [76–88]. The PDFs in

the two schemes are related by matching conditions

f
[nf+1]
i =

∑
j=g,q1,q̄1,...,qnf ,q̄nf

K
[nf ]
ij f

[nf ]
j , i = g, q1, q̄1, . . . , qnf , q̄nf , qnf+1, q̄nf+1, (2.12)

where the sum runs over active flavours in the nf scheme, and K
[nf ]
ij are matching functions.

Note that we only consider here factorization schemes in which the matching coefficients

– 6 –
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depend on the heavy quark mass only through logarithms of Q2/m2
qnf+1

. In particular, we

will consider only MS-like schemes, where all the PDFs f
[nf+1]
i in the nf + 1 scheme evolve

through standard DGLAP equations, i.e. as they all were PDFs of massless quarks. Note

however that the heavy quark PDFs, being generated by the matching conditions eq. (2.12),

have a purely perturbative origin, and depend effectively on the heavy quark mass.

The structure functions eq. (2.9) can be written in either scheme

Fa = F
[nf ]
a ≡ C [nf ]

a,g f
[nf ]
g + C

PS[nf ]
a,q f

[nf ]
S + C

NS[nf ]
a,q

nf∑
i=1

e2
i

(
f

[nf ]
qi + f

[nf ]
q̄i

)

= F
[nf+1]
a ≡ C [nf+1]

a,g f
[nf+1]
g + C

PS[nf+1]
a,q f

[nf+1]
S + C

NS[nf+1]
a,q

nf+1∑
i=1

e2
i

(
f

[nf+1]
qi + f

[nf+1]
q̄i

)
.

(2.13)

To all orders in αs, the choice of factorization scheme is immaterial and the two expressions

are identical. Truncating the perturbative expansion of the coefficients to any finite order

makes the two expressions different by higher order terms. Requiring equivalence of the two

expressions order by order allows to relate the various coefficients and to find the matching

functions K
[nf ]
ij . The coefficient functions in the nf scheme are computed in standard

collinear factorization with nf active quarks, with the heavy quark(s) only appearing in

the final state or through loops. In the nf+1 scheme the coefficient functions generally differ

as the collinear logarithms due to the heavy quark are also factorized. Their expressions,

which include mass dependence, can be determined by the equality of the first and second

line of eq. (2.13):

C
[nf ]
a,g = C

[nf+1]
a,g K

[nf ]
gg + C

PS[nf+1]
a,q

(
nfK

[nf ]
qg +K

[nf ]
hg

)
+ C

NS[nf+1]
a,q

( nf∑
i=1

e2
iK

[nf ]
qg + e2

nf+1K
[nf ]
hg

)
, (2.14)

and similarly for the quark coefficient functions. In the equation above, we have defined

K
[nf ]
hg ≡ K

[nf ]
qnf+1g +K

[nf ]
q̄nf+1g (2.15)

and similarly for the gluon to light-quark matching function K
[nf ]
qg , since these functions

do not depend on the specific flavour but only on whether the final quark is light or heavy.

Eq. (2.14) and its quark counterparts can be solved to express the coefficient functions

in the nf + 1 scheme in terms of those in the nf scheme and the matching functions

K
[nf ]
ij , as we shall see in the next section. Furthermore, requiring that resummation of

collinear logarithms due to the nf + 1 flavour is achieved in the nf + 1 scheme allows us to

derive expressions for the matching functions as well. We will come back to this point in

section 2.1.2. For a detailed and general discussion, not limited to small x, see e.g. [75, 88].

2.1.1 Heavy-flavour schemes at small-x

We now focus our discussion of heavy-quark factorization scheme to the contributions that

are enhanced in the small-x regime. This topic has been discussed at length in refs. [42, 63],
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m1

m1

m2

V ∗

Q̄

Q′

g∗

+

m1

m2

m2

V ∗

Q̄

Q′

g∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m1
m2

m2

V ∗

Q̄

Q′

g∗

+
m1

m1

m2

V ∗

Q̄

Q′

g∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

Figure 1. Representative diagrams that contribute to the DIS structure functions at NLL in the

gluon channel (left) and quark channel (right). In the quark loop the flavour (and thus the mass)

can change in the charged-current case (hence the different colours).

where explicit resummed results were presented in the DIS factorization scheme. Here, we

extend the results to MS-like schemes.

As previously mentioned, the resummed contribution ∆C can be either seen as a

contribution to the singlet or to the pure singlet. At the accuracy we are considering here,

it always comes from a gluon ladder which ends with a quark pair production, one of which is

struck by the photon, as depicted in figure 1. In the case of a quark initiated contribution,

the quark immediately converts to a gluon, which then starts emitting. Therefore, the

resummed contribution to the singlet coefficient functions, denoted ∆Ca,i, always has the

form (in the nf scheme)

∆C
[nf ]
a,i =

nf∑
k=1

e2
k ∆ca,i(mqk) +

6∑
k=nf+1

e2
k ∆c̃a,i(mqk), i = g, q, (2.16)

where ∆ca,i(mqk) is the resummed contribution in the case of a light active flavour being

struck by the photon, and ∆c̃a,i(mqk) is the resummed contribution in the case of a heavy

flavour being struck by the photon.2 Recall that being active does not necessarily imply

being massless and indeed both massless and massive flavours contribute to ∆ca,i. Cru-

cially though, in this contribution collinear logarithms are factorized and resummed and,

consequently, the zero mass limit of ∆ca,i is finite. On the other hand, ∆c̃a,i(mqk) only con-

tains massive quarks and no resummation of mass logarithms has been performed. Thus,

the massless limit of this type of contributions is logarithmically divergent. In some sim-

plified approaches, the mass of the heavy-quark is immediately neglected once it becomes

active: this leads to what is sometimes called a zero-mass variable flavour number scheme

2In charged-current DIS, where the photon is replaced by a W boson, the quark flavour changes after

hitting it, and so does its mass. Therefore, in this case, the coefficient functions ∆ca,i and ∆c̃a,i would also

depend on the mass of the outgoing quark.
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(ZM-VFNS). Note that the massless contribution is identical for each massless quarks, so

in a ZM-VFNS we would have

nf∑
k=1

e2
k ∆ca,i(0) = 〈e2〉nf∆ca,i(0), i = g, q. (2.17)

For this reason, a factor nf is usually included in the definition of the massless singlet coef-

ficient function, see e.g. refs. [49, 61]. Here instead, we wish to retain the mass dependence

of the active flavours, if present. To this purpose, we adopt a factorization scheme akin to

S-ACOT [78, 79] or FONLL [84] (which are formally identical [75, 88]) in which the mass

dependence is retained in the coefficient functions.

We now perform a logarithmic counting on eq. (2.14). None of the matching functions

are LL, with the exception of the LO diagonal components, which are all equal to 1 at

O(α0
s), K

(0)
ii = 1. Furthermore, all coefficient functions are NLL, except the non-singlet LO

coefficient of F2, which is C
NS,(0)
2,q = O(1) and thus LL. The leading non-trivial logarithmic

contributions in the coefficient functions are then NLL, and their resummed contributions,

eq. (2.16), are related in the two schemes by

∆C
[nf ]
a,g = ∆C

[nf+1]
a,g + e2

nf+1C
NS,(0)
a,q ∆Khg(mqnf+1),

∆C
[nf ]
a,q = ∆C

[nf+1]
a,q + e2

nf+1C
NS,(0)
a,q ∆Khq(mqnf+1), (2.18)

where ∆Kij are the NLL resummed contributions to K
[nf ]
ij . In the results above, we have

neglected all contributions which are products of two NLL functions. We have also dropped

K
[nf ]
qg (and K

[nf ]
qq ), which start beyond NLL, as they are given by conversions of gluons or

quarks into quarks with the participation of the heavy quark, i.e. suppressed by at least

two genuine powers of αs. Note that, for simplicity, we are not indicating in ∆Kij the label
[nf ], but we emphasize its (logarithmic) dependence on the heavy quark mass.

Note that C
NS,(0)
a,q in eq. (2.18) is the one in the nf + 1 scheme, so it is, in principle,

an unknown of the problem. However, the requirement that in the nf + 1 scheme the

resummation of collinear logarithms is achieved, forces it to be equal to the value computed

in the limit where the heavy flavour is massless, up to possibly power-behaving mass

corrections. This mass dependence can be arbitrarily fixed to be zero, as the original set

of simultaneous equations, eq. (2.14), is undetermined: there are two more unknowns than

equations [75, 88]. This choice is the one leading to S-ACOT/FONLL [78, 79, 84] and

TR [80, 81] schemes, where we have

C
NS,(0)
2,q (0) = 1, (2.19a)

C
NS,(0)
L,q (0) = 0. (2.19b)

In alternative approaches, like ACOT [76, 77, 85] or, equivalently, a new incarnation of

FONLL [75, 89], denoted here as FONLLIC, which has been introduced to account for a

possible intrinsic component of the charm PDF, the incoming heavy quark is treated as
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massive and therefore the mass-dependence is fully maintained in the coefficient function:

C
NS,(0)
2,q (mqnf+1) =

√
1 + 4m2

qnf+1
/Q2

 2

1 +
√

1 + 4m2
qnf+1

/Q2

N+1

, (2.20a)

C
NS,(0)
L,q (mqnf+1) =

4m2
qnf+1

/Q2√
1 + 4m2

qnf+1
/Q2

 2

1 +
√

1 + 4m2
qnf+1

/Q2

N+1

. (2.20b)

Note that the massless limit of these expressions reduces to the massless result, eq. (2.19).

We stress that for most applications the simpler S-ACOT/FONLL option is formally, and

practically, as good as the more complicated ACOT/FONLLIC approach and hence we

focus on it in the following. However, care must be taken when describing the charm

structure functions in the case in which the charm PDF is fitted. In this case, the two

approaches may lead to sizeable differences and the use of ACOT/FONLLIC might be

advisable. We will come back to this point in section 2.2.3.

We now consider again the decomposition eq. (2.16). In the nf + 1 scheme it simply

becomes

∆C
[nf+1]
a,i =

nf+1∑
k=1

e2
k ∆ca,i(mqk) +

6∑
k=nf+2

e2
k ∆c̃a,i(mqk), i = g, q, (2.21)

where ∆ca,i(mqnf+1) are the small-x resummed contributions to the production of a heavy

quark (pair) in the scheme in which such heavy quark participates to the parton dynamics

and its collinear logarithms have been factorized. We now plug eqs. (2.16) and (2.21) into

eq. (2.18). All terms involving the lightest nf flavours and the heaviest nf+2, . . . , 6 flavours

cancel out, leaving only a relation between the coefficient functions for the nf + 1 flavour:

e2
nf+1 ∆c̃a,i(mqnf+1) = e2

nf+1 ∆ca,i(mqnf+1) + e2
nf+1C

NS,(0)
a,q ∆Khi(mqnf+1), i = g, q.

(2.22)

The squared charge is the same in all terms and cancels out, thereby suggesting that this

result will hold in general for more generic couplings, such as when the Z-boson exchange

plays a role, as will be discussed in section 2.1.3. We then find the (collinearly factorized)

massive coefficients in the nf + 1 scheme for F2, assuming eq. (2.19),

∆c2,g(mqnf+1) = ∆c̃2,g(mqnf+1)−∆Khg(mqnf+1),

∆c2,q(mqnf+1) = ∆c̃2,q(mqnf+1)−∆Khq(mqnf+1), (2.23)

and for FL

∆cL,g(mqnf+1) = ∆c̃L,g(mqnf+1),

∆cL,q(mqnf+1) = ∆c̃L,q(mqnf+1). (2.24)

Given the matching function ∆Kij at NLL accuracy, the above results completely fix the

relation of the NLL resummed contributions to the coefficient functions in nf and nf + 1

schemes. In particular, eq. (2.24) shows that the resummed contribution to FL is the same

in either schemes.

– 10 –



J
H
E
P
1
2
(
2
0
1
7
)
1
1
7

2.1.2 Computation of matching functions

In the derivation above the matching functions K
[nf ]
ij (or ∆Kij) are assumed to be given

as an input to the computation of coefficient functions in the nf + 1 scheme. However, the

very same derivation also allows us to construct the matching functions themselves. This

is true in general (see e.g. ref. [75]), but we focus on the small-x limit for simplicity.

The key observation is that, after scheme change, the coefficient functions in the nf +1

scheme must not contain anymore the collinear logarithms associated to the (nf + 1)-th

flavour. This is possible only if the matching functions subtract such collinear logarithms

from the massive coefficients ∆c̃a,i(mqnf+1), such that the massless limit mqnf+1 → 0 of the

coefficient functions in the new scheme ∆ca,i(mqnf+1) is finite. If we further require that

the nf and nf + 1 scheme are both of the same type, e.g. MS-like, we also need to impose

that the massless limit of the massive coefficient ∆ca,i(mqnf+1) is just what we would have

computed if the (nf + 1)-th flavour were massless:

lim
Q�mqnf+1

∆ca,i(mqnf+1) = ∆ca,i(0), i = g, q. (2.25)

(Note that, at the logarithmic accuracy we are interested in, ∆ca,i(0) are the same in

the nf and in the nf + 1 schemes.3) The massless limit eq. (2.25) ensures that in the

nf +1 scheme the collinear logarithms are properly factorized into the PDFs and resummed

through DGLAP. It also fixes the “constant” (i.e., non mass dependent) part of the function

∆ca,i(mqnf+1). It does not tell us anything about the power corrections in mqnf+1/Q in

the nf + 1 scheme, which have to be determined by the matching procedure.

The results eq. (2.24) show that, since FL has no collinear singularities at NLL, the

massive coefficient in the nf + 1 scheme smoothly approaches the massless one at large Q,

without any scheme change to be applied. On the other hand, in the case of F2, eq. (2.23),

which contains collinear singularities in the massless limit, the scheme-change effectively

subtracts the matching function, and the difference will smoothly tend to the massless

coefficient for Q� mqnf+1 .

We can exploit the last consideration to derive the desired resummed expressions for

the matching functions ∆Khi, i = g, q. Indeed, eq. (2.23) can be inverted to give ∆Khi in

terms of the massive coefficient functions ∆c̃2,i(m), which are known, and of the coefficient

functions ∆c2,i(m) in the nf + 1 scheme, the massless limits of which, ∆c2,i(0), are known.

We can therefore consider the massless limit mqnf+1 → 0 of this expression, keeping in mind

that ∆Khi and ∆c̃2,i(m) are separately logarithmically divergent, and therefore the massless

limit has to be intended as setting to zero power-behaving contributions while keeping the

logarithms finite. Assuming, or better choosing, that ∆Khi contain only logarithms of the

mass mqnf+1 or mass independent terms, we then find

∆Khi(mqnf+1) = lim
Q�mqnf+1

∆c̃2,i(mqnf+1)−∆c2,i(0), i = g, q, (2.26)

3In the actual resummed expressions we compute, there is a non-zero nf dependence in the coefficient

functions ∆ca,i(0), which is however subleading and can therefore be ignored.
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where the limit has to be intended as a formal expression as described above. Note that

including power-behaved mass dependent terms is possible and would simply change the

form of ∆c2,i(m) through eq. (2.23), as well as the PDFs in the nf + 1 scheme according

to eq. (2.12). However, this “factorization” of power behaved contributions is beyond the

control of the collinear factorization framework, so the simplest choice eq. (2.26) is perfectly

acceptable and therefore universally adopted.

The definition eq. (2.26) also shows that matching functions at NLL satisfy color-

charge relations. Indeed, it is known that both massless and massive coefficient functions

in the quark and gluon channels are related at NLL by4

∆ca,q(0) =
CF
CA

∆ca,g(0), ∆c̃a,q(m) =
CF
CA

∆c̃a,g(m). (2.27)

From eq. (2.26) it then immediately follows

∆Khq(m) =
CF
CA

∆Khg(m). (2.28)

Together, eqs. (2.27) and (2.28) imply through eqs. (2.23) and (2.24) a color-charge relation

∆ca,q(m) =
CF
CA

∆ca,g(m). (2.29)

for the coefficient functions in the nf + 1 scheme.

2.1.3 Generalization to neutral and charged currents

The previous results have been derived in the case of photon-exchange DIS. We now com-

ment on their generalization to the more general case of neutral current, where also the Z

boson contributes, and the case of charged current, where the exchanged boson is a W .

Including a Z boson in the discussion is rather trivial. What changes is just the

coupling to the quark, which is different to that of the photon both in the Z-only exchange

and in the photon-Z interference. In Z-only exchange both vector and axial couplings

contribute, which we denote generically as gV and gA. If we consider only massless quarks,

the sum of the squares of each coupling, g2
V + g2

A, factorizes. The only subtlety regarding

Z exchange is that in the massive case there is a contribution which is not proportional to

the sum of the squares of the vector and axial couplings. However, in this case, one can

still factor out g2
V + g2

A, but a contribution proportional to g2
A/(g

2
V + g2

A) appears, which is

not present in the photon (or photon-Z interference) case. This term is not problematic,

as it vanishes in the limit of massless quarks. Therefore, the whole construction of the

previous sections, and in particular section 2.1.1, remains unchanged, provided the photon

couplings e2
k are replaced with the more general coupling (g2

V + g2
A)k for each quark qk.

The charged-current case is less trivial. In this case, the quark flavour changes after

interacting with the W and this results in two additional complications. Firstly, the quark

4These colour-charge relations are strictly speaking only valid when the resummed contributions refer to

the pure-singlet. If they refer to the singlet, in the massless case there is a fixed-order contribution which

needs to be subtracted [61]. Alternatively, we can say that these relations are valid for ∆kca,i with k ≥ 1.
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mass changes. In fact, for all practical applications, one of the quarks interacting with the

W can be considered as massless. Indeed, ignoring the top quark which is too heavy to give

a contribution at typical DIS energies, the only two massive quarks are the charm and the

bottom, but their interaction is suppressed by the Vcb CKM entry and can thus be neglected.

Hence, the only remaining combinations involve either a massless and a massive quarks, or

two massless quarks. The second complication arises due to the fact that the final state,

composed by a quark q and an anti-quark q̄′, is not self conjugate (as it is in the neutral-

current case, where the final state contains qq̄). This means that the non-singlet coefficient

in eq. (2.13) is different for q and q̄, depending on the process. In particular, this implies

that when using eq. (2.14) to derive eq. (2.18), only either the heavy quark qnf+1 or the

heavy anti-quark q̄nf+1 contributes: thus, the collinear subtraction, where present, contains

only half of the matching function. Additionally, for the computation of the parity-violating

F3 structure function (which contains a singlet contribution in the massive charged-current

case), the non-singlet LO coefficient has opposite sign depending on whether the initial

state parton is a quark or an anti-quark, specifically C
CC,NS,(0)
3,q = 1 and C

CC,NS,(0)
3,q̄ = −1.5

Putting everything together, we have that the analogous of eqs. (2.23) and (2.24) are

∆cCC
2,i (mqnf+1) = ∆c̃CC

2,i (mqnf+1)−∆Khi(mqnf+1)/2, i = g, q, (2.30a)

∆cCC
L,i (mqnf+1) = ∆c̃CC

L,i (mqnf+1), (2.30b)

∆cCC
3,i (mqnf+1) =

∆c̃CC
3,i (mqnf+1)−∆Khi(mqnf+1)/2 if final state is qQ̄,

∆c̃CC
3,i (mqnf+1) + ∆Khi(mqnf+1)/2 if final state is Qq̄,

(2.30c)

where we are denoting with Q the heavy massive quark and with q the companion massless

quark appearing in the final state. The massless limit of the latter is just zero, ∆cCC
3,i (0) = 0,

since in the massless limit F3 is non-singlet and therefore it does not contain logarithmic

enhancement at small x (see appendix A for further details).

2.2 Small-x resummation of coefficient functions and matching functions

We are now ready to discuss the actual resummed expressions for coefficient functions both

in the massless and massive case. Additionally, using eq. (2.26), we also determine the all-

order behaviour of the matching functions. The all-order behaviour of partonic coefficient

functions is obtained using the kt-factorization theorem. In this framework one computes

the gluon-initiated contribution to the process of interest, keeping the incoming gluon off

its mass-shell. To the best of our knowledge, only the off-shell coefficient functions that

are necessary to perform the resummation of the photon-induced DIS structure functions

have been presented in the literature, both in the case of massless and massive quarks, see

e.g. [44, 45, 90]. However, in this study we want to resum all DIS coefficient functions, both

the neutral-current and charged-current contributions. Therefore, we perform a general

5Note that the opposite sign in these two contribution makes the collinear subtractions in the fully

massless case ineffective. Indeed, the collinear singularities in this case cancel automatically. In fact, after

cancellation, the non-singular part vanishes, thus making the massless singlet contribution to F3 zero (which

remains true at higher orders, since the underlying reason is the antisymmetry of the F3 contribution for

the exchange of the two quark masses). The same mechanism holds in the neutral-current massive case.
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calculations of DIS off-shell coefficient functions considering the coupling to the electro-

weak bosons and, where relevant, the interference with the photon-induced contributions.

The calculation is detailed in appendix A, where we collect all the relevant results for the

off-shell DIS coefficient functions. These results have been implemented in the public code

HELL, version 2.0, and are also accessible through the public code APFEL [91], to which

HELL has been interfaced, which directly constructs resummed structure functions.

2.2.1 Resummed coefficient functions

The resummation of the massless coefficient functions was originally performed to NLL

in ref. [49]. Following ref. [38], in our recent work [61] we have also included formally

subleading, but important, contributions such as the ones related to the running of the

strong coupling. In our approach, the partonic massless coefficient function Ca(N, ξ, 0, 0),

which is calculated with an incoming off-shell gluon (see appendix A for details about our

notation), is convoluted with an evolution operator U(N, ξ),

∆0c2,g(0) = −
∫
dξ

d

dξ
C2(0, ξ, 0, 0)U(N, ξ)− Uqg

nf
, (2.31a)

∆0cL,g(0) = −
∫
dξ

d

dξ
CL(0, ξ, 0, 0)U(N, ξ), (2.31b)

where

U(N, ξ) = exp

[∫ ξ

1

dζ

ζ
γ+

(
N,αs(ζQ

2)
)]
, (2.32)

and γ+ is the small-x resummed anomalous dimension. Note that the above expressions

hold in a factorization scheme denoted Q0MS [47, 49, 92, 93], which differs from MS at

relative O(α3
s). In the context of small-x resummation this scheme is preferred because it

leads to more stable results [38]. Furthermore, since the explicit N dependence of the off-

shell partonic coefficient function is subleading, we find advantageous to work at NLL with

its N = 0 moment. In the resummed expression of the F2 contribution, the subtraction

term Uqg appears. Its role is to cancel the collinear singularity of C2(0, ξ, 0, 0). Its expression

reads [61]

Uqg =

∫
dξ

ξ
γqg(N,αs(ξQ

2)) θ(1− ξ)U(N, ξ) (2.33)

where γqg is the resummed qg anomalous dimension. All ξ integrals extend to ∞ and start

from the position of the Landau pole, ξ0 = exp −1
αsβ0

. In ξ = ξ0 the evolution function

U is supposed to vanish (this was e.g. a condition for neglecting a boundary term when

integrating by parts in ref. [61]). However, due to subleading contributions, this is not

always true in our practical construction. While the induced effect is subleading, this fact

is undesirable: we discuss in appendix B.1 how we now deal with this issue.

We can apply the same procedure to the case of a heavy (non-active) flavour. We

start considering neutral currents. Note that in this case the mass of the quark acts as a

regulator and no subtraction term Uqg appears,

∆0c̃a,g(m) = −
∫
dξ

d

dξ
Ca(0, ξ, ξm, ξm)U(N, ξ), a = 2, L, (2.34)
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where we have defined ξm = m2/Q2 (see again appendix A for the precise definition of

the off-shell coefficient and its arguments). The massive coefficient functions entering the

above formula have been computed a long time ago [45, 94] (see also ref. [95]). We report

them in appendix A, where we have also recomputed them in a more general set-up which

covers the full neutral-current case in which the mediator can be a Z boson thus finding

a new contribution proportional to the axial coupling, and the charged-current scenario in

which the mass of the quark changes after interacting with the W boson. We have already

commented in section 2.1.3 that for physically relevant processes only one of the quarks

involved in charged current DIS is massive, and the other can be treated as massless. In

this case the resummed coefficients read

∆0c̃
CC
2,g (m) = −

∫
dξ

d

dξ
C2(0, ξ, ξm, 0)U(N, ξ)− Uqg

2nf
, (2.35a)

∆0c̃
CC
L,g(m) = −

∫
dξ

d

dξ
CL(0, ξ, ξm, 0)U(N, ξ)− ξm

1 + ξm

Uqg
2nf

, (2.35b)

∆0c̃
CC
3,g (m) =


−
∫
dξ

d

dξ
C3(0, ξ, ξm, 0)U(N, ξ) +

1

1 + ξm

Uqg
2nf

(qQ̄),

−
∫
dξ

d

dξ
C3(0, ξ, 0, ξm)U(N, ξ)− 1

1 + ξm

Uqg
2nf

(Qq̄).

(2.35c)

Here, since one of the two quarks involved is massless, we need massless collinear sub-

tractions, implemented through Uqg, to take care of the collinear singularity. Since only

one out of two diagrams contains the singularity, there is a factor 1/2 for each subtrac-

tion. Each subtraction further multiplies the LO non-singlet diagram evaluated in N = 0,

corresponding to the process q + W → Q (or its conjugate) with massive Q, which has

non-trivial mass dependence for FL and F3 (and non-trivial sign for F3). For FL in par-

ticular, this term vanishes in the massless limit, consistently with eq. (2.31b). In the last

equation we are treating separately the cases in which the final state contains a massless

quark plus a massive anti-quark and its conjugate process, for the same reason discussed in

section 2.1.3. Note that, according to the notation defined in appendix A where the third

argument of the off-shell coefficient is the mass (squared divided by Q2) of the anti-quark

and the fourth the mass of the quark in the final state, the arguments are swapped in the

two cases. Effectively, for F3 swapping the arguments changes the sign, so the difference

between the two cases is just an overall sign. For F2 and FL, instead, the coefficients are

symmetric for final-state charge conjugation, and therefore the result does not change when

swapping the arguments.

We stress that in the massive case the partonic coefficients include non-trivial theta

functions which restrict the available phase space. This is originally encoded in the N

dependence of the off-shell coefficients, which we loose when setting N = 0. As these

theta functions are very physical, it is important to restore them. Details on how this is

implemented in our resummed results are given in appendix B.2.

The massless ξm → 0 limit of all the off-shell coefficients is finite, because the off-

shellness ξ regulates the collinear region, and gives the massless off-shell coefficients entering

eqs. (2.31) (and zero for F3). However, while the ξm → 0 limit for FL gives automatically

– 15 –



J
H
E
P
1
2
(
2
0
1
7
)
1
1
7

the massless result, as it must according to eqs. (2.24), (2.30b), for F2 and F3 one further

needs to subtract the matching condition, eqs. (2.23), (2.30a), (2.30c). Accordingly, the

resummed massive coefficient functions for the massive active flavour are given in neutral

current by

∆0c2,g(m) = −
∫
dξ

d

dξ
C2(0, ξ, ξm, ξm)U(N, ξ)−∆0Khg(m), (2.36a)

∆0cL,g(m) = −
∫
dξ

d

dξ
CL(0, ξ, ξm, ξm)U(N, ξ), (2.36b)

and in charged current by

∆0c
CC
2,g (m) = −

∫
dξ

d

dξ
C2(0, ξ, ξm, 0)U(N, ξ)− Uqg

2nf
−

∆0Khg(m)

2
, (2.37a)

∆0c
CC
L,g(m) = −

∫
dξ

d

dξ
CL(0, ξ, ξm, 0)U(N, ξ)− ξm

1 + ξm

Uqg
2nf

, (2.37b)

∆0c
CC
3,g (m) =


−
∫
dξ

d

dξ
C3(0, ξ, ξm, 0)U(N, ξ) +

1

1 + ξm

Uqg
2nf
−

∆0Khg(m)

2
(qQ̄),

−
∫
dξ

d

dξ
C3(0, ξ, 0, ξm)U(N, ξ)− 1

1 + ξm

Uqg
2nf

+
∆0Khg(m)

2
(Qq̄)

(2.37c)

(again, the last equation is split in two depending on whether the final state is qQ̄ or Qq̄, the

difference being an overall sign). Comparison of eq. (2.36a) (and equivalently eq. (2.37a))

with eq. (2.31a) shows that the massless limit does not commute with the on-shell limit in

presence of collinear singularities. In particular, the ξm → 0 limit applied to ∆0c
(CC)
a,g (m),

a = 2, 3 does not commute with the ξ integration.

2.2.2 Resummed matching functions

We can now use eq. (2.26) to determine the resummed matching function ∆0Khg(m). Using

eqs. (2.34) and (2.31a) we can write6

∆0Khg(m) =
Uqg
nf

+

∫
dξ

d

dξ
C2(0, ξ, 0, 0)U(N, ξ)− lim

ξm→0

∫
dξ

d

dξ
C2(0, ξ, ξm, ξm)U(N, ξ),

(2.38)

where the last two terms are basically the commutator of ξ integration and massless limit.

Computing this commutator in the general case is highly non-trivial. Therefore, we con-

sider first the limit in which the coupling is kept fixed. In this limit the convolution over

ξ becomes a Mellin transformation with moment M = γs
(
αs
N

)
, which is the LL anoma-

lous dimension, dual of the LO BFKL kernel. This Mellin transform can be performed

6Note that this equation can be written in two alternative forms by comparing eq. (2.37a) to eq. (2.31a)

or by noting that the massless limit of eq. (2.37c) vanishes. Using the results of appendix A.3 it is easy to

verify that all these forms are equivalent and lead to the same result.
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analytically, so the massless ξm → 0 limit can be safely taken afterwards. We have (see

appendix A.3)

∆0K
f.c.
hg (m) =

Uqg
nf
− αs

π

(
m2

Q2

)γs 1− γs
γs

Γ3(1− γs)Γ(1 + γs)

(3− 2γs)Γ(2− 2γs)
. (2.39)

A non-trivial check of the above expression can be performed by considering its perturbative

expansion,

∆0K
f.c.
hg (m) = αs

[
h0/nf
γs

+ h1/nf + (h2/nf )γs + . . .

− 1

3πγs
− 5 + 3 log(m2/Q2)

9π

− 56 + 30 log(m2/Q2) + 9 log2(m2/Q2)

54π
γs + . . .

]
= − log(m2/Q2)

3

αs
π
− 28 + 30 log(m2/Q2) + 9 log2(m2/Q2)

18N

(αs
π

)2
+O(α3

s),

(2.40)

where hi are the (known) coefficients of the perturbative expansion of γsUqg
f.c.
= γqg in

powers of γs [49, 61]. The first coefficients read h0 =
nf
3π , h1 =

nf
3π

5
3 , h2 =

nf
3π

14
9 . Note

that the collinear pole 1/γs cancels out in the sum. The second equality is then obtained

replacing γs = αsCA
πN +O(α2

s). The above expression can be compared with the fixed-order

results presented in ref. [82]. The αs term corresponds to the Mellin transform of the NLO

result computed in N = 0, and the α2
s term correctly reproduces the leading singularity

of the NNLO contribution. Checking the above result one order higher in perturbation

theory is less trivial because at this order we start to become sensitive to the choice of

factorization scheme. After taking into account the conversion from Q0MS to MS, which

affects the second term in eq. (2.39), we find full agreement with the high-energy limit of

the α3
s result [96, 97].

We can now restore the running-coupling effects in the resummation from the fixed-

coupling result by computing

∆0Khg(m) =
Uqg
nf
−
∫
dξ

d

dξ
Khg(ξ, ξm)U(N, ξ), (2.41)

where Khg is obtained as the inverse Mellin transform of its fixed-coupling counterpart,

second term in eq. (2.39). The computation of this inverse Mellin transform is done in

appendix A.3, and its derivative is given by

d

dξ
Khg(ξ, ξm) =

αs
3π

6ξm
ξ2

[
1− 4ξm

ξ

√
ξ

ξ + 4ξm
log

(√
ξ

4ξm
+

√
1 +

ξ

4ξm

)]
. (2.42)

Clearly, by construction, eq. (2.41) with eq. (2.42) reproduces the correct result in the

fixed-coupling limit, eq. (2.39). Also, it clearly includes the correct resummation of the

subleading running coupling effects, as the form eq. (2.41) is the standard expression for

such resummation [61]. Eq. (2.42) is a new result. It allows to resum the matching

conditions in MS-like schemes with full inclusion of running-coupling effects.
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2.2.3 Matching to fixed order and construction of the VFNS: FONLL as an

example

We conclude the section by giving some details on how the resummed results presented

above are combined with the fixed-order contributions to construct a VFNS.

First, we have to subtract from the resummed coefficient functions their expansion up

to the order we want to match onto. The O(αs) and O(α2
s) contributions to the resummed

matching function are explicitly given in eq. (2.40) in the fixed-coupling limit, but up to

this order they are identical to their running coupling counterparts, and so they can be

used straight away to construct ∆1Khg(m) and ∆2Khg(m). The same equation shows in

the first line the expansion of Uqg/nf , which is in turn needed for the massless collinear

subtractions of DIS coefficient functions in eqs. (2.31a), (2.35) and (2.37). To complete

the list, one needs to expand the ξ-integrals of the off-shell coefficient functions with the

evolution factor U(N, ξ). As for the matching function, up to O(α2
s) this expansion can be

simply obtained by working in the fixed-coupling limit. For this, we need the expansions in

M of the Mellin transforms of the off-shell coefficients, given in appendix A.3.2, where M

should be replaced by γs = αsCA
πN +O(α2

s) and expanded out. By doing so, all the ∆1c’s and

∆2c’s can be constructed, making the matching of each ingredient with the corresponding

fixed order up to NNLO straightforward.

The actual construction of a VFNS is more delicate. Indeed, there are at least two

degrees of freedom that have been exploited in the literature to construct different incar-

nation of VFNSs (at fixed order). One degree of freedom is related to the inclusion of

undetermined (by the matching conditions) power-behaving mass dependent contributions

in some coefficient functions, as already discussed in section 2.1.1. The second degree of

freedom is related to how to combine the various ingredients at a given finite perturbative

order. The approach adopted so far in our construction can be identified with a plain (i.e.,

without any χ-rescaling [98]) S-ACOT construction, with a canonical perturbative counting

based on explicit powers of αs (at fixed αs/N for resummed contributions). This is equiv-

alent to a plain (i.e., without damping [84]) FONLL construction, even though in FONLL

the various ingredients are combined together with a different philosophy. In the following

we will briefly review the FONLL construction, which is implemented in the APFEL+HELL

package, with which our results can be directly used for resummed DIS phenomenology.

The FONLL approach [83] is a standard combination of fixed-order and resummed

contributions, in which these two ingredients are simply summed up and the double count-

ing between them subtracted. In the FONLL case, the distinction between “fixed order

(FO)” and “resummation (NLL)” refers to collinear logarithms due to massive quarks. In

DIS, the FONLL construction [84] of structure functions, assuming a single heavy quark

qnf+1 with mass m, is performed as

FFONLL
a (m) = F

[nf ]
a (m) + F

[nf+1]
a (0)− F d.c.

a (m), a = 2, L, 3, (2.43)

where F
[nf ]
a (m) is the fixed-order (called massive) contribution, in which the collinear log-

arithms are not resummed and which retains the full mass dependence of the heavy quark,

F
[nf+1]
a (0) is the resummed (called massless) contribution, computed assuming that the
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heavy quark is massless, and thus where the (singular) collinear logarithms are resummed,

and finally F d.c.
a (m) is the double-counting term (called massive-zero), which can be either

seen as the fixed-order expansion of F
[nf+1]
a (0) or the “massless limit” (in which divergent

terms are kept finite) of F
[nf ]
a (m). The combination F

[nf+1]
a (0) − F d.c.

a (m) can be seen

as the resummed contribution to be added to the fixed order to resum the collinear loga-

rithms, or equivalently F
[nf ]
a (m)−F d.c.

a (m) can be interpreted as the power-behaving mass

corrections to the (resummed) massless calculation.

According to our nomenclature (extended to the structure functions) the FONLL result

is just the massive result in the nf + 1 scheme, i.e.

FFONLL
a (m) = F

[nf+1]
a (m). (2.44)

Thus, the double counting term, which is the only non-trivial ingredient in eq. (2.43), is

given by

F d.c.
a (m) = F

[nf ]
a (m) + F

[nf+1]
a (0)− F [nf+1]

a (m) (2.45)

The corresponding small-x resummed coefficient functions, analogous to ∆ca,i and ∆c̃a,i,

can be obtained from eq. (2.45) using eq. (2.18) together with eqs. (2.16) and (2.21), and

are given by

∆cd.c.
a,i (m) = ∆ca,i(0) + CNS,(0)

a,q ∆Khi(m), i = g, q (2.46)

for NC, and similarly for CC (with an extra factor 1/2 multiplying ∆Khi). The discussion

so far does not add anything to the results presented in the previous sections. However,

having now the small-x resummation for each individual ingredient appearing in eq. (2.43),

we can also consider the version of FONLL which includes a damping on the resummed

contribution,

FFONLL+damp
a (m) = F

[nf ]
a (m) + θ(1− ξm)(1− ξm)2

[
F

[nf+1]
a (0)− F d.c.

a (m)
]
, (2.47)

such that the resummation smoothly turns off at the scale Q = m. This variant is often

used in PDF fits, and effectively corresponds to damping the collinear subtraction term

−CNS,(0)
a,q ∆Khi(m) in our resummed coefficients ∆ca,i(m).

A word of caution is needed when discussing the perturbative counting. The canonical

counting would consist in including all contributions at O(αs) for NLO and all contributions

at O(α2
s) at NNLO (and so on). However, a non-standard counting is usually adopted at

NLO (e.g. in NLO NNPDF fits), where the massless contribution F
[nf+1]
a (0) is retained

at O(αs), as well as the matching functions, but the massive contribution F
[nf ]
a (m) is

computed at one order higher, O(α2
s) [84]. When this particular perturbative counting

is adopted, the double-counting piece must be computed with care. In particular, only

the definition of F d.c.
a (m) as the fixed-order expansion of F

[nf+1]
a (0) to O(α2

s) gives the

correct result. As far as small-x resummation is concerned, one has to use ∆2c̃a,i(m) for

the massive part and ∆1ca,i(0) for the massless part, while for the matching at the heavy

quark threshold in DGLAP evolution ∆1Khi(m) is to be used. For the double-counting

part, being it the expansion of the massless, the use of ∆1ca,i(0) and ∆1Khi(m) in eq. (2.46)
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is needed. It can be explicitly verified that in this way the “resummed contribution”

F
[nf+1]
a (0)− F d.c.

a (m) is indeed of O(α3
s) and subleading at small x.

Finally, we discuss a variant of the VFNS where the mass of the heavy quark is retained

in all coefficient functions in the nf + 1 scheme. This is the original ACOT [76, 77, 85]

construction, and it also corresponds to the variant FONLLIC proposed in refs. [75, 89]

to account for a possible intrinsic component of the charm PDF. Following the latter

references, we define

δFa = FFONLLIC
a − FFONLL

a

= FACOT
a − F S-ACOT

a , (2.48)

to be the term needed to upgrade S-ACOT/FONLL to ACOT/FONLLIC (ignoring damp-

ing, rescaling, etc.). The small-x resummation of this term can be simply obtained by

computing the difference between the resummation obtained with massive NS coefficients,

eq. (2.20), and the one obtained with massless NS coefficients, eq. (2.19). We thus have

(we apologize with the Reader for the awkward notation)

∆δca,i(m) =
[
CNS,(0)
a,q (0)− CNS,(0)

a,q (m)
]
∆Khi(m), a = 2, L, i = g, q, (2.49a)

∆δcCC
a,i (m) =

[
CCC,NS,(0)
a,q (0)− CCC,NS,(0)

a,q (m)
]
∆Khi(m)/2, a = 2, L, 3, i = g, q, (2.49b)

which are the resummed contributions to the singlet coefficient functions δca,i making

up δFa for neutral current and charged current respectively. Note that the massive NS

coefficients, which have a non-trivial dependence on N , can be computed in N = 0 in

eqs. (2.49), as the N dependence is a subleading effect as small x.

3 A new approach to running-coupling resummation in DGLAP evolu-

tion

In the original ABF construction [33–38], which we followed with minor modifications

in our previous work [61], the resummation of the anomalous dimension γ+ (the largest

eigenvalue of the singlet sector) is performed through the exploitation of the duality relation

between DGLAP and BFKL evolution kernels, improved with symmetrization of the latter

and the imposition of exact momentum conservation. This result is usually referred to as

double-leading (DL) resummation.

However, it was realized long ago [35] that running coupling corrections to fixed-order

duality give rise to subleading terms which potentially spoil the perturbative stability

of the result. Therefore, despite their formally subleading nature, the resummation of

these effects is of utmost importance in order to obtain stable and reliable resummed

anomalous dimensions. Additionally, the resummation of these terms changes the nature

of the all-order small-N singularity, converting a square-root branch-cut into a simple

pole. Therefore, the resummation of these contributions, known as running-coupling (RC)

resummation, is usually added to the DL result.

The RC resummation can be obtained by solving the BFKL equation with full running

coupling dependence (see e.g. [39–41]), and then deriving from the solution (which is an
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eigenvector PDF) its anomalous dimension. If we were able to perform this procedure with

the full DL BFKL kernel, the resulting anomalous dimension would just be the final result.

However, solving such equation analytically is not possible, due to the complicated all-order

αs-dependence and the non-trivial M -dependence of the DL kernel. In some approaches,

e.g. [28–32], the equation is thus solved numerically, and the resummed anomalous dimen-

sion derived in a numerical way. Instead, in refs. [37, 61] an approximate analytic solution,

in which both αs- and M -dependencies of the kernel are simplified, was constructed and

added to the DL anomalous dimension, subtracting the appropriate double counting.

We find this second approach more convenient, and we keep adopting it here. However,

in this section we critically review the approximations used in refs. [37, 61] and propose

a new way of constructing and approximating the kernel from which the RC solution is

computed. Our approach has various advantages, from purely practical ones related to

the numerical implementation to most serious ones related to the physical nature of the

solution and its αs dependence.

3.1 The choice of the kernel

The core of small-x resummation of the largest eigenvalue γ+ is encoded in the duality

between the DGLAP and BFKL equations. Imposing that the corresponding eigenvector

PDF is solution to both equations requires the duality relation

χDL(γDL(N,αs), αs) = N, (3.1)

where χDL(M,αs) is the BFKL kernel and γDL(N,αs) the DGLAP anomalous dimension.

The knowledge of the BFKL kernel at NkLO provides by duality all the NkLL contributions

in the anomalous dimension, and vice versa. The name DL comes from the fact that both

kernels are supposed to contain their fixed-order part at NkLO, thus implying that they

also contain (by duality with each other) all NkLL contributions. Therefore, dual DL

kernels obtained with fixed NkLO in both, usually denoted DL-NkLO, are matched results

of the form NkLO+NkLL, and so they are both double (next-to-k) leading order and log.

The actual DL kernel and anomalous dimension further contain additional ingredients

(from symmetrization and momentum conservation) which are required to make the result

perturbatively stable.

The duality relation eq. (3.1) assumes that the strong coupling αs does not run, namely

it is Q-independent. When the running of αs is taken into account, the duality equation

receives additional corrections. If these corrections are included perturbatively, new singu-

larities appear which make the result perturbatively unstable. For instance, at NLO+NLL

one should include a purely NLL term of the form of a LL function of αs/N times an overall

factor αs [35]

γrc
ss(N,αs) = −β0αs

χ′′0(M)χ0(M)

2χ′0
2(M)

∣∣∣∣∣
M=γs(αs/N)

, (3.2)

where γs(αs/N) is the dual of the LO BFKL kernel αsχ0(M). The new singularity is ob-

tained when χ′0(M) in the denominator vanishes, i.e. in M = 1/2. Higher-order corrections

will have larger powers of χ′0(M) in the denominator, leading to a perturbatively unstable
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singularity for N such that γs(αs/N) = 1/2, i.e. N = αsχ0(1/2). This instability goes

away if RC corrections are included to all orders in the running-coupling parameter β0

(i.e., at NLO+NLL one should include a term of the form of a LL function of αs/N times

a function of αsβ0 to all orders), and the various singularities sum up to a simple pole,

whose position is perturbatively stable. This is the main motivation for including the RC

corrections to all orders.

RC corrections are resummed by solving the BFKL equation with the DL kernel χDL in

which αs is not fixed but is running. When the coupling runs, αs(Q
2) becomes a differential

operator α̂s = αs/(1 − β0αsd/dM) in Mellin space, with αs = αs(Q
2
0), Q0 being a fixed

scale, and where we have assumed 1-loop running. In principle, there can be αs computed

at different scales in the kernel, but one can always rewrite it as αs(Q
2) by evolving to

that scale and expanding the relevant evolution factors. In this way, the α̂s operators are

placed on the left of all the M -dependent terms of the kernel, and act on everything to the

right. This ordering is the one chosen by ABF to derive their solution of the RC equation.

Two observations are now in order.

• While at DL-LO all the running coupling evolution factors are higher orders, and αs
can be set equal to αs(Q

2) in all terms without modifying explicitly the kernel, at DL-

NLO changing the argument of each αs to αs(Q
2) in all LO contributions produces

terms which are formally NLO and have to be included in the kernel. Because of

the symmetry properties of the BFKL ladder, the DL-NLO kernel (see eq. (4.14)

later) does not correspond, by construction, to a kernel in which all αs’s are αs(Q
2).

Therefore, at NLO, the form of the kernel in which all αs’s are αs(Q
2) differs from

that of the DL kernel by NLO terms. For this reason, a different kernel was used for

DL and RC resummation at NLO in refs. [37, 38, 61].

• Once all powers of αs are computed at Q2, which is equivalent to say that all powers

of α̂s have been commuted to the left, the running coupling equation cannot be solved

directly, because it is in principle a differential equation of infinite order. Therefore,

in ABF a linear approximation of the kernel, in which at maximum one power of α̂s
is retained and all others are frozen to αs(Q

2
0), is used.

The fact that the complicated all-order α̂s dependence of the kernel is approximated with

a linear one may seem too crude. However, the goal of the RC resummation is to resum

to all orders a class of terms, behaving as powers of αsβ0 times a LL function of αs/N ,

which originates from 1-loop running at lowest order. The NLO contribution to the BFKL

kernel would produce corrections which are of order αs(αsβ0)n(αs/N)k for all n, k, and

therefore beyond the formal accuracy we aim to. This shows that the linear approximation

suggested by ABF is in fact sufficient to the scope of this resummation.

In fact, this argument also suggests that using a NLO kernel for RC resummation

which differs from the DL one is unnecessary. Indeed, the ingredients which determine

the leading RC corrections to all orders are contained in the LO part of the kernel. Thus,

correcting the kernel by NLO terms will change subleading RC contributions which we do

not aim to resum. Therefore, for the accuracy we are interested in, the NLO part of the RC

– 22 –



J
H
E
P
1
2
(
2
0
1
7
)
1
1
7

kernel is immaterial, and there is no reason for using a different kernel for RC resummation

and DL resummation.

Using the same kernel for DL and RC resummations, as we now suggest, has an

important consequence: we do not need any more the infamous function γmatch introduced

in ref. [37] and used later in refs. [38, 61] to cure the mismatch of singularities between the

DL part and the RC part of the result. This function was needed to effectively remove the

square-root branch-cut of the DL solution, since the subtraction of the double counting

term between DL and RC resummations does not cancel it, exactly because two different

kernels were used. What we have realized only with this work is that the function γmatch

is not subleading as was originally claimed [37], but rather it is NLL and therefore ruins

the formal accuracy of the NLO+NLL result. We give more details about this function in

section 3.4.

Having understood that the linear α̂s approximation is a good approximation, and that

as such the same BFKL kernel can be used for both DL and RC resummations, in order

to be able to solve the RC BFKL equation we further need to specify the M functional

form. The approximation adopted by ABF, which we followed in ref. [61], is a quadratic

approximation around the minimum of the kernel. Indeed, the minimum encodes, by

duality, the information on the leading singularity, and it is therefore sufficient to accurately

describe the kernel and to perform the RC resummation. However, we argue that this

quadratic approximation has subtle undesired properties which makes it not ideal for our

purposes. For instance, the αs-expansion of the resulting anomalous dimension contains

half-integer powers of αs. This is a direct consequence of the fact that a polynomial kernel,

such as this quadratic approximation, is non-physical. Thus, here we propose a different

approximation, which is physically motivated and which leads to an expansion in integer

powers of αs. We discuss this new approximation, denoted collinear approximation, in the

next section.

3.2 Solution of the RC differential equation in the collinear approximation

We are now going to derive the solution of the RC BFKL equation in the linear α̂s ap-

proximation and collinear M approximation. The starting point is the on-shell BFKL

kernel in symmetric variables [37] that we denote simply χ(M,αs), whose α̂s dependence

is approximated as

χ(M, α̂s) = χ(M,αs) + (α̂s − αs)χ′(M,αs) = χ̄(M,αs) + α̂sχ
′(M,αs) (3.3)

where prime denotes derivative with respect to αs. It is important to observe that this

approximation includes an O(α̂0
s) term, χ̄, which is not physical and not present in the

original kernel which is of lowest order O(α̂s). For this reason the kernel eq. (3.3) does not

go to zero as α̂s → 0. One could therefore consider another linear approximation,

χ(M, α̂s) = α̂s
χ(M,αs)

αs
, (3.4)

which does go to zero as α̂s → 0, but does not reproduce the exact derivative in α̂s = αs.

In fact, both approximations are equally valid for our purposes, as they would be identical
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(and exact) in the case of a LO kernel χ(M, α̂s) = α̂sχ0(M). In the following, we will use

the first approximation, eq. (3.3), to derive our results, which can then be easily translated

into the second approximation, eq. (3.4), by simply letting χ̄ = 0, χ′ = χ/αs. We stress

that this simple translation rule could not be applied in the original ABF solution with

quadratic kernel, as the limit χ̄→ 0 is not trivial in that case.

The (homogeneous) RC BFKL equation with kernel eq. (3.3), from which the re-

summed anomalous dimension can be derived, is given by [37]

[N − χ̄(M,αs)]f(N,M) = α̂sχ
′(M,αs)f(N,M), (3.5)

where f(N,M) is the double Mellin transform of the eigenvector PDF. Assuming 1-loop

running, and taking the logarithmic derivative of the solution, we arrive at the anoma-

lous dimension

γrc(N,αs) =

[
d

dt
log

∫ M1+i∞

M1−i∞

dM

2πi
eMt exp

∫ M

M0

dM ′
1

β0αs

(
1− αsχ

′(M ′, αs)

N − χ̄(M ′, αs)

)]
t=0

,

(3.6)

where M0 and M1 are free parameters which must be in the physical region 0 < M < 1

(they can be conveniently chosen to be equal to each other, and equal to the position of

the minimum). In order to compute the integrals analytically, we need to specify the form

of the kernels χ̄ and χ′. In the ABF construction, a quadratic approximation around the

minimum of the actual kernel was considered,

χ(M,αs) = c(αs) +
κ(αs)

2
(M −Mmin(αs))

2 +O
(
(M −Mmin)3

)
, (3.7)

where Mmin differs in general from 1/2 by terms of O(αs). The polynomial form of the

quadratic kernel is non-physical, as for instance the inverse Mellin transform of the n-

th power of M corresponds to the n-th derivative of a δ function of kt in momentum

space. A better approximation, which we propose here, is inspired by a collinear plus anti-

collinear approximation of the kernel [93, 99] generalized to account for a minimum which

is not in 1/2:

χcoll(M,αs) = A(αs)

[
1

M
+

1

2Mmin(αs)−M

]
+B(αs). (3.8)

Expanding around its minimum M = Mmin we find

χcoll(M,αs) =

(
B +

2A

Mmin

)
+

2A

M3
min

(M −Mmin)2 +O
(
(M −Mmin)3

)
, (3.9)

which leads to the identifications

A =
M3

minκ

4
, B = c− M2

minκ

2
, (3.10)

such that the collinear kernel incorporates exactly the same information as the quadratic

kernel. Therefore, from the point of view of the accuracy of the approximation, the new

collinear kernel is as good as the old quadratic one. However, as its form resembles the
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leading collinear and anticollinear poles of the actual kernel, it performs better than the

quadratic one, and leads to a solution with better features, as we shall now see.

To compute the solution of the BFKL equation we need to specify the α̂s dependence

of the collinear kernel eq. (3.8). For A(αs) and B(αs), we use the very same linear decom-

position eq. (3.3), while the position of the minimum Mmin(αs) will not be considered as an

operator.7 The integrals in eq. (3.6) can be computed easily by noticing that the functional

form of the integrand is identical to that of the quadratic kernel used by ABF, for which

the solution is already known. Specifically, for quadratic kernel, the kernel-dependent part

of the integrand of eq. (3.6) is given by

χ′(M,αs)

N − χ̄(M,αs)
=

c′ + κ′/2(M −Mmin)2

N − c̄− κ̄/2(M −Mmin)2
, (3.11)

while for collinear kernel we find

χ′(M,αs)

N − χ̄(M,αs)
=

2MminA
′ +B′M(2Mmin −M)

(N − B̄)M(2Mmin −M)− 2MminĀ

=
c′ −B′/M2

min(M −Mmin)2

N − c̄− (N − B̄)/M2
min(M −Mmin)2

, (3.12)

having used in the last step eq. (3.10). By direct comparison, we find the translation rules

κ′ → −2
B′

M2
min

= κ′ − 2
c′

M2
min

, κ̄→ 2
N − B̄
M2

min

= κ̄+ 2
N − c̄
M2

min

. (3.13)

Hence, the final solution is given by [37, 61]8

γrc(N,αs) = Mmin + β0ᾱs

[
z
k′ν(z)

kν(z)
− 1

]
, (3.14)

where kν(z) is a Bateman function, with

1

ᾱs
=

1

αs
+

κ′ − 2c′/M2
min

κ̄+ 2(N − c̄)/M2
min

(3.15a)

z =
1

β0ᾱs

√
N − c̄

κ̄/2 + (N − c̄)/M2
min

(3.15b)

ν =

(
c′

N − c̄
+

κ′ − 2c′/M2
min

κ̄+ 2(N − c̄)/M2
min

)
ᾱsz. (3.15c)

We immediately observe that the limit c̄, κ̄ → 0 of these expressions is finite and trivial,

so the solution in the approximation eq. (3.4) is a trivial limit of this solution. This is in

contrast with the analogous solution with a quadratic kernel, whose χ̄ → 0 limit is not

trivial and leads to a solution in terms of Airy functions. This represents a first advantage

of using the collinear kernel with respect to the quadratic one.

7Note that this assumption is less crude than the approach of previous works, where Mmin was simply

approximated to be 1/2 in the RC equation.
8In order to account for a generalized position of the minimum, we have recomputed the solution ana-

lytically, thus providing a useful cross-check of the result presented in the literature.
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Eq. (3.14) with eq. (3.15) represents a new result with respect to the old “Bateman”

RC solution of refs. [37, 38, 61] and it generalizes it to the case in which the minimum is not

in 1/2. In order to study the properties of this result, we start considering the saddle point

expansion of eq. (3.6), which is equivalent to an expansion in powers of β0 of eq. (3.14).

This expansion is also needed to identify the proper double counting with the DL part.

We find

γrc(N,αs) = Mmin −

√
N − c

κ/2 + (N − c)/M2
min

− β0αs

+
1

4
β0α

2
s

[
3

κ′ − 2c′/M2
min

κ+ 2(N − c)/M2
min

− c′

N − c

]

+ β2
0α

3
s

√
κ/2 + (N − c)/M2

min

N − c
c′κ− κ′(N − c)

32(N − c)2[2(N − c)/M2
min + κ]2

×
[
16c2/M2

min + 8N(κ+ 2N/M2
min)

− c(16αsc
′/M2

min + 8κ− 3αsκ
′ + 32N/M2

min)

+ αs(5c
′κ+ 16c′N/M2

min − 3κ′N)
]

+O(β3
0). (3.16)

This result shows a number of interesting features, especially when compared with the

analogous expansion in the case of the quadratic kernel [37]. First, we note that at large

N all terms go to zero except for the running coupling correction −β0αs, which is finite.

This is in agreement with the fact that the starting kernel had a pole in M = 0, which by

fixed-coupling duality leads to an anomalous dimension that goes to zero at large N . Note

that this is in contrast with the case of the quadratic kernel, which diverges at large N as

−
√

2N/κ, due to the absence in the first square root of the term +(N − c)/M2
min in the

denominator, in agreement with it being derived from a BFKL kernel quadratic in M . This

term is crucial for another reason, as it makes the denominator of O(α0
s), while it would be

of O(αs) if the denominator were just κ/2, as it happens with the quadratic kernel. Having

a denominator of O(αs) produces an αs expansion of this result which contains half-integer

powers of αs. Instead, the αs expansion of eq. (3.16), and hence of eq. (3.14), is perfectly

acceptable with only integer powers of αs. These two differences represent two additional

important benefits of using the collinear kernel rather than the quadratic one.

3.3 Construction of matched results

We recall that the solution eq. (3.14), having been derived with an approximate M de-

pendence, cannot be regarded as the full solution. Rather, it represents the all-order re-

summation of the β0 terms which must be added to the DL result, after subtracting those

contributions which are already included (and not approximated) in the DL result. In the

following we will thus focus on the combination of our RC resummed anomalous dimension

with the DL one, also providing the αs expansions of the RC contributions which will be

needed in section 4 for matching (N)LL resummation to (N)NLO.

When matching the RC resummation to the DL-LO result, the first three terms of

the singular expansion eq. (3.16) have to be subtracted (the first two because they are LL,
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and the third because it is of O(αs), and hence already included in the DL-LO). After

subtraction we have the expansion

∆DL-LOγrc(N,αs) ≡ γrc(N,αs)−

[
Mmin −

√
N − c

κ/2 + (N − c)/M2
min

− β0αs

]

= β0α
2
s

3κ0/32− c0

N
+O(α3

s), (3.17)

where κ0 and c0 are the derivatives of κ and c computed in αs = 0, and are given by

c0 =
CA
π

4 log 2, κ0 =
CA
π

28ζ3. (3.18)

The careful Reader might wonder what are the consequences of starting with a BFKL

kernel in symmetric variables. Indeed, when combined with the DL result, the RC result

must be translated to DIS (asymmetric) variables. This amounts to adding N/2 to the RC

anomalous dimension. However, such a term is automatically subtracted in the construction

of the RC contribution to the DL result, ∆DL-LOγrc(N,αs) [100]. Therefore, the latter

object is insensitive to the change of variables.

For NLL resummation the RC result must be matched to DL-NLO, so we further

need to subtract the O(α2
s) of γrc. However, we observe that at O(β0) the expansion of

γrc, eq. (3.16), contains terms which are formally NLL, and specifically given by αsβ0

times a LL function. These terms should be already included in the DL-NLO result. In

fact, contributions of this form originate from running coupling corrections to the duality

relation [35], eq. (3.2), and are not automatically generated by fixed-coupling duality in

the DL-NLO result. Rather, they have to be supplied to the DL-NLO result as an additive

correction [37, 61],

∆γrc
ss(N,αs) = −β0αs

[
χ′′0(M)χ0(M)

2χ′0
2(M)

− 1

]
M=γs(αs/N)

= O(α4
s), (3.19)

where αsχ0(M) is the LO BFKL kernel and γs(αs/N) its dual. The −1 in square brackets

represents the subtraction of the double counting with the fixed-order part of the DL-

NLO; after subtraction, this function starts at O(α4
s). Since the kernel used in the RC

resummation is only approximate, the function γrc does not correctly predict all the NLL

contributions of eq. (3.19). Therefore, eq. (3.19) must be still added to the DL-NLO result,

and the O(β0) part of γrc has to be considered as a double counting term with respect to

∆γrc
ss, and hence subtracted. Thus, for RC resummation matched to DL-NLO, we further

need to subtract the fourth term of eq. (3.16),

∆DL-NLOγrc(N,αs) ≡ γrc(N,αs)−

[
Mmin −

√
N − c

κ/2 + (N − c)/M2
min

− β0αs

+
1

4
β0α

2
s

(
3

κ′ − 2c′/M2
min

κ+ 2(N − c)/M2
min

− c′

N − c

)]
= β2

0α
3
s

κ0

16N
+O(α4

s), (3.20)
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where we have also written its αs expansion in the last line. We observe that, formally,

only the O(αsβ0) times a LL function is really doubly counted, so in principle one could

expand the last line of eq. (3.20) at NLL, and remove the NNLL terms. However, we

think that it is most consistent to also remove these spurious higher logarithmic order

contributions. Interestingly, the expansions of both eq. (3.17) and (3.20) at lowest order

only involve lowest order derivatives of c and κ, eq. (3.18), which in turn are determined

from just the LO BFKL kernel, and hence do not depend on the actual construction of the

DL kernel. Also, they are the same irrespectively of the kind of approximate dependence

on α̂s is used, either eq. (3.3) or eq. (3.4).

3.4 Singularity mismatch

The functions ∆DL-(N)LOγrc(N,αs), eqs. (3.17) and (3.20), contain the resummation of β0

contributions which should be added to γDL-(N)LO, respectively. The square root term in the

subtractions of eqs. (3.17) and (3.20) contains the LL singularity which has to be removed

from the DL result, and replaced with the pole singularity contained in the γrc term. This

cancellation is exact if the parameters of the minimum, c(αs) and κ(αs), are computed

from the same DL kernel used for the fixed-coupling duality which defines γDL-(N)LO.

At LO+LL, the kernel is the one obtained putting on-shell eq. (4.2), so the singularity

automatically cancels.9 In ref. [61] an intermediate result, denoted LO+LL′, was introduced

to perform the resummation of quark entries of the anomalous dimension matrix and of

coefficient functions. This anomalous dimension is formally LO+LL, but uses the RC

parameters of the NLO kernel such that the position of the leading singularity is the same

as that of the NLO+NLL result. For this result, the cancellation of the branch-cut cannot

take place. In order to cure the mismatch in the singularities of the DL-LO result and the

RC result with NLO parameters we need a matching function γmatch. Its form must be

γLO+LL′

match (N,αs) = γm

(
N, cNLO(αs), κ

NLO(αs),M
NLO
min (αs)

)
− γm

(
N, cLO(αs), κ

LO(αs),
1

2

)
,

(3.21)

where the function γm must reproduce the singular behaviour of the RC and DL parts,

respectively, and the parameters c(N)LO, κ(N)LO and M
(N)LO
min are those obtained from the

(N)LO kernel. For the case of collinear kernel, γm may be simply given by the first two

terms of eq. (3.16). However, we have some latitude with the definition of the matching

function as far as subleading corrections are concerned. We can exploit this freedom to

define a matching which numerically has a very moderate effect. We find that the choice

γm(N, c, κ,Mmin) = Mmin −

√
N − c

κ/2 + (N − c)/M2
min

− M3
minκ

4N
, (3.22)

9In fact, in ref. [61] two different expressions of χs were used for computing the DL kernel and for the

kernel used in RC resummation. Specifically, in the second case we used the dual of the exact LO anomalous

dimension, which however could not be used for the DL kernel as the exact LO anomalous dimension γ+
has a square-root branch-cut, due to the way the eigenvalue of the singlet anomalous dimension matrix is

computed, which would produce a spurious oscillating behaviour. For this reason, for the DL we used an

approximate LO anomalous dimension, thereby creating a mismatch in the singularities even at LO+LL.

Here, thanks to the approximation discussed in appendix B.3, we use exactly the same kernel.
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has the desired properties. We note that, in contrast with the case of the quadratic ker-

nel [61], here we do not need any further contribution, as this function already vanishes as

1/N at large N . Since the parameters in eq. (3.21) start differing at O(α2
s), the function

γLO+LL′

match is formally NLL. This is not a problem here, as the formal accuracy of the LO+LL′

result is just LL. The expansion of the matching function eq. (3.21) in powers of αs is

γLO+LL′

match (N,αs) = O(α3
s). (3.23)

Hence, the choice of subleading terms in eq. (3.22) has the additional benefit that we do

not need to keep the matching function into account when expanding the LO+LL′ result

to O(α2
s).

At NLO+NLL, in refs. [37, 61] the kernel for RC resummation was constructed with

a different α̂s ordering with respect to the DL one, which had different minima and thus

created a singularity mismatch between the DL and RC anomalous dimensions, making it

necessary the introduction of a matching function to cancel these singularities. We have

already argued in section 3.1 that using different kernels was not necessary, and we can

actually use the same DL kernel also for RC resummation, thereby ensuring automatic

cancellation of the square-root branch-cut. Therefore, in this work we no longer need to

patch the NLO+NLL result with a matching function.

It is important to stress that, had we used two kernels for the DL and RC parts of the

NLO+NLL resummation differing by O(α2
s) terms, the analogous matching function would

have necessarily been NLL (as in LO+LL′ case), thus contaminating the result which could

not be claimed to be NLL anymore. This is indeed the case for the one used in refs. [37, 61].

We have verified that it is not possible to modify the function γm, eq. (3.22), to make the

function γmatch NNLL without introducing new (uncanceled) singularities. To prove this

statement, we consider a generalization of eq. (3.22)

γm(N, c, κ,Mmin) = Mmin −

√
N − c

κ/2 + (N − c)/M2
min

+ η(N, c, κ,Mmin), (3.24)

where η(N, c, κ,Mmin) is a function to be determined, with the requirement that it must

not introduce further leading singularities. Expanding eq. (3.24) to NLL, i.e. expanding in

powers of αs up to O(αs) at fixed αs/N , we find

γm(N, c, κ,Mmin) =
1

2
−

√
N/αs − c0

κ0/2 + 4(N/αs − c0)
+ η

(
N

αs
, c0, κ0,

1

2

)
+ αs

[
m1 +

c1κ0 − c0κ1 − 32c2
0m1 + κ1N/αs + 64c0m1N/αs − 32m1(N/αs)

2

√
2
√
N/αs − c0(κ0 + 8(N/αs − c0))3/2

+ (c1∂2 + κ1∂3 +m1∂3)η

(
N

αs
, c0, κ0,

1

2

)]
+ NNLL, (3.25)

where the index in the derivatives indicates with respect to which argument the derivative

is computed, and m1 is the O(αs) contribution to Mmin. The expansion of the square-root

term at NLL depends on the NLO coefficients c1, κ1 and m1. If the two kernel used for
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RC and DL resummations differ at O(α2
s), then these coefficients differ, and when building

up the function γmatch these NLL terms do not cancel among the two γm’s. Thus, to only

way to make the function γmatch a purely NNLL object is to choose the functions η such

that the NLL expansion of γm vanishes. However, the expansion of the square-root term

is singular at NLL in N = αsc0, so it is clear that in order to make γmatch vanishing at

NLL the derivatives of the function η, and thus the function itself, must be singular in

N = c. But if this is the case, then the function γm will contain additional singularities

with respect to those which it is suppose to cancel. This violates our assumptions. We

must thus conclude that it is not possible to cancel a NLO singularity mismatch and at

the same time preserve NLL accuracy. This conclusion remains true also for the matching

function used with the quadratic kernel. Therefore, the only way not to spoil the formal

NLL accuracy of the NLO+NLL result is to use exactly the same kernel for the DL and

the RC parts of the result: this is the main motivation for this choice, adopted in this work

for the first time.

In the NLO+NLL result, there is a different singularity mismatch coming from the

function ∆γrc
ss, eq. (3.19), and the ∆DL-NLOγrc, eq. (3.20). The latter exhibits explicitly a

pole in N = c, which is different from an analogous singularity in the former,

∆γrc
ss(N,αs) ∼ −

1

4
β0α

2
s

c0

N − αsc0
, (3.26)

which is in N = αsc0, as one can easily verify from the definition. The singularities would be

identical if the parameters of the RC kernel were those of the LO BFKL kernel, and would

cancel in the sum. However, due to the higher orders contained in the parameters used to

construct the RC kernel, the position of the singularity is shifted and the cancellation does

no longer take place. We can solve the problem by introducing a new matching function

to be added to the final result, which effectively replaces the singularity of eq. (3.20) with

eq. (3.26). Being the singular contribution a NLL term, this matching function is formally

NNLL, and therefore acceptable. However, as in the LO+LL′ case, it is convenient to

subtract additional higher orders, such that the effect of this function is as moderate as

possible. Our choice is

γssmatch(N,αs) =
1

4
β0α

2
s

[
c0

N − αsc0
− c′

N − c
+
c′ − c0

N

]
= O(α4

s), (3.27)

where the last term (which is formally NNLL) ensures cancellation of a number of sublead-

ing contributions from the difference between the first two terms which could potentially

spoil the accuracy of the result. Additionally, because of the last term, the function γssmatch

starts at O(α4
s) and therefore it does not contribute to the αs-expansion of the NLO+NLL

result to O(α3
s). Note that this singularity mismatch was present also in the original works

using a quadratic kernel [37, 61]; the problem there was solved by replacing by hand the

singularity in ∆DL-NLOγrc with that of ∆γrc
ss, which effectively corresponds to using the

same matching function eq. (3.27) but without the last term.
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4 Resummed DGLAP evolution matched to NNLO

As already discussed in section 3, the ABF construction of the resummation of the anoma-

lous dimension γ+ relies on a double-leading (DL) part, which is based on the duality

between the DGLAP and BFKL kernels (at the core of the resummation), and on a running-

coupling (RC) part, which includes a class of subleading but very important effects which

change the nature of the small-x singularity. The DL resummation is naturally performed

at LO+LL or at NLO+NLL, which are obtained by combining together the (N)LO DGLAP

anomalous dimension and the (N)LO BFKL kernel. Therefore, previous results on small-x

resummation have always been presented at these orders.

As already mentioned in the introduction, it is of great importance being able to

match the resummed result to fixed NNLO in order to obtain state-of-the art theoretical

predictions. Matching the resummation to NNLO is in principle straightforward: starting

from the NLO+NLL resummed result, one just needs to subtract its αs expansion up to

O(α3
s), and replace it with the exact NNLO expression. While subtracting the NLO from

the NLO+NLL is trivial, further subtracting the O(α3
s) term is not, due to the fact that

the DL resummation is expressed in terms of implicit equations, which are usually solved

numerically. One could think of different alternatives. One possibility is to expand the

resummed result numerically, which however does not seem to be a reasonable option,

as the numerical solution of the implicit equations is already challenging and slow, and

one cannot hope in general to obtain sufficient precision in a reasonable amount of time

from numerical techniques (unless further numerical developments are made10). A second

option is to construct a DL result starting from NNLO DGLAP and NLO BFKL, so that

the result would be naturally NNLO+NLL. This option is itself non-trivial, as it requires

the computation of a new class of double-counting terms between the two kernels, and

has the undesirable disadvantage that the resummed result one obtains would differ by

subleading NNLL terms from the original NLO+NLL.

In this work we have opted for a third, and perhaps more natural, option, namely

expanding the resummed result analytically. Despite the rather technical nature of this

computation, we find it illustrative to give its details in the following section 4.1. Indeed,

for instance, this exercise allowed us to find a small mistake in the original ABF con-

struction of the DL part [37], which we also have inherited in our previous work [61], and

which we correct here. Then, in section 4.2, we present all the final expressions for the

resummed splitting functions, providing a detailed explanation of the implementation of

small-x resummation that constitutes the backbone of HELL, version 2.0.

4.1 Expansion of the Double Leading anomalous dimension

In the ABF construction, the DL resummed anomalous dimension γDL, eq. (3.1), is obtained

from an implicit equation of the form

χΣ(γDL(N,αs), N, αs) = N, (4.1)

10Some developments with respect to our previous implementations have been performed, which make

the code faster and more reliable. See appendix B.3 for further details.
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where the function χΣ(M,N,αs) is a so-called off-shell BFKL kernel [37, 61]. The DL

anomalous dimension obtained through eq. (4.1) assumes fixed coupling αs, and it thus

receives a correction, eq. (3.19), due to running coupling effects. This correction starts at

O(α4
s) and it is therefore of no interest for the expansion of the DL result to O(α3

s). In the

following, we explain how to construct a perturbative expansion of γDL(N,αs) defined by

the implicit equation (4.1), focussing first on the simpler LL case, and moving next to the

NLL case.

4.1.1 Expansion of the LL resummed result

We start from LL resummation for simplicity. We seek its expansion to O(α2
s), which would

be needed to match LL resummation to NLO. The off-shell kernel at LO, needed for LL

resummation, is given by [37]

χLO
Σ (M,N,αs) = χs

(αs
M

)
+ χs

(
αs

1−M +N

)
+ αsχ̃0(M,N) + χLO

mom(N,αs) (4.2)

where the function χs(αs/M) is defined as the dual to the LO anomalous dimension γ0,

αsγ0

(
χs

(αs
M

))
= M ⇔ χs

(
1

γ0(N)

)
= N, (4.3)

the function

χ̃0(M,N) =
CA
π

[
ψ(1) + ψ(1 +N)− ψ(1 +M)− ψ(2−M +N)

]
(4.4)

is the off-shell extension of the LO BFKL kernel with double counting with χs subtracted,

and the function

χmom(N,αs) = cmom(αs)fmom(N), fmom(N) =
4N

(N + 1)2
(4.5)

restores momentum conservation, i.e. the constraint γDL(N = 1, αs) = 0 which translates

into χΣ(0, 1, αs) = 1, through a suitable coefficient cmom. Because of the definition eq. (4.3),

χs(αs/M) in M = 0 equals 1, so we have

cLO
mom(αs) = −χs

(αs
2

)
− αsχ̃0(0, 1). (4.6)

Note that the LO anomalous dimension γ0(N) that we use for the definition of χs does

not necessarily need to be the exact LO anomalous dimension. In fact, it can be replaced

with an approximate expression with the same qualitative features and which preserves

its small-x behaviour. This was already done in both refs. [38, 61], in slightly different

ways, to cure a problem due to a branch-cut present in the nf 6= 0 case. Here, we adopt

another, simpler, approximation, which circumvents the same problem and also solves

another issue. Additionally, it allows us to exploit duality relations analytically, which is

a great advantage from the numerical implementation point of view. Further details are

given in appendix B.3.
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In order to obtain the coefficient of the αs-expansion of the DL anomalous dimension,

we substitute the formal expansion

γDL-LO(N,αs) = αsγ0(N) + α2
s γ̃1(N) + . . . (4.7)

into eq. (4.1) with χΣ given in eq. (4.2), and expand the equation in powers of αs. We stress

that we are implicitly assuming that γ0(N) in eq. (4.7) is the same used in the definition of

χs, eq. (4.3); this has to be correct because of the way χLO
Σ eq. (4.2) is constructed, as we

shall verify shortly. On the other hand, γ̃1 is a prediction of the resummation (hence the

tilde). The tricky part for performing the expansion is the first (collinear) χs in eq. (4.2),

as its argument αs/M is of O(α0
s). For this term we then compute the expansion as

χs

(
αs

γDL-LO(N,αs)

)
= χs

(
1

γ0

[
1− αs

γ̃1

γ0
+O(α2

s)

])
= χs

(
1

γ0

)
− αs

γ̃1

γ2
0

χ′s

(
1

γ0

)
+O(α2

s)

= N + αs
γ̃1

γ′0
+O(α2

s), (4.8)

where in the last equality we have used the definition eq. (4.3), assuming that γ0 is the one

appearing in eq. (4.3), and the formula for the derivative

χ′s

(
1

γ0

)
= −γ

2
0

γ′0
, (4.9)

which can be obtained by deriving both sides of the first of eq. (4.3) with respect to αs/M .

Here γ′0 denotes a derivative with respect to N . All the other terms can be simply expanded

in powers of αs. Up to the first non-trivial order we get

N = N + αs
γ̃1

γ′0
+ αs

χ01

1 +N
+ αsχ̃0(0, N)− αs

[
χ01

2
+ χ̃0(0, 1)

]
fmom(N) +O(α2

s), (4.10)

where χ01 = χ′s(0) = CA/π, from which it immediately follows

γ̃1(N) = −γ′0(N)

[
χ01

1 +N
+ χ̃0(0, N)−

(
χ01

2
+ χ̃0(0, 1)

)
fmom(N)

]
. (4.11)

Note that the O(α0
s) term cancels automatically, which confirms that indeed the LO part

of γDL-LO is given by the same γ0 appearing in eq. (4.3). Now, it happens that, due to the

explicit form of χ̃0(M,N), eq. (4.4),

χ̃0(0, N) =
CA
π

[ψ(1 +N)− ψ(2 +N)] = −CA
π

1

1 +N
, (4.12)

and hence we find

γ̃1(N) = 0. (4.13)

This might come as a surprise, however it does not. Indeed, the LL pole of the exact NLO

γ1 is accidentally zero, so the only part which is supposed to be predicted correctly by

this kernel had to be zero. In principle there could be non-zero subleading corrections,

which in practice are absent (at DL level — RC contributions do produce extra terms, see

eq. (3.17)). If we wish to match LL resummation to NNLO, we should expand to one extra

order, but we are not interested in doing so, thus we move to the next logarithmic order.
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4.1.2 Expansion of the NLL resummed result

For NLL resummation we need the NLO off-shell kernel

χNLO
Σ (M,N,αs) = χs,NLO(M,αs) + χs,NLO(1−M +N,αs)

+ αsχ̃0(M,N) + α2
sχ̃1(M,N) + α2

sχ
corr
1 (M,N)

+ χNLO
mom(N,αs). (4.14)

Here, χs,NLO(M,αs) is the generalization of χs, constructed as the exact dual of the NLO

anomalous dimension11 αsγ0(N) + α2
sγ1(N), which is an input at this order. This kernel

satisfies the formal expansion

χs,NLO(M,αs) =
∞∑
j=0

αjs

∞∑
k=1

χjk

(αs
M

)k
; (4.15)

the j = 0 term corresponds to χs(αs/M), eq. (4.3). The kernel χ̃1(M,N) was given in

eqs. (A.23)–(A.29) of ref. [61], and we do not report it here. The extra term χcorr
1 (M,N)

takes into account running coupling corrections; its correct expression is

χcorr
1 (M,N) = β0

[
− CA

π
ψ1(2−M +N)

− 1

(1−M +N)2
χ′s

(
αs

1−M +N

)
+
χ0(M,N)

M
− CA
πM2

]
. (4.16)

This equation corrects eq. (A.18) of ref. [61] (i.e. eq. (6.19) of ref. [37]), which did not contain

the second term. In fact, the second term was not really necessary, as it is subleading, but

then the argument of ψ1 in the first term should be 1 − M + N , as the 2 comes from

the subtraction of double-counting with the second term. In practice, however, we have

verified that neglecting the second term and correcting the argument of the first leads

to a kernel which is unstable close to the anticollinear pole M = 1, instability which

is cured (resummed) by including the second term. We verified that the overall effect

of this correction is mild, but not negligible. Finally, χNLO
mom(N,αs) restores momentum

conservation, in the same form as eq. (4.5), with

cNLO
mom = −χs,NLO(2, αs)− αsχ̃0(0, 1)− α2

sχ̃1(0, 1)− α2
sχ

corr
1 (0, 1). (4.17)

Note that since χs,NLO(M,αs) is the exact dual of the NLO anomalous dimension, it equals

1 in M = 0. Now we consider the expansion of the DL-NLO anomalous dimension

γDL-NLO(N,αs) = αsγ0(N) + α2
sγ1(N) + α3

s γ̃2(N) + . . . , (4.18)

where both γ0(N) and γ1(N) are assumed to be those used in the definition of χs,NLO (as

before, this will be confirmed by the explicit computation), and γ̃2(N) is what we aim to

find. The expansion of χs,NLO is obtained by using the same technique used in eq. (4.8),

and leads to

χs,NLO(γDL-NLO(N,αs), αs) = N + α2
s

γ̃2

γ′0
+O(α3

s). (4.19)

11As before, we use an approximate NLO anomalous dimension, see appendix B.3.
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Note that up to this order the expanded kernel χs(αs/M) + αsχss(αs/M), corresponding

to the first two terms in the j-sum of eq. (4.15) and originally used in ABF [37], gives

identical results. Substituting eq. (4.18) into eq. (4.1) with the NLO kernel eq. (4.14) and

expanding in powers of αs using eq. (4.19) we find the following expression

γ̃2(N) = −γ′0(N)

[
χ11

1 +N
+

χ02

(1 +N)2
+ χ̃1(0, N) + χcorr

1 (0, N)

−
(
χ11

2
+
χ02

4
+ χ̃1(0, 1) + χcorr

1 (0, 1)

)
fmom(N)

+
CA
π

[ψ1(1 +N)− ψ1(1)]γ0(N)

]
. (4.20)

The coefficients of the expansion of χs,NLO are given by (see appendix B.3)

χ02 = −
11C2

A

12π2
+

nf
6π2

(2CF − CA) (4.21a)

χ11 = −
nf

36π2
(23CA − 26CF ). (4.21b)

Now, from the definition of χ̃1 (see ref. [61])

χ̃1(M,N) = χ̃u
1(M,N)− χ̃u

1(0, N) + χ̃u
1(0, 0), (4.22)

we immediately find

χ̃1(0, N) = χ̃u
1(0, 0) (4.23)

which is N -independent, and thus also equal to the momentum conservation subtraction

χ̃1(0, 1). Its value is (from eq. (A.29) of ref. [61])

χ̃1(0, N) =
1

π2

[
−74

27
C2
A +

11

6
C2
Aζ2 +

5

2
C2
Aζ3 + nf

(
4

27
CA +

7

27
CF −

1

3
CF ζ2

)]
. (4.24)

On the other hand we have

χcorr
1 (0, N) = −β0

CA
π
ζ2, (4.25)

which is again N -independent. We can then rewrite eq. (4.20) as

γ̃2(N) = −γ′0(N)

[
ρ+

χ11

1 +N
+

χ02

(1 +N)2
−
(
ρ+

χ11

2
+
χ02

4

)
fmom(N)

+
CA
π

[ψ1(1 +N)− ψ1(1)]γ0(N)

]
(4.26)

with

ρ =
1

π2

[
−74

27
C2
A +

11

12
C2
Aζ2 +

5

2
C2
Aζ3 + nf

(
4

27
CA +

7

27
CF +

1

6
CAζ2 −

1

3
CF ζ2

)]
. (4.27)

This represents the final result for our expansion of the DL anomalous dimension. As a

cross-check, we can now expand γ̃2 about N = 0. Given that

γ0(N) =
CA
πN

+O(N0), γ′0(N) = − CA
πN2

+O(N−1), (4.28)
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we have that up to NLL the singular behaviour of γ̃2 in N = 0 is given by

(using fmom(0) = 0)

γ̃2(N) =
CA
πN2

[
ρ+ χ11 + χ02 − 2ζ3

C2
A

π2

]
=

CA
π3N2

C2
A(54ζ3 + 99ζ2 − 395) + nf (CA − 2CF )(18ζ2 − 71)

108
, (4.29)

which indeed reproduces the correct NLL pole of the known three-loop anomalous dimen-

sion γ2(N) [101], while the LL 1/N3 pole is accidentally zero. We stress that without the

correction of the error in eq. (4.16) the constant in eq. (4.25) would change, and thus the

NLL singularity of γ2(N) would not be reproduced.

4.2 Resummed splitting functions matched to NNLO

In the previous sections we have computed the expansion of the DL result, and in section 3

we have presented a new running coupling resummation and provided its αs expansion. We

are now ready to construct the final expressions for the resummed anomalous dimension

γ+, and write their expansions. With those, we can then also construct the resummed

expressions of all the entries of the singlet anomalous dimension matrix in the physical

basis [61], which by Mellin inversion give the singlet splitting functions.

4.2.1 Anomalous dimensions

As a first step, we need to add the running coupling contribution to the DL result, with

the proper matching functions to cure the singularity mismatches. Note that adding the

RC resummed functions ∆DL-(N)LOγrc(N,αs) to the DL results violates momentum, which

is further violated in the LO+LL′ by the matching function and in the NLO+NLL by ∆γrc
ss

and its matching function. Momentum conservation can be restored by simply adding a

function proportional to fmom(N), eq. (4.5). In summary, we have12

γres LL
+ (N,αs) = γDL-LO (N,αs) + ∆DL-LOγ

LL
rc (N,αs)−∆DL-LOγ

LL
rc (1, αs)fmom(N),

(4.30a)

γres LL′
+ (N,αs) = γDL-LO (N,αs) + ∆DL-LOγ

NLL
rc (N,αs) + γLO+LL′

match (N,αs)

−
[
∆DL-LOγ

NLL
rc (1, αs) + γLO+LL′

match (1, αs)
]
fmom(N), (4.30b)

γres NLL
+ (N,αs) = γDL-NLO(N,αs) + ∆DL-NLOγ

NLL
rc (N,αs) + ∆γrc

ss(N,αs) + γssmatch(N,αs)

−
[
∆DL-LOγ

NLL
rc (1, αs) + ∆γrc

ss(1, αs) + γssmatch(1, αs)
]
fmom(N), (4.30c)

where the various functions have been introduced in section 3 and section 4.1. Using the

results in there, these expressions admit the following αs expansions

γres LL
+ (N,αs) = αsγ0(N) + α2

sβ0

(
3

32
κ0 − c0

)(
1

N
− fmom(N)

)
+O(α3

s), (4.31a)

12Note that we are here using a notation for the resummed results, “res (N)LL(′)”, which differs from

the one used in ref. [61], “(N)LO+(N)LL(′)”. The reason is that we will now use the latter name for the

actual resummed results matched to any fixed order, while in these resummed results the fixed order is only

approximate.
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γres LL′
+ (N,αs) = αsγ0(N) + α2

sβ0

(
3

32
κ0 − c0

)(
1

N
− fmom(N)

)
+O(α3

s), (4.31b)

γres NLL
+ (N,αs) = αsγ0(N) + α2

sγ1(N)

+ α3
s

{
β2

0

κ0

16

(
1

N
− fmom(N)

)
− γ′0(N)

[
ρ+

χ11

1 +N
+

χ02

(1 +N)2
−
(
ρ+

χ11

2
+
χ02

4

)
fmom(N)

+
CA
π

[ψ1(1 +N)− ψ1(1)]γ0(N)

]}
+O(α4

s), (4.31c)

with coefficients defined in eqs. (3.18), (4.21) and (4.27). Note that the functions γ0 and

γ1 are those entering the definition of χs and χs,NLO in the DL kernel, which are not the

exact fixed-order results (see appendix B.3). Thus, it is convenient to introduce the pure

resummed contributions, defined by the difference between the above expressions and their

expansion up to a given order, e.g.

∆nγ
NLL
+ (N,αs) = γres NLL

+ (N,αs)−
n∑
k=1

αks
[
γres NLL

+ (N,αs)
]
O(αks )

, (4.32)

and similarly for the LL result. In this way, the resummed anomalous dimension matched

to the (exact) fixed order is given by

γNnLO+NkLL
+ (N,αs) = γNnLO

+ (N,αs) + ∆nγ
NkLL
+ (N,αs), (4.33)

where γNnLO
+ (N,αs) is the exact NnLO anomalous dimension. In ref. [61] we only consid-

ered the “natural” contributions

∆1γ
LL(′)
+ (N,αs) = γres LL(′)

+ (N,αs)− αsγ0(N), (4.34a)

∆2γ
NLL
+ (N,αs) = γres NLL

+ (N,αs)− αsγ0(N)− α2
sγ1(N). (4.34b)

With the results of eqs. (4.31) we can now also compute

∆2γ
LL(′)
+ (N,αs) = γres LL(′)

+ (N,αs)− αsγ0(N)− α2
sβ0

(
3

32
κ0 − c0

)(
1

N
− fmom(N)

)
,

(4.35a)

∆3γ
NLL
+ (N,αs) = γres NLL

+ (N,αs)− αsγ0(N)− α2
sγ1(N)

− α3
s

{
β2

0

κ0

16

(
1

N
− fmom(N)

)
− γ′0(N)

[
ρ+

χ11

1 +N
+

χ02

(1 +N)2
−
(
ρ+

χ11

2
+
χ02

4

)
fmom(N)

+
CA
π

[ψ1(1 +N)− ψ1(1)]γ0(N)

]}
, (4.35b)

which are the resummed contributions needed for NLO+LL and NNLO+NLL.

The previous equations are the primary ingredients which allow us to match NLL

resummation to NNLO. Having the expansion of the eigenvalue anomalous dimension γ+,
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we can now construct the expansions for all the entries of the anomalous dimension matrix

in the physical basis. For achieving this, the secondary ingredient is the expansion of the

resummed γqg entry of the evolution matrix. We refer the Reader to ref. [61] for all the

details on its resummation, and we report here its expansion in powers of αs,

γNLL
qg (N,αs) = αsh0 + α2

sh1γ
LL′
0 (N)

+ α3
s

[
h2γ

LL′
0 (N)

(
γLL′

0 (N)− β0

)
+ h1γ

LL′
1 (N)

]
+O(α4

s), (4.36)

where h0 =
nf
3π , h1 =

nf
3π

5
3 and h2 =

nf
3π

14
9 are numerical coefficients (already introduced in

section 2.2), γLL′
1 (N) is the O(α2

s) term of γLO+LL′(N,αs), which can be read off eq. (4.31b),

and γLL′
0 (N) is given (up to a factor αs) by eq. (B.10) of ref. [61] which we report here for

convenience (with the notations of appendix B.3)

γLL′
0 (N) =

a11

N
+

a10

N + 1
. (4.37)

Note that in ref. [61] two forms for γNLL
qg , differing by subleading terms, were considered

and used to estimate an uncertainty of the resummation. Up to the order of eq. (4.36),

both expressions give identical results, the difference starting at O(α4
s). Using eq. (4.36) it

is possible to construct the resummed contributions

∆2γ
NLL
qg (N,αs) = γNLL

qg (N,αs)− αsh0 − α2
sh1γ

LL′
0 (N), (4.38)

∆3γ
NLL
qg (N,αs) = γNLL

qg (N,αs)− αsh0 − α2
sh1γ

LL′
0 (N)

− α3
s

[
h2γ

LL′
0 (N)

(
γLL′

0 (N)− β0

)
+ h1γ

LL′
1 (N)

]
, (4.39)

which are needed for NLO+NLL and NNLO+NLL resummations, respectively. The re-

summed contributions for other entries of the anomalous dimension matrix can be con-

structed in terms of ∆nγ
NLL
+ and ∆nγ

NLL
qg , as described in ref. [61].

4.2.2 Splitting functions

From the resummed anomalous dimension we can obtain resummed contributions for the

splitting function matrix by Mellin inversion. Additionally, in order to ensure a smooth

matching onto the fixed-order at large x, a damping is applied. Furthermore, we enforce

exact momentum conservation on our final results by requiring the first moments of PggPqg
and Pgq + Pqq to vanish. The final expressions are given by

PNnLO+NkLL
ij (x, αs) = PNnLO

ij (x, αs) + ∆nP
NkLL
ij (x, αs) (4.40)

with

∆nP
NLL
gg (x, αs) = (1− x)2

(
1−
√
x
)4[

∆nP
NLL
+ (x, αs)−

CF
CA

∆nP
NLL,nodamp
qg (x, αs)−D

]
(4.41a)

∆nP
NLL
qg (x, αs) = (1− x)2

(
1−
√
x
)4

∆nP
NLL,nodamp
qg (x, αs) (4.41b)

∆nP
NLL
gq (x, αs) =

CF
CA

∆nP
NLL
gg (x, αs) (4.41c)

∆nP
NLL
qq (x, αs) =

CF
CA

∆nP
NLL
qg (x, αs) (4.41d)
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(and similarly at LL) where ∆nP
NLL
+ and ∆nP

NLL,nodamp
qg are the inverse Mellin of ∆nγ

NLL
+

and ∆nγ
NLL
qg , respectively. The constant D is given by

D =
1

d(1)

∫ 1

0
dxx(1− x)2(1−

√
x)4

[
∆nP

NLL
+ (x, αs)+

(
1− CF

CA

)
∆nP

NLL,nodamp
qg (x, αs)

]
,

(4.42)

where d(N) is the Mellin transform of (1−x)2(1−
√
x)4. Note that, with respect to ref. [61],

we have introduced a further damping function, (1−
√
x)4, to ensure a smoother matching

with the fixed-order at large x.

From a numerical point of view, we proceed as follows:

• With a new private code (available upon request) we produce the resummed anoma-

lous dimension γ+. Specifically, we output ∆2γ
LL(′)
+ and ∆3γ

NLL
+ , i.e. the ones with the

expansion terms computed in this work subtracted, along the inverse Mellin integra-

tion contour, for a grid of values of αs and nf . This ensures that these contributions

start at O(α3
s) and O(α4

s) respectively, as the subtraction is performed within the

same code (subtracting later in a different code is of course possible, but subject to

a higher chance of introducing bugs or numerical instabilities).

• The output of the first code (in the form of publicly available tables) is then read

by the public code HELL, version 2.0 onwards. This code essentially computes the

resummation of coefficient functions (and equally of the qg anomalous dimension) as

described in ref. [61], and partly summarized in section 2.2. The splitting function

matrix is then constructed and momentum conservation imposed. The objects which

are computed are ∆2P
LL
ig , ∆3P

NLL
ig (i = g, q), ∆2Khg, ∆2ca,g, ∆2c̃a,g(m) (a = 2, L)

and ∆2c̃
CC
a,g (m) (a = 2, L, 3)13 on a nf , αs, x grid. Coefficient functions for additional

processes will be also added in the future in the same form.

• These grids (again publicly available) are then read by the public code HELL-x, version

2.0 onwards, where the αs, x grid is interpolated (cubicly), the quark components of

the splitting, matching and coefficient functions are computed by color-charge rela-

tions, and ∆1P
LL
ij , ∆2P

NLL
ij , ∆1Khg, ∆1ca,i and ∆1c̃

(CC)
a,i (m) are also constructed by

adding the respective lower orders directly in x-space. For this, we need the analytic

inverse Mellin transforms of the non-trivial expansion terms in eq. (4.31a), (4.31b)

and (4.31c), as well as the analogous for the coefficient functions. The latter was

already done in the massless case in ref. [61]; explicit results for the massive case are

presented in appendix A.3. Explicit results for the splitting functions are presented

in appendix B.4.

We underline that the second step is the slowest, as the HELL code needs to compute several

integrals for the varius grid points and the various functions to be resummed. The last

step, performed by the HELL-x code, is instead extremely fast, as it simply amounts to

an interpolation and the evaluation of simple functions. For practical applications of our

results, it is sufficient to use the HELL-x code, making the inclusion of small-x resummation

13Massive DIS coefficient functions are further sampled for various values of the quark massess.
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very handy. As far as PDF evolution and construction of DIS observables is concerned,

the code HELL-x has been included in the APFEL code [91], which can be used to access all

our results and construct resummed predictions for physical observables.

5 Numerical results

In order to illustrate the capabilities of HELL 2.0, we present here some representative

results for the small-x resummation of splitting functions and DIS coefficient functions

obtained with the techniques described in ref. [61] and improved as described in the pre-

vious sections. Moreover, we also show new results for the coefficient functions with mas-

sive quarks.

5.1 Splitting functions

Let us start with DGLAP evolution. With respect to our previous work [61] we have

made substantial changes in the resummation of the anomalous dimensions, mostly due

to the treatment of running coupling effects, as described in section 3. Additionally, we

are now able to match the NLL resummation of the splitting functions to their fixed-order

expressions up to NNLO, as presented in section 4.

In figure 2 we show the fixed-order splitting functions at LO (black dotted), NLO (black

dashed) and NNLO (black dot-dot-dashed) compared to resummed results at LO+LL

(green dotted), NLO+NLL (purple dashed) and NNLO+NLL (blue dot-dot-dashed). In

principle, we also have the technology for matching LL resummation to NLO, but this is of

very limited interest, so we do not show these results here (they can be obtained from the

HELL-x code). The gluon splitting functions Pgg and Pgq are shown in the upper plots, and

the quark ones Pqg and Pqq are shown in the lower plots (the latter two start at NLL so

the LO+LL curve is absent there). All splitting functions are multiplied by x for a clearer

visualization. The scheme of the resummed splitting functions is Q0MS (the fixed-order

ones are the same in both MS and Q0MS at these orders). The number of active flavours

is nf = 4, and the value of the strong coupling is αs = 0.2, corresponding to Q ∼ 6 GeV.

Note that for such value of Q in a VFNS one usually has nf = 5 active flavours; however,

the difference between the results in the nf = 4 and nf = 5 schemes at the same value of

αs is modest, and our choice allows to directly compare with previous results presented in

the literature.

The results of figure 2 can be compared directly to the ones presented in our previous

paper [61]. It can be noticed that the LO+LL result is rather different: in our new

implementation this curve is lower than in the previous version. This is entirely due to the

new treatment of running coupling effects, which clearly differs by subleading logarithmic

terms. At the next order, NLO+NLL, there is again a difference with respect to our

previous work. As before, this is due to subleading terms, which are now NNLL, and so, as

expected, they lead to smaller discrepancies. Indeed, NLO+NLL results are much closer to

the ones of our previous implementation. We recall that the new version of the NLO+NLL

results also includes the correction of an error in the original expressions [37], as detailed

– 40 –



J
H
E
P
1
2
(
2
0
1
7
)
1
1
7

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

10-910-810-710-610-510-410-310-210-11

x 
P
g
g
(x
)

x

αs = 0.20,  nf = 4,  Q0MS‾‾‾

LO
NLO
NNLO
LO+LL
NLO+NLL
NNLO+NLL

 0

 0.05

 0.1

 0.15

 0.2

10-910-810-710-610-510-410-310-210-11

x 
P
g
q
(x
)

x

αs = 0.20,  nf = 4,  Q0MS‾‾‾

LO
NLO
NNLO
LO+LL
NLO+NLL
NNLO+NLL

 0

 0.05

 0.1

 0.15

 0.2

 0.25

10-910-810-710-610-510-410-310-210-11

x 
P
q
g
(x
)

x

αs = 0.20,  nf = 4,  Q0MS‾‾‾

LO
NLO
NNLO
NLO+NLL
NNLO+NLL

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

10-910-810-710-610-510-410-310-210-11

x 
P
q
q
(x
)

x

αs = 0.20,  nf = 4,  Q0MS‾‾‾

LO
NLO
NNLO
NLO+NLL
NNLO+NLL

Figure 2. The resummed and matched splitting functions at LO+LL (dotted green), NLO+NLL

(dashed purple) and NNLO+NLL (dot-dot-dashed blue) accuracy: Pgg (upper left), Pgq (upper

right), Pqg (lower left) and Pqq (lower right). The fixed-order results at LO (dotted) NLO (dashed)

and NNLO (dot-dot-dashed) are also shown (in black). The results also include an uncertainty

band, as described in the text. The plots are for αs = 0.2 and nf = 4 in the Q0MS scheme. We

note that difference between Q0MS and MS for the fixed-order results is immaterial at this accuracy.

in section 4.1.2, which has a non-negligible impact on the result, even though the effect is

not as large as the one induced by the new treatment of running coupling effects.

The notable novelty is the presence of the NNLO+NLL curve. The asymptotic small-x

behaviour is identical to the NLO+NLL curve, except for a constant shift, which represents

a term of the form α3
s/x in the splitting functions. Indeed, this term is NNLL, and it

was therefore not correctly captured by the NLO+NLL result. Its impact is larger in

the gluon splitting functions Pgg and Pgq, while it is rather small for the quark splitting

functions Pqg and Pqq. At larger x, the NNLO+NLL curves smoothly match onto the

NNLO result. For Pgg and Pgq this happens already at x ∼ 10−2. This is due to the

fact that the dip at x ∼ 10−3 ÷ 10−4, which is a known feature of the resummed result

at moderate x (see e.g. [30, 31, 37, 102]), is determined by the NNLO logarithmic term,

which goes down and dominates at moderate values of x, before the onset of the smaller x

asymptotic behaviour, which goes up. Hence, when matching to NNLO, the initial descent

of the splitting functions is automatically described, and the resummed result deviates only
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when the rise due to the asymptotic small-x behaviour sets in. Note that, because of this

difference between NLO+NLL and NNLO+NLL, we expect the latter to be much more

accurate, especially in the region x & 10−5, where the majority of DIS data lie.

The resummed curves are supplemented with an uncertainty, which aims to estimate

the size of subleading logarithmic effects. As far as Pqg and Pqq are concerned, it is defined

exactly as in ref. [61], namely symmetrizing the difference between our default construction

of the γqg resummation which uses the evolution function in eq. (B.1), and what we obtain

by switching to a simpler and formally equally valid version, eq. (B.3). The uncertainty

band is bigger than in our previous work just because the LL′ anomalous dimension used to

resum γqg differs in the treatment of running coupling effects. Because of the way Pgg and

Pgq are constructed, eq. (4.41), these splitting functions inherit the uncertainty band of Pqg
at NLL. However, because the bulk of resummed contribution to these entries comes from

γ+, we have decided to also account for the uncertainty due to subleading contributions

to γ+. This was not considered in our previous work. In order to construct this band,

we use the same kind of variation used for γqg. Specifically, we symmetrize the difference

between the result obtained using eq. (3.3) for the resummation of running coupling effects

(our default) and the variant obtained using the simpler, yet equally valid eq. (3.4). The

uncertainty bands from both sources are then combined in quadrature. At LL, there is

no contribution from γqg, and the whole resummed curve is given by γ+: in this case the

uncertainty band is just determined from the variation in the construction of the latter.

We note that there is nice overlapping between NLO+NLL and NNLO+NLL bands

for the Pqg and Pqq splitting functions, giving us a good confidence that they appropriately

represent the uncertainty from missing subleading logarithmic orders. In contrast, the

uncertainty band on Pgg and Pgq does not fully cover the effects of higher orders in the

initial small-x region, 10−4 . x . 10−2, as demonstrated by the fact that NLO+NLL and

NNLO+NLL do not overlap there. However, this effect is mostly driven by the largish

NNLL effects at O(α3
s), which are those that are included in the NNLO+NLL but not in

the NLO+NLL results. At higher orders the effects of subleading logs in this region is

likely to be smaller. In support of this hypothesis, we can note that the distance between

NNLO+NLL and NNLO for x ∼ 10−2 is significantly smaller than the distance between

NLO+NLL and NLO, in the same region. Thus, we believe that, while the uncertainty on

the NLO+NLL result is not satisfactory in the intermediate x region, the uncertainty on

the NNLO+NLL should be reliable.

These plots are also instructive to study the stability of the perturbative expansion.

By looking at the fixed-order splitting functions, we see that small-x logarithms start be-

ing dominant already at x . 10−2, where the logarithmic term of the NNLO contribution

sets in. We note that the small-x growth could have been in principle much stronger.

Indeed, the leading logarithmic contributions have vanishing coefficients both at NLO and

NNLO and the sharp rise of the NNLO splitting function is driven by its NLL contribu-

tion α3
sx
−1 log x. These accidental zeros are not present beyond NNLO and so we expect

the yet-unknown N3LO splitting functions to significantly deteriorate the stability of the

perturbative expansion because of their α4
sx
−1 log3 x growth at small x. Therefore, we an-

ticipate that the inclusion of the resummation to stabilize the small-x region will be even

more crucial at N3LO.
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Figure 3. The resummed and matched massless coefficient functions CL,g (left) and C2,g (right) at

NLO+NLL accuracy (solid purple) and at NNLO+NLL accuracy (solid blue). Fixed-order results

are also shown in black: NLO in dashed, NNLO in dot-dot-dashed and N3LO in dotted. The plots

are for αs = 0.2 and nf = 4 in the Q0MS scheme. We note that difference between Q0MS and MS

for the fixed-order results is immaterial at this accuracy, except for the N3LO contribution to F2,

which is shown in MS.

5.2 DIS coefficient functions

We now move to DIS coefficient functions and we first present updated predictions for the

massless coefficients, i.e. assuming that there are only nf massless quarks and no heavy

quarks. The construction did not change compared to our previous work [61], but the input

LL′ anomalous dimension used for computing the resummed coefficients did, as explained

in section 4.14 The updated results are shown in figure 3 for CL,g (left) and C2,g (right).

The quark contributions at small x are very similar (due to color-charge relation) and

are not shown. We observe some differences with respect our previous work, although

within uncertainties, for the coefficient function C2,g due to the modified running-coupling

resummation. These changes appear to have instead a small numerical effect on CL,g. The

other noticeable difference with respect to our previous results is the size of the theoretical

uncertainty, which is now larger: this effect is entirely due to the different LL′ used in the

construction, and is therefore ultimately due to the treatment of running-coupling effects.

We now move to the new results which include mass dependence. We first show in

figure 4 the analogous of figure 3 for the massive unsubtracted coefficient functions, both

for charm production and for bottom production close to the production threshold. As

usual in theory papers, we define these contributions as the ones for which the heavy

quark is struck by the photon (at these energies, the Z contribution in NC and the CC

production mechanism are negligible). We call generically these contributions c̃a,i, with

a = 2, L and i = g, q, of which the functions ∆c̃a,i defined in section 2.1.1 are the resummed

contributions. For charm production (upper plots) we use αs = 0.28, corresponding to

Q ∼ 2 GeV, which is a scale right above the charm mass assumed to be mc = 1.5 GeV,

while for bottom production we use αs = 0.20, corresponding to Q ∼ 6 GeV, right above

14Additionally, we changed the overall large-x damping, which is now uniformly chosen to be (1−x)2(1−√
x)4, as for the splitting functions, eq. (4.41).
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Figure 4. Same as figure 3, but for the massive coefficient functions c̃L,g (left) and c̃2,g (right),

for both charm production (upper plots) and bottom production (lower plots) in NC. The charm

production plots are for nf = 3 and αs = 0.28, corresponding to Q ∼ 2 GeV, slightly above the

charm mass mc = 1.5 GeV. The bottom production plots are for nf = 4 and αs = 0.2, corresponding

to Q ∼ 6 GeV, slightly above the bottom mass mb = 4.5 GeV.

the bottom mass assumed to be mb = 4.5 GeV. The number of active flavours is set

to be nf = 3 for charm production and nf = 4 for bottom production, i.e. the massive

quark is treated as heavy and its collinear logarithms are not factorized. In particular, the

massive coefficients for bottom production are those contributions which should be added

to the corresponding massless coefficients in the same nf = 4 scheme, figure 3, which

instead assumed only coupling to light quarks, to obtain a complete prediction (see e.g.

the decomposition eq. (2.16) at resummed level). We observe that the effect of adding

the bottom production contribution to the purely massless contributions is a rather small

correction for FL, while it is comparable in size to each individual massless contribution

for F2.

The pattern observed in figure 4 between fixed-order and resummed contributions is

very similar to that of the massless results in figure 3. The most notable difference is

the visibly larger effect of resummation for charm production, accompanied by a larger

uncertainty band. This effect is entirely due to the smaller scale, i.e. the larger value of αs,

used in the charm production plots. Another interesting feature of these massive coefficient

functions is the very visible presence of the physical threshold for heavy quark production,
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Figure 5. Resummed contributions to the coefficient functions including mass effects in neutral

current, ∆2cL,g(mc) and ∆2c2,g(mc) (upper plots), and in charged current, ∆2c
CC
L,g(mc), ∆2c

CC
2,g (mc)

and ∆2c
CC
3,g (mc) (lower plots), shown as a function of Q from mc to 100 GeV. The left plots show

the results for x = 10−6, the right plots for x = 10−3. The value of nf changes from 4 to 5 at

the bottom matching scale taken to be equal to mb. The massless result, to which the massive

coefficients tend at large Q, is also shown as dotted curves (except for ∆2c
CC
3,g (mc), which tends

to zero).

which lies at x = xth ≡ 1/(1 + 4m2/Q2). Because of our choice of scales, xth ∼ 0.3 for

both processes.

The results presented so far do not include the resummation of collinear logarithms

due to massive quarks. For the scales considered, which are in both cases larger than

the heavy quark mass, these collinear logarithms are already usually resummed in most

implementations of VFNSs. We now thus consider the scenario in which a VFNS is used

and heavy-quark collinear logarithms are resummed. Since at fixed order there are various

incarnations of VFNSs, differing just by subleading effects but nonetheless being practi-

cally different (see e.g. discussion in section 2.2.3), we prefer to focus on the resummed

contributions only. We focus on the charm-production case, with mc = 1.5 GeV. For the

sake of this study, we find more interesting to show a plot as a function of the momen-

tum transfer Q, in order to emphasize the importance of mass effects at different scales.

Therefore, in figure 5 we plot the resummed contributions ∆2c2,g(mc) and ∆2cL,g(mc) in
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Figure 6. Ratio of the photon, Z and photon-Z interference contributions to the resummed massive

coefficient function ∆2c2,g(mc), shown for fixed x = 10−4 as a function of Q from mc to 100 GeV.

NC and ∆2c
CC
L,g(mc), ∆2c

CC
2,g (mc) and ∆2c

CC
3,g (mc) in CC15 as a function of Q for two repre-

sentative values of x, namely x = 10−6 (small) and x = 10−3 (moderate). The plot starts

from Q = mc, where nf = 4, and then it transitions to nf = 5 when crossing the bottom

threshold (assumed to be at mb = 4.5 GeV). At the transition point a small discontinuity

appears, due to the different value of nf used in the computation of the LL′ anomalous

dimension. This discontinuity is a standard consequence of the scheme change, and does

not constitute any practical problem in the computation of physical observables.

At large Q, the massive resummed coefficient functions (which are the collinear sub-

tracted ones) tend to the massless results, shown in dotted style. It is clearly visible that

charm mass effects are significant for small Q . (10÷ 30) GeV, and are more pronounced

at larger x, where however the effect of resummation is smaller. Charm mass effects are

also stronger in the NC case than in the CC case. In practice, massive corrections on

the resummed coefficient functions are a small effect on the full structure function, es-

pecially when resummation is matched to NNLO. Still, keeping into account these mass

effects is important for an accurate description of the low-Q data, and in particular for

the charm structure function F ca , a = 2, L, which is entirely determined by the charm

coefficient function.

In the upper plots of figure 5 we are showing the full NC coefficients, namely the sum

of the contributions from photon, Z and photon-Z interference to the structure functions,

normalized to the photon couplings. It is interesting to investigate how much the various

terms contribute to the full result. To do so, we show in figure 6 the ratio of the individual

contributions to the resummed contribution to the structure function F2, ∆2c2,g(mc). We

stress that if the axial contribution proportional to g2
A which remains after factoring out

the g2
V + g2

A coupling to the Z were absent, then the resummed coefficient function for the

various contributions would be identical, up to the overall coupling, and the ratio of the

various contributions would be independent of x and of the observable. However, since

15For CC, we assume the production of a charm quark together with a massless anti-quark. This fixes

the sign of the F3 contribution.
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this axial contribution is non-zero, a small dependence remain. However, for x . 10−3, the

differences between F2 and FL are very small, and reducing with lowering x. Thus, the

plot in figure 6, obtained from F2 for x = 10−4, remains pretty much unchanged for lower

x and for FL. From the plot we see that the contribution from the Z boson is basically

negligible for all Q . 10 GeV, and becomes of the same size of the photon contribution at

the Z peak. The photon-Z interference dominates over the pure Z-exchange contribution

below the Z peak. The axial contribution proportional to g2
A, which is a new result of

our computation, turns out to be mostly insignificant, as it gives a small contribution (a

few percent at most) for scales Q where small-x resummation is further suppressed by a

smaller strong coupling.

6 Conclusions

In this paper we have performed a comprehensive study of the high-energy, i.e. small-

x, resummation in deep-inelastic scattering of a lepton off a proton. In particular, we

have collected all the ingredients to perform NLL resummation matched to fixed-order up

to NNLO.

In order to achieve this we have considered the resummation of splitting functions,

which govern DGLAP evolution of parton densities. With respect to our previous work,

we have modified the way running coupling corrections are treated and we have managed to

match the resummation to NNLO, thus obtaining state-of-the art NNLO+NLL results for

the splitting kernels. While fixed-order predictions at NNLO exhibit instabilities at small

x due to large logarithms, the resummed results are stable and at small x appear to be

much closer to NLO than NNLO. Furthermore, our results can be easily extended to match

NLL to fixed N3LO, when it becomes available. In this case we expect the resummation to

have an even more substantial effect because of the larger fixed-order instabilities at small

x appearing at this order.

We have also considered the resummation of DIS partonic coefficient functions. In

order to obtain reliable results in a wide range of x and Q2 we have studied small-x

resummation in the context of a variable flavour number scheme in which heavy and light

quark coefficient functions are matched together. In this context, we have considered

mass effects originating from both the charm and the bottom quarks. We have produced

NNLO+NLL results for the coefficient functions relevant for F2 and FL for neutral-current

DIS, considering the effect of both a virtual photon or a Z boson exchange, as well as

charged-current processes. If all quarks are massless, the structure function F3 is purely

non-singlet and therefore is not enhanced at small-x. However, we have found that in

the charged-current case with W boson exchange, if at least one of the quarks interacting

with the W is massive there is a non-zero contribution at small x to the parity violating

structure function F3. We have also noted that in neutral-current DIS with massive quarks

there is a difference between the γ exchange or Zγ interference and the pure Z exchange,

other than the overall coupling.

We have implemented all these new results in a new version of our code, HELL ver-

sion 2.0. A fast interface to these results is available through a new version of its
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companion code, HELL-x version 2.0. Both codes are publicly available at the webpage

www.ge.infn.it/∼bonvini/hell. The fast HELL-x 2.0 code can be directly used to compute

PDF evolution and DIS cross sections through the public code APFEL [91].

The main motivation behind this work was to compute and implement all the ingre-

dients that are necessary to perform a state-of-the-art fit of parton distribution functions

which consistently includes small-x resummation both in the evolution of the parton den-

sities and in the coefficient functions. This task is being now pursued by the NNPDF

collaboration. Preliminary and very encouraging results have been presented in [66] in the

case of a PDF fit that includes DIS-only data. For the near future, we look forward to

implementing other processes in HELL, the most relevant of which in the context of PDF

extractions is the production of lepton pair via the Drell-Yan mechanism. We conclude by

noting that the resummed results produced by HELL, both splitting functions and coeffi-

cient functions, are supplemented by a band representing the theoretical uncertainty due

to missing higher-logarithmic orders. This information can (and should) be used in phe-

nomenological studies and it could be also be fed into PDF fits together with other sources

of theoretical uncertainty. However, the debate about how to best include theoretical

uncertainties into PDF fits is not settled yet, see for instance [103–106].
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A Off-shell DIS coefficient functions

In this section we report the computation and the results for the off-shell coefficient func-

tions needed for the small-x resummation of DIS observables. We focus on the contributions

with an incoming gluon, which is off its mass-shell, as this is what enters in the resum-

mation formula. The relevant diagrams are shown in figure 7. The off-shellness of the

incoming gluon regulates the collinear divergence of the produced quark pair, so the case

with massless quarks is just a finite limit of the case with massive quarks. Therefore, we

start considering the most general case, in which the gluon converts to a massive quark

(pair), with mass m1, and then after interacting with the vector boson the quark changes

mass, m2 (and of course the opposite setup, as in the right diagram of figure 7). This

accounts for all possible type of interaction:

• m1 = m2 is the case in which the boson is either a photon or a Z (neutral current)

• m1 6= m2 is the case in which the boson is a W (charged current).

Additionally, we consider a generic coupling which includes vector and axial currents, even

though we will see that the couplings will mostly factor out.
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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V ∗

Q̄

Q′

g∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

Figure 7. Diagrams entering the computation of the DIS coefficient function with off-shell incoming

gluons at lowest order. The (off-shell) vector boson can either be a photon, a Z or a W . In the

latter case, the quark changes flavour after interacting with it, and thus does the mass.

Note that, in practice, the charged-current case is relevant only if one of the two

quark is massive and the other massless. Indeed only charm, bottom and top masses

cannot be neglected, but the top contribution to DIS is always negligible. Therefore, the

only processes for which two different non-zero masses would be needed are c + W → b

and b + W → c. But these processes are suppressed by the CKM matrix element Vcb ∼
4 10−2, and by the phase-space restrictions due to the quark masses. Therefore, the only

significant combinations in charged current will involve at most a single massive quark.

These combinations are c + W → s, d and s, d + W → c, on top of the fully massless

contributions u+W → s, d and s, d+W → u.

A.1 Calculation of DIS off-shell partonic cross section

In this section we summarize the computation of the DIS off-shell partonic cross section in

the most general case in which the quarks in the final state have different masses and their

coupling to the boson contains vector and axial components. We consider the process

V ∗(q) + g∗(k)→ Q̄(p3) +Q′(p4), (A.1)

where V ∗ is the generic off-shell vector boson, g∗ is the off-shell gluon and Q and Q′ are

quarks. The final state quarks are on-shell, and their flavour is in general different (to

cover the charged-current case), so their masses are p2
3 = m2

1, p2
4 = m2

2. The two diagrams

contributing to this process are depicted in figure 7. The invariant matrix element for the

two diagrams is given by

iMµρ = −igstcū(p4)

[
γµ
(
gV + gAγ

5
)/kγρ − 2pρ3
t−m2

1

− γρ/k − 2pρ4
u−m2

2

γµ
(
gV + gAγ

5
)]
v(p3), (A.2)

where gs, gV , gA are the strong, vector and axial couplings respectively, and t = (k − p3)2 =

(q − p4)2 and u = (k − p4)2 = (q − p3)2. For photon-induced DIS, the vector coupling is
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just the quark electric charge gγV = eQ and the axial coupling is zero. For Z-induced DIS,

the vector and axial couplings depend on the quark isospin and are given by

gZV =

+1
2 − 2eQ sin2 θw Q = u, c, t

−1
2 − 2eQ sin2 θw Q = d, s, b

, gZA =

+1
2 Q = u, c, t

−1
2 Q = d, s, b

, (A.3)

where θw is the weak mixing angle. For W -induced DIS the vector and axial couplings

depend on both quark flavours and are given by

gWV =
1√
2
VQQ′ , gWA = − 1√

2
VQQ′ , (A.4)

being Vij the CKM matrix. Note that we are assuming that the vector boson is just V ,

and so the computation will not cover explicitly the photon-Z interference: however, this

case is easily obtained in the final results by simply replacing g2
V → 2gZV g

γ
V and g2

A → 0

(the combination gV gA appears only in F3, the gluonic contribution of which is zero in

neutral current).

In the high-energy regime we are interested in, we decide to parametrize the kinematics

of the process in terms of dimensionless variables z1, z2, τ , τ̄ and transverse vectors16 q⊥,

k⊥ and ∆⊥ defined by

qµ = z1p
µ
1 + qµ⊥, (A.5a)

kµ = z2p
µ
2 − k

µ
⊥, (A.5b)

pµ3 = (1− τ)z1p
µ
1 + τ̄ z2p

µ
2 +

(
qµ⊥ −∆µ

⊥
)
, (A.5c)

pµ4 = τz1p
µ
1 + (1− τ̄)z2p

µ
2 −

(
kµ⊥ −∆µ

⊥
)
, (A.5d)

where p1 =
√
s

2 (1, 0, 0, 1) and p2 =
√
s

2 (1, 0, 0,−1) are light-cone vectors. We also define the

momentum transferred Q by q2 = −Q2. It is important to note that this definition is valid

only in the high-energy limit, where s�M2
V .

We define the parton-level off-shell hadronic tensor as the squared of the matrix ele-

ment eq. (A.2) averaged over the off-shell gluon polarizations [45, 51, 107]

Wµν = −
kρ⊥k

σ
⊥

k2
⊥

(Mνσ)†Mµρ. (A.6)

This object contains all the information on the DIS cross-section from the hadronic side.

It can be decomposed into different contributions with a given tensor structure as17

Wµν = −gµνW1 + kµkνW2 − iεµνρσkρqσW3 + qµqνW4

+(kµqν + qµkν)W5 + i(kµqν − qµkν)W6. (A.7)

16A transverse vector p⊥ is defined to have components only along directions orthogonal to the time and

z directions, i.e. in components p⊥ = (0, px, py, 0) = (0,p, 0), where we have also defined the two-vector p.

Note that p2⊥ = −p2.
17Note that in the photon-mediated DIS the contributions W4 and W5 can be related to W1 and W2

through Ward identities. However, since we want to cover also the more general Z- and W -mediated DIS

processes, we must keep them separate. Nevertheless, their contribution to the DIS cross section, as well as

the one from W6, is of the order of the lepton mass and thus negligible, and will not be further considered.
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The various contributions to the structure functions F1, F2 and F3 (and FL = F2−2xF1) are

obtained from the respective counterparts in the hadronic tensor W1, W2 and W3. These,

in turn, can be obtained from the full tensor Wµν using suitable projector operators. To

this end, we define

|A|22 =
qµ⊥q

ν
⊥

Q2
Wµν , (A.8a)

2|A|22 − 3|A|2L = |A|2g =

(
−gµν +

qµqν

q2

)
Wµν , (A.8b)

|A|23 = −iεµναβ
pα2 q

β

4(p2 · q)
Wµν , (A.8c)

where |A|22, |A|2L and |A|23 are directly related to F2, FL and F3, respectively. Using the

definitions of the kinematic variables in the high-energy limit, eqs. (A.5), the squared

amplitudes eqs. (A.8) can be rewritten as

|A|22 = 8g2
s

[
(p1 · k)(p2 · q)

(p1 · p2)

]2

×

{ (
g2
V + g2

A

)(
m2

1 − t
)(
m2

2 − u
)[1− 1

q2k2

(
1− 2

(p1 · p3)(p2 · p4)

m2
2 − u

− 2
(p1 · p4)(p2 · p3)

m2
1 − t

)2
]

− g2
A

(m1 +m2)2

q2
− g2

V

(m1 −m2)2

q2

1(
m2

1 − t
)(
m2

2 − u
)}, (A.9a)

|A|2g = 8g2
s

(p1 · k)2

(p1 · p2)2

{(
g2
V + g2

A

)[(p2 · p3)2 + (p2 · p4)2 +
(m2

1+m2
2)

2q2
(p2 · q)2(

m2
1 − t

)(
m2

2 − u
)

+

(
m2

1 +m2
2 − 2q2

2k2
+

(
m2

1 −m2
2

)2
2k2q2

)(
(p2 · p3)

m2
1 − t

− (p2 · p4)

m2
2 − u

)2
]

−
(
g2
V − g2

A

)[3m1m2

k2

(
(p2 · p3)

m2
1 − t

− (p2 · p4)

m2
2 − u

)2

+
m1m2

q2

(p2 · q)2(
m2

1−t
)(
m2

2−u
)]},
(A.9b)

|A|23 = 4g2
s(2gV gA)

(p1 · k)2

(p1 · p2)2

×

{
(p2 · p3)− (p2 · p4)

(p2 · q)

[
q2

k2

(
(p2 · p3)

m2
1 − t

− (p2 · p4)

m2
2 − u

)2

− (p2 · q)3(
m2

1 − t
)(
m2

2 − u
)]

− m2
1 −m2

2

k2

(
(p2 · p3)

m2
1 − t

− (p2 · p4)

m2
2 − u

)2
}
. (A.9c)

These squared amplitudes must be integrated over the final state two-body phase space.

In terms of the kinematic variables eqs. (A.5) we can express it as

dΦ =
ν

2π2
dτ dτ̄ d2∆ δ

(
τ̄(1− τ)ν − (q−∆)2 −m2

1

)
δ
(
τ(1− τ̄)ν − (k−∆)2 −m2

2

)
=

1

8π2

dτ

τ(1− τ)
d2∆̃ δ

(
ν − ∆̃2 + (1− τ)m2

2 + τm2
1

τ(1− τ)
− (q− k)2

)
, (A.10)
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where we have further defined

ν = 2z1z2(p1 · p2), (A.11)

∆̃ = ∆− τq− (1− τ)k. (A.12)

We recall that bold symbols represent the two-dimensional components of a

transverse vector.

The partonic off-shell coefficient functions (in Mellin space) for the three structure

functions we are interested in are given in terms of the squared amplitudes of eqs. (A.8) by

C2(N, ξ, ξm1 , ξm2) =
1

4π2
(
g2
V + g2

A

) ∫ 1

0
dη ηN

∫
dΦ |A|22, (A.13a)

CL(N, ξ, ξm1 , ξm2) =
1

4π2
(
g2
V + g2

A

) ∫ 1

0
dη ηN

∫
dΦ

1

3

[
2|A|22 − |A|

2
g

]
, (A.13b)

C3(N, ξ, ξm1 , ξm2) =
1

4π2(2gV gA)

∫ 1

0
dη ηN

∫
dΦ |A|23, (A.13c)

where we have introduced the variable

η =
Q2

ν
(A.14)

and we are expressing the result in terms of dimensionless ratios

ξ =
k2

Q2
, ξm =

m2

Q2
. (A.15)

Note that, as explained in the text, we are only interested in the N = 0 Mellin moment.

To carry out the integrations in eqs. (A.13) it is useful to express the following

combinations

m2
1 − t =

1

τ

[
(1− τ)m2

2 + τm2
1 +

(
∆̃− τk

)2
+ τ(1− τ)Q2

]
, (A.16a)

m2
2 − u =

1

1− τ

[
(1− τ)m2

2 + τm2
1 +

(
∆̃ + (1− τ)k

)2
+ τ(1− τ)Q2

]
, (A.16b)

τ̄ =

[
(1− τ)(q− k)− ∆̃

]2
+m2

1

(1− τ)ν
, (A.16c)

(1− τ̄) =

[
∆̃ + τ(q− k)

]2
+m2

2

τν
, (A.16d)

in terms of the phase-space variables. In addition, it is convenient to use the following

Feynman parametrizations

1(
m2

1 − t
)(
m2

2 − u
) =

∫ 1

0
dy

τ(1− τ)[
(1− τ)m2

2 + τ m2
1 +

(
∆̃ + (y − τ)k

)2
+ τ(1− τ)q + y(1− y)k2

]2 ,
1(

m2
1 − t

)2(
m2

2 − u
)2 =

∫ 1

0
dy

6τ2(1− τ)2y(1− y)[
(1− τ)m2

2 + τ m2
1 +

(
∆̃ + (y − τ)k

)2
+ τ(1− τ)q + y(1− y)k2

]4 .
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In this way, most integrations are easy to perform,18 leaving the results in the form of a

double integral in y and τ . In order to simplify this integration (and to make contact with

previous literature) it is also convenient to perform the change of variables

x1 = 4y(1− y), x2 = 4τ(1− τ), (A.17)

and express the results as integrals over x1 and x2. General results for Ca(0, ξ, ξm1 , ξm2),

a = 2, L, 3 are rather long and will not be reported here; in the next section we focus on

the physical combinations that are relevant for neutral and charged currents, where the

masses are either equal or at least one of them is vanishing.

A.2 Results

In this section we collect the results of the off-shell coefficient functions for neutral and

charged currents, contributing to the three structure functions F2, FL and F3. The fully

massless case m1 = m2 = 0, which is common to neutral and charged currents, is of course

the simplest limit and yields

C2(0, ξ, 0, 0) =
αs
3π

∫ 1

0

dx1√
1− x1

∫ 1

0

dx2√
1− x2

3

8(ξx1 + x2)3

×
[
(2− x1)x2

2 + x1x2ξ(3x1 + 3x2 − 4x1x2) + (2− x2)x2
1ξ

2
]

(A.18a)

CL(0, ξ, 0, 0) =
αs
3π

∫ 1

0

dx1√
1− x1

∫ 1

0

dx2√
1− x2

x2
2(x2 + x1ξ(5− 4x1))

4(ξx1 + x2)3 (A.18b)

C3(0, ξ, 0, 0) = 0. (A.18c)

These results coincide with those presented in ref. [49], even though the longitudinal coef-

ficient function was not written explicitly there. An equivalent (but simpler) integral form

for CL(0, ξ, 0, 0) was also given in ref. [61].

We now move to the case in which both masses are equal, m1 = m2 ≡ m, which is

relevant for neutral current. The results read

C2(0, ξ, ξm, ξm) =
αs
3π

∫ 1

0

dx1√
1− x1

∫ 1

0

dx2√
1− x2

3

8(4ξm + ξx1 + x2)3 (A.19a)

×
{[

2ξ2x2
1 − 4ξx2

1x
2
2 − ξ2x2

1x2 + 3ξx2
1x2 + 3ξx1x

2
2 − x1x

2
2 + 2x2

2

+ 4ξm
(
−ξx2

1x2+4ξx1−x1x
2
2−ξx1x2−x1x2+4x2

)
+ 16ξ2

m(2−x1x2)
]

+
8g2
Aξm(

g2
V + g2

A

)(4ξm + ξx1 + x2)2

}
,

18Note that using the δ function in eq. (A.10) to perform the η integration imposes restrictions on

the remaining integrations. In particular, the restriction can be cast as a lower integration limit for ∆̃2.

However, in the high-energy regime, this lower bound is immaterial, and the integral can be extended down

to zero.
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CL(0, ξ, ξm, ξm) =
αs
3π

∫ 1

0

dx1√
1− x1

∫ 1

0

dx2√
1− x2

1

4(4ξm + ξx1 + x2)3 (A.19b)

×

{[
x2

2(x2 + x1ξ(5− 4x1)) + 2ξmx2

(
ξx2

1 − 2ξx1 − 3x1x2 + 4x2

)
+ 8ξ2

mx2(2− 3x1)
]

+
6g2
Aξm(

g2
V + g2

A

)[2(4ξm + ξx1)2 + (2 + x1)x2
2

+ x2(ξ(8− 3x1)x1 + 4ξm(4 + x1))
]}
,

C3(0, ξ, ξm, ξm) = 0. (A.19c)

Note the presence in the above expressions of a term proportional to g2
A/(g

2
V + g2

A). This

contribution is present only when the vector boson is a Z, while for photon and photon-Z

interference this term is zero. This axial contribution is a new result. The remaining of

the expressions were already known [44, 45, 90], however an explicit integral form of this

kind for CL is presented here for the first time. Of course, the massless ξm → 0 limit of

eqs. (A.19) reduces to eqs. (A.18).

Finally, we move to the case in which one quark is massless (say, m2 = 0) and the other

is massive (m1 ≡ m), which is relevant for charged current. According to the definition

of the process, eq. (A.1), this choice corresponds to the production of a heavy anti-quark.

Here, it is most convenient to leave integration over τ untouched and to change variable

only from y to x1. We thus obtain

C2(0, ξ, ξm, 0) =
αs
3π

∫ 1

0
dτ

∫ 1

0

dx1√
1− x1

3

2(4τξm + ξx1 + 4τ(1− τ))3 (A.20a)

×
{

16(ξm + 1)τ2(ξm + 1− τ)2 + ξ2x2
1

(
ξm + (1− τ)2 + τ2

)
+ 2ξx2

1(1− τ)τ
(
3ξ2
m + ξm(6− 16τ) + 16τ2 − 16τ + 3

)
+ 8τ2x1

[
ξ
(
ξ2
m + ξm(4− 3τ) + 3(1− τ)2

)
− (ξm + 1)2(1− τ)(ξm + 1− τ)

]}
,

CL(0, ξ, ξm, 0) =
αs
3π

∫ 1

0
dτ

∫ 1

0

dx1√
1− x1

1

(4τξm + ξx1 + 4τ(1− τ))3 (A.20b)

×
{

16τ2(ξm + 1− τ)2(3ξm + 4(1− τ)τ) + 3ξ2x2
1ξm

+ 2ξx2
1(1− τ)τ

(
9ξ2
m + ξm(9− 32τ)− 32τ(1− τ)

)
+ 8τ2x1

[
ξ
(

3ξ2
m + 10ξm(1− τ) + 10(1− τ)2

)
− 3ξm(ξm + 1)(1− τ)(ξm + 1− τ)

]}
,
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C3(0, ξ, ξm, 0) =
αs
3π

∫ 1

0
dτ

∫ 1

0

dx1√
1− x1

3

2(4τξm + ξx1 + 4τ(1− τ))3 (A.20c)

×
{

16τ2(2τ − 1)(ξm + 1− τ)2 + ξx2
1(ξ(2τ − 1)− 6(1− τ)τ(ξm+1−2τ))

+ 8τ2x1

[
(1− τ)

(
ξ2
m + ξm(2− 3τ) + 2τ2 − 3τ + 1

)
+ ξξm

]}
.

To the best of our knowledge, these results are all new. Most notably, C3 does not vanish

in this case. Note that choosing m2 = m, m1 = 0 corresponds to charge-conjugating the

final state, thus producing a heavy quark. Therefore, Ca(0, ξ, 0, ξm) = Ca(0, ξ, ξm, 0) for

a = 2, L, while there is a sign change in the parity-violating coefficient, C3(0, ξ, 0, ξm) =

−C3(0, ξ, ξm, 0) (see also refs. [108, 109]). As expected, the massless limit of eqs. (A.20)

reduces to eqs. (A.18).

We now consider the Mellin transform with respect to ξ of these results. This is par-

ticularly useful for studying the massless limit of the resummed result, and for asymptotic

expansions. We denote the Mellin transform with a tilde, and replace the argument ξ with

the Mellin moment M :

C̃a(N,M, ξm1 , ξm2) = M

∫ ∞
0

dξ ξM−1Ca(N, ξ, ξm1 , ξm2), a = 2, L, 3. (A.21)

In the massless case we find

C̃2(0,M, 0, 0) =
αs
3π

Γ3(1−M)Γ3(1 +M)

Γ(2− 2M)Γ(2 + 2M)

3(2 + 3M − 3M2)

2M(3− 2M)
, (A.22a)

C̃L(0,M, 0, 0) =
αs
3π

Γ3(1−M)Γ3(1 +M)

Γ(2− 2M)Γ(2 + 2M)

3(1−M)

3− 2M
, (A.22b)

C̃3(0,M, 0, 0) = 0, (A.22c)

which reproduce the results of ref. [49]. In the massive case in neutral current we obtain

C̃2(0,M, ξm, ξm) =
αs
3π

3

2
ξMm

Γ3(1−M)Γ(1 +M)

(3− 2M)(1 + 2M)Γ(2− 2M)
(A.23a)

×
{

1 +M −
[
1 +M − 2 + 3M − 3M2

2ξm

]
2F1

(
1−M, 1,

3

2
;− 1

4ξm

)
−

2g2
A

g2
A + g2

V

1 + 2M

1− 2M

[
8ξm(M − 2ξm − 2)

+ (4ξm + 1)2
2F1

(
1−M, 1,−1

2
,− 1

4ξm

)]}
,

C̃L(0,M, ξm, ξm) =
αs
3π

3

2
ξMm

Γ3(1−M)Γ(1 +M)

(3− 2M)(1 + 2M)Γ(2− 2M)

4ξm
1 + 4ξm

(A.23b)

×
{

3 +
1−M

2ξm
−
[
3 +

1−M
ξm

(
1− M

4ξm

)]
2F1

(
1−M, 1,

3

2
;− 1

4ξm

)
−

g2
A

g2
A + g2

V

(1 + 4ξm)(1 + 2M)

12ξ2
m
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×
[
6ξm(2M − 3) 2F1

(
2−M, 1,

3

2
,− 1

4ξm

)
+ (3M − 4) 2F1

(
2−M, 2,

5

2
,− 1

4ξm

)]}
,

C̃3(0,M, ξm, ξm) = 0. (A.23c)

Apart from the contribution proportional to the axial coupling g2
A, which is new, the other

terms reproduce the results of refs. [44, 45, 90]. Finally, the massive case in charged current

is given by

C̃2(0,M, ξm, 0) =
αs
3π

3

4
ξMm

Γ(1−M)3Γ(1 +M)

M(3− 2M)(4M2 − 1)Γ(2− 2M)

1

ξm
(A.24a)

×
{
M
(
M2
(
ξ2
m − 2ξm − 3

)
−M

(
ξ2
m − 4ξm − 3

)
+ ξm + 2

)
+ (1−M)(1 + ξm)

(
M2(ξm + 3)− 3M − 2

)
× 2F1

(
2M − 1, 1,M + 1,

1

1 + ξm

)}
,

C̃L(0,M, ξm, 0) =
αs
3π

3

4
ξMm

Γ(1−M)3Γ(1 +M)

M(3− 2M)(1 + 2M)(1− 2M)Γ(2− 2M)

1

ξm
(A.24b)

×
{

2M3(3ξm + 1)−M2
(
ξ2
m + 11ξm + 2

)
−Mξm(ξm − 2) + 2ξ2

m

+ (M − 1)
(
2M2(ξm + 1) +M

(
ξ2
m − 5ξm − 2

)
+ 2ξ2

m

)
× 2F1

(
2M − 1, 1,M + 1,

1

1 + ξm

)}
,

C̃3(0,M, ξm, 0) =
αs
3π

3

2
ξMm

(1−M)Γ(1−M)3Γ(1 +M)

M(3− 2M)Γ(2− 2M)

ξm
1 + ξm

(A.24c)

×
[

2F1

(
2M, 1, 1 +M,

1

1 + ξm

)
− 1− 1

ξm

]
.

A.3 Special limits

We find instructive to study the above expressions in two particular limits, namely the

massless limit and the limit M → 0. The latter is useful to construct the fixed-order

expansion of the resummed result.

A.3.1 Massless limit

We can use the Mellin forms to study the massless limit ξm → 0 of the resummed expres-

sions. We have for neutral current

lim
ξm→0

C̃2(0,M, ξm, ξm) = C̃2(0,M, 0, 0) + K̃hg(M, ξm), (A.25)

lim
ξm→0

C̃L(0,M, ξm, ξm) = C̃L(0,M, 0, 0), (A.26)
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and for charged current

lim
ξm→0

C̃2(0,M, ξm, 0) = C̃2(0,M, 0, 0) +
1

2
K̃hg(M, ξm), (A.27)

lim
ξm→0

C̃L(0,M, ξm, 0) = C̃L(0,M, 0, 0), (A.28)

lim
ξm→0

C̃3(0,M, ξm, 0) = �������
C̃3(0,M, 0, 0) +

1

2
K̃hg(M, ξm), (A.29)

lim
ξm→0

C̃3(0,M, 0, ξm) = �������
C̃3(0,M, 0, 0)− 1

2
K̃hg(M, ξm), (A.30)

where we have defined

K̃hg(M, ξm) = −αs
π
ξMm

1−M
M

Γ3(1−M)Γ(1 +M)

(3− 2M)Γ(2− 2M)
. (A.31)

The function K̃hg(M, ξm) contains the collinear singularity, appearing as a M = 0 pole, and

produces the logarithmic mass contributions when expanded in powers of M . In a sense,

it represents the conversion from the collinear singularity regularized by the off-shellness

and the very same singularity regularized by the mass, see eq. (2.39).

The inverse Mellin of eq. (A.31), needed for the running coupling resummation

eq. (2.41), can be obtained in the following way. We first split the function as the product

of three different factors which we write in integral form:

Γ(1−M)Γ(1 +M) = M

∫ ∞
0

dt
tM−1

1 + t
,

41−M (1−M)Γ2(1−M)

(3− 2M)Γ(2− 2M)
=

∫ 1

0
dx

x1−M
√

1− x
,

(4ξm)M

M
=

∫ 1

0

dy

y
(4yξm)M . (A.32)

Then we change variable from t to ξ = 4ξmty/x to write the product in the form of a Mellin

transfrom:

K̃hg(M, ξm) = −αs
4π
M

∫ ∞
0

dt
tM−1

1 + t

∫ 1

0
dx

x1−M
√

1− x

∫ 1

0

dy

y
(4yξm)M

= −αs
4π
M

∫ ∞
0

dξ ξM−1

∫ 1

0

dx√
1− x

∫ 1

0

dy

y

xy4ξm
xξ + y4ξm

. (A.33)

At this point we can simply read off the inverse Mellin transform in integral form

Khg(ξ, ξm) = −αs
4π

∫ 1

0

dx√
1− x

∫ 1

0

dy

y

xy4ξm
xξ + y4ξm

= −αs
3π

[
4ξm
ξ

+ log
ξm
ξ

+

(
2− 4ξm

ξ

)√
1 +

4ξm
ξ

log

(√
ξ

4ξm
+

√
1 +

ξ

4ξm

)]
.

(A.34)

which has been computed explicitly in the second line. The ξ-derivative of this expression

is eq. (2.42).
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A.3.2 Fixed-order expansion and collinear singularities

The Mellin form of the off-shell coefficients can be also used to compute expansions in

M = 0, which are needed for computing the αs expansion of the resummed results. For

matching up to NNLO, i.e. O(α2
s), we need the expansions up to O(M). In the massless

case we have

C̃2(0,M, 0, 0) =
αs
3π

[
1

M
+

13

6
+

(
71

18
− ζ2

)
M +O

(
M2
)]
, (A.35a)

C̃L(0,M, 0, 0) =
αs
3π

[
1− M

3
+O

(
M2
)]
, (A.35b)

while in the massive case in neutral current we obtain

C̃2(0,M, ξm, ξm) =
αs
3π

[
1 + 4

√
1 + 4ξm csch−1

(
2
√
ξm
)

2
+

g2
A

g2
A + g2

V

12ξm csch−1
(
2
√
ξm
)

√
1 + 4ξm

+
M

6
√

1 + 4ξm

{√
1 + 4ξm(3 ln ξm + 5) + 2 csch−1

(
2
√
ξm

)
× (13− 10ξm + 6(1− ξm) ln ξm)− 6(1− ξm)H−,+

(
− 1√

1 + 4ξm

)
+

12ξmg
2
A

g2
A + g2

V

(
8 ln(4ξm)− 16 ln

(
1 +

√
1 + 4ξm

)
+ csch−1

(
2
√
ξm

)
(6 ln ξm + 28)− 3H−,+

(
− 1√

1 + 4ξm

))}
+O

(
M2
)]
, (A.36a)

C̃L(0,M, ξm, ξm) =
αs
3π

[√
1 + 4ξm(1 + 6ξm)− 8ξm(1 + 3ξm) csch−1

(
2
√
ξm
)

(1 + 4ξm)
√

1 + 4ξm

g2
A

g2
A + g2

V

2ξm
(
4(7ξm + 2) csch−1

(
2
√
ξm
)
−
√

1 + 4ξm
)

3(1 + 4ξm)
√

1 + 4ξm

+
M

3(1 + 4ξm)
√

1 + 4ξm

{√
1 + 4ξm(12ξm − 1 + 3(1 + 6ξm) ln ξm)

+ csch−1
(

2
√
ξm

)
(6 + 8(1− 6ξm)ξm − 24ξm(1 + 3ξm) ln ξm)

+ 12ξm(1 + 3ξm)H−,+

(
− 1√

1 + 4ξm

)
+

2ξmg
2
A

g2
V + g2

A

(
2 csch−1

(
2
√
ξm

)
(23 + 82ξm + 6(7ξm + 2) ln ξm)

−
√

1 + 4ξm(8 + 3 ln ξm)− 6ξm ln

√
1 + 4ξm − 1√
1 + 4ξm + 1

− 6(2 + 7ξm)H−,+

(
− 1√

1 + 4ξm

))}
+O

(
M2
)]
, (A.36b)
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having defined the harmonic polylogarithm

H−,+(z) = Li2

(
1− z

2

)
− Li2

(
1 + z

2

)
+

1

2
ln

(
1− z2

4

)
ln

(
1− z
1 + z

)
. (A.37)

In the charged-current case, with only one massive quark, we have instead the following

expansion:

C̃2(0,M, ξm, 0) =
αs
3π

[
1

2M
+

8− 3 ln ξm + 6 ln(1 + ξm)

6

+
M

36

(
86− 3 ln ξm(10 + 3 ln ξm) + 6 ln(1 + ξm)(13 + 3 ln(1 + ξm))

− 36Li2

(
1

1 + ξm

))
+O

(
M2
)]
, (A.38a)

C̃L(0,M, ξm, 0) =
αs
3π

[
ξm

1 + ξm

1

2M
+

6 + 14ξm + 3ξm(1 + 2ξm) ln ξm − 6ξ2
m ln(1 + ξm)

6(1 + ξm)

+
M

36(1+ξm)

(
− 12+92ξm−18ξ2

m ln2(1+ ξm)+ 36ξ2
mLi2

(
1

1 + ξm

)
+ 9ξm(1 + 2ξm) ln2 ξm + 6ξm(7ξm − 1) ln ξm

+ 6(6 + ξm(15− 7ξm)) ln(1 + ξm)

)
+O

(
M2
)]
, (A.38b)

C̃3(0,M, ξm, 0) =
αs
3π

[
− 1

1 + ξm

1

2M
− 5 + (3 + 6ξm) ln ξm − 6ξm ln(1 + ξm)

6(1+ξm)

− M

36(1 + ξm)

(
56 + 30(1 + 2ξm) ln ξm + 9(1 + 2ξm) ln2 ξm

− 60ξm ln(1 + ξm)− 18ξm ln2(1 + ξm) + 36ξmLi2

(
1

1 + ξm

))
+O

(
M2
)]
. (A.38c)

In each of the above equation, the pole in M = 0, where present, identifies the collinear

singularity and is given by the LO Pqg in Mellin space times the LO non-singlet process

q + W → q′. The latter has non-trivial mass dependence in charged current, eqs. (A.38),

since in this case the final state quark q′ is massive. Note that in this case even FL has a non-

vanishing contribution at LO, which is proportional to the mass and thus vanishes in the

massless limit. TheO(M0) terms in these expansions, after subtraction of massless collinear

singularities as in eqs. (2.31a) and (2.35), reproduce the known O(αs) contributions [110,

111]. Higher-order corrections exist both for neutral and charged currents (see e.g. [112,

113]), however not in a form we could compare our expansion to.

B Details on numerical implementation

B.1 The evolution function U

A key ingredient of the formalism for resumming coefficient functions is the evolution

function U(N, ξ), defined in eq. (2.32). As discussed in ref. [61], computing it exactly with
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the resummed anomalous dimension γ+ (specifically, with the LL′ anomalous dimension)

requires integrating γ+ over all values of αs from 0 to∞, which is numerically inconvenient.

Therefore, following refs. [38, 50], we use an approximate expression for the evolution

factor, where the anomalous dimension is assumed to depend on αs only at LO, with

1-loop running. This leads to the ABF evolution factor [61]

UABF(N, ξ) =
(

1 + r(N,αs) log ξ
)γ+(N,αs)/r(N,αs)

(B.1)

with

r(N,αs) = −
Q2d
dQ2 γ+(N,αs)

γ+(N,αs)
= α2

sβ0

d
dαs

γ+(N,αs)

γ+(N,αs)
. (B.2)

Note that the ratio r(N,αs) is such that the approximation reproduces the correct deriva-

tive of γ+ in αs. However, this effect is strictly speaking beyond the formal accuracy we

work with, so one could ignore it and replace

r(N,αs)→ αsβ0. (B.3)

This variant is used to construct the uncertainty band on our resummed predictions. As

a simpler approximation we could also consider the fixed-coupling limit, in which all the

scale dependence in αs is ignored and the evolution factor becomes simply

Uf.c.(N,αs) = ξγ+(N,αs). (B.4)

In this case our formula for computing the resummation of coefficient functions simply

reduces to a Mellin transformation with moment γ+.

The integration range in the off-shellness ξ in the resummation formula extends to all

accessible values between 0 and ∞. In the running-coupling case, αs is computed at ξQ2

in U , eq. (2.32), so at some small value of ξ the Landau pole is hit, and the integration

must stop there. With 1-loop running (and also at higher loops if the expanded solution

for the running coupling is used) the position of the Landau pole is given by

ξ0 = exp
−1

αsβ0
, (B.5)

and ξ-integration must be limited to the region ξ ≥ ξ0. In the fixed-coupling limit, αs is

frozen at its value in Q2, so all values of ξ are in principle accessible, i.e. ξ0
f.c.
= 0.

In ref. [61] we derived the resummation formula which had originally the form

(schematically)

Cres(N) =

∫ ∞
ξ0

dξ C(0, ξ) d

dξ
U(N, ξ). (B.6)

Then, for convenience in the numerical implementation, we integrated by parts to get

Cres(N) = −
∫ ∞
ξ0

dξ
d

dξ
C(0, ξ)U(N, ξ), (B.7)

where the boundary term at infinity vanishes thanks to C, and the boundary term in ξ0 is

assumed to vanish because

U(N, ξ0) = 0. (B.8)
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The latter assumption is not always true. However, at the leading logarithmic accuracy,

which is the only accuracy on which we have control at the moment, the resummed result

is only governed by the fixed-coupling anomalous dimension γs, dual of the LO BFKL

kernel. Thus, the formula eq. (B.4) applies, with γ+ = γs. To obtain the resummed

coefficient function in momentum space, an inverse Mellin transform has to be computed.

This amounts to integrating in N over an imaginary contour with abscissa to the right

of the small-x singularity, which in the case of γs is placed in N = αsc0, with c0 given

in eq. (3.18). Along such contour, the real part of γs is always positive, and therefore

Uf.c.(N, ξ0 = 0) = 0. Therefore, at the accuracy we are working with, the boundary term

indeed vanishes.

In practice, however, we include in our resummation subleading contributions which

spoil the condition eq. (B.8). Indeed the anomalous dimension γ+ that we use has a more

complex structure than γs. Additionally, we use the approximation eq. (B.1), which is

typically finite in ξ = ξ0:

UABF(N, ξ0) =
(

1− r(N,αs)

αsβ0

)γ+(N,αs)/r(N,αs)
. (B.9)

Note that using the variant eq. (B.3) UABF(N, ξ0) is either 0 or ∞ depending on the sign

of the real part of γ+. This implies that the two formulations eqs. (B.6) and (B.7) will give

in general different results, due to the neglected non-zero boundary term. We have indeed

verified this numerically. Despite the fact that this difference is subleading log, and hence

either result is formally equally valid, this difference in the formulations is undesirable.

In this work we propose to solve the ambiguity by modifying the evolution function

with suitable higher-twist terms such that we always have U(N, ξ0) = 0. To do so, we use

the evolution function

U(N, ξ) = UABF(N, ξ)Dhigher-twist(ξ), (B.10)

with

Dhigher-twist(ξ) =


[

1−
(

log ξ

log ξ0

)1+ 1
αsβ0

]
ξ < 1

1 ξ > 1.

(B.11)

It is easy to verify that the damping function Dhigher-twist(ξ) vanishes in ξ0 and smoothly

tends to 1 in ξ = 1, with all derivatives vanishing in ξ = 1. Moreover, it is clearly

higher-twist, i.e. non analytical in the coupling αs, so it does not influence the perturba-

tive expansion of the evolution factor (which is used for the matching of the resummed

expressions to fixed-order).

Using this new damped evolution function, we find that the results obtained using

eq. (B.7) are indistinguishable from those obtained with the undamped function, which

confirms that the results of ref. [61] are unaffected (from the point of view of U). On

the other hand, results obtained using eq. (B.6) are now identical to those obtained using

eq. (B.7), as they must, since now the boundary term is identically zero by construction.
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From the point of view of the numerical implementation, we observe that the N de-

pendence of the resummed coefficient functions is all contained in U , eqs. (B.6) or (B.7).

Therefore, we can first compute the inverse Mellin transform of U(N, ξ) eq. (B.10) as

function of ξ, U(x, ξ), which we tabulate for various values of αs, x and ξ, and we subse-

quently use it to compute the ξ integration for each observable. In HELL v2.0 both the

old methodology (which integrates first in ξ and then in N) and the new one (integration

order inverted) are implemented, and give of course identical results (within numerical

integration errors). The new implementation is faster.

B.2 Implementation of kinematic theta functions at resummed level

In massive coefficient functions, kinematic constraints for the production of the massive

final state are implemented through theta functions appearing in the coefficient functions.

For instance, in the case of DIS neutral-current structure functions, the theta function

has the form θ(X − x), with X = 1/(1 + 4m2/Q2) and where x is the Mellin integration

variable.19 The very same theta function appears also in the off-shell coefficient, as it

depends only on the kinematics of the final state. In the resummation procedure, the

off-shell coefficient function is Mellin transformed with respect to x and then the result is

evaluated in Mellin moment N = 0. The last step (which is strictly speaking not necessary)

loses track of the theta function, and the inverse Mellin transform of the resummed on-shell

coefficient is non-zero also in kinematically unaccessible regions.

A possible solution to restore the kinematic theta function is simply to avoid computing

the off-shell coefficient in N = 0. This is possible, however, it is not convenient for at least

two reasons: the first is that all expressions and calculations become significantly more

complicated, and the second is that for consistency this should be done also in the massless

case. The latter requirement is necessary in the construction of the collinearly resummed

coefficient functions, otherwise the massless limit of the (collinear subtracted) resummed

massive on-shell coefficients would not tend to the massless ones, eq. (2.25).

Therefore, we seek a solution which restores the theta function in the resummed ap-

proach, while keeping using the off-shell coefficient in N = 0. The implementation must

satisfy three requirements:

• the theta function should be restored without affecting the logarithmic accuracy of

the result;

• the x→ X limit must be smooth;

• in the massless X → 1 limit the effect must disappear completely.

The first requirement is obvious. The second one is perhaps not mandatory, but it is

satisfied in fixed-order results, and avoids sharp transitions between results. The latter

requirement is instead needed for a correct implementation of the resummation of collinear

logarithms at small-x resummed level.

19In the charged-current case, when the mass of the quark before and after hitting the W is different, the

form of X generalizes to X = 1/(1 + (m1 +m2)2/Q2).
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We have investigated different options for the restoration of the theta function such

that the requirements above are satisfied. We report here the two main alternatives that

we consider, which act on N space and on x space, respectively. The N -space approach

consists in multiplying the integrand of eqs. (2.34), (2.36a) and (2.36b) by a term of the form

ΘN (N,X) =
XN

(1−X)N + 1
= 1 +O(N) (B.12)

As explicitly indicated, this term is manifestly subleading, and reproduces the theta func-

tion θ(X − x) thanks to the XN term. In the massless limit it reduces to ΘN (N, 1) = 1,

as required. It can be also verified that, in full generality, the inverse Mellin transform of

the resummed coefficient function obtained with this extra function vanishes smoothly as

x → X. The alternative implementation in x space is obtained by multiplying the final

resummed coefficient function in x space by the function

Θx(x,X) = θ(X − x)

[
1−

( x
X

) 1
1−X

]
. (B.13)

The function in squared brackets ensures smooth x→ X limit, and it is clearly subleading.

In the massless limit X → 1 it reduces to Θx(x, 1) = θ(1− x), as required.

The two alternatives are formally equally valid, but lead in general to different numer-

ical results. For practical reasons, we opt for the x-space implementation, eq. (B.13). In

this way restoring the theta function can be done at the very end, giving full flexibility

for the implementation of the resummation. For instance, it is possible to precompute the

inverse Mellin transform of the evolution function, U(x, ξ), as described in section B.1,

speeding up the computation of resummed massive coefficient functions. This would not

be possible using the N -space formulation, eq. (B.12), as in this case the N dependence

of ξ-integrand of resummed coefficient functions would include the ΘN (N,X) term, so the

Mellin inversion would not act on U(N, ξ) only.

B.3 A convenient approximate form for the fixed-order anomalous dimension

In the construction of the off-shell kernel for LL and NLL resummation, we need the dual

of the fixed LO or NLO anomalous dimension, denoted χs and χs,NLO, respectively. These

two functions provide the resummation of collinear (and anticollinear) contributions in the

DL BFKL kernel. If the duals are computed from approximate expressions of the fixed-

order anomalous dimensions, the resummation in the BFKL kernel is only approximate,

and one cannot claim to have exact leading or next-to-leading logarithmic accuracy in

BFKL. However, our goal is to reach LL and NLL accuracy in the resummed anomalous

dimension, not in the BFKL kernel. For this, the BFKL kernel has just to be correct at

fixed LO or NLO, since by duality this fully determines the LL and NLL contributions of the

DGLAP anomalous dimension. The reason why also the BFKL kernel is being resummed is

just that the resummation stabilizes its perturbative expansion, which is otherwise highly

unstable close to the collinear and anticollinear poles. Therefore, from the point of view

of the accuracy of the result, it is well possible to use an approximate expression for the

LO and NLO anomalous dimensions, provided their LL and NLL parts are correct, as they
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correspond by duality to contributions of O(αs) and O(α2
s) in the BFKL kernel, which need

to be correct. Then, once the fixed-order part of the resummed (N)LO+(N)LL anomalous

dimension is subtracted, the resummed contributions eqs. (4.34a), (4.34b) can be added to

the exact fixed-order anomalous dimension, restoring the correct fixed-order part.

This approach was already considered in both refs. [38, 61], with two different imple-

mentations. The basic motivation was that the exact fixed-order anomalous dimension γ+,

being the eigenvalue of a matrix, contains a square-root branch-cut, which is inherited by

the DL anomalous dimension and would give rise to a spurious oscillating behaviour when

performing an inverse Mellin transformation. The approximate γ+ implemented in ref. [61],

which is a somewhat simplified version of the one originally proposed in ref. [38], was sim-

ply obtained by taking γgg computed for nf = 0 (which is then also the eigenvalue, as

there are no quarks and the matrix reduces to a single entry) and adding the nf -dependent

contributions of the exact γ+ restricted to LL and NLL. This procedure ensures that the

resulting anomalous dimension reproduces the LL and NLL behaviour of the exact one, but

it behaves as γgg elsewhere in the N plane. This implies in particular that the anomalous

dimension grows (negatively) as logN at large N . Note also that this construction violates

momentum.

We observe that the large-N logarithmic growth of γ+ is problematic. Indeed, the

dual function χs (or χs,NLO) grows exponentially for negative M as |M | gets larger. The

DL kernel, by duality, should then be able to reproduce the logarithmic growth at large

N . However, the DL kernel does not only contain χs, but also the fixed-order BFKL

kernel, which contains poles for all integer values of M . Therefore, by duality, the large

N behaviour of the DL anomalous dimension is determined by the rightmost M pole for

negative M , which is in M = −1, which implies that the DL anomalous dimension tends to

−1 as N →∞. This problem was ignored in previous works, as the M = −1 pole represents

a higher twist contribution, and the practical effect is almost negligible. However, it would

be ideal to avoid this issue. One option would be to act on the DL BFKL kernel, hacking it

such that the poles for negative M are no longer present. While we have tried this solution,

we think that it is not the best approach. A significantly better solution is obtained if the

anomalous dimension used in the duality relation does not grow at large N , but rather it

goes as a constant larger than −1, such that χs never hits the rightmost negative M pole:

in this way, the large-N behaviour of the DL anomalous dimension is determined by χs
itself, and hence corresponds to the one of the input anomalous dimension.

Thus, here we propose a new approximation for the fixed-order anomalous dimension.

We require that the LL and NLL behaviour is reproduced, that momentum conservation

is preserved exactly, and that at large N it behaves as a constant greater than −1. Given

that the LO and NLO anomalous dimensions behave close to N = 0 as

γ0(N) =
a11

N
+ a10 +O(N)

γ1(N) =
a22

N2
+
a21

N
+ a20 +O(N) (B.14)

where a22 = 0 (accidental zero), we propose the following approximate expression,

γ(N) =
a1

N
+ a0 − (a1 + a0)

2N

N + 1
, (B.15)
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which is valid both at LO and NLO with appropriate coefficients. At NLO they are given by

a1 = αsa11 + α2
sa21,

a0 = αsa10 + α2
sa20, (B.16)

and at LO one simply neglects the O(α2
s) terms; the coefficients are given by

a11 =
CA
π
,

a21 = nf
26CF − 23CA

36π2
,

a10 = −
11CA + 2nf (1− 2CFCA + 4C2

F )

12π
,

a20 =
1

π2

[
1643

24
− 33

2
ζ2 − 18ζ3 + nf

(
4

9
ζ2 −

68

81

)
+ n2

f

13

2187

]
. (B.17)

Note that a20 is formally NNLL, so it could in principle be ignored (similarly, for LL

resummation one could ignore a10); in practice, including both a11 and a10 at LO and both

a21 and a20 at NLO provides an excellent approximation of the anomalous dimension in

the small-N region. The last term in eq. (B.15) is a subleading O(N) contribution which

ensures momentum conservation γ(1) = 0. At large N , eq. (B.15) behaves as a constant,

γ(N)
N→∞→ −2a1 − a0. (B.18)

We verified that −2a1 − a0 > −1 for all values of αs, nf that we consider. In particular,

the worst case is obtained at NLO with nf = 3, where the condition γ(N → ∞) > −1 is

satisfied for αs < 0.558. For all other values of nf , and at LO, the αs range of validity

is larger. Clearly, this is more than enough, as for such values of αs the perturbative

hypothesis is lost. Indeed, in our current numerical implementation we never consider

energy scales for which αs > 0.35.

Another very important advantage of the approximation eq. (B.15) is that its inverse

function (i.e. the dual) can be computed analytically:

χs(M) =
a1 + a0 −M +

√
(M + a1 − a0)2 + 8a1(a1 + a0)

2(2a1 + a0 +M)
(B.19)

(here we generically use the name χs for representing both the dual to the LO anomalous

dimension and the dual to the NLO one, previously called χs,NLO). This represents a great

advantage from the point of view of the numerical implementation, as in the general case

one would have to compute the inverse function by means of zero-finding routines, which

are typically slow and do not ensure convergence, especially when working in the complex

plane. Consider also that the DL anomalous dimension from eq. (4.1) is itself obtained

by means of zero-finding routines, applied to the DL kernel which is given in terms of

χs, giving rise to nested zero-finding which clearly cannot guarantee best performance.

Therefore, using the analytic expression eq. (B.19) for χs allows to have a single layer of

– 65 –



J
H
E
P
1
2
(
2
0
1
7
)
1
1
7

zero-finding routines, improving significantly the numerical stability and the speed of the

code.20 The expansion of χs in power of αs is given by

χs(M) = a11
αs
M

+ a11a10
α2
s

M2
+ a21αs

αs
M

+O(α3
s), (B.20)

which implies, according to eq. (4.15),

χ01 = a11 =
CA
π
,

χ11 = a21 = nf
26CF − 23CA

36π2
,

χ02 = a11a10 = −
11C2

A + 2nf (CA − 2CF )

12π
. (B.21)

Up to this order, these are identical to the dual of the exact anomalous dimension, as an

obvious consequence to the fact that the approximate anomalous dimension is constructed

to preserve LL and NLL accuracy.

B.4 Inverse Mellin transforms

Here we compute the various ingredients for the inverse Mellin transforms of eqs. (4.31a)–

(4.31c). Using the approximate form of γ0 given in appendix B.3, we have

γ0(N) =
a11

N
− (a10 + 2a11) +

2(a11 + a10)

N + 1
,

γ′0(N) = −a11

N2
− 2(a11 + a10)

(N + 1)2
. (B.22)

We can also write the function eq. (4.5) as

fmom(N) =
4

N + 1
− 4

(N + 1)2
. (B.23)

In eq. (4.31c) a number of products appear. When a power of 1/N multiplies a power of

1/(N + 1), it is always possible to write it as a sum of powers of individual poles in either

N or N + 1. Therefore, most terms can be computed by means of the following inverse

Mellin transforms,

M−1

[
1

Nk+1

]
=

(−1)k

k!

logk x

x
, (B.24)

M−1

[
1

(N + 1)j+1

]
=

(−1)j

j!
logj x, (B.25)

20A word of caution is needed in the choice of the branch of the square-root. Along the Mellin inversion

integration path, which is the only place in N space where the DL anomalous dimension is computed, the

standard branch of the square-root is suitable for the collinear χs. However, for the anti-collinear χs, a

different branch is needed, where the cut is placed on the negative imaginary axis, which avoids crossing

the cut during integration.
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where the M−1 symbol is a shorthand notation for representing the Mellin inversion,

M−1[f(N)] =

∫ 1
2

+i∞

1
2
−i∞

dN

2πi
x−Nf(N). (B.26)

Additionally, the function ψ1(N + 1), multiplied by powers of 1/N or 1/(N + 1), appears.

The computation of these inverse Mellin is trickier. We start from

M−1[ψ1(N + 1)] =
log x

x− 1
. (B.27)

To compute inverse Mellin of ψ1(N + 1) with products of 1/N and 1/(N + 1), we compute

consecutive convolutions of eq. (B.27) with the inverse Mellin of a single power of 1/N and

1/(N + 1), which are given respectively by 1/x and 1. Starting from

M−1

[
1

N
ψ1(N + 1)

]
=

∫ 1

x

dz

x

log z

z − 1
=

Li2(1− x)

x
, (B.28)

M−1

[
1

N + 1
ψ1(N + 1)

]
=

∫ 1

x

dz

z

log z

z − 1
= ζ2 − Li2(x) +

1

2
log2 x− log(1− x) log x,

(B.29)

we can easily compute successive integrals by just integrating these results (as functions of

z) in dz/x or dz/z. The relevant results are

M−1

[
1

N2
ψ1(N + 1)

]
=

2[Li3(x)− ζ3]− [Li2(x) + ζ2] log x

x
, (B.30)

M−1

[
1

(N + 1)2
ψ1(N + 1)

]
= 2[Li3(x)− ζ3]− [Li2(x) + ζ2] log x− 1

6
log3 x, (B.31)

M−1

[
1

N3
ψ1(N + 1)

]
=

3[ζ4 − Li4(x)] + [Li3(x) + 2ζ3] log x+ 1
2ζ2 log2 x

x
, (B.32)

M−1

[
1

(N + 1)3
ψ1(N + 1)

]
= 3[ζ4 − Li4(x)] + [Li3(x) + 2ζ3] log x

+
1

2
ζ2 log2 x+

1

24
log4 x. (B.33)

Because the HELL-x code, where these expressions are implemented, has to be fast, as it

is meant to be used in PDF fits, the appearance of polylogarithms is not ideal. Therefore,

we can consider a small-x approximation of these expressions. After all, the complicated

structure of the O(α3
s) contribution in eq. (4.31c) comes from the complicated all-order

structure of the resummed result, but what really matters in the resummation is the pre-

diction of small-x contributions, while uncontrolled terms which vanish as x → 0 are

irrelevant. Hence, we approximate the expressions above as

M−1

[
1

N2
(ψ1(N + 1)− ζ2)

]
= −2ζ3

x
+ 2− log x+O(x)

=M−1

[
−2ζ3

N
+

2

N + 1
+

1

(N + 1)2

]
+O(x) (B.34)
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M−1

[
1

(N + 1)2
(ψ1(N + 1)− ζ2)

]
= −2ζ3 −

1

6
log3 x+O(x)

=M−1

[
− 2ζ3

N + 1
+

1

(N + 1)4

]
+O(x) (B.35)

M−1

[
1

N3
(ψ1(N + 1)− ζ2)

]
=

2ζ3

x
log x+

3ζ4

x
− 3 + log x+O(x)

=M−1

[
−2ζ3

N2
+

3ζ4

N
− 3

N + 1
− 1

(N + 1)2

]
+O(x)

(B.36)

M−1

[
1

(N + 1)3
(ψ1(N + 1)− ζ2)

]
= 3ζ4 + 2ζ3 log x+

1

24
log4 x+O(x)

=M−1

[
3ζ4

N + 1
− 2ζ3

(N + 1)2
+

1

(N + 1)5

]
+O(x)

(B.37)

In these equations we have also provided the Mellin transform of the approximate ex-

pressions, which is needed for the analytic computation of the momentum conservation,

eq. (4.42). We verified that using these approximate expressions leads only to tiny devi-

ations with respect to the exact expressions, and all in a region of x which is not under

control of small-x resummation (specifically x > 10−2). On the other hand, the speed-up

is significant, fully justifying their use.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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