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1 Introduction

Already in the early seventies Dashen recognized [1] that phases in the quark mass matrix

could spontaneously break CP and the possibility that such a phenomenon could explain

the observed CP violation in kaon physics was explored [2]. It turned out that these vio-

lations were too large to explain the experiments with K mesons and would give a much

too high value for the electric dipole moment of the neutron and for the η → 2π decay

amplitude [3]. At about the same time Weinberg pointed out [4, 5] that possible CP violat-

ing phases can be eliminated through chiral rotations of the quark fields. These rotations

included an anomalous UA(1) transformation and therefore generated a CP violating term

proportional to FF̃ . However, at the time such a term was considered innocuous since it

amounts to adding to the Lagrangian a total derivative (and, indeed, it is irrelevant at all or-

ders in perturbation theory). It looked therefore as if QCD did automatically conserve CP .

The phenomenological problem with that naive conclusion is that the same triviality

of FF̃ implies the famous U(1) problem, expressed for instance by the anomalously large

η′ mass. After the discovery of the instanton solutions and the presence of different topo-

logical sectors in pure Yang-Mills (YM) theory, it was soon realized [6, 7] that the U(1)

problem might be solved although this remained somewhat controversial for a while [8].

The observation [9, 10] that, in the framework of large-N QCD, the mass matrix of the
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mesons contains, besides the terms related to the masses of the quark, an extra param-

eter connected to the topological susceptibility of pure YM theory, opened the way to a

quantitative resolution of the U(1) problem [11–14].1

Unfortunately, the resolution of the U(1) problem brought back the question of CP

conservation in strong interactions. Indeed, CP violating phases of the quark mass matrix

could no longer be rotated away so that QCD would not automatically preserve CP . The

YM Lagrangian could be supplemented with an extra term, given by the topological charge

density and containing a parameter, the so-called vacuum angle θ, that also breaks CP . By

performing an anomalous UA(1) transformation of the quark fields, it turns out that the

relevant observable quantity is a combination of the θ parameter and the phases present in

the quark mass matrix M , given by θ̄ ≡ θ+arg detm. The CP violation induced by a non-

vanishing θ̄ was first used to estimate the resulting electric dipole moment of the neutron

in [16]. It was later refined in [17] by identifying a leading logarithmic contribution thus

establishing a limit on θ̄ of order 10−9–10−10 for the smallness of which QCD, on its own,

has no explanation. In section 4 we will come back to this problem and to its resolution

with the help of an axion.

The next step was the construction and study of an extension [18–21] of the effec-

tive Lagrangian of the light pseudo Nambu-Goldstone bosons (the non-linear σ-model) to

include a term linear in the topological charge density and reproducing both the UA(1)

anomaly and the θ term of the microscopic theory, as well as a quadratic term whose

coefficient is associated with the topological susceptibility of pure YM theory.2

The θ dependence of physical quantities, in the framework of the effective Lagrangian

for mesons, was studied in detail in refs. [19, 21] where it was found that for a generic

non-zero value of θ CP is broken but, for θ = π (where CP is a symmetry of the theory)

could be either spontaneously broken or independent of the values of the quark masses and

the topological susceptibility.

The possibility of spontaneously breaking of CP from the introduction of phases in the

quark mass matrix was taken up again in [27–30] in the framework of low-energy effective

Lagrangian for the pseudoscalar mesons, where it was shown that at θ = π there are

indeed two regions in parameter space, one where CP is conserved and the other where

CP is broken, separated by a surface whose shape depends on the quark mass ratios. An

important result of the analysis of ref. [28] is that, on the separating surface, one of the

mesons becomes massless.

Recently, the discussion of the case θ = π has been taken up again in a very interesting

paper [31] where it was proven, under a few very plausible assumptions, that, even for

finite N , CP must be spontaneously broken at θ = π in SU(N) YM theory. The main

ingredient in the derivation of this result is the use of ’t Hooft’s anomaly constraint for

the mixed anomaly of the discrete CP and center symmetries. This first order transition

nicely fits with the spontaneous CP breaking in QCD at θ = π in the decoupling (heavy

quark mass) limit.

1A big role in the solution of the U(1) problem was played by the analogy of QCD with the CPn−1

model in two dimensions [15].
2Together with refs. [18–21] see also refs. [22–24] and refs. [25, 26] for an old and a more recent review.

– 2 –



J
H
E
P
1
2
(
2
0
1
7
)
1
0
4

In the first part of this paper we discuss again the θ dependence of chiral, large- N

QCD in its low-energy approximation, using the above mentioned effective Lagrangian

and concentrating our attention on what happens in the neighborhood of θ = π. Besides

the quark masses, parametrized in terms of the Nf parameters −2mi〈ψ̄ψ〉 ≡ µ2
iF

2
π , there

is an additional parameter, the topological susceptibility of YM theory, χYM, which, as

already mentioned, plays a crucial role in the large-N resolution of the U(1) problem. In

this enlarged parameter space (w.r.t. the one considered in [28]) there is an hypersurface

separating the region where CP is conserved from the one where CP is spontaneously

broken. On the hypersurface itself the theory exhibits a second order phase transition where

one of the pseudo Nambu-Goldstone bosons (PNGBs) becomes exactly massless and the

topological susceptibility of QCD diverges. Inside the CP broken region the ground state

makes a sudden, finite jump as θ̄ goes from π−ε to π+ε corresponding to a first order phase

transition. In an appropriate complex parameter space (discussed in section 3) the second

order point resides at the endpoint of a first order line associated with CP breaking and

starting at −∞ where the decoupling to YM occurs. The position of the second order end-

point resides depends on all the other parameters (mass ratios, topological susceptibility).

These results can be seen as a rather straightforward generalization of those of [28–30]

to the case of a generic value of χYM and of [32, 33] to the case of a generic quark mass

matrix (the equal mass case is indeed quite special since it is always in the CP broken

phase except in the case of a single light flavor). In [33] the issue of CP breaking in QCD

was also addressed for finite N , and the theories residing on the resulting domain walls

were studied.

In the second part of this paper we turn our attention to the case in which QCD has

been augmented by the addition of an axion field, the best known way to solve, in a nat-

ural way, the strong-CP problem. The axion can be easily incorporated in the effective

Lagrangian (see e.g. [26]). We then find that the QCD results of the previous sections have

an interesting bearing on the properties of the axion potential near the boundary of its pe-

riodicity interval. Depending again on where one is in the QCD parameter space the axion

potential can differ significantly from the one commonly used in the literature (see e.g. [34]).

Furthermore, in the immediate vicinity of the critical hypersurface the very concept of an

axion potential ceases to be physically meaningful since the dynamics is described by two

very light pseudoscalars whose mass is of the order of the geometric mean between the

PNGB mass and the conventional axion mass. Quite naturally, in that region the mass

eigenstates are strongly mixed combinations of the two. Although at zero temperature

real QCD is quite deeply inside the CP conserving region, one cannot exclude a-priori the

possibility that, as one moves towards the deconfining, chiral-symmetry-restoring tempera-

ture, QCD may move (in parameter space) towards the critical hypersurface or even inside

the CP breaking region. If true, this could have interesting physical effects, e.g. on the

standard computation of axionic dark matter abundance. As we will discuss, some precise

lattice calculations in quenched QCD at finite temperature would be highly desirable in

order to settle this point.

The paper is organized as follows. In section 2 we review the main properties and

consequences of the low-energy effective Lagrangian at generic values of the θ angle and
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quark masses. In section 3.1 we study in detail the behavior at θ = π in the case of a single

flavor, while in sections 3.2 and 3.3 we discuss the case of two or more flavors respectively.

Non-trivial checks that the results derived from the effective Lagrangian exactly satisfy

general Ward-Takahshi identities (WTIs) are presented in appendix A. In section 4 we

consider QCD with a very generic additional axionic degree of freedom and discuss the

axion potential in the different situations described above. In particular we examine the

“realistic” case of two or three unequal mass light flavors. Some final remarks are presented

in section 5.

2 Chiral, large-N QCD at arbitrary θ: a reminder

For the sake of being self-contained we summarize in this section some already known facts.

We will refer, where appropriate, to the original literature for further details.

Assuming confinement and spontaneous chiral symmetry breaking by a quark-

antiquark condensate at a generic value of θ, QCD, for three light quarks (mi � ΛQCD)

and a large number of colors (N � 1),3 is described at low-energy by the following effective

Lagrangian [18–21]

L =
1

2
Tr
(
∂µU∂

µU †
)

+
Fπ

2
√

2
Tr
[
µ2(U + U †)

]
+

Q2

2χYM
+
i

2
QTr

[
logU − logU †

]
− θQ . (2.1)

Here Fπ is the pion decay constant (Fπ ∼ 95 MeV in the real world with N = 3)4 and

the 3 × 3 matrix U describes, non-linearly, the spontaneous breaking of the approximate

U(3)L ⊗U(3)R chiral symmetry in terms of nine light PNGBs so that

U =
Fπ√

2
ei
√

2Φ/Fπ ; Φ = ΠaT aij , (2.2)

where T aij are the matrices satisfying the algebra of U(3) normalized as Tr(T aT b) = δab.

Furthermore, µ2 is proportional to the quark mass matrix5 which, without loss of generality,

can be taken to be real, diagonal and non negative (provided a θ-term is added). More

precisely, in terms of the quark masses mi and condensate at θ = 0, 〈ψ̄ψ〉, µ2 is defined by

µ2
ij = µ2

i δij = −2mi〈ψ̄ψ〉F−2
π δij . (2.3)

Although the physically relevant case is the one with two or three light flavors, for

the sake of generality, we will consider hereafter the case of Nf light flavors (hence now

3We also assume to be below the so-called conformal window whose beginning is expected to oc-

cur at a value of Nf proportional to N . Using the two-loop beta function it is found to occur at

Nf = 34N3/(13N2 − 3) ∼ 34
13
N .

4Remember that Fπ grows like
√
N for large N .

5In the literature µ2 is often denoted by M . In this paper we prefer this different notation in order to

avoid confusion with a different use of the symbol M .
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i, j = 1, . . . , Nf ). Q is the QCD topological charge density that appears in the divergence

of the UA(1) current

∂µJ
µ
5 = 2NfQ+ 2

Nf∑
i=1

miPi ; Q =
g2

32π2
F aµν(F̃ a)µν ; (F̃µν)a =

1

2
εµνρσF aρσ

Jµ5 =

Nf∑
i=1

ψ̄iγ
µγ5ψi ; Pi = iψ̄iγ5ψi . (2.4)

Modulo the mass term, the Lagrangian (2.1) is invariant under SU(Nf )L⊗SU(Nf )R⊗
U(1)V transformations while, under the UA(1) transformation U → Ue−2iα, one has

i

2
Tr
(

logU − logU †
)
→ i

2
Tr
(

logU − logU †
)

+ 2αNfQ , (2.5)

as needed. The quadratic term in Q contains a coefficient, χYM, which turns out to be

nothing but the topological susceptibility of pure YM theory in the large-N limit. Finally,

the last term takes into account of the presence of a non-zero θ parameter.

The 2π periodicity in θ (which in the underlying QCD theory is related to the quan-

tization of ν ≡
∫
d4xQ(x)) can be easily checked at the level of (2.1). Indeed, a shift in

θ by 2π can be reabsorbed, thanks to the anomaly term in (2.1), by a chiral rotation by

2π of a component (say U11) of U under which even the mass term in (2.1) is invariant.

We also note that, under CP , Q → −Q and U → U †. Thus naively, in our convention of

real positive quark masses, only the last term in (2.1) breaks CP unless θ = 0.6 However,

even if θ = ±π, CP is not explicitly broken since 2π periodicity implies that θ = +π and

θ = −π are equivalent. Nonetheless, as discussed below, CP can be spontaneously broken

at θ = ±π.

In the infinite-N limit the anomaly effectively turns off and the physical PNGB spec-

trum consists of N2
f unmixed states of mass

M2
ij =

1

2
(µ2
i + µ2

j ) , i, j = 1, 2, . . . , Nf . (2.6)

In general, one could add to the previous Lagrangian a U(Nf )L⊗U(Nf )R invariant function

of Q, U and U †. However, it can be shown [18–21] that the only surviving terms at large

N are those appearing in (2.1).

Before we proceed further let us notice that the Lagrangian (2.1) for a single flavor

is exactly the Lagrangian one gets by using the two-dimensional bosonization rules in the

massive Schwinger model, where the kinetic term of the gauge field corresponds to the

first term in the second line of (2.1) with a ≡ e2

π , Fπ = 1√
2π

, while the term coupling the

fermions to the gauge field corresponds to the anomaly term with the logarithm. The other

terms are also reproduced as also noticed in refs. [29, 30]. A similar structure appears also

in other two-dimensional models as the one discussed in ref. [35]. In those models, as also

in the massive Schwinger model, the bosonized Lagrangian is equivalent to the original

6It is believed, and supported by lattice calculations and the chiral Lagrangian approach, that at θ = 0

the vacuum is non-degenerate and the theory is gapped with no spontaneous CP breaking.
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microscopic Lagrangian, while, in our case, the effective Lagrangian (2.1) is only valid at

low energy, for small quark masses, and for large N . However, the fact that in all these

cases one gets the same Lagrangian indicates that our results may not necessarily be valid

only at large N .

Since the equation of motion of Q(x) is algebraic, we could integrate out Q(x) from

the start. However, as later on we will want to compute the 〈QQ〉 correlator, we prefer to

rewrite eq. (2.1) as follows:

L =
1

2
Tr
(
∂µU∂

µU †
)

+
Fπ

2
√

2
Tr
(
µ2(U + U †)

)
− χYM

2

[
θ − i

2
Tr
(

logU − logU †
)]2

+
1

2χYM

[
Q− χYM

(
θ − i

2
Tr
(

logU − logU †
))]2

. (2.7)

The presence of the θ term implies that, for unequal masses, the vacuum does not

correspond anymore to 〈U〉 being proportional to the unit matrix.7 We are obliged to

introduce a separate VEV for each flavor by writing

〈Φij〉 = − Fπ√
2
φiδij . (2.8)

Inserting eq. (2.8) in the previous Lagrangian the vacua of the theory correspond to the

minima of the following potential

V (φi) = −F
2
π

2

Nf∑
i=1

µ2
i cosφi +

χYM

2

θ − Nf∑
i=1

φi

2

, (2.9)

and are therefore obtained by looking for the stable solutions of the equations

µ2
i sinφi − a

θ − Nf∑
j=1

φj

 = 0 ; i = 1, . . . , Nf , (2.10)

where we have defined

a =
2χYM

F 2
π

. (2.11)

The eqs. (2.10) determine φi and all physical quantities in terms of µ2
i , a and θ. Denot-

ing this solution by φi = φ̂i(µ
2
i , a, θ), and computing 〈Q〉 from the quadratic part of the

Lagrangian in (2.14), we finally identify 〈Q〉 with χYM

(
θ −

∑
φ̂i

)
.

Defining a new Û matrix in terms of the shifted fields

Û ≡ Fπ√
2

ei
√
2

Fπ
Φ̂ ; Φ̂ = Φ− 〈Φ〉 , (2.12)

7In spite of appearance, this does not correspond to a spontaneous breaking of SU(Nf )V since phases

can always be rotated away into the quark mass matrix.
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as well a shifted Q field

Q̂ = Q− χYM

θ − Nf∑
i=1

φ̂i

 , (2.13)

we get a Lagrangian that depends on Û and Q̂ as follows

L = −V (φ̂i) +
1

2
Tr
(
∂µÛ∂

µÛ †
)

+
F 2
π

2
Tr

[
µ2(θ)

(
cos

(√
2

Fπ
Φ̂

)
− 1

)]
− a

2

[
Tr
(

Φ̂
)]2

+ χYM

θ − Nf∑
i=1

φ̂i

Tr

[
sin

(√
2

Fπ
Φ̂

)
−
√

2

Fπ
Φ̂

]

+
1

2χYM

[
Q̂− χYM

√
2

Fπ
Tr Φ̂

]2

, (2.14)

where we have defined

µ2
ij(θ) ≡ µ2

i cos φ̂iδij . (2.15)

The first line of eq. (2.14) (apart from the first term which is a constant) describes the

spectrum and the interaction of the PNGBs, the second, being odd under Φ̂→ −Φ̂, gives

the CP violating contributions (controlled by its coefficient χYM(θ −
∑Nf

j=1 φ̂i)), and the

third line will be useful to determine the topological susceptibility in QCD. As we shall

see below, while for θ = 0 the CP violating coefficient is zero, for θ = ±π it can be non-

zero. The latter case has to be attributed to the spontaneous breaking of CP by some

non-CP -invariant VEVs.

The spectrum of the PNGBs is obtained by restricting our attention to the terms

quadratic in Φ̂, coming from the first line of (2.14), for which we get

L2 =
1

2
Tr
(
∂µΦ̂∂µΦ̂

)
− 1

2
Tr
(
µ2(θ)Φ̂2

)
− a

2

[
Tr
(

Φ̂
)]2

. (2.16)

Separating in Φ̂ the generators in the Cartan sub-algebra from the others

Φ̂ = T̃αβij Π̃αβ + viδij , (2.17)

we have from L2 the following two-point correlation functions in momentum space

〈Π̃αβ(x)Π̃γδ(y)〉F.T. =
iδαγδβδ

p2 −M2
αβ

; M2
αβ =

1

2
(µ2
α(θ) + µ2

β(θ)) (2.18)

and

〈vi(x)vj(y)〉F.T. = iA−1
ij (p2) , (2.19)

where

Aij(p
2) = (p2 − µ2

i )δij − aHij ≡ p2δij −M2
ij (2.20)

– 7 –



J
H
E
P
1
2
(
2
0
1
7
)
1
0
4

and Hij is a matrix with 1 in all entries. The masses Mi of the physical states in the Cartan

sub-algebra are obtained by diagonalizing the matrix M2
ij and satisfy the equation

detM2 =

Nf∏
i=1

M2
i (θ) =

Nf∏
i=1

µ2
i (θ)

1 + a

Nf∑
i=1

1

µ2
i (θ)

 . (2.21)

For p2 6= 0 one gets

detA =

Nf∏
i=1

(p2 −M2
i (θ)) =

Nf∏
i=1

(p2 − µ2
i (θ))

1− a
Nf∑
i=1

1

p2 − µ2
i (θ)

 . (2.22)

In the last part of this section we use the Lagrangian (2.14) to compute the two-point

correlator of Q̂ (note that, by definition 〈Q̂〉 = 〈vi〉 = 0) and relate the topological sus-

ceptibilities of YM and QCD. Since there is no quadratic term involving vi with the

combination of Q̂ and vj appearing in the last line of eq. (2.14), we get immediately the

following two-point correlation function

〈

Q̂(x)− χYM

√
2

Fπ

Nf∑
k=1

vk(x)

 vj(y)〉 = 0 , (2.23)

which implies

〈Q̂(x)vj(y)〉F.T. =
χYM

√
2

Fπ

Nf∑
k=1

〈vk(x)vj(y)〉F.T. = i
χYM

√
2

Fπ

Nf∑
k=1

A−1
kj (p2) , (2.24)

where in the last step we have used eq. (2.19). From the relation

Nf∑
k=1

A−1
kj (p2) =

1

p2 − µ2
j (θ)

∏Nf
i=1(p2 − µ2

i (θ))∏Nf
i=1(p2 −M2

i (θ))
(2.25)

the correlator (2.24) becomes

〈Q̂(x)vj(y)〉F.T. = i
χYM

√
2

Fπ

1

p2 − µ2
j (θ)

∏Nf
i=1(p2 − µ2

i (θ))∏Nf
i=1(p2 −M2

i (θ))
. (2.26)

Finally, from the last line of eq. (2.14) we get

〈

Q̂− χYM

√
2

Fπ

Nf∑
j=1

vj

(x)×

Q̂− χYM

√
2

Fπ

Nf∑
j=1

vj

(y)〉 = iχYMδ
(4)(x− y) . (2.27)

Using eq. (2.26) and

Nf∑
h,k=1

A−1
hk (p2) =

∑Nf
k=1

1
p2−µ2k(θ)

1− a
∑Nf

k=1
1

p2−µ2k(θ)

=

Nf∑
k=1

1

p2 − µ2
k(θ)

∏Nf
i=1(p2 − µ2

i (θ))∏Nf
i=1(p2 −M2

i (θ))
, (2.28)
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we get

〈Q(x)Q(y)〉F.T.conn. = 〈Q̂(x)Q̂(y)〉F.T. = i
χYM

1− a
∑Nf

k=1
1

p2−µ2k(θ)

. (2.29)

In particular, for p2 = 0 one gets the topological susceptibility in QCD with Nf flavors

χQCD =
χYM

1 + a
∑Nf

i=1
1

µ2i (θ)

= χYM

(
1− χYM∑Nf

k=1(mi〈ψ̄ψ〉)

)−1

. (2.30)

Since our effective Lagrangian is, strictly speaking, valid for N → ∞ (where the η′ is a

PNGB), the quark condensate in the previous equation should be evaluated in the lead-

ing planar order proportional to N . The next to the leading terms should not be in-

cluded. In particular, it means that the next to the leading contributions which are affected

by logarithmic divergencies [36–38] and make the quenched quark condensate ill-defined,

are avoided.8

Finally as a last remark we wish to stress an important property of both eqs. (2.21)

and (2.30), namely that they both reduce to the case of a theory with Nf − 1 flavors when

one of the quark masses becomes very large. If all quarks become much heavier than a

(which can still be the case in the chiral regime since a scales like 1/N at large N) then

χQCD → χYM. Finally, when any quark flavor becomes massless the QCD topological

susceptibility goes to zero as it should on general grounds.

In appendix A we provide the form of various two-point functions at small (but not nec-

essarily vanishing) momenta and show that they satisfy exactly (i.e. without O(1/N) correc-

tions) all the expected anomalous and non-anomalous Ward-Takahashi identities (WTIs).

3 QCD phase diagrams

In this section we discuss the phase diagrams of QCD at zero temperature and chemical

potential for different numbers of quark flavors Nf . The parameter space in which we

consider possible phase transitions is spanned by the (Nf + 1) parameters µ2
i ≥ 0 and θ

(with 0 ≤ θ < 2π) while considering χYM and Fπ (and thus a) as given. In section 4 we

will see how those phase diagrams acquire a different meaning in the presence of a QCD

axion and also briefly mention possible non-zero temperature effects.

Just to make our terminology clear. We will be talking about CP conservation

or violation referring, respectively, to the vanishing or non-vanishing of the quantity

χYM

(
θ −

∑Nf
j=1 φj

)
in eq. (2.14). Sometimes the breaking of CP is explicit (e.g. for generic

values of θ) while in some other cases it is spontaneous (like for θ = π). We will try to

make the distinction when needed in order to avoid confusion.

8Even though our analysis is valid for large N , in the spirit of the large N expansion, we will use it for

the physical N = 3 with the hope that even for this value the leading term (in the large N expansion),

dominates.
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Figure 1. Solutions of V ′(φ) = 0 are given by the intersections of the curve sin φ (black) with the

straight lines (θ − φ)/ε for θ = 0, θ = π and a generic value taken to be θ = 1.58. Code color is as

follows: ε < 1 green lines, ε = 1 red lines, ε > 1 blue lines.

3.1 Nf = 1

In the case of a single flavor the potential in eq. (2.9) becomes, up to an irrelevant factor

V (φ)

a
= −ε cosφ+

1

2
(θ − φ)2 ; ε ≡ µ2

a
, (3.1)

from which we can compute its derivatives with respect to φ

V ′

a
= ε sinφ+ φ− θ ;

V ′′

a
= ε cosφ+ 1

V ′′′

a
= −ε sinφ ;

V ′′′′

a
= −ε cosφ . (3.2)

Let us distinguish two cases:

• ε < 1

In this case V ′′ > 0 so that there can only be a single stable minimum with positive

mass. This is confirmed by solving graphically the equation V ′ = 0, as illustrated in

figure 1. At θ = 0 the minimum is at φ = 0 while at θ = π it is at φ = π. In both

cases CP is unbroken. At 0 < θ < π (π < θ < 2π) the minimum is at some 0 < φ < θ

(θ < φ < 2π) and CP is explicitly broken.

• ε ≥ 1

This case is much richer. Since now V ′′ can be negative, some stationary points can

correspond to maxima rather than minima of V . For a zero mass ground state we

should require V ′ = V ′′ = 0. But for it to be the absolute minimum we should also

have V ′′′ = 0 and V ′′′′ > 0. However, from (3.2) we see that V ′′′ = 0 is only possible

if φ = π mod(π) and therefore (from the first and last of eqs. (3.2)) if θ = π. Let us

then consider this case in more detail.
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Figure 2. V (φ) of eq. (3.1) at θ = π, and ε = 0.5 (green curve), ε = 1.0 (red) and ε = 2.0 (blue).

For θ = π there is always a stationary point at φ = π which, however, for the case

ε > 1, corresponds to a maximum (V ′′ < 0). Since V is bounded from below there

should be minima elsewhere. Indeed, for ε = 1 + δ, δ � 1, one easily finds two

(degenerate) minima. For ε = 1 the three stationary points degenerate at φ = π and

the stable minimum corresponds to a massless CP conserving ground state.

To make the discussion more quantitative let us assume that θ = π and that φ = π−δ
where δ is a small quantity. We can determine δ by plugging it into the first equation

in (3.2) getting

δ

(
δ2ε

6
+ 1− ε

)
= 0 . (3.3)

In this way we find again the solution δ = 0, which corresponds to a maximum,

together with two stable minima related by CP (see below) at

δ± = ±
√

6(ε− 1)

ε
. (3.4)

This can be seen by plugging (3.4) in the second of the equations (3.2) obtaining

respectively

V ′′

a

∣∣∣
δ=0

= 1− ε ;
V ′′

a

∣∣∣
δ±

= 2(ε− 1) . (3.5)

This implies that the solution with δ = 0 is a stable one for ε ≤ 1, while the two other

solutions are stable for ε > 1 (see figure 2). At ε = 1 there is a second order phase

transition where the PNGB becomes massless. Indeed the mass square is given by

the second derivative of the potential computed at the minimum, yielding

M2 = µ2(θ) + a = µ2 cosφ+ a , (3.6)

as follows from (2.21) with Nf = 1. Notice that M2 goes to zero for ε = 1, θ = φ = π.
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Figure 3. V (φ) for two values of θ on opposite sides of π and ε = 5. The true minimum swaps

abruptly as one goes through θ = π. For the apparent lack of 2π periodicity in this figure see the

discussion in the text.

If we move away from θ = π while ε > 1 we can have different situations. Below a

critical ε(θ) there is only one minimum while above it an extra couple of stationary

points pops out. One of them is a local maximum, the other a local minimum. Which

is the absolute minimum depends on θ. For θ < π the true minimum is at φ < θ

while for θ > π it is at φ > θ as illustrated in figure 3. Precisely at θ = π there

is a two-fold degeneracy easily understood as due to the spontaneous breaking of

CP .9 This abrupt change in the minimum of the potential around θ = π signals a

first order phase transition all along the line µ2eiθ = [−∞,−a2] ending at the second

order phase transition point θ = π, µ2 = a as first observed in [29, 30] and more

recently discussed in [32, 33].

The second order phase transition is not only signalled by the mass gap going to zero,

but also from the divergence of the topological susceptibility (generally defined as the

〈Q Q〉 correlator at zero momentum) at ε = 1, θ = π. This follows from eq. (2.30)

for Nf = 1

χQCD =
χYM

1 + a
µ2(θ)

=
χYMε cosφ

1 + ε cosφ
, (3.7)

which diverges for ε = 1 at θ = φ = π.

Figures 2 and 3 illustrate the shape of the potential for different values of ε and for

θ = π or θ 6= π, respectively. Note that the potentials shown in figures 2 and 3 do not

look periodic in φ while they should. Indeed the potential is multi valued because

of the log term in the effective Lagrangian (2.7) and the correct branch has to be

chosen as we vary φ. Periodicity is thus restored at the expense of non-analyticity

points (cusps) in V at particular values of φ. For instance, for θ = π (figure 2) the

cusp are at φ = 0 mod(2π), while for a generic θ they are at θ + π mod(2π).
9Indeed the two minima appear to be symmetric with respect to φ = π and become equal and opposite

after a trivial 2π shift of one of them.
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3.2 Nf = 2

In the case Nf = 2 with unequal masses (say, µ2
1 < µ2

2) the equations to be solved are

ε1 sinφ1 = ε2 sinφ2 = θ − φ1 − φ2 ; εi ≡
µ2
i

a
. (3.8)

For θ = π the solutions are simply

φ1 = π ; φ2 = 0 or φ1 = 0 ; φ2 = π . (3.9)

The masses of the two pseudoscalar mesons can be read from eq. (2.22) and are given by

M2
1,2 = a+

µ2
1(θ) + µ2

2(θ)

2
±

√
a2 +

(
µ2

1(θ)− µ2
2(θ)

2

)2

, (3.10)

valid for arbitrary θ. It is easy to check that the mass squared with the minus sign is

massless if the following condition is satisfied

a(µ2
2(θ) + µ2

1(θ)) =

(
µ2

1(θ)− µ2
2(θ)

2

)2

−
(
µ2

1(θ) + µ2
2(θ)

2

)2

. (3.11)

Notice that, if both µ2
1,2(θ) are positive, the previous condition cannot be satisfied because

the r.h.s. is always negative, while the l.h.s. is always positive. In particular, it cannot be

satisfied at θ = 0. But at θ = φ1 = π, the previous condition becomes

a(µ2
2 − µ2

1) = µ2
1µ

2
2 =⇒ 1

a
+

1

µ2
2

=
1

µ2
1

. (3.12)

This means that, if the condition

1

µ2
1

− 1

µ2
2

≥ 1

a
(3.13)

is fulfilled, CP is unbroken because θ−φ1−φ2 = 0. Although the second solution in (3.9)

conserves CP , it does not correspond to the absolute minimum and does not satisfy (3.11).

On the other hand, if µ−2
1 < µ−2

2 +a−1 not even the first solution in eq. (3.9) corresponds

to a minimum and other solutions takes over. As in the case Nf = 1, let us consider the

following example. Defining

εi = µ2
i /a ; ρ = ε1/ε2 ; σ = ε1 + ρ− 1 , (3.14)

one finds, to leading order in σ � 1, the two further solutions

φ1 = π − δ1 ; φ2 = δ2 ; δ1 = ±
√

6σ

1− ρ3
; δ2 = ρδ1 . (3.15)

In the general case the solutions can be found numerically. Figure 4 illustrates again

the three distinct cases for θ = π, while figure 5 does the same for θ 6= π. We see clearly

that, as in the Nf = 1 case, the critical surface µ−2
1 = µ−2

2 +a−1 separates the situation with

a single solution from the one with several solutions. In the latter case CP is spontaneously
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In[3]:= ContourPlot[{2 * Sin[x] / 3 ⩵ 2 * Sin[y], (Pi - x - y) == 2 * Sin[x] / 3},
{x, 0, 2 * Pi}, {y, -2, 2}]
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Figure 4. Solutions of the stationarity conditions for Nf = 2, µ2
d = 2µ2

u and θ = π are given by the

intersections of the curves shown in different color. The two situations with one or three solutions

are shown together with the limiting case corresponding to a second order phase transition.

broken and the ground state jumps as we go from θ < π to θ > π. On the critical surface

there is a massless excitation and the QCD topological susceptibility blows up.

In this generic case the phase structure resembles the Nf = 1 case. In the complex µ2
1e
iθ

plane (µ2
1 is the smallest mass parameter) we find a line of first order transitions along the

negative axis ending on a second order transition point where one mass goes to zero. The

position of the second order point depends on the other parameters (mass ratios, a). We

can also see this structure in the complex det µ2 plane, as discussed in the next subsection.

Let us close with a short discussion of the peculiarities of the equal mass case,

µ2
1 = µ2

2 = µ2. In this case the condition (3.13) cannot be satisfied except, asymptotically,

if we send µ2/a to zero. In other words, as discussed in [33], the first order phase transition

line now extends over the whole negative real axis terminating at the origin. However,

before jumping too quickly to this conclusion we should observe that the potential be-

comes very flat for small µ2/a, so much that it develops a flat direction at O(µ2/a). This

continuous vacuum degeneracy is lifted at O((µ2/a)2) so that the CP violating minimum
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Figure 5. Same as figure 4 in the CP broken situation, but for two values of θ on opposite sides

of θ = π: (a): θ < π, (b): θ > π. The true minimum (corresponding to the intersection which is

farther away from the middle one) swaps abruptly as one goes through θ = π.

is found to lie O((µ2/a)2) below the CP conserving one. The existence of this quasi-flat

direction and its lifting to O(m2) was first pointed out in [27] and further discussed in [33].

In general, O(m2) corrections are not included in effective Lagrangians like (2.1) but, in

the context of our double limit m/Λ → 0, N → ∞ with mN/Λ fixed (recall a ∼ Λ2/N),

the split in the potential between the two vacua is of order Λ4(mN/Λ)2 while the O(m2)

corrections we are ignoring are at least a factor 1/N lower. We can thus conclude that,

above a sufficiently large N , CP is broken for two equal mass flavors.10

3.3 Nf ≥ 3

For a generic number of flavors we have to solve eqs. (2.10). It can be immediately seen

that for θ = π we have the following solution that generalizes to Nf flavors what we found

for two flavors, namely11

φ1 = π ; φ2 = φ3 = · · · = φNf = 0 ; µ2
1 ≤ µ2

i for i 6= 1 . (3.16)

It can be immediately checked that the determinant in eq. (2.21) is positive if the condition

∆ ≡ 1

µ2
1

− 1

a
−

Nf∑
i=2

1

µ2
i

> 0 (3.17)

10We thank Z. Komargodski for having raised with us the issue of flat directions and for useful corre-

spondence about it.
11We can find many other stationary solution that preserve CP by choosing an arbitrary number of φi

to be ±π with their sum adding up to θ = π. However, it is trivial to show that the solution in eq. (3.16)

is, among those, the one with the lowest energy and thus the one to be compared with other (in general

CP breaking) solutions.
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is satisfied. In the corresponding region of parameter space we have a CP conserving stable

solution since θ −
∑Nf

i=1 φi = 0. On the surface where (3.17) is replaced by an equality,

the topological susceptibility diverges, as follows from eq. (2.30), and there is a massless

state, signalling a second order phase transition. In the region where, instead, ∆ < 0,

the solution in eq. (3.16) ceases to be a minimum and we have to look for new solutions

corresponding to minima where we will find that CP is spontaneously broken.

In terms of the dimensionless quantities

εi ≡
µ2
i

a
, ρi ≡ µ2

1/µ
2
i = ε1/εi , (i = 2, . . . Nf ) ; (0 ≤ ρi ≤ 1) , (3.18)

the criticality condition can be written as

ε1 = 1− Σ ; Σ ≡
Nf∑
i=2

ρi (3.19)

and the zero-mass eigenvector is simply given by

V(M = 0) ∝ (1,−ρ2, . . . ,−ρNf ) . (3.20)

Clearly the above expression is consistent with decoupling when one of the ρ’s goes to zero.

CP is broken (unbroken) when the l.h.s. of (3.19) is larger (smaller) than the r.h.s. It is

always broken if Σ > 1. If instead we look at the equal mass case, ρi = 1, we see that

∆ < 0 except in the case Nf = 1 and µ2/a < 1 and in the case Nf = 2 and µ = 0 [33].

As before, in the generic mass case we have a line of first order transition in the

complex µ2
1e
iθ plane ending on a second order point where one physical mass goes to zero.

The position of the second order point resides at the intersection of the negative µ2
1 line with

the critical hyper surface and therefore depends on the other parameters (mass ratios, a).

We end this section giving a definition of the critical hypersurface in terms of the

quantity D ≡ det(µ2/a2) = det(ε), where, however, µ2 is now the matrix introduced

in (2.1) after having absorbed the θ angle by a chiral rotation.12 The critical value of D,

Dc, is negative (corresponding to θ̄ = − argD = ±π) and its absolute value depends only

on the ratios ρi introduced earlier. Indeed the condition for CP violation can be expressed

as follows

|D| > |Dc| ; |D1/Nf
c | = (1− Σ)Π−1/Nf ; Π =

Nf∏
i=2

ρi . (3.21)

It can be checked that also the above expression satisfies decoupling when one of the ρi’s

goes to zero. Plots of the CP conserving regions and of the critical lines (surfaces) for

Nf = 2 (Nf = 3) are shown in figures 6.

12We recall that only θ̄ = θ + argD is physically relevant. In the rest of the paper we adopted the

convention of having µ2 diagonal, real and positive and θ arbitrary. For the rest of this section, instead,

θ = 0 and argD is arbitrary.
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Figure 6. CP conserving (filled) and CP breaking (empty) regions for Nf = 2 and Nf = 3. The

vertical axis is D, the horizontal is (are) the mass ratio(s).

4 Spontaneous CP violation and the axion potential

We shall now discuss some consequences of the considerations made in the previous sections

when an extra dynamical low-energy degree of freedom, the axion, is added to those of chiral

QCD. As pointed out independently by Weinberg [39] and Wilczek [40], the existence of an

axion is a necessary consequence of the Peccei-Quinn (PQ) resolution [41, 42] of the strong-

CP problem. The latter consists in the observation that present bounds on the electric

dipole moment of the neutron force the θ angle (actually θ̄) to be less than 10−9 [17].

Of course, if one of the quarks is massless, the strong-CP problem would be auto-

matically solved since θ could be rotated away (equivalently θ̄ = 0). Unfortunately, the

low-energy spectrum of QCD is inconsistent with the data if one of the quark flavors is

massless. A generic way to introduce the PQ resolution of the problem, and the axion,

parallels the massless quark solution while avoiding its unwanted consequences. One as-

sumes the existence a new axial U(1) global symmetry, only broken by the QCD anomaly

(in QCD that symmetry would be the chiral rotation of the massless quark field). Then the

existence of the axion follows from Goldstone’s theorem associated with the spontaneous

breaking of this symmetry. The axion is only a PNGB because there is an no anomaly-free

spontaneously broken exact symmetry. The only additional free-parameters with respect

to QCD are the so-called axion decay constant Fα, the analog of Fπ, and αPQ, denoting

the strength of the contribution of the new sector to the UA(1) anomaly. Instead, the θ

parameter can be rotated away as we shall now discuss in detail.

4.1 Including the axion in the QCD effective Lagrangian

In view of the above considerations, the axion can be easily incorporated in the QCD

effective Lagrangian discussed in section 2 as if there were an extra zero-mass fermion,

condensing at the scale Fα, and contributing to the anomaly with a coefficient αPQ (relative
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to the weight of a QCD fermion). This can be simply implemented by introducing, together

with U and Φ, similarly related axionic fields α and N

N =
Fα√

2
ei
√
2

Fα
α . (4.1)

The generalization of the Lagrangian (2.1) then reads13

L =
1

2
Tr
(
∂µU∂

µU †
)

+
1

2
∂µN∂

µN † +
Fπ

2
√

2
Tr
(
µ2(U + U †)

)
+

Q2

2χYM

+
i

2
Q
[
logU − logU † + αPQ

(
logN − logN †

)]
− θQ . (4.2)

Restricting, for the sake of simplicity, our analysis to the fields in the Cartan sub-

algebra of the QCD pseudoscalar mesons, the previous Lagrangian becomes

L =
1

2

Nf∑
i=1

∂µvi∂
µvi +

F 2
π

2

Nf∑
i=1

µ2
i cos

(
−φi +

√
2

Fπ
vi

)
+

Q2

2χYM

+
1

2
(∂µα)2 −Q

θ − Nf∑
i=1

φi − β +

√
2

Fπ

Nf∑
i=1

vi +
αPQ
√

2

Fα
σ

 , (4.3)

where again we have allowed for a non-trivial expectation 〈U〉 as in eq. (2.8) and

we have also introduced an expectation value for α(x) and a shifted axion field σ as

α(x) = −αPQ
√

2
Fα

β + σ(x).

Proceeding now as in section 2, we determine the phases φi and β by minimizing

V (φi, β) = −F
2
π

2

Nf∑
i=1

µ2
i cosφi +

χYM

2

θ − Nf∑
i=1

φi − β

2

. (4.4)

The stationary points of this potential are solutions of the equations

−F
2
π

2
µ2
i sinφi + χYM

(
θ −

∑
i

φi − β

)
= 0 ; i = 1, 2, . . . , Nf

θ −
∑
i

φi − β = 0 , (4.5)

and are given by

φ̂i = 0 mod (π) ; β̂ = θ −
Nf∑
i=1

φi . (4.6)

We notice that the choice

φ̂i = 0 ; i = 1, 2, . . . , Nf ; β̂ = θ (4.7)

13See ref. [26].
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corresponds to the minimum of the potential, while the other choices correspond to maxima

or to saddle points. Setting the expectation values to (4.6), eq. (4.3) takes the form

L = −V (φ̂i, β̂) +
1

2

Nf∑
i=1

∂µvi∂
µvi +

F 2
π

2

Nf∑
i=1

µ2
i cos

(√
2

Fπ
vi

)
+

Q2

2χYM

+
1

2
(∂µσ)2 −Q

√2

Fπ

Nf∑
i=1

vi +
αPQ
√

2

Fα
σ

 , (4.8)

where V (φ̂i, β̂) is a constant. Thus unlike the QCD case, physics has become θ-independent

and CP conserving. As we shall see in the following subsection, the full richness of the

QCD case reappears once we consider the axion potential.

For the moment, in analogy with eq. (2.14), we rewrite (4.8) in the form

L = −V (φ̂i, β̂) +
1

2

Nf∑
i=1

∂µvi∂
µvi +

F 2
π

2

Nf∑
i=1

µ2
i

(
cos

(√
2

Fπ
vi

)
− 1

)
+

1

2
(∂µσ)2

− χYM

2

√2

Fπ

Nf∑
i=1

vi +
αPQ
√

2

Fα
σ

2

+
1

2χYM

Q− χYM

√2

Fπ

Nf∑
i=1

vi +
αPQ
√

2

Fα
σ

2

. (4.9)

The mass spectrum of the system can be found by diagonalizing the quadratic part of

eq. (4.9) which reads

L2 =
1

2

Nf∑
i=1

∂µvi∂
µvi −

1

2

Nf∑
i=1

µ2
i v

2
i −

χYM

2

√2

Fπ

Nf∑
i=1

vi +

√
2αPQ
Fα

σ

2

+
1

2
(∂µσ)2 =

=
1

2

Nf+1∑
a=1

∂µHa∂
µHa −

1

2
HTAH , (4.10)

where H is an Nf + 1-column vector and A is the squared-mass matrix

H =



σ

v1

v2

·
·

vNf


; A =


b2a ba ba ba . . . ba

ba µ2
1 + a a a . . . a

ba a µ2
2 + a a . . . a

. . . . . . . . . . . . . . . . . .

ba a a a . . . µ2
Nf

+ a

 . (4.11)
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The mass spectrum is the result of the diagonalization of A and can be read off from

det
(
p2δij −Aij

)
= p2

Nf∏
i=1

(p2 − µ2
i )

1− a

 Nf∑
i=1

1

p2 − µ2
i

+
b2

p2


=

Nf+1∏
i=1

(
p2 −M2

i

)
, (4.12)

where a = 2χYM

F 2
π

(as in eq. (2.11)) and b =
FπαPQ
Fα

. The Mi are the masses of the physical

states that diagonalize the mass matrix. By going to p2 = 0, eq. (4.12) implies

detA = ab2
Nf∏
i=1

µ2
i =

Nf+1∏
j=1

M2
j , (4.13)

where the product on the r.h.s. includes the axion as well as the Cartan PNGB masses.

Note that, unlike the non-axionic case, for non-vanishing mi, a and b, this determinant is

always positive implying no massless state (and indeed a non-tachyonic spectrum). This

would have also been the case had we considered QCD with one massless flavor (in that

case b = 1). In particular, for small b, the mass of the axion is given by looking for a zero

at small p2 of the term in square brackets in eq. (4.12). Neglecting p2 with respect to µ2
i

one obtains

M2
axion =

b2

1
a +

∑Nf
i=1

1
µ2i

. (4.14)

This reduces to the usual expression for the axion mass [39, 43] in the limit a, µ2
s � µ2

u,d.

Alternatively, using eq. (2.30) and the definition of b, we can write

M2
axion =

2α2
PQ

F 2
α

χQCD , (4.15)

another formula often used in the literature (see e.g. ref. [44]).

Finally, from the term in the last line of eq. (4.9) and the matrix definition in eq. (4.10)

we get (having 〈Q〉 = 0) the following two-point correlation function

〈Q(x)Q(y)〉F.T. = iχYM
p2
∏Nf
i=1(p2 − µ2

i )∏Nf+1
i=1 (p2 −M2

i )
=

iχYM[
1− a

(∑Nf
i=1

1
p2−µ2i

+ b2

p2

)] , (4.16)

that vanishes at p2 = 0 signalling that the topological susceptibility in a theory where QCD

is “augmented” by another sector that includes the axion, is zero consistently with the fact

that the dependence on the θ parameter disappears.

For the physically interesting case we have to take b� 1 so that the spectrum should

contain a very light pseudo-scalar, the physical axion, which is the original field σ up to an

O(b) admixture of PNGBs. This is all well known. We will now discuss how things take

an interesting turn when we go from properties of the spectrum (i.e. of small fluctuations

around the minimum of V ) to those of the full potential at a finite distance from its

minimum.
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4.2 The axion potential

From eq. (4.9) we can immediately read the axion-PNGB potential

V (vi, σ) = −F
2
π

2

Nf∑
i=1

µ2
i cos

(√
2

Fπ
vi

)
+
a

2

 Nf∑
i=1

vi + bσ

2

. (4.17)

In the literature one introduces the concept of an axion potential after integrating out the

remaining Nf degrees of freedom in the assumption that they are much heavier then the

axion. In principle this requires diagonalizing the mass matrix so as to be in position of

identifying the lowest lying state, the physical axion that will be a mixture of σ and the

vi. In the limit of very small b, which is where physics lies, one can neglect these mixings

and identify σ with the axion modulo some exceptional cases to be discussed below.

For the physically interesting case of two light flavors the axion potential was first

derived in [19] under the assumption µ2
1, µ

2
2 � a with the result [34]

Vaxion(σ) = −F
2
π

2

√
(µ2

1 + µ2
2)2 − 4µ2

1µ
2
2 sin2

(
αPQσ√

2Fα

)
+ O(µ2

i /a) , (4.18)

which for Nf = 1 simply becomes

Vaxion(σ) = −F
2
π

2
µ2 cos

(√
2αPQσ

Fα

)
+ O(µ2/a) . (4.19)

We see, however, that by having considered the axion potential at a generic value of σ we

have effectively recovered, mutatis mutandis, the situation discussed in QCD at fixed θ.

This is why the discussion of section 3 becomes very relevant here. Indeed, the previous

analysis shows that, precisely around σ = πFα√
2αPQ

, some PNGB mass can become arbitrarily

small. In this case integrating out the PNGB fields is no longer justified and a more careful

analysis is needed. In other cases the naive solution for the vi corresponds to a maximum

and it has to be replaced with the right solution. The rest of this section is devoted to

such an analysis for different numbers of quark flavors.

In the following, for simplicity of notation, we shall denote by ϕi and ζ the dimen-

sionless quantities −
√

2
Fπ
vi and

√
2αPQ
Fα

σ, respectively. In this notation the potential (4.17)

simply reads

2F−2
π V (ζ, ϕi) = −

Nf∑
i=1

µ2
i cosϕi +

a

2

 Nf∑
i=1

ϕi − ζ

2

. (4.20)

4.2.1 Nf = 1

The potential V (ζ, ϕ) has two distinct stationary points, one at ζ = ϕ = 0 and one at

ζ = ϕ = π. The first is a true minimum, the second a saddle point. Let us now consider

the stationary points in ϕ at fixed ζ in order to compute Vaxion(ζ), distinguishing three

cases (looking at figure 1 can help following the discussion).
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• µ2/a < 1. In this case there is a single stationary point at ϕ̂(ζ) ≤ ζ which grows

monotonically with ζ interpolating between the two stationary points of V . In this

case the potential (4.19) is easily recovered. At ζ = π the potential is smooth and

reaches a maximum lying µ2F 2
π above the absolute minimum. One can easily check

that, for µ2/a not too close to 1, the mass of the PNGB is always much larger than

the scale of variation of the axion potential so that integrating out that degree of

freedom is justified. We shall discuss separately the case |1− µ2/a| � 1.

• µ2/a > 1. In this case, as one varies ζ from 0 to π, ϕ̂(ζ) remains always smaller

than ζ. Actually, above a value of ζ that depends on µ2/a, new stationary points

in ϕ (lying above ϕ = π) appear but they have higher energy. This is nothing but

the situation we have described and discussed around figure 3. In particular, as we

approach ζ = π, ϕ̂ approaches a finite value smaller than π and behaving as πa/µ2 for

µ2/a � 1. Precisely at ζ = π this minimum becomes degenerate with one at ϕ > π

which, upon a shift by 2π is just its CP transformed. Again, for µ2/a not too close

to 1, integrating out the PNGB appears fully justified but, instead of (4.19), we get

Vaxion(σ) =
1

2
χYM

(√
2αPQσ

Fα

)2

+ O(a/µ2) , (4.21)

where for a moment we have reintroduced the canonical σ field. In particular, the

axion mass is now controlled by a rather than by µ2. At the boundary of its period-

icity interval Vaxion now reaches its maximal value 1
2χYMπ

2 � µ2F 2
π (in the small-a

limit). Furthermore, at that point its first derivative is non-vanishing (and positive)

and, since the potential is periodic, its first derivative will be discontinuous, giving a

spike at ζ = π. This, of course, is related to the fact that the solution for ϕ̂ jumps

abruptly as we go through θ = π (see again figure 3).

• |1 − µ2/a| � 1. This third regime is perhaps the most interesting one, at least the-

oretically. Let us consider the mass matrix (better the matrix of second derivatives)

around ζ = ϕ = π. It takes the form

A =

(
b2a ba

ba −µ2 + a

)
. (4.22)

We see that, if |µ2 − a| = O(ba), the off-diagonal entries become of the same order

as the difference between the two diagonal ones (remember that b � 1). This is

precisely the situation in which the two eigenvectors are strongly mixed w.r.t. the

original (axion-PNGB) basis. Indeed the maximal mixing occurs at µ2 = a(1 − b2)

since then the matrix A becomes

A =

(
b2a ba

ba b2a

)
, (4.23)

whose eigenvectors are (1,±1), with eigenvalues b2a±ba. In fact, as we go through the

point µ2 = a, the two eigenvectors evolve very quickly (i.e. as µ2 goes from a−O(ab)
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to a + O(ab)) from almost pure axion to almost pure PNGB or vice versa. This is

clearly shown by the numerical calculation presented in figure 7. Since detA < 0 the

spectrum always consists of a normal and a tachyonic state, but the latter is mainly

in the PNGB direction at large µ2 while it becomes mainly axion-like at small µ2.

That means that, had we started the evolution of the PNGB plus axion system at

ζ = ϕ = π the evolution would go immediately towards smaller ζ’s if µ2 < a while,

for µ2 > a, it would first roll down to the true minimum in ϕ and only then will roll

down towards ζ = 0, ϕ = 0.

It is also quite clear that in this particular range of µ2/a and ζ it is not possible to

describe the system only in terms of a Vaxion(ζ) since the other degree of freedom is

as light as the axion itself. Only a description in terms of a V (ζ, ϕ) is fully adequate.

4.2.2 Nf ≥ 2 and discussion

The real world has two very light quarks, u and d, a light one, s, and three heavy quarks.

The latter play no role in our discussion. Thus the case of physical interest is Nf = 2 or

3. Also, at zero temperature, the quantitative solution of the U(1) problem requires [9, 10]

µ2
u < µ2

d � µ2
s < a. The ratios µ2

u : µ2
d : µ2

s : a are about 1 : 2 : 40 : 18. In what follows we

shall use these numbers together with the results we obtained from the large-N effective

action approach, even though in the real world N = 3. The success of the large-N solution

to the U(1) problem suggests that, at least in this sector, the large-N expansion converges

quite fast.

We should keep in mind, however, that, while quark mass ratios are expected to be

constant below the QCD deconfining temperature (they depend on phenomena occurring at

the electroweak-breaking scale), the temperature dependence of χYM could possibly differ

from that of the quark condensate meaning a possible (strong?) T -dependence of µ2/a.

An increase of that ratio by an order of magnitude would bring us inside the CP broken

region. The available lattice measurements [45–47] do not seem to favor this possibility.

We defer further comments on this issue to the conclusion section.

In the following we will consider therefore the case of two or three quark flavors of differ-

ent masses and allow for arbitrary ratios µ2
i /a. The situation is now more involved than in

the Nf = 1 case, but qualitatively similar. The stationary points of the potential (4.20) are

ζ = 0, π mod (2π) ; ϕi = 0, π mod (2π) ;
∑

ϕi = ζ . (4.24)

The absolute minimum is as usual the trivial one ζ = ϕi = 0. In general it is legitimate

to integrate out the PNGB degrees of freedom by minimizing their potential at fixed ζ

and then insert the solution ϕ̂i(ζ) in V (ζ, ϕi). If µ2
i � a this can be easily done. In the

two-flavor case this gives the result (4.18). In the three-flavor case recalling that

sinφs = µ2
u/µ

2
s sinφu � sinφu , (4.25)

we see that the result (4.18) still holds up to corrections O(µ2
u,d/µ

2
s). This is indeed the

result used in the literature.
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Figure 7. Nf = 1. (a) Evolution of the two eigenvalues of (4.22) for b = 0.1 as one varies µ2/a.

The lower eigenvalue is tachyonic. (b) Projections of the two corresponding eigenvectors along the

PNGB direction. Maximal mixing occurs in the vicinity of the critical point µ2/a = 1.

What happens if, for some physical reason, χYM drops so fast with T that a becomes of

order µ2
u,d or even smaller? We can understand the situation by considering what happens

at the saddle point corresponding to

ζ = ϕu = π , ϕd = ϕs = 0 . (4.26)

We have seen in sections 3.2 and 3.3 that the condition for having a massless boson

(in the absence of the axion) is

1

µ2
u

=
1

a
+

1

µ2
d

+
1

µ2
s

∼ 1

a
+

1

µ2
d

⇒ a(µ2
d − µ2

u) = µ2
uµ

2
d . (4.27)

Precisely around this point we expect a large mixing to occur between the would-be massless

PNGB and the axion and, as one goes through that region, we expect the tachyonic boson

to change its dominant component from axionic to mesonic.

This is indeed fully supported by the numerical results shown in figures 7 and 8 for

Nf = 1 and Nf = 2, respectively. We have solved, using Mathematica, the minimization

conditions at fixed ζ and reconstructed this way the axion potential (see figure 9). We then

clearly see that, while at small µ2
u,d/a the potential has a regular maximum around ζ = π

which coincides with the one of (4.18) and agrees well with it elsewhere, as we increase

µ2
u,d/a above the critical value 1 − µ2

u/µ
2
d (see eq. (4.27)), the potential is lower that the

one given by (4.18) even at ζ = π and, by periodicity must develop a spike at that point.

As we finally go much beyond the critical point, the true potential has nothing to do with

the conventional one.

As in the Nf = 1 case also here, the description of physics in terms of a single axion

field is no longer appropriate when we are the vicinity of the condition (4.27). In that case

only one “heavy” field can be integrated out and a description in terms of two light fields

is more appropriate.
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Figure 8. Nf = 2. (a) Evolution of the three eigenvalues as one varies µ2/a for b = 0.1 and

µ2
2 = 2µ2

1. One of the three eigenvalue always lies much higher than the other two and is not much

affected by the axion. (b) Blow up of the lower part of the figure showing the repulsion (and mixing)

of the two lower eigenvalues.
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Figure 9. Comparing the conventional axion potential (yellow curves) with the “exact” one (blue

curves) for Nf = 2, µ2
d = 2µ2

u and at three values of µ2
u/a: 0.25, 0.5 (critical value), 2.5. In the

first two cases the two potentials (but not necessarily their derivatives) agree at ζ = ±π while

in the third (overcritical) case even the values of the potentials disagree at the boundary of the

periodicity interval.
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5 Conclusions

The phase structure of QCD associated with spontaneous CP breaking at θ = π may,

potentially (depending on parameters like quark masses and topological susceptibility, their

ratios and temperature dependence), have important implications on the axion potential

and it’s cosmological “phenomenology”.

In the present work we employed the effective chiral Lagrangian approach to investigate

the inter-relation between spontaneous CP breaking in QCD at θ = π and the axion

potential near the boundary of its periodicity interval. Formally, the effective Lagrangian

approach is applicable at low energies and, in particular, when all mass parameters (notably

quark masses) are small with respect to the QCD scale, Λ. We also look at the large-N

limit in which we can have ratios of quark masses to Λ small but still much larger then

1/N . This allows us to identify and reliably investigate the existence, at θ = π, of a second

order phase transition point on the hypersurface dividing the region in parameters space

where CP is spontaneously broken from the one where it is not. The second order point is

characterized by one of the PNGB mass going to zero and by the topological susceptibility

(which can be seen as the order parameter) to diverge.

For generic masses the phase structure of QCD reveals a line of first order transitions,

associated with spontaneous CP breaking at θ = π, along the negative real axis in the

complex µ2
1e
iθ mass plane (µ1 being the lowest quark mass). The first order line extends

all the way from −∞ to the second order point without reaching the chiral point at the

origin. The position of the second order transition depends on all other parameters (mass

ratios and the susceptibility related parameter we called a). A similar phase structure is

obtained by working in the complex quark-mass-determinant plane.

It is the existence of this second order point which has the most dramatic effect on the

axion potential. Clearly, upon introducing the axionic field into the effective Lagrangian

there is no more a θ dependence and no strong-CP breaking. However, precisely around

the point in parameter space (quark masses and topological susceptibility) where, in the

absence of the axion, the condition for having a zero mass boson is met, we find large

mixing between the would be massless particle and the axion. In this region one cannot

integrate out all the PNGB since one of them becomes very light with a mass of the order

of the axion mass. Hence, in this region, the notion of an axionic potential which depends

on just the axion field (obtained upon integration out all the PNGB) is not viable and

should be replaced by a potential which depends on the two above mentioned light degrees

of freedom as discussed in section 4. This potential is obtained upon integrating out all

the other much heavier PNGBs.

Given the actual physical numerical values of the parameters (for Nf = 2 and Nf = 3)

we see that, at zero temperature, we are not in the region of the parameter space where the

concept of an axion potential and the derived result for the axion mass should be modified.

However, if, as we raise the temperature while staying below the deconfinement transition

(which for QCD is not a sharp transition), the corresponding YM topological susceptibility

(and hence the parameter a) drops faster with the temperature than the quark condensate

so as to allow µ2/a to increase by about an order of magnitude, we will enter into this

intriguing region (see figure 10).
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Figure 10. Phase diagram for Nf = 2. The red line separates the phases with broken and unbroken

CP at θ = π and corresponds to a second-order transition with a massless particle. For md � mu

we recover the Nf = 1 case represented by the vertical axis. Also shown is the mu = md case lying

entirely in the CP broken phase. The real world at T = 0 is far up on the blue line (representing

md ∼ 2mu). As T is increased towards Tdec the real world will stay on the blue line (since md/mu

is T -independent) but may move down and cross the red line as indicated in the picture. Present

lattice data seem to disfavour this possibility.

It seems, however, that lattice calculations (see e.g. [45–47] as well as [48, 49]) show a

rather mild T -dependence of both χYM and the quenched chiral condensate with a sharp

drop (but not necessarily vanishing) of both above a similar value of T . There does not

seem to be a clean window in which µ2/a increases by the above-mentioned order of mag-

nitude. It would be desirable to have detailed lattice data on both χYM and the planar

chiral condensate by a single group using the same Montecarlo configurations. It would

be particularly interesting to study the pure number χYM/〈mψ̄ψ〉 in the vicinity of the

above-mentioned drop and also check its N -dependence (expected to be 1/N).

An obviously related issue is whether there is a critical temperature Ttop above which

χYM vanishes, at least in the large-N limit (dilute instantons [50–52], for instance, predict

χYM ∼ e−cN ) and, in that case, whether Ttop can be higher than Tch, the temperature

above which chiral symmetry is restored. Under reasonable assumptions, claims that χYM

should vanish above Tch were made in the past [53, 54] leaving open the possibility that

χYM goes to zero either together or before 〈ψ̄ψ〉 does it.

Although some old lattice calculations [55] appear to point in the opposite direction

(and such a possibility has its own effective Lagrangian formulation [56, 57]), more recent

simulations of the pure gauge theory [58, 59] suggest the existence of a similar (or even iden-

tical) value for the temperatures of deconfinement, chiral restoration and UA(1) restoration.

Above the transition temperature the dilute instanton gas approximation seems to set in.
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Actually there is lattice evidence [60] that χYM drops rather fast above Tc for large N (and

even at N = 3 a substantial decrease of χYM is visible [61–63]) and may actually go to

zero above it for N → ∞. However, it is not clear what the ratio 〈ψ̄ψ〉planar/χYM does

around Tc. It would thus be very interesting to plan new lattice projects dedicated to the

calculation of χYM and 〈ψ̄ψ〉 in the planar limit across the phase transition.

Recently, using the mixed CP/Center discrete anomaly matching (together with some

other plausible assumptions), it was shown [31] that in YM theory the CP symmetry is

spontaneously broken at θ = π and zero temperature and that the temperature Tres at

which CP is restored is higher than the deconfinement temperature, i.e. Tres ≥ Tdec. This

result seems to be going in favor of the scenario advocated in [53, 54]. Breaking of CP

in YM connects smoothly with CP -breaking in, say, Nf = 1 QCD at µ2/a > 1. As we

increase the temperature, if CP were restored before reaching Tdec, it would suggest that,

in its QCD analog, µ2/a would go down till, at Tres, it reaches 1, which is precisely the

opposite of what we were advocating, i.e. a ratio µ2/a increasing with temperature. Hence

the statement Tres ≥ Tdec is an (admittedly very mild) indication in favor of the scenario

in which the finite temperature axion potential has to be revised in a certain range of

temperature. Even if such a revision would be necessary, it remains to be seen whether it

would make any substantial difference with respect to the standard calculations [44] (see

also [64, 65]) of axionic dark matter abundance.
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A Ward-Takahashi identities

In this appendix we derive the WTIs for the anomalous UA(1) currents in QCD and check

that the two-point amplitudes derived from the effective Lagrangian in section 2 exactly

satisfy them. We start from the anomaly equation in (2.4), but written for a single flavor

∂µJ
µ
5i = 2Q+ 2miPi ; Jµ5i = ψ̄iγ

µγ5ψi ; Pi = iψ̄iγ5ψi . (A.1)

Inserting the previous anomaly equation in a two-point amplitudes with another operator

O(y) we get

∂µ〈Jµ5iO(y)〉 = 〈2Q(x)O(y)〉+ δ(x0 − y0)〈[J0
5i, O(y)]〉+ 〈2miPi(x)O(y)〉 , (A.2)
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that in Fourier space, after a partial integration, becomes∫
d4x eipx〈2Q(x)O(y)〉+ 〈[Q5i, O(y)] +

∫
d4x eipx〈2miPi(x)O(y)〉

= −i
∫
d4x eipx〈pµJµ5i(x)O(y)〉 ; i = 1, . . . , Nf , (A.3)

where Q5i =
∫
d3x J0

5i(x). For O(y) = Q(y) the second term does not contribute and we get∫
d4xeipx〈2Q(x)Q(y)〉+

∫
d4xeipx〈2miPi(x)Q(y)〉 = −i

∫
d4xeipx〈pµJµ5i(x)Q(y)〉 , (A.4)

while, for O(y) = 2mjPj(y), the commutator gives [Q5i, Pj ] = −2iψ̄iψiδij and we get∫
d4x eipx〈2Q(x)2mjPj(y)〉+ 2iµ2

iF
2
π +

∫
d4x eipx〈2miPi(x)2mjPj(y)〉

= −i
∫
d4x eipx〈pµJµ5i(x)2mjPj(y)〉 , (A.5)

having made use of the Gell-Mann-Oakes-Renner relation −2δijmi〈ψ̄iψi〉 = δijµ
2
iF

2
π .

One checks that the following two-point amplitudes satisfy the previous anomalous

WTIs and we get

∫
d4xeipx〈Q(x)Q(y)〉= i

aF 2
π

2

Nf∏
i=1

p2−µ2
i

p2−M2
i

= i
aF 2

π

2

1−a
Nf∑
i=1

1

p2−µ2
i

−1

, (A.6)

∫
d4xeipx〈Q(x)2miPi〉= i

2µ2
i

p2−µ2
i

aF 2
π

2

Nf∏
j=1

p2−µ2
j

p2−M2
j

, (A.7)

∫
d4xeipx〈J (i)

5µ (x)Q(y)〉=− 2pµ
p2−µ2

i

aF 2
π

2

Nf∏
j=1

p2−µ2
j

p2−M2
j

, (A.8)

∫
d4xeipx〈2miPi(x)2mjPj〉= i

2F 2
πµ

4
i

p2−µ2
i

δij+i
4µ2

iµ
2
j

(p2−µ2
i )(p

2−µ2
j )

aF 2
π

2

Nf∏
k=1

p2−µ2
k

p2−M2
k

, (A.9)

∫
d4xeipx〈J (i)

5µ (x)2mjPj〉=−
2F 2

πµ
2
i pµ

p2−µ2
i

δij−
4pµµ

2
j

(p2−µ2
i )(p

2−µ2
j )

aF 2
π

2

Nf∏
k=1

p2−µ2
k

p2−M2
k

. (A.10)

Furthermore, the poles at p2 = µ2
i apparently present in (A.9) and (A.10) can be shown

to be absent. The only poles present are at p2 = M2
i and correspond to the masses of the

physical mesons. The previous two-point amplitudes reproduce those in section 2 with the

identification

miPi =⇒ Fπ√
2
µ2
i vi . (A.11)
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