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1 Introduction

Maximally supersymmetric Yang-Mills theory (N = 4 SYM) possesses a remarkable

electric-magnetic duality, also known as S−duality [1–3]. It establishes the equivalence

between certain correlation functions computed at weak and at strong coupling. Testing

the S−duality proves to be a complicated task as it requires understanding these functions

at strong coupling [4, 5].

In the case of N = 4 SYM with the SU(N) gauge group, the S−duality predicts

that the correlation functions of half-BPS operators Gn = 〈O20′(x1) . . . O20′(xn)〉 should

be invariant under modular SL(2,Z) transformations acting on the complexified coupling

constant τ = θ/(2π) + 4πi/g2. Two- and three-point correlation functions of half-BPS

operators are protected from quantum corrections and trivially verify the S−duality. For

higher number of points, the functionsGn receive quantum corrections and have a nontrivial

dependence on the coupling constant. In order to test the S−duality, we have to find

– 1 –



J
H
E
P
1
2
(
2
0
1
7
)
0
9
3

perturbative contribution to Gn for finite N and supplement it with instanton corrections.

Although these corrections are exponentially small at large N , they play a crucial role in

restoring the S−duality.

In this paper we study instanton effects in four-point correlation function of half-BPS

operators. Quantum corrections to G4 are described by a single function G(u, v) of two

cross ratios u = x212x
2
34/(x

2
13x

2
24) and v = x223x

2
14/(x

2
13x

2
24) (with x2ij = (xi − xj)

2). It has

the following general form at weak coupling

G(u, v) = Φ0(u, v; g
2) +

∑

n≥1

(

e2πinτ +e−2πinτ̄
)

Φn(u, v; g
2) , (1.1)

where the first term Φ0(u, v; g
2) is a perturbative correction and the second one is a non-

perturbative correction due to n (anti) instantons. The function Φn(u, v) describes the

contribution of quantum fluctuations of instantons and runs in powers of g2.1

At present, the instanton corrections to (1.1) are known to the lowest order in g2. The

corresponding function Φ
(0)
n = Φn(u, v; 0) can be found in the semiclassical approximation

following the standard approach (for a review, see [6–8]). In this approximation the quan-

tum fluctuations are frozen and the correlation function is given by a finite-dimensional

integral over the collective coordinates of instantons. An explicit expression for the func-

tion Φ
(0)
n (u, v) is known in one-instanton sector (n = 1) as well as for an arbitrary number

of instantons n in the large N limit. To go beyond the semiclassical approximation, we

have to include quantum fluctuations of instantons. Their contribution to Φn(u, v; g
2)

scales as O(g2ℓ) where integer positive ℓ counts the number of instanton loops. It is much

more difficult to compute such corrections and a little progress has been made over the

last decade.

Perturbative corrections to (1.1) are known to have some additional structure [9, 10]

which allows us to construct integral representation for the function Φ0(u, v; g
2) to any

order in g2 without going through a Feynman diagram calculation. Moreover, N = 4 SYM

is believed to be integrable in the planar limit [11]. In application to the correlation func-

tion (1.1), this opens up the possibility to determine perturbative contribution Φ0(u, v; g
2)

for arbitrary ’t Hooft coupling at large N [12, 13]. A natural question is whether some of

these remarkable properties survive in (1.1) in the instanton sector.

As a first example, we examine behaviour of the correlation function G4 at short dis-

tances x212 → 0, or equivalently for u → 0 and v → 1. As follows from the OPE, the leading

contribution to (1.1) in this limit, G(u, v) ∼ C2
K uγK/2, comes from Konishi operator, un-

protected operator with smallest scalling dimension ∆ = 2+γK . The anomalous dimension

of this operator, γK , and its structure constant in the OPE of two half-BPS operators, CK ,

have expansion at weak coupling similar to (1.1). The leading instanton correction to γK
and CK can be found by examining the asymptotic behaviour of the second term on the

right-hand side of (1.1). In this way one obtains, using the known results for the function

G4 in the semiclassical approximation, that γK and CK do not receive O(e2πiτ ) instan-

1In general, the functions Φ0 and Φn could also receive O(e−16π2/g2) corrections due to instanton-

antiinstanton configurations, but their status remains unclear.
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ton correction [14–17]. Thus, the leading corrections to γK and CK can only come from

quantum instanton corrections to (1.1).

The same quantities can be also extracted from the two- and three-point correlation

functions, 〈K(x)K(0)〉 ∼ 1/(x2)2+γK and CK ∼ 〈O20′O20′K〉, respectively. Computation

of these correlation functions in the semiclassical approximation yields the following result

for the leading instanton corrections C
(inst)
K = O(g2 e2πiτ ) and γ

(inst)
K = O(g4 e2πiτ ) (explicit

expressions can be found in [18]). Notice that both expressions have additional factors

of g2 as compared with the semiclassical O(e2πiτ ) contribution to (1.1). To get the same

expressions for CK and γK from the four-point correlation function G4, one would have to

take into account one- and two-loop instanton corrections to (1.1), respectively.

This example illustrates a hidden simplicity of instanton effects — finding the leading

quantum instanton contribution to the four-point correlation function at short distances,

G(u, v) ∼ C2
K uγK/2, can be mapped into a semiclassical calculation of two- and three-point

correlation functions of the Konishi operator [18].

We show in this paper that analogous phenomenon also happens for G4 in the light-

like limit x2i,i+1 → 0 (with xi+4 ≡ xi) when four half-BPS operators become light-like

separated in a sequential manner. In this limit, the correlation function is expected to

have the following form [19]

G4 =
1

x212x
2
23x

2
34x

2
41

G(u, v) , (1.2)

where the product of four scalar propagators defines the leading asymptotic behavior and

the function G(u, v) is given by (1.1) for u, v → 0. At weak coupling, perturbative correc-

tions to (1.1) are enhanced by powers of logarithms of u and v. Such corrections can be

summed to all orders in g2 leading to [19, 20]

G(u, v) = W4 × J = exp

[

−1

2
Γcusp(g

2) lnu ln v + . . .

]

. (1.3)

Here dots denote subleading corrections and Γcusp(g
2) is the light-like cusp anomalous

dimension in the adjoint representation of the SU(N).

The same anomalous dimension controls divergences of cusped light-like Wilson loops

and its appearance in (1.3) is not accidental. As was shown in [19], the leading asymptotics

of the function G(u, v) is described by (an appropriately regularized) rectangular light-like

Wilson loop

W4 = 〈0| trA P exp

(

ig

∮

C4

dx ·A(x)
)

|0〉 , (1.4)

evaluated along light-like rectangle C4 with vertices at points xi. The subscript A indicates

that W4 is defined in the adjoint representation of the SU(N). The subleading (logarithmi-

cally enhanced) corrections to (1.3) come from the so-called jet factor J . Its form is fixed

by the crossing symmetry of the four-point correlation function [20].

In this paper, we compute the leading instanton correction to the four-point correlation

function (1.1) in the light-cone limit x2i,i+1 → 0. Notice that this limit is Minkowskian in
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nature whereas instantons are defined in Euclidean signature. To find instanton corrections

to (1.1), we shall determine the function G(u, v) in Euclidean domain of u and v and, then,

analytically continue it to u, v → 0.

As in the previous example, we start with the semiclassical approximation to (1.1). As

was shown in [21], the instanton corrections to G(u, v) scale in this approximation as O(uv)

and, therefore, they do not modify the asymptotic behaviour (1.3). To go beyond the semi-

classical approximation, we analyze the light-cone asymptotics of G4 and argue that the re-

lation between G(u, v) and light-like rectangular Wilson loop mentioned above also holds in

the presence of instantons. This relation allows us to establish the correspondence between

the leading (quantum) instanton correction to G(u, v) and the semiclassical result for W4.

We show that the resulting expression for G(u, v) takes the same form as in perturbation

theory (1.3) with the important difference that the light-like cusp anomalous dimension

in (1.3) is modified by the instanton correction. In the simplest case of the SU(2) gauge

group, this correction in one-(anti)instanton sector is given by

Γcusp(g
2) = − 4

15

(

g2

4π2

)4
(

e2πiτ +e−2πiτ̄
)

. (1.5)

Following [7, 22, 23], this result can be generalized to the SU(N) gauge group and to

the case of multi-instantons at large N . To obtain the same result (1.5) from the direct

calculation of the four-point correlation function, one would have to compute quantum

instanton corrections to (1.1) at order O(g8).

As a byproduct of our analysis, we verify that the light-like rectangular Wilson loopW4

satisfies the anomalous conformal Ward identities [24] nonperturbatively, in the presence

of instantons. We also determine the leading instanton correction to anomalous dimen-

sion γS of twist-two operators with large spin S ≫ 1. This anomalous dimension scales

logarithmically with the spin (see eq. (2.4) below) and its behaviour is controllled by the

cusp anomalous dimension [25]. Making use of (1.5) we find that the leading instanton

contribution scales as γS ∼ g8 e2πiτ lnS. This agrees with the finding of [26] that γS does

not receive O(g4 e2πiτ ) correction for any spin S > 2.

The paper is organized as follows. In section 2 we analyze asymptotic behaviour

of the four-point correlation function in the light-cone limit x2i,i+1 → 0 in the presence

of instantons and discuss its relation with the light-like Wilson loop. In section 3 we

compute instanton contribution to the light-like rectangular Wilson loop in the semiclassical

approximation. We then use it in section 4 to determine the leading instanton correction

to the cusp anomalous dimension. Section 5 contains concluding remarks. Details of the

calculation are presented in four appendices.

2 Correlation functions in the light-cone limit

In this section we examine instanton corrections to a four-point correlation function of

scalar half-BPS operators

O20′(x) = YABYCD tr[φABφCD(x)] . (2.1)
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Here auxiliary SU(4) tensors satisfy ǫABCDYABYCD = 0 and serve to project the operator

onto representation 20′ of the SU(4). In virtue of N = 4 superconformal symmetry, the

dependence of the four-point correlation function

G4 = 〈O20′(x1)O20′(x2)O20′(x3)O20′(x4)〉 (2.2)

on Y−variables can be factored into a universal kinematical factor independent on the

coupling constant [27]. In what follows we do not display this factor and concentrate on

the dynamical part G(u, v) that depends on the cross ratios only.

In the Born approximation, G4 reduces to the sum of terms each given by the product

of free scalar propagators. In the light-like limit, x2i,i+1 → 0, the leading contribution to

G4 comes from only one term of the form (1.2) with G(u, v) = 1.2 Going beyond this

approximation, we apply the OPE to each pair of neighbouring operators in (2.2), e.g.

O20′(x1)O20′(x2) =
∑

S

CS

(x212)
2−tS/2

xµ1

12 . . . x
µS
12 Oµ1...µS (x1) , (2.3)

where the sum runs over local operators with Lorentz spin S, dimension ∆S and twist

tS = ∆S − S ≥ 2. For x212 → 0 the dominant contribution to (2.3) comes from twist-two

operators with arbitrary spin S and scaling dimension ∆S = 2 + S + γS .
3 It scales as

O(1/x212) and yields the expected asymptotic behaviour (1.2). In the similar manner, the

remaining O(1/x2i,i+1) factors in (1.2) come from the twist-two operators propagating in

other OPE channels.

A detailed analysis shows [19, 20], that the leading asymptotic behaviour of the function

G(u, v) for u, v → 0 is governed by twist-two operators with large spin S = O(1/
√
u) or

S = O(1/
√
v) depending on the OPE channel. The anomalous dimension of such operators

grows logarithmically with the spin,

γS = 2Γcusp lnS +O(S0) , (2.4)

and generates corrections to G(u, v) enhanced by powers of lnu and ln v. As we see in a

moment, this observation simplifies the calculation of instanton corrections to (1.2).

Instantons are classical configurations of fields (scalar, gaugino and gauge fields) sat-

isfying equations of motion in Euclidean N = 4 SYM [28]. To compute their contribution

to the correlation function (2.2) at weak coupling, we have to go through few steps. First,

we decompose all fields (that we denote generically by Φ(x)) into classical, instanton part

and quantum fluctuations,

Φ(x) =
1

g
Φinst(x) + Φq(x) . (2.5)

Here we introduced the factor of 1/g to emphasize that Φinst(x) does not depend on the

coupling constant. Then, we substitute (2.5) into (2.2) and integrate over quantum fluc-

tuations Φq and over collective coordinates of instantons. Finally, we match the resulting

2In what follows we discard a disconnected part of the correlation function.
3Strictly speaking, this is true only if the anomalous dimension of the operator is small, or equivalently

the value of its twist is close to that in a free theory. If the anomalous dimension of twist-two operator is

large γS ∼ 2, it collides with the twist-four operators.

– 5 –
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expression for G4 into (1.2), identify the function G(u, v) and analytically continue it to

small u and v.

In the semiclassical approximation, we neglect quantum fluctuations in (2.5) and obtain

the following expression for G4

G4,inst =

∫

dµphys e
−Sphys O20′(x1)O20′(x2)O20′(x3)O20′(x4) , (2.6)

where the half-BPS operators (2.1) are replaced by their expressions in the instanton back-

ground and are integrated over the collective coordinates of the instantons. The rela-

tion (2.6) can be represented diagrammatically as shown in figure 1 (a).

For the one-instanton configuration in N = 4 SYM with the SU(2) gauge group the

integration measure is given by [29]

∫

dµphys e
−Sphys =

g8

234π10
e2πiτ

∫

d4x0

∫

dρ

ρ5

∫

d8ξ

∫

d8η̄ . (2.7)

Here bosonic collective coordinates xµ0 and ρ define the position of the instanton and its size,

respectively. Fermionic coordinates ξAα and η̄Aα̇ (with A = 1, . . . , 4 and α, α̇ = 1, 2) reflect

the invariance of N = 4 SYM under superconformal transformations. For the correlation

function (2.6) to be different from zero, the product of four half-BPS operators in (2.6)

should soak all 16 fermion modes.

For the SU(N) gauge group the instanton Φinst(x) depends on the additional bosonic

and fermion modes. In what follows we shall concentrate on the SU(2) case and discuss

generalization to the SU(N) later in section 4.4.

In N = 4 SYM with the SU(2) gauge group, the one-instanton solution can be ob-

tained [30] by applying superconformal transformations exp(ξQ + η̄S̄) to the special field

configuration consisting of vanishing scalar and gaugino fields and gauge field given by the

celebrated BPST instanton.4 For gauge field this leads to

Ainst(x) = A(0) +A(4) +A(8) , (2.8)

where A(0) is the BPST instanton [28] and A(4n) denotes component containing 4n fermion

modes ξAα and η̄Aα̇ . In virtue of the SU(4) symmetry, each subsequent term of the expansion

has four modes more. Expressions for the scalar and gaugino fields have a form similar

to (2.8) with the only difference that the lowest term of the expansion has a nonzero

number of fermion modes whose value is dictated by the R−charge of the fields. Notice

that the expansion (2.8) is shorter than one might expect as the SU(4) symmetry allows

for the presence of terms with up to 16 fermion modes. It turns out, however, that all

field components with the number of fermion modes exceeding 8 vanish due to N = 4

superconformal symmetry [26]. The explicit expressions for various components in (2.8)

can be found in [6, 26].

We recall that relations (2.8) define the classical part of (2.5). Replacing the scalar field

in the definition of the half-BPS operator (2.1) with φ(x) = g−1φinst(x) we find that O20′(x)

4This field configuration is annihilated by the remaining Q̄ and S generators.

– 6 –
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x1 x2

x3x4

II I

(a) (b) (c)

Figure 1. Instanton corrections to the four-point correlation function: (a) contribution in the semi-

classical approximation; (b) leading contribution in the light-cone limit; (c) example of subleading

contribution. Solid, wavy and dashes lines denote scalars, gauge fields and gauginos, respectively.

Lines attached to the central blob represent the instanton background.

scales in the instanton background as O(1/g2) and contains 4 fermion modes. Then, we

can apply (2.6) and (2.7) to arrive at the following result for the four-point correlation

function in the semiclassical approximation [29]

G4,inst =
108

π2
e2πiτ

uvD̄44(u, v)

x212x
2
23x

2
34x

2
14

, (2.9)

where D̄−function is defined in appendix C. The contribution of anti-instanton is given by a

complex conjugated expression. The relation (2.9) holds for arbitrary x2i,i+1. For x
2
i,i+1 → 0

we find from (1.2) that the instanton contribution vanishes as G(u, v) = O(uv) for u, v → 0.

Thus, the one-instanton correction (2.9) does not modify asymptotic behaviour of G4 in

the light-cone limit [21].

The same result can be obtained using the OPE. In the semiclassical approximation,

the product of the operators on the left-hand side of (2.3) reduces to the product of two

functions describing the classical profile of half-BPS operators. It is obviously regular for

x212 → 0 and, therefore, cannot produce 1/x212 singularity that is needed to get a finite result

for G(u, v) in (1.2). For such singularity to arise, we have to go beyond the semiclassical

approximation in (2.5) and exchange quantum fluctuations between the two operators

in (2.3). To lowest order in the coupling we have

〈Φ(x1)Φ(x2)〉 =
1

g2
Φinst(x1)Φinst(x2) + 〈Φq(x1)Φq(x2)〉 , (2.10)

where 〈Φq(x1)Φq(x2)〉 ∼ 1/x212. Notice that the quantum fluctuation produces 1/x212 sin-

gularity but its contribution is suppressed by the factor of g2 as compared with the semi-

classical result.

For the correlation function to have the expected form (1.2) with nonvanishing G(u, v),
at least one quantum fluctuation has to be exchanged between each pair of neighboring

– 7 –
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operators in (2.2). As follows from the above analysis, the corresponding contribution to

G(u, v) has the following dependence on the coupling constant

G(u, v) = O(g8 e2πiτ ) , (2.11)

where each fluctuation brings in the factor of g2. Comparing this relation with (1.1) we find

that the first three terms in the expansion of the instanton induced function Φn(u, v; g
2)

in powers of g2 should vanish in the light-cone limit u, v → 0, in the one-instanton sector

at least.

To the leading order in g2, the dominant contribution to (2.11) comes from Feynman

diagrams shown in figure 1 (b). They contain four scalar propagators connecting the points

xi and xi+1. In the first-quantized picture, these diagrams describe a scalar particle prop-

agating between the points x1, . . . , x4 in an external instanton gauge field. Notice that

the particle can also interact with instanton fields of gaugino and scalar but this leads to

a subleading contribution. To show this, consider the diagram shown in figure 1 (c). It

contains two Yukawa vertices and its contribution to G4 has the same dependence on the

coupling constant as (2.11). However, in distinction from the diagram shown in figure 1 (b),

it does not produce 1/x212 singularity. Indeed, as follows from (2.3), the leading behaviour

G4 ∼ 1/(x212)
2−t/2 is controlled by the twist of exchanged operators. For the diagram

shown in figure 1 (c) such operators are built from two scalar and two gaugino fields and

their twist satisfies t ≥ 4. For the diagram shown in figure 1 (b), the leading operators have

twist two and are of a schematic form tr[ΦDS
+Φ], where D+ = ∂+ + igA+ is a light-cone

component of the covariant derivative.

Thus, the leading contribution to G4 for x2i,i+1 → 0 only comes from diagrams shown

in figure 1 (b). Denoting the scalar propagator in the instanton background as D(xi, xi+1),

we obtain the following result for the correlation function in the light-like limit

G4,inst = 〈tr [D(x1, x2)D(x2, x3)D(x3, x4)D(x4, x1)]〉inst , (2.12)

where 〈. . .〉inst denotes integration over the collective coordinates of instantons with the

measure (2.7). This result is rather general and it holds for multi-instanton contribution

to G4 in N = 4 SYM with an arbitrary gauge group.

We can argue following [19] that the relation (2.12) leads to the same factorized ex-

pression (1.3) for the function G(u, v) as in perturbation theory. The propagator D(x1, x2)

depends on two momentum scales, 1/x212 and 1/ρ2, which define a proper energy of the

scalar particle and its interaction energy with the instanton background, respectively. For

1/x212 ≫ 1/ρ2, or equivalently x212 ≪ ρ2, the instanton carries small energy and its in-

teraction with the scalar particle can be treated semiclassically. In this limit, D(x1, x2)

reduces to a free scalar propagator multiplied by the eikonal phase given by the Wilson line

evaluated along the light-cone segment [x1, x2]. Taking the product of four Wilson lines

corresponding to four propagators in (2.12), we obtain that the contribution of instanton

with x2i,i+1 ≪ ρ2 is described by the rectangular light-like Wilson loop defined in (1.4). The

gauge fields in (1.4) are now replaced by the instanton solution (2.8) and integration over

its moduli is performed with the measure (2.7). For x2i,i+1 ≫ ρ2 the eikonal approximation

– 8 –
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is not applicable. The contribution from this region, denoted by J in (1.3), can be deter-

mined from the crossing symmetry of G4 in the same way as it was done in perturbation

theory [20].

3 Light-like Wilson loop in the instanton background

We demonstrated in the previous section that the leading light-cone asymptotics of the

correlation function G4 is described by light-like rectangular Wilson loop W4. Due to the

presence of cusps on the integration contour, W4 develops specific ultraviolet divergences.

In the expression for the correlation function (1.3), these divergences cancel against those of

the J−function in such a way that the UV cut-off of the Wilson loop is effectively replaced

with µ2 ∼ 1/x2i,i+1.

3.1 Conformal Ward identities

Let us start with summarizing the properties of W4. As was shown in [24], the conformal

symmetry restricts the dependence of W4 on kinematical invariants

W4 = Z(x213µ
2)Z(x224µ

2)F4(x
2
13/x

2
24) , (3.1)

where Z and F4 are the divergent and finite parts, respectively. The dependence of W4 on

the UV cut-off µ2 is described by the evolution equation

(

µ2 ∂

∂µ2

)2

lnW4 = −2Γcusp(g
2) , (3.2)

where the light-like cusp anomalous dimension Γcusp(g
2) depends on the representation of

the SU(N) gauge group in which the Wilson loop is defined. The general solution to this

equation depends on the so-called collinear anomalous dimension Γcol(g
2). It appears as a

coefficient in front of ln(x2i,i+2µ
2) in the expression for lnW4 and depends on the choice of

the regularization. The finite part of (3.1) is uniquely fixed by the conformal symmetry5

F4 = exp

[

1

2
Γcusp(g

2) ln2(x213/x
2
24)

]

. (3.3)

Combining together (3.1) and (3.3) we obtain the following relation for W4

∂

∂ lnx213

∂

∂ lnx224
lnW4 = −Γcusp(g

2) , (3.4)

where the dependence on the UV cut-off disappears since the second derivative annihilates

the divergent part of lnW4. This relation allows us to find Γcusp(g
2) from W4 directly,

without introducing a regularization, by computing its second derivative (3.4).

We would like to emphasize that relations (3.2)–(3.4) follow from the conformal Ward

identities and should hold in the presence of instantons. We shall verify this property below.

5Since the Wilson loop (3.1) is defined in the adjoint representation, this expression is the square of the

one found in [24].
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We recall that the instanton correction to W4 should match the leading correction

to the correlation function G(u, v) for u, v → 0. Taking into account (2.11), we expect

that the instanton correction to the cusp anomalous dimension should scale as Γcusp(g
2) =

O(g8 e2πiτ ).

3.2 Semiclassical approximation

To compute instanton corrections to the light-like Wilson loop, we have to define W4 in

Euclidean signature. This can be achieved by allowing the cusp points xµi to take complex

values, such that x2i,i+1 = 0. Having determined W4 as a function of x213 and x224, we shall

continue it to Minkowski signature.

To find W4 in the semiclassical approximation, we have to evaluate the Wilson

loop (1.4) in the instanton background and, then, integrate it over the collective coor-

dinates with the measure (2.7)

W4,inst =

∫

dµphys e
−Sphys WA . (3.5)

We recall thatWA is defined in the adjoint representation of the SU(2). It proves convenient

to generalize (1.4) and define the Wilson loop in an arbitrary SU(2) representation R

WR = trR [E(x1, x2)E(x2, x3)E(x3, x4)E(x4, x1)] , (3.6)

where E(xi, xi+1) is a light-line Wilson line stretched between the points xi and xi+1

E(xi, xi+1) = P exp

(

−ig

∫ 1

0
dt xµi,i+1Aµ(xi − txi,i+1)

)

. (3.7)

Here the gauge field Aµ(x) = Aa
µ(x)T

a is integrated along the light-cone segment x(t) =

xi − txi,i+1 and T a are the SU(2) generators in the representation R. Notice that for

zero value of the coupling constant, the Wilson loop (3.6) is equal to the dimension of the

representation WR = dR.

In special cases of the fundamental (F ) and adjoint (A) representations of the SU(2),

the generators are related to Pauli matrices, T a = σa/2, and completely antisymmetric

tensor, (T a)bc = iǫabc, respectively. The corresponding Wilson loops, WF and WA, satisfy

the fusion relation

WFWF = 1 +WA , (3.8)

where WF is complex conjugated to WF .

Applying (3.5), we have to replace the gauge field in (3.6) with its expression in the

instanton background, A(x) = g−1Ainst(x) (see eqs. (2.5) and (2.8)). As follows from (3.6)

and (3.7), the resulting expression for WR does not depend on the coupling constant. It

depends however on 16 fermion modes of the instanton, ξAα and η̄Aα̇ . This dependence has

the following general form

WF = W (0) +W (4) +W (8) +W (12) +W (16) , (3.9)
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where W (4n) denotes a homogenous SU(4) invariant polynomial in ξAα and η̄Aα̇ of degree 4n.

The Wilson loop in the adjoint representation has similar form. The relation (3.8) allows

us to express WA in terms of W (4n).

In order to compute the Wilson loop (3.5) we only need the top component W
(16)
R con-

taining 16 fermion modes. The remaining components give vanishing contribution upon

integration over fermion modes in (3.5). For the Wilson loop in the fundamental repre-

sentation, the top component W
(16)
F is given by W (16). For the Wilson loop in the adjoint

representation we get from (3.8) and (3.9)

W
(16)
A = W (0)W

(16)
+W (4)W

(12)
+

1

2
W (8)W

(8)
+ c.c. . (3.10)

Since W
(16)
R contains 16 fermion modes, it has the following form

W
(16)
R = fR(xi;x0, ρ) ξ

8 η̄8 , (3.11)

where ξ8 =
∏

α,A ξAα and similar for η̄. The scalar function fR(xi;x0, ρ) depends on four

points xi (with x2i,i+1 = 0) and on the bosonic collective coordinates x0 and ρ. It also

depends on the representation R of the SU(2) gauge group.

Substituting (3.11) into (3.5) and taking into account (2.7), we obtain the following

expression for the instanton correction to W4 in the semiclassical approximation6

W4,inst =
g8

234π10
e2πiτ

∫

d4x0

∫

dρ

ρ5
fR(xi;x0, ρ) . (3.12)

The dependence of this expression on the coupling constant matches (2.11). We expect

that the instanton effects should modify the light-like cusp anomalous dimension. For this

to happen, the integral in (3.12) has to develop UV divergences. Indeed, as we show below,

instantons of small size (ρ → 0) located in the vicinity of the cusp points (x0 → xi) provide

a divergent contribution to (3.12).

3.3 Cusp anomalous dimension

The light-like Wilson loop is invariant under conformal transformations at the classical

level. At the quantum level, its conformal symmetry is broken by cusp singularities. In

application to (3.12) this implies that if the integral in (3.12) were well-defined, W4,inst

should be conformally invariant. The conformal transformations act nontrivially on the

bosonic moduli x0 and ρ leaving the integration measure in (3.12) invariant. Therefore,

invariance of W4,inst under these transformations translates into conformal invariance of

the function fR(xi;x0, ρ). To regularize cusp singularities of (3.12) we can modify the

integration measure as
∫

d4x0 → µ−2ǫ

∫

d4−2ǫx0 , (3.13)

leaving the function fR(xi;x0, ρ) intact.
7

6Notice that W4,inst depends on the choice of the SU(2) representation R.
7There are of course different ways to regularize (3.12). The relation (3.4) ensures that the resulting

expression for the cusp anomalous dimension is independent on the regularization procedure. This does not

apply however to the collinear anomalous dimension.
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The conformal symmetry dictates that the function fR(xi;x0, ρ) can depend on the

bosonic moduli, ρ and x0, and four points xi through conformal invariants only. The latter

have the following form8

Iij =
x2ijρ

2

(x2i0 + ρ2)(x2j0 + ρ2)
. (3.14)

We recall that the points xi define the vertices of light-like rectangle and satisfy x2i,i+1 = 0.

As a consequence, Ii,i+1 = 0 and we are left with only two nonvanishing invariants, fR =

fR(I13, I24).

Since fR is obtained from the Wilson loop (3.11) evaluated in background of instanton

field, it is an intrinsically classical quantity. We therefore expect it to be a rational function

of I13 and I24. In addition, fR should vanish for I13 = 0 or I24 = 0. The reason for this

is that for x1 → x3 (or x2 → x4) the rectangular contour in (3.6) collapses into a closed

backtracking path. The Wilson lines in (3.6) cancel against each other for such path leading

to WR = dR or equivalently fR = 0. These properties suggest to look for fR(I13, I24) in

the form

fR(I13, I24) =
∑

ℓ1,ℓ2≥1

fℓ1ℓ2 (I13)
ℓ1 (I24)

ℓ2

=
∑

ℓ1,ℓ2≥1

fℓ1ℓ2ρ
2(ℓ1+ℓ2)(x213)

ℓ1(x224)
ℓ2

[(x210 + ρ2)(x230 + ρ2)]ℓ1 [(x220 + ρ2)(x240 + ρ2)]ℓ2
, (3.15)

where expansion coefficients are symmetric fℓ1ℓ2 = fℓ2ℓ1 due to the cyclic symmetry of (3.6).

Moreover, as we show in appendix D, fR(I13, I24) is actually a polynomial in both variables,

so that the sum in (3.15) contains a finite number of terms.

Replacing the function fR in (3.12) with its general expression (3.15), we find that the

integrals over x0 and ρ can be expressed in terms of D−functions defined in appendix C.

These functions are finite for generic x2ij 6= 0 but develop logarithmic divergences for

x2i,i+1 = 0. A close examination shows that divergences arise from integration over ρ → 0

and x0 → xi and have a clear UV origin. These are the cusp divergences that were men-

tioned at the end of the previous subsection. Regularizing divergences according to (3.13),

we obtain the following expression for the instanton correction to the light-like Wilson

loop (3.12)

W4,inst =
g8

234π10
e2πiτ

∑

ℓ1,ℓ2

fℓ1ℓ2 D̄
(ǫ)
ℓ1ℓ2

. (3.16)

Here we introduced notation for the regularized integral

D̄
(ǫ)
ℓ1ℓ2

= µ−2ǫ

∫

d4−2ǫx0

∫

dρ

ρ5
ρ2(ℓ1+ℓ2)(x213)

ℓ1(x224)
ℓ2

[(x210 + ρ2)(x230 + ρ2)]ℓ1 [(x220 + ρ2)(x240 + ρ2)]ℓ2
, (3.17)

8To check conformal properties of Iij we can employ inversions defined in (B.1). It is straightforward to

verify that (3.14) is invariant under these transformations.
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evaluated for x2i,i+1 = 0. This integral is well-defined for ǫ < 0 and the cusp divergences

appear as poles in ǫ. The details of calculation can be found in appendix C.

Substituting the resulting expression for D̄
(ǫ)
ℓ1ℓ2

(see (C.6) in appendix C) into (3.16)

we find that W4,inst takes a remarkable simple form

W4,inst/dR =− Γcusp(g
2)

[

1

ǫ2
(µ2x213)

−ǫ +
1

ǫ2
(µ2x224)

−ǫ − 1

2
ln2(x213/x

2
24)

]

− Γcol(g
2)

[

1

ǫ
(µ2x213)

−ǫ +
1

ǫ
(µ2x224)

−ǫ

]

− Γh(g
2) , (3.18)

where dR is the dimension of the SU(2) representation in which the Wilson loop is defined.

Here we denoted the residue at the double pole as Γcusp(g
2) anticipating that the same

quantity defines the instanton correction to the cusp anomalous dimension. It is given by

the following expression

Γcusp(g
2) = − g8

234π8dR
e2πiτ

∑

ℓ1,ℓ2≥1

fℓ1ℓ2
Γ(ℓ1 + ℓ2 − 2)

Γ(ℓ1)Γ(ℓ2)
. (3.19)

We recall that fℓ1ℓ2 are coefficients of the expansion of the top component of the Wilson

loop (3.11) in powers of the conformal invariants (3.15). Notice that for ℓ1 = ℓ2 = 1 the

Γ−function in (3.19) develops a pole. For the sum in (3.19) to be finite the corresponding

coefficient f11 has to vanish.

The residue at the simple pole and the constant term in (3.18), Γcol(g
2) and Γh(g

2), re-

spectively, are given by expressions similar to (3.19). However, in distinction from Γcusp(g
2)

they depend on the choice of the regularization in (3.17). That is why we do not present

their expressions.

Let us now compare (3.18) with the expected properties of light-like Wilson loop. We

combine (3.18) with the Born level contribution to the Wilson loop, W4 = dR + W4,inst,

and require that W4 has to satisfy (3.2) and (3.4). This leads to the following relations

1

2

(

∂

∂ lnµ2

)2

(W4,inst/dR) =
∂

∂ lnx213

∂

∂ lnx224
(W4,inst/dR) = −Γcusp(g

2) . (3.20)

It is easy to check that (3.18) verifies these relations. In this way, we find that (3.19)

defines indeed the leading instanton correction to the cusp anomalous dimension.

In addition to (3.18), the light-like Wilson loop also receives perturbative corrections

that run in powers of g2. To lowest order in g2, these corrections have exactly the same

form (3.18) although expressions for the anomalous dimensions are different [31]. The

reason for such universality can be understood as follows. As explained in section 3.1,

the conformal symmetry fixes the dependence of the light-like rectangular Wilson loop on

kinematical invariants. In particular, it allows us to determine the finite part of the Wilson

loop in terms of the cusp anomalous dimension, eq. (3.3). The fact that the instanton

corrections (3.18) verify (3.2) and (3.4) implies that the conformal Ward identities found

in [24] hold nonperturbatively, in the presence of instanton effects.

In the next section, we apply (3.19) to compute the leading instanton contribution to

the cusp anomalous dimension in the fundamental and adjoint representations of the SU(2).
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4 Instanton contribution to the cusp anomalous dimension

According to (3.16), the instanton corrections to the light-like Wilson loop are determined

by the coefficients fℓ1ℓ2 . To find them, we have to identify the top component of the Wilson

loop (3.11) containing 16 fermion modes and, then, expand the corresponding function fR
in powers of the conformal invariants (3.15).

The top component of the Wilson loop W
(16)
R depends on the choice of the repre-

sentation R. Making use of the relation (3.10) (and its generalization for higher spin

representations of the SU(2)) we can express W
(16)
R in terms of various components W (4n)

of the Wilson loop in the fundamental representation (3.9).

4.1 Wilson loop in the fundamental representation

To compute the Wilson loop in the fundamental representation of the SU(2), we have

to replace the gauge field in (3.6) and (3.7) with its expression (2.8) in the instanton

background, Aµ(x) = g−1Aµ,a
inst(x)σ

a/2.

The resulting expression for the Wilson line (3.7) depends on 16 fermion modes and

admits an expansion similar to (3.9)

E(xi, xi+1) = P e
i
∫ xi+1
xi

dxµA
µ
inst

(x)
= E(0) + E(4) + E(8) + E(12) + E(16) . (4.1)

In distinction from (3.9), each term on the right-hand side is gauge dependent. The explicit

expressions for the first three terms on the right-hand side of (4.1) are

E(0)(xi, xi+1) = P exp

(

i

∫ 1

0
dt ẋµ(t)A(0)

µ (x(t))

)

,

E(4)(xi, xi+1) = i

∫ 1

0
dt ẋµ(t)E(0)(xi, x(t))A

(4)
µ (x(t))E(0)(x(t), xi+1) ,

E(8)(xi, xi+1) = i

∫ 1

0
dt ẋµ(t)E(0)(xi, x(t))

×
[

A(8)
µ (x(t))E(0)(x(t), xi+1) +A(4)

µ (x(t))E(4)(x(t), xi+1)
]

, (4.2)

where x(t) = (1 − t)xi + txi+1 parameterizes the light-like segment [xi, xi+1] and ẋ(t) =

∂tx(t) = −xi,i+1. Expressions for the remaining components of (4.1) are more involved.

Going through their calculation we find (see appendix B) that they are proportional to the

square of a fermion mode and, therefore, have to vanish

E(12)(xi, xi+1) = E(16)(xi, xi+1) = 0 . (4.3)

Thus, the light-like Wilson line (4.1) has at most 8 fermion modes.

Substituting (4.1) into (3.6) we obtain that the Wilson loop (3.9) is given by a linear

combination of terms of the form

W (k1,k2,k3,k4) = tr
[

E(k1)(x1, x2)E
(k2)(x2, x3)E

(k3)(x3, x4)E
(k4)(x4, x1)

]

, (4.4)

– 14 –



J
H
E
P
1
2
(
2
0
1
7
)
0
9
3

where integers k1, . . . , k4 count the number of fermion modes. The explicit expressions for

different components of (3.9) are

W (0) = W (0,0,0,0),

W (4) = W (4,0,0,0) + cyclic,

W (8) = W (8,0,0,0) +W (4,4,0,0) +
1

2
W (4,0,4,0) + cyclic, (4.5)

W (12) = W (8,4,0,0) +W (8,0,4,0) +W (8,0,0,4) +W (4,4,4,0) + cyclic,

W (16) = W (8,4,4,0) +W (8,4,0,4) +W (8,0,4,4) +W (8,8,0,0) +
1

2
W (8,0,8,0) +

1

4
W (4,4,4,4) + cyclic,

where ‘cyclic’ denotes the additional terms that ensure the invariance of Wilson loop under

the cyclic shift of the cusp points (x1, . . . , x4). The additional rational factors are inserted

to avoid a double counting.

By definition, W (4n) is a homogenous polynomial in fermion modes ξAα and η̄Aα̇ of

degree 4n. It depends in addition on four cusp points xi and bosonic moduli x0 and ρ.

As a function of these variables, it should be invariant under conformal transformations

including inversions (see (B.1), (B.2) and (B.7) in appendix B). We shall use this property

below to simplify the calculation.

4.2 Leading term

It is convenient to switch from vector to spinor notations and convert Aµ(x) into 2×2 matrix

Aαα̇(x) by contracting its Lorentz index with four-dimensional vector of Pauli matrices

σµ = (1, iσ)

(Aαα̇)i
j = iAa

µ(x)(σ
a/2)i

j(σµ)αα̇ . (4.6)

This field carries two spinor indices (α, α̇ = 1, 2) and two SU(2) indices (i, j = 1, 2). In

addition, we define the gauge field with lower SU(2) indices, Aαα̇,ik = ǫkj(Aαα̇)i
j , it is

symmetric with respect to indices i and k.

The BPST instanton A(0) takes the following form in the spinor notations

A
(0)
αα̇,ij(x) =

ǫiα(x− x0)jα̇ + ǫjα(x− x0)iα̇
(x− x0)2 + ρ2

, (4.7)

where xαα̇ = xµ(σ
µ)αα̇ for arbitrary four-dimensional vector xµ. It intertwines the SU(2)

gauge group and the chiral half of the Lorentz group SO(4) = SU(2)× SU(2).

To evaluate the leading term E(0)(x1, x2) defined in (4.2) we make use of the identity

i

∫

dt ẋµ(t)A(0)
µ (x(t)) = −1

2

∫

dt ẋα̇α(t)A
(0)
αα̇(x(t))

=
1

2

∫

dt [x10, x20]

(1− t)x210 + tx220 + ρ2
, (4.8)

where x(t) = (1 − t)x1 + tx2 and the SU(2) indices are suppressed for simplicity. Here in

the second relation we substituted (4.7) and contracted Lorentz indices using the conven-

tions described in appendix A. Since the SU(2) matrix part of the integral (4.8) does not
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depend on the integration variable, the path-ordered exponential in (4.2) reduces to the

conventional exponential. Its calculation yields

E(0)(x1, x2) =
ρ2 + x10x20

[(x210 + ρ2)(x220 + ρ2)]1/2
. (4.9)

Here the first term in the numerator is proportional to the SU(2) identity matrix δji and

the second one involves the matrix (x10x20)i
j = (x10)iα̇(x20)

α̇j .

We can now use (4.9) to compute the lowest component W (0) of the light-like Wilson

loop (4.5). Going through the calculation we find

W (0) = 2− ρ4x213x
2
24

(ρ2 + x201)(ρ
2 + x202)(ρ

2 + x203)(ρ
2 + x204)

= 2− I13I24 , (4.10)

where Iij are conformal invariants defined in (3.14). Their appearance is not surprising

since W (0) should be invariant under the conformal transformations.

4.3 Conformal gauge

The calculation of the remaining components in (4.2) is more involved since the gauge fields

A(4) and A(8) are given by complicated expressions (see appendix D). It can be significantly

simplified by making use of the conformal symmetry.

We can exploit this symmetry to choose the cusp points xi to satisfy the following

additional conditions

x210 = x220 = x230 = x240 = 0 . (4.11)

The advantage of this gauge is that any point of the light-like rectangle x(t) = (1− t)xi +

txi+1 becomes null separated from the center of instanton x0

(x(t)− x0)
2 = (1− t)x2i0 + tx2i+1,0 = 0 , (4.12)

where we took into account that x2i,i+1 = 0.

The calculation of the Wilson line (4.2) in the conformal gauge (4.11) is described in

details in appendix D. For the component E(4)(x1, x2) defined in (4.2) we find

E(4)(x1, x2) =
2

3ρ2
ǫABCD〈ζA1 |E12|ζB2 〉

×
(

|ζC1 〉〈ζD2 | + E12|ζC2 〉〈ζD1 |E12 + 2|ζC1 〉〈ζD1 |E12 + 2E12|ζC2 〉〈ζD2 |
)

, (4.13)

where E12 ≡ E(0)(x1, x2) and ζi is a linear combination of fermion modes, ζi = ξ + xiη̄.

The expression in the second line of (4.13) contains the sum of four SU(2) tensors, each

given by the direct product of two pairs of vectors, |ζ1〉, E12|ζ2〉 and 〈ζ2|, 〈ζ1|E12.

As we show in appendix B, the general form of (4.13) and of the remaining components

of the Wilson line is fixed by the conformal symmetry. In particular, E(8)(x1, x2) has the

following form in the conformal gauge (4.11)

E(8)(x1, x2) =
1

ρ4

(

PCD|ζC1 〉〈ζD2 | + QCDE12|ζC2 〉〈ζD1 |E12

+RCD|ζC1 〉〈ζD1 |E12 + SCDE12|ζC2 〉〈ζD2 |
)

, (4.14)
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where PCD, QCD, RCD, SCD are homogenous polynomials in ζ1 and ζ2 of degree 6. In virtue

of conformal symmetry, the dependence on ζ1 and ζ2 can only enter through the following

three combinations

〈ζA1 ζB1 〉 , 〈ζA2 ζB2 〉 , 〈ζA1 |E12|ζB2 〉 , (4.15)

where we used notations for 〈ζA1 ζB1 〉 ≡ ζαA1 ζB1,α and 〈ζA1 |E12|ζB2 〉 ≡ ζiA1 (E12)i
jζB2,j . The

power of ρ in (4.14) is fixed by the condition for E(8)(x1, x2) to be dimensionless. The

explicit expressions for the polynomials PCD, . . . , SCD are cumbersome, to save space we

do not present them here.

4.4 Results

We can use the expressions for the Wilson line obtained in the previous subsection to

compute different components of the Wilson loop in the fundamental representation of the

SU(2), eqs. (4.4) and (4.5). We recall that in order to find the instanton correction to

the Wilson loop we only need the top component W (16). It has the general form (3.11)

and (3.15) and is specified by the set of coefficients fℓ1ℓ2 .

The calculation of (4.4) and (4.5) is rather lengthy and can be performed with a help

of Mathematica. This yields the following result for the coefficients fℓ1ℓ2 (with ℓ1, ℓ2 ≥ 1)

f
(F )
ℓ1ℓ2

= 216 ×















0 0 −288 0 0

0 −144 0 288 0

−288 0 192 0 −36

0 288 0 −66 −12

0 0 −36 −12 −1















, (4.16)

where we inserted the superscript to indicate that these coefficients define W
(16)
F in the

fundamental representation.

For the Wilson loop in the adjoint representation of the SU(2) the calculation of (3.10)

leads to

f
(A)
ℓ1ℓ2

= 220 ×



















0 0 −72 0 0 0

0 144 −360 312 0 0

−72 −360 408 120 −144 0

0 312 120 −150 −48 16

0 0 −144 −48 24 8

0 0 0 16 8 1



















. (4.17)

We observe that f11 vanishes for both matrices. This ensures a finiteness of the sum

in (3.19).

Finally, we substitute (4.16) and (4.17) into (3.19), replace dF = 2, dA = 3 and obtain

the one-instanton correction to the cusp anomalous dimension in the fundamental and
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adjoint representations of the SU(2)

Γ(F )
cusp =

387

8192

(

g2

4π2

)4
(

e2πiτ +e−2πiτ̄
)

,

Γ(A)
cusp = − 4

15

(

g2

4π2

)4
(

e2πiτ +e−2πiτ̄
)

, (4.18)

where we added the contribution of anti-instanton. The following comments are in order.

The relations (4.18) define nonperturbative corrections to the cusp anomalous dimen-

sion for two different representations of the SU(2) group. Perturbative corrections to

Γcusp(g
2) are known to verify the so-called Casimir scaling up to order O(g6). Namely, per-

turbative contribution to Γcusp(g
2) depends on the representation R through the quadratic

Casimir only, Γcusp(g
2) ∼ CR. This property is violated however at order O(g8) due to the

appearance of higher Casimirs [32]. We can easily check using (4.18) that the instanton

corrections do not verify the Casimir scaling. If this property were true, the ratio of two

expressions in (4.18) would be equal to the ratio of the quadratic Casimir operators CF /CA

with CF = 3/4 and CA = 2 in the fundamental and adjoint representations of the SU(2),

respectively. Obviously, the expressions (4.18) do not have this property, not to mention

that the instanton corrections have an opposite sign for the two representations.

The relations (4.18) describe the leading instanton correction to the cusp anomalous

dimension for the SU(2) gauge group. Following [22], we can generalize them to the SU(N)

gauge group. In this case, the instantons have the additional 4N − 8 bosonic modes

describing the embedding of the SU(2) instanton into the SU(N) and 8N − 16 ‘nonexact’

fermionic modes. Their contribution amounts to multiplying (4.18) by the factor of (2N −
2)!/[22N−3(N − 1)!(N − 2)!]. For large N , the relations (4.18) can be also extended to the

multi-instanton sector [23]. In this limit, the integral over the moduli space of instantons

is dominated by the saddle point in which all instantons are at the same position x0, have

the same size ρ and lie in commuting SU(2) blocks inside the SU(N). Up to overall O(g8)

factor, the resulting expressions are similar to those given in [23].

5 Concluding remarks

In this paper, we have studied instanton corrections to the four-point correlation correlation

function of half-BPS operators in N = 4 SYM in the light-cone limit when operators

become null separated in a sequential manner. Perturbative corrections to the correlation

function in this limit are enhanced by logarithms of vanishing cross ratios and can be

summed to all orders in the coupling. Previous studies revealed that in the semiclassical

approximation the instanton corrections are suppressed in the light-cone limit by powers of

the cross ratios. It is natural to ask whether this result is an artefact of the approximation

or an intrinsic feature of instantons.

To answer this question we exploited the relation between the leading asymptotic be-

haviour of the correlation function and light-like rectangular Wilson loop. Analysing this

relation we found an interesting interplay between semiclassical and quantum instanton
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corrections.9 Namely, having computed the light-like Wilson loop in the semiclassical ap-

proximation, we were able to identify the leading instanton contribution to the correlation

function in the light-cone limit. In the conventional approach, the same correction would

correspond to taking into account the contribution to the correlation function of quantum

fluctuations of instantons to forth order in perturbation theory.

We also demonstrated that the light-like rectangular Wilson loop satisfies conformal

Ward identities and identified the leading instanton correction to the cusp anomalous di-

mension. Making use of this result, we can determine the leading instanton contribution to

anomalous dimension of twist-two operators with large spin (2.4) and answer the question

of how instantons modify the light-cone asymptotic behaviour of the four-point correlation

function (1.3).

At weak coupling, G(u, v) receives both perturbative and instanton corrections en-

hanced by powers of lnu and ln v. They arise due to logarithmic scaling (2.4) of the

anomalous dimension of the twist-two operators with large spin, S ∼ u−1/2 or S ∼ v−1/2,

exchanged in different OPE channels. Following [19, 20], such logarithmically enhanced

corrections can be resummed leading to

G(u, v) ∼ exp

(

− û v̂

2Γcusp(g2)

)

× e−2Γcusp(g2)∂û∂û

[

eγE (û+v̂)/2 Γ

(

1− 1

2
û

)

Γ

(

1− 1

2
v̂

)]2

,

(5.1)

where û = γS=1/
√
u and v̂ = γS=1/

√
v are the anomalous dimensions (2.4) evaluated for the

values of spins mentioned above, Γcusp(g
2) is given by the sum of perturbative and instanton

contributions and γ
E
is Euler’s constant. The relation (5.1) has the expected factorized

form (1.3), the first factor on the right-hand side of (5.1) comes from the rectangular

light-like Wilson loop W4 whereas the second one from the jet function J .

The relation (5.1) develops poles at even positive û and v̂. These poles have a clear

physical meaning and have important consequences for the S−duality properties of the four-

point correlation function. We recall that (5.1) takes into account the contribution of twist-

two operators only. For û = 2 (or v̂ = 2) we encounter a level crossing phenomenon [33]

— the twist-two operators acquire anomalous dimension 2 and collide with the twist-four

operators. The appearance of spurious poles in (5.1) is a consequence of ignoring the

contribution of the latter operators to (5.1). To obtain a reliable prediction for G(u, v) in
the vicinity of the pole we have to resolve the mixing of twist-two and twist-four operators

and include the contribution of both to (5.1). To avoid remaining poles of G(u, v) we have

to take into account the mixing with operators of higher twist.

We can arrive at the same conclusion by examining properties of the both sides of (5.1)

under the S−duality transformations. The relation between the correlation function and

light-like Wilson loop G(u, v) ∼ W4 cannot hold for an arbitrary coupling since the two

quantities have different properties. Indeed, the S−duality maps Wilson loop into ’t Hooft

loop while the four-point correlation function G(u, v) remains invariant. To restore the

S−duality of G(u, v), the higher twist contribution has to be added to (5.1). This problem

deserves further investigation.

9Similar phenomenon has been previously observed for the Konishi operator [18].
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The above analysis can be extended to n−point correlation function of half-BPS op-

erators Gn. At weak coupling, the leading asymptotics of Gn in the light-cone limit is

described by n−gon light-like Wilson loop Wn. It receives both perturbative and instanton

corrections and satisfies the conformal Ward identities [31]. For n = 5 the conformal sym-

metry uniquely fixes the form of W5 in terms of the cusp anomalous dimension. For n ≥ 6 it

leaves a freedom of adding toWn a function of cross ratios, the so-called remainder function.

This function has been studied in planar N = 4 SYM where it was found to have a number

of remarkable properties reflecting integrability of theory [34]. It would be interesting to

compute the leading instanton correction to the remainder function and to understand

whether some of its symmetries survive in the presence of nonperturbative effects.

The scattering amplitudes are known to be dual to the light-like Wilson loops in

planar N = 4 SYM. One may wonder whether the same relation holds for finite N in the

presence of instantons. The duality implies that infrared divergences of amplitudes should

match ultraviolet (cusp) divergences of Wilson loops. We have shown in this paper that

the instanton corrections to light-like Wilson loops have the cusp divergences of the same

double logarithmic form as in perturbation theory. This is not the case however for infrared

divergences of the scattering amplitudes. These divergences come from integration over

instantons with large size ρ and have a power-like dependence on the infrared cutoff. The

mismatch in the form of ultraviolet and infrared divergences points towards the breaking of

the above mentioned duality between the instanton contribution to scattering amplitudes

and light-like Wilson loops.
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A Conventions

Throughout the paper we use Greek letters, α, α̇, . . . for Lorentz indices and Latin letters

i, j, . . . for the SU(2) indices.

We use the Pauli matrices σµ
αα̇ = (1, iσ) to convert an arbitrary Euclidean four-vector

xµ = (x1, x2, x3, x4) into 2× 2 matrix

xαα̇ = xµσ
µ
αα̇ =

[

ix3 − x4 ix1 − x2
ix1 + x2 −ix3 − x4

]

. (A.1)

Its indices are raised and lowered with a help of an antisymmetric tensor

xαα̇ = ǫαβxβα̇ , xα
α̇ = xαβ̇ǫ

β̇α̇ , xα̇α = ǫαβxββ̇ǫ
β̇α̇ ,

with ǫαβǫ
γβ = δγα and ǫ12 = ǫ12 = 1. The product of matrices is defined as

(x1x2)αβ = (x1)αα̇(x2)
α̇
β = (x1)αα̇(x2)ββ̇ǫ

β̇α̇ . (A.2)
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For the scalar product of Euclidean vectors (xy) =
∑

i xiyi we have

(xy) =
1

2
xαα̇y

α̇
α =

1

2
xαα̇yββ̇ǫ

αβǫα̇β̇ . (A.3)

Allowing vectors to have complex components, we can define Euclidean analog of light-

like vectors nµ satisfying n2 = 0. In spinor notations nαα̇ factorizes into the product of

commuting spinors nαα̇ = |n〉[n| leading to

(nxn)αα̇ = |n〉[n|x|n〉[n| = −2(xn)nαα̇ , (A.4)

where [n|x|n〉 = nαα̇x
αα̇ = −2(xn). Notice that in Minkowski signature the expression on

the right-hand side has an opposite sign. The reason for this is that the definition of the

scalar product differs by sign in Minkowski and Euclidean signatures, (xy)
M
= −(xy)

E
for

x0 = ix4.

For the SU(2) matrices Ai
j we use similar conventions for raising and lowering indices

Ai
j = Aikǫ

kj , Aij = Ai
kǫjk . (A.5)

The product of the SU(2) matrices is defined as

(AB)ik = Ai
jBjk = Aijǫ

jlBlk , (ABC)in = Ai
jBj

kCkn . (A.6)

In particular, the rectangular light-like Wilson loopW4 is given by the product of four SU(2)

matrices Ei,i+1 ≡ E(xi, xi+1) defined as Wilson lines in the fundamental representation of

the SU(2) evaluated along the light-like segments [xi, xi+1]

W4 = (E12)i1
i2(E23)i2

i3(E34)i3
i4(E41)i4

i1

= (E12)i1k1ǫ
k1i2(E23)i2k2ǫ

k2i3(E34)i3k3ǫ
k3i4(E41)i4k4ǫ

k4i1 . (A.7)

Computing instanton corrections we encounter matrices in the mixed representation, e.g.

(x1x2)ij with matrices x1 and x2 given by (A.1). By definition, they are given by expression

like (A.2) in which (chiral) Lorentz indices are identified with the SU(2) indices

(x1x2)ij ≡ (x1)iα̇(x2)
α̇
j . (A.8)

B Conformal properties

Since the equations of motion in N = 4 SYM are invariant under conformal transforma-

tions, these transformations should map one classical solution into another one.

To check conformal properties of instantons, we use inversions. They act on both

space-time and collective coordinates of instantons

I[xµi ] =
xµi
x2i

, I[xµ0 ] =
xµ0

x20 + ρ2
, I[ρ] =

ρ

x20 + ρ2
. (B.1)

For fermionic modes, the inversion is defined as

I[ξAα ] = η̄Aα̇ , I[η̄Aα̇ ] = ξAα . (B.2)
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The instanton fields depend on a linear combination of these modes ζ = ξ+xη̄. As follows

from (B.2), it transforms covariantly under inversions

I[ζAα (x)] =
xβα̇
x2

ζAβ (x) . (B.3)

Notice that the inversions change the chirality of Lorentz indices.

We can use explicit expressions for various fields (gauge field, scalar and gaugino) to

verify that, up to compensating gauge transformations, they transform under inversions as

conformal primary fields. For instance, the gauge field (2.8) transforms as

I[Aα̇β ] = xαγ̇x
β̇
γ

(

U †Aγ̇γU + U †∂γ̇γU
)

, (B.4)

where the SU(2) matrices are multiplied according to (A.6) and the compensating gauge

transformation is

Ui
i′ = δαi δ

i′

α̇

xα̇α
(x2)1/2

, (U †)j′
j = δjαδ

α̇
j′

xαα̇
(x2)1/2

. (B.5)

Here the product of Kronecker delta-functions identifies the SU(2) indices of U with the

Lorentz indices of x. Replacing the gauge field in (B.4) with its general expression (2.8),

we find that the lowest component A(0) satisfies the same relation (B.4) whereas for higher

components we have I[A(n),α̇β ] = xαγ̇x
β̇
γ U †A(n),γ̇γU . Applying (B.4) we obtain that the

light-like Wilson line transforms under the inversions as

I[E(x1, x2)] = U †(x1)E(x1, x2)U(x2) . (B.6)

An immediate consequence of this relation is that the light-like Wilson loop (A.7) is in-

variant under the conformal transformations

I[W4] = W4 . (B.7)

Substituting (4.1) into (B.6) we find that all components E(4n)(x1, x2) of the Wilson

line (4.1) have to satisfy (B.6). For the lowest component (4.9), this can be verified by

direct calculation. For higher components, we can use (B.6) to argue that they have the

general form (4.14).

To show this, we introduce a pair of two-dimensional SU(2) vectors

|ζ̃A1 〉 =
(

ρ

x210 + ρ2

)1/2

ζAi (x1) , E(0)(x1, x2)|ζ̃A2 〉 , (B.8)

where |ζ̃A2 〉 is obtained from |ζ̃A1 〉 by replacing x1 with x2. Making use of (B.3) and (B.5)

we verify that both vectors transform under the inversions in the same way, e.g. I[|ζ̃A1 〉] =
U †(x1)|ζ̃A1 〉 . In the similar manner, we can show that the vectors

〈ζ̃B2 | =
(

ρ

x220 + ρ2

)1/2

ζjB(x2) , 〈ζ̃B1 |E(0)(x1, x2) (B.9)
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transform covariantly under inversions with the same weight, e.g. I[〈ζ̃B2 |] = 〈ζ̃B2 |U(x2).

Then, taking the tensor product of vectors (B.8) and (B.9), we can define four 2 × 2

matrices each satisfying (B.6). These matrices form the basis over which E(4n)(x1, x2) can

be expanded. The corresponding expansion coefficients depend on the conformal invariants.

The latter are given by the scalar product of vectors of the form (4.15). Notice that

expressions (B.8) and (B.9) simplify in the conformal gauge (4.11), e.g. |ζ̃A1 〉 = ρ−1/2|ζA1 〉
and |ζ̃A2 〉 = ρ−1/2|ζA2 〉. For the component E(8)(x1, x2), this leads to (4.14).

Let us show that the two top components of the Wilson line vanish, E(12)(x1, x2) =

E(16)(x1, x2) = 0 (see eq. (4.3)). The top component is proportional to the product of

all fermion modes E(16)(x1, x2) ∼ ∏

α,A ζA1,αζ
A
2,α. Since 〈p1ζ1〉 = 〈p1ζ2〉 for x12 = |p1]〈p1|

(see (D.8)), we have E(16)(x1, x2) ∼ ∏

A〈p1ζA1 〉2 = 0. The component E(12)(x1, x2) has

the form similar to (4.14) with PCD, . . . , SCD being homogenous polynomials of degree

5 in variables (4.15). As we will see in a moment, these variables are proportional to

〈p1ζA1 〉. Then, PCD, . . . , SCD, being homogenous polynomials in 〈p1ζA1 〉 of degree 5, have

to vanish since they are necessarily proportional to the square of a fermion mode leading to

E(12)(x1, x2) ∼ 〈p1ζA1 〉2 = 0. Indeed, let us choose |ζA1 〉 ∼ |p1〉. It follows from ζ1−ζ2 = x12η̄

that |ζA2 〉 ∼ |p1〉. The first two expressions in (4.15) obviously vanish in this case whereas

the last one reduces to

〈p1|E(0)(x1, x2)|p1〉 =
1

ρ2
〈p1|x10x20|p1〉 = − 1

ρ2
〈p1|x10x12|p1〉 = 0 . (B.10)

Here in the first relation we used (D.9) and in the second one replaced x20 = x10 − x12.

Thus, all expressions in (4.15) vanish for |ζA1 〉 ∼ |p1〉 and, therefore, they are proportional

to 〈p1ζA1 〉.

C D-functions in the light-cone limit

The integral over collective coordinates of instantons can be expressed in terms of

D−functions. For x2ij 6= 0 they are defined as [35]

D∆1∆2∆3∆4
=

∫

d4x0

∫

dρ

ρ5

∏

i

(

ρ

x2i0 + ρ2

)∆i

. (C.1)

For our purposes it is sufficient to consider the special case ∆1 = ∆3 and ∆2 = ∆4. Defining

D̄∆1∆2
= (x213)

∆1(x224)
∆2D∆1∆2∆1∆2

, (C.2)

we find that, in virtue of conformal symmetry, D̄∆1∆2
only depends on the cross-ratios u

and v. It admits the Mellin integral representation [36]

D̄∆1∆2
= K

∫ −δ+i∞

−δ−i∞

dj1dj2
(2πi)2

uj1vj2Γ(j1 + j2 +∆1)Γ(j1 + j2 +∆2) [Γ(−j1)Γ(−j2)]
2 ,

(C.3)

where K = π2Γ(∆1 +∆2 − 2)/[2Γ2(∆1)Γ
2(∆2)] and integration goes along imaginary axis

slightly to the left from the origin, 0 < δ < 1.
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Let us examine (C.3) in the light-cone limit x2i,i+1 → 0, or equivalently u, v → 0. In

this limit, the D̄−function develops logarithmic singularities in u and v. Indeed, closing the

integration contour in (C.3) to the right half-plane and picking up the residue at j1 = j2 = 0

we find

D̄∆1∆2
=

π2

2

Γ(∆1 +∆2 − 2)

Γ(∆1)Γ(∆2)

[

lnu ln v + (lnu+ ln v)(C1 + C2 − 2ψ(1))
]

+ . . . , (C.4)

where Ci = ψ(∆i) is expressed in terms of Euler ψ−function. Here dots denote terms

suppressed by powers of u and v.

Computing instanton corrections to light-like Wilson loop we encounter the same in-

tegral (C.2) but evaluated for x2i,i+1 = 0. To regularize its divergences we modify the

integration measure in (C.1) following (3.13) and arrive at D̄
(ǫ)
∆1∆2

defined in (3.17). We

expect that lnu ln v singularity of (C.4) should translate into a double pole, D̄
(ǫ)
∆1∆2

∼ 1/ǫ2.

Performing integration in (3.17) we obtain

D̄
(ǫ)
∆1∆2

= 2K(x213)
∆1(x224)

∆2µ−2ǫ

∫ ∞

0

4
∏

i=1

dti t
∆i−1
i

(

∑

i

ti

)2ǫ
e−x2

13t1t3−x2
24t2t4 , (C.5)

with ∆3 = ∆1 and ∆4 = ∆2. For small ǫ the calculation of this integral yields

D̄
(ǫ)
∆1∆2

= π2Γ(∆1 +∆2 − 2)

Γ(∆1)Γ(∆2)

[

1

ǫ2
(µ2x213)

−ǫ +
1

ǫ2
(µ2x224)

−ǫ

+
C2

ǫ
(µ2x213)

−ǫ +
C1

ǫ
(µ2x224)

−ǫ − 1

2
ln2(x213/x

2
24) + C1C2 −

2

3
π2 +O(ǫ)

]

, (C.6)

with Ci the same as in (C.4).

We verify that D̄
(ǫ)
∆1∆2

satisfies the evolution equation

(

µ2 ∂

∂µ2

)2

D̄
(ǫ)
∆1∆2

= 2π2Γ(∆1 +∆2 − 2)

Γ(∆1)Γ(∆2)
, (C.7)

which should be compared with (3.2). In distinction from (C.4), the conformal invariance

of D̄
(ǫ)
∆1∆2

is broken by light-cone singularities that appear as poles in ǫ. We notice that

the poles depend on one of the kinematical variables, x213 or x224, and, therefore, they do

not contribute to the mixed derivative of D̄
(ǫ)
∆1∆2

with respect to both variables. Applying

this derivative to (C.4) and (C.6) we arrive at the same result

∂

∂ lnx213

∂

∂ lnx224
D̄∆1∆2

=
∂

∂ lnx213

∂

∂ lnx224
D̄

(ǫ)
∆1∆2

= π2Γ(∆1 +∆2 − 2)

Γ(∆1)Γ(∆2)
. (C.8)

This relation implies that conformal anomaly of D̄
(ǫ)
∆1∆2

is annihilated by the mixed

derivative.

D Gauge field in the instanton background

In this appendix, we present explicit expressions for different components of the gauge

field (2.8). The lowest component A(0) is given by the BPST instanton (4.7). The remaining
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components A(4) and A(8) were derived in [26]

A
(4)
αα̇ = − 1

12
ǫABCDζ

A
α ζ

βB(ζCDβα̇FζD)− 1

2
ǫABCDζ

A
α η̄

B
α̇ (ζ

CFζD) ,

A
(8)
αα̇ = −3

2
ζ8
[

Dαα̇F
βγ , Fβγ

]

− 3

2
(ζ7)βAη̄

A
α̇

[

F βγ , Fγα

]

, (D.1)

where Dαα̇ = ∂αα̇ + A
(0)
αα̇ and Fαβ = ǫα̇β̇D(αα̇Dβ)β̇ is a self-dual (chiral) part of the gauge

strength tensor of the BPST instanton

Fαβ,ij = −8ρ2
ǫiαǫjβ + ǫjαǫiβ
[(x− x0)2 + ρ2]2

. (D.2)

The Grassmann variable ζAα (x) is given by a linear combination of fermion modes

ζAα (x) = ξAα + xαα̇η̄
α̇A , (D.3)

and the following notations are used

(ζCFζD) = ζαCFαβζ
βD , (ζ7)βA = ∂ζ8/∂ζβA , ζ8 =

∏

αA

ζαA . (D.4)

Notice that the second term on the right-hand side of (D.1) depends on η̄. As explained

in [26], its form is uniquely fixed by the conformal symmetry. Namely, it can be determined

from the requirement for (D.1) to satisfy (B.4).

To compute the Wilson line (4.2), we need the expressions for the projection of the

gauge field on the edges of the light-like rectangle. Let us consider the segment [x1, x2] and

define the SU(2) matrix

A(n)(t) = iẋµ(t)A(n)
µ (x(t)) = −1

2
xα̇α12 A

(n)
αα̇ (x(t)) = −1

2
〈p1|A(n)(x(t))|p1] , (D.5)

where x(t) = (1 − t)x1 + tx2 and xα̇α12 = |p1]〈p1| is a light-like vector. To simplify the

calculation we use the gauge (4.11). Replacing the gauge field in (D.5) with (4.7) and (D.1)

we find after some algebra

A(0) =
1

ρ2
x10x20 ,

A(4) =
4

ρ2
ǫABCD|ζA(x(t))〉〈ζB1 |E(0)(x1, x2)|ζC2 〉〈ζD(x(t))| ,

A(8) =
8

15ρ4
ζ6AB(x(t))

[

E(0)(x(t), x1)|ζA1 〉〈ζB2 |E(0)(x2, x(t))

− E(0)(x(t), x2)|ζA2 〉〈ζB1 |E(0)(x1, x(t))
]

, (D.6)

where ζ6AB = ǫACDEǫBC′D′E′(ζ2)CC′

(ζ2)DD′

(ζ2)EE′

with (ζ2)AB = ζαAζBα and we used

notation for the SU(2) matrices |ζA1 〉〈ζB2 | ≡ ζA1 i ζ
B j
2 .

The dependence on fermion modes ξAα and η̄α̇A enters into (D.6) through linear com-

bination (D.3)

ζAα (x(t)) = (1− t) ζA1α + t ζA2α . (D.7)
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Its value at the end points is denoted as ζ(x1) = ζ1 and ζ(x2) = ζ2. Since (ζ1 − ζ2)
A
α =

(x12)αα̇η̄
α̇A, these variables satisfy the relation (x12)

α̇α(ζ1 − ζ2)
A
α = 0 or equivalently

〈p1ζA1 〉 − 〈p1ζA2 〉 = 0 , (D.8)

where spinor |p1〉 defines the light-like vector xα̇α12 = |p1]〈p1|.
We would like to stress that the relations (D.6) hold in the conformal gauge (4.11).

The light-like Wilson line (4.9) is given in this gauge by the following expression

E(0)(x1, x2) = 1 +
x10x20
ρ2

. (D.9)

The Wilson lines entering the expression for A(8)(t) in (D.6) are linear functions of t

E(0)(x1, x(t)) = 1 + t
x10x20
ρ2

, E(0)(x(t), x2) = 1 + (1− t)
x10x20
ρ2

,

E(0)(x(t), x1) = 1− t
x10x20
ρ2

, E(0)(x2, x(t)) = 1− (1− t)
x10x20
ρ2

. (D.10)

We can use relations (D.6)–(D.10) to compute all components of the light-like Wilson

line (4.2) in the conformal gauge (4.11). The lowest component is given by (D.9). For the

remaining components we find after some algebra relations (4.13) and (4.14).

Comparing (D.9) with the general covariant expression (4.9) we observe that

E(0)(x1, x2) is polynomial in xi in the conformal gauge. Examining the relations (4.13)

and (4.14) it is easy to see that the same is true for higher components of the light-like

Wilson line. As a consequence, all components of the Wilson loop (4.5) are also polyno-

mial in xi in the conformal gauge. This leads to important consequences for the function

fR(I13, I24) defined in (3.11). It depends on the conformal invariants (3.14) which are given

in the gauge (4.11) by

I13 =
x213
ρ2

, I24 =
x224
ρ2

. (D.11)

The fact that the expression on the right-hand side of (3.15) is polynomial in xi in the

conformal gauge implies that fR(I13, I24) is in fact polynomial in I13 and I24. In other

words, the sum over ℓ1 and ℓ2 in (3.15), (3.16) and (3.19) actually contains a finite number

of terms.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] C. Montonen and D.I. Olive, Magnetic Monopoles as Gauge Particles?,

Phys. Lett. 72B (1977) 117 [INSPIRE].

[2] E. Witten and D.I. Olive, Supersymmetry Algebras That Include Topological Charges,

Phys. Lett. 78B (1978) 97 [INSPIRE].

– 26 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0370-2693(77)90076-4
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B72,117%22
https://doi.org/10.1016/0370-2693(78)90357-X
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B78,97%22


J
H
E
P
1
2
(
2
0
1
7
)
0
9
3

[3] H. Osborn, Topological Charges for N = 4 Supersymmetric Gauge Theories and Monopoles

of Spin 1, Phys. Lett. 83B (1979) 321 [INSPIRE].

[4] J. Gomis, T. Okuda and D. Trancanelli, Quantum ’t Hooft operators and S-duality in N = 4

super Yang-Mills, Adv. Theor. Math. Phys. 13 (2009) 1941 [arXiv:0904.4486] [INSPIRE].

[5] J. Gomis and T. Okuda, S-duality, ’t Hooft operators and the operator product expansion,

JHEP 09 (2009) 072 [arXiv:0906.3011] [INSPIRE].

[6] A.V. Belitsky, S. Vandoren and P. van Nieuwenhuizen, Yang-Mills and D instantons,

Class. Quant. Grav. 17 (2000) 3521 [hep-th/0004186] [INSPIRE].

[7] N. Dorey, T.J. Hollowood, V.V. Khoze and M.P. Mattis, The calculus of many instantons,

Phys. Rept. 371 (2002) 231 [hep-th/0206063] [INSPIRE].

[8] M. Bianchi, S. Kovacs and G. Rossi, Instantons and Supersymmetry, Lect. Notes Phys. 737

(2008) 303 [hep-th/0703142] [INSPIRE].

[9] B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, Hidden symmetry of four-point

correlation functions and amplitudes in N = 4 SYM, Nucl. Phys. B 862 (2012) 193

[arXiv:1108.3557] [INSPIRE].

[10] B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, Constructing the correlation

function of four stress-tensor multiplets and the four-particle amplitude in N = 4 SYM,

Nucl. Phys. B 862 (2012) 450 [arXiv:1201.5329] [INSPIRE].

[11] N. Beisert et al., Review of AdS/CFT Integrability: An Overview,

Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].

[12] B. Eden and A. Sfondrini, Tessellating cushions: four-point functions in N = 4 SYM,

JHEP 10 (2017) 098 [arXiv:1611.05436] [INSPIRE].

[13] T. Fleury and S. Komatsu, Hexagonalization of Correlation Functions, JHEP 01 (2017) 130

[arXiv:1611.05577] [INSPIRE].

[14] M. Bianchi, S. Kovacs, G. Rossi and Y.S. Stanev, On the logarithmic behavior in N = 4

SYM theory, JHEP 08 (1999) 020 [hep-th/9906188] [INSPIRE].

[15] G. Arutyunov, S. Frolov and A. Petkou, Perturbative and instanton corrections to the OPE

of CPOs in N = 4 SYM4, Nucl. Phys. B 602 (2001) 238 [Erratum ibid. B 609 (2001) 540]

[hep-th/0010137] [INSPIRE].

[16] M. Bianchi, S. Kovacs, G. Rossi and Y.S. Stanev, Properties of the Konishi multiplet in

N = 4 SYM theory, JHEP 05 (2001) 042 [hep-th/0104016] [INSPIRE].

[17] S. Kovacs, On instanton contributions to anomalous dimensions in N = 4 supersymmetric

Yang-Mills theory, Nucl. Phys. B 684 (2004) 3 [hep-th/0310193] [INSPIRE].

[18] L.F. Alday and G.P. Korchemsky, Revisiting instanton corrections to the Konishi multiplet,

JHEP 12 (2016) 005 [arXiv:1605.06346] [INSPIRE].

[19] L.F. Alday, B. Eden, G.P. Korchemsky, J. Maldacena and E. Sokatchev, From correlation

functions to Wilson loops, JHEP 09 (2011) 123 [arXiv:1007.3243] [INSPIRE].

[20] L.F. Alday and A. Bissi, Higher-spin correlators, JHEP 10 (2013) 202 [arXiv:1305.4604]

[INSPIRE].

[21] M. Bianchi, A. Brandhuber, G. Travaglini and C. Wen, Simplifying instanton corrections to

N = 4 SYM correlators, JHEP 04 (2014) 101 [arXiv:1312.3916] [INSPIRE].

– 27 –

https://doi.org/10.1016/0370-2693(79)91118-3
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B83,321%22
https://doi.org/10.4310/ATMP.2009.v13.n6.a9
https://arxiv.org/abs/0904.4486
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.4486
https://doi.org/10.1088/1126-6708/2009/09/072
https://arxiv.org/abs/0906.3011
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.3011
https://doi.org/10.1088/0264-9381/17/17/305
https://arxiv.org/abs/hep-th/0004186
https://inspirehep.net/search?p=find+EPRINT+hep-th/0004186
https://doi.org/10.1016/S0370-1573(02)00301-0
https://arxiv.org/abs/hep-th/0206063
https://inspirehep.net/search?p=find+EPRINT+hep-th/0206063
https://arxiv.org/abs/hep-th/0703142
https://inspirehep.net/search?p=find+EPRINT+hep-th/0703142
https://doi.org/10.1016/j.nuclphysb.2012.04.007
https://arxiv.org/abs/1108.3557
https://inspirehep.net/search?p=find+EPRINT+arXiv:1108.3557
https://doi.org/10.1016/j.nuclphysb.2012.04.013
https://arxiv.org/abs/1201.5329
https://inspirehep.net/search?p=find+EPRINT+arXiv:1201.5329
https://doi.org/10.1007/s11005-011-0529-2
https://arxiv.org/abs/1012.3982
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3982
https://doi.org/10.1007/JHEP10(2017)098
https://arxiv.org/abs/1611.05436
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.05436
https://doi.org/10.1007/JHEP01(2017)130
https://arxiv.org/abs/1611.05577
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.05577
https://doi.org/10.1088/1126-6708/1999/08/020
https://arxiv.org/abs/hep-th/9906188
https://inspirehep.net/search?p=find+EPRINT+hep-th/9906188
https://doi.org/10.1016/S0550-3213(01)00118-3
https://arxiv.org/abs/hep-th/0010137
https://inspirehep.net/search?p=find+EPRINT+hep-th/0010137
https://doi.org/10.1088/1126-6708/2001/05/042
https://arxiv.org/abs/hep-th/0104016
https://inspirehep.net/search?p=find+EPRINT+hep-th/0104016
https://doi.org/10.1016/j.nuclphysb.2004.02.014
https://arxiv.org/abs/hep-th/0310193
https://inspirehep.net/search?p=find+EPRINT+hep-th/0310193
https://doi.org/10.1007/JHEP12(2016)005
https://arxiv.org/abs/1605.06346
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.06346
https://doi.org/10.1007/JHEP09(2011)123
https://arxiv.org/abs/1007.3243
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3243
https://doi.org/10.1007/JHEP10(2013)202
https://arxiv.org/abs/1305.4604
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.4604
https://doi.org/10.1007/JHEP04(2014)101
https://arxiv.org/abs/1312.3916
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.3916


J
H
E
P
1
2
(
2
0
1
7
)
0
9
3

[22] N. Dorey, V.V. Khoze, M.P. Mattis and S. Vandoren, Yang-Mills instantons in the large-N

limit and the AdS/CFT correspondence, Phys. Lett. B 442 (1998) 145 [hep-th/9808157]

[INSPIRE].

[23] N. Dorey, T.J. Hollowood, V.V. Khoze, M.P. Mattis and S. Vandoren, Multi-instanton

calculus and the AdS/CFT correspondence in N = 4 superconformal field theory,

Nucl. Phys. B 552 (1999) 88 [hep-th/9901128] [INSPIRE].

[24] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities

for Wilson loops and a test of the duality with gluon amplitudes,

Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].

[25] G.P. Korchemsky, Asymptotics of the Altarelli-Parisi-Lipatov Evolution Kernels of Parton

Distributions, Mod. Phys. Lett. A 4 (1989) 1257 [INSPIRE].

[26] L.F. Alday and G.P. Korchemsky, Instanton corrections to twist-two operators,

JHEP 06 (2017) 008 [arXiv:1609.08164] [INSPIRE].

[27] B. Eden, A.C. Petkou, C. Schubert and E. Sokatchev, Partial nonrenormalization of the

stress tensor four point function in N = 4 SYM and AdS/CFT,

Nucl. Phys. B 607 (2001) 191 [hep-th/0009106] [INSPIRE].

[28] A.A. Belavin, A.M. Polyakov, A.S. Schwartz and Yu. S. Tyupkin, Pseudoparticle Solutions of

the Yang-Mills Equations, Phys. Lett. 59B (1975) 85 [INSPIRE].

[29] M. Bianchi, M.B. Green, S. Kovacs and G. Rossi, Instantons in supersymmetric Yang-Mills

and D instantons in IIB superstring theory, JHEP 08 (1998) 013 [hep-th/9807033]

[INSPIRE].

[30] B. Zumino, Euclidean Supersymmetry and the Many-Instanton Problem,

Phys. Lett. B 69 (1977) 369.

[31] J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon

planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243]

[INSPIRE].

[32] J. Frenkel and J.C. Taylor, Nonabelian Eikonal Exponentiation,

Nucl. Phys. B 246 (1984) 231 [INSPIRE].

[33] G.P. Korchemsky, On level crossing in conformal field theories, JHEP 03 (2016) 212

[arXiv:1512.05362] [INSPIRE].

[34] B. Basso, A. Sever and P. Vieira, Spacetime and Flux Tube S-Matrices at Finite Coupling for

N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 111 (2013) 091602

[arXiv:1303.1396] [INSPIRE].

[35] E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Graviton exchange

and complete four point functions in the AdS/CFT correspondence,

Nucl. Phys. B 562 (1999) 353 [hep-th/9903196] [INSPIRE].

[36] G. Arutyunov, S. Frolov and A.C. Petkou, Operator product expansion of the lowest weight

CPOs in N = 4 SYM4 at strong coupling, Nucl. Phys. B 586 (2000) 547 [Erratum ibid. B

609 (2001) 539] [hep-th/0005182] [INSPIRE].

– 28 –

https://doi.org/10.1016/S0370-2693(98)01233-7
https://arxiv.org/abs/hep-th/9808157
https://inspirehep.net/search?p=find+EPRINT+hep-th/9808157
https://doi.org/10.1016/S0550-3213(99)00193-5
https://arxiv.org/abs/hep-th/9901128
https://inspirehep.net/search?p=find+EPRINT+hep-th/9901128
https://doi.org/10.1016/j.nuclphysb.2009.10.013
https://arxiv.org/abs/0712.1223
https://inspirehep.net/search?p=find+EPRINT+arXiv:0712.1223
https://doi.org/10.1142/S0217732389001453
https://inspirehep.net/search?p=find+J+%22Mod.Phys.Lett.,A4,1257%22
https://doi.org/10.1007/JHEP06(2017)008
https://arxiv.org/abs/1609.08164
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.08164
https://doi.org/10.1016/S0550-3213(01)00151-1
https://arxiv.org/abs/hep-th/0009106
https://inspirehep.net/search?p=find+EPRINT+hep-th/0009106
https://doi.org/10.1016/0370-2693(75)90163-X
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B59,85%22
https://doi.org/10.1088/1126-6708/1998/08/013
https://arxiv.org/abs/hep-th/9807033
https://inspirehep.net/search?p=find+EPRINT+hep-th/9807033
https://doi.org/10.1016/0370-2693(77)90568-8
https://doi.org/10.1016/j.nuclphysb.2007.11.041
https://arxiv.org/abs/0707.0243
https://inspirehep.net/search?p=find+EPRINT+arXiv:0707.0243
https://doi.org/10.1016/0550-3213(84)90294-3
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B246,231%22
https://doi.org/10.1007/JHEP03(2016)212
https://arxiv.org/abs/1512.05362
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.05362
https://doi.org/10.1103/PhysRevLett.111.091602
https://arxiv.org/abs/1303.1396
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1396
https://doi.org/10.1016/S0550-3213(99)00525-8
https://arxiv.org/abs/hep-th/9903196
https://inspirehep.net/search?p=find+EPRINT+hep-th/9903196
https://doi.org/10.1016/S0550-3213(01)00266-8
https://arxiv.org/abs/hep-th/0005182
https://inspirehep.net/search?p=find+EPRINT+hep-th/0005182

	Introduction
	Correlation functions in the light-cone limit
	Light-like Wilson loop in the instanton background
	Conformal Ward identities
	Semiclassical approximation
	Cusp anomalous dimension

	Instanton contribution to the cusp anomalous dimension
	Wilson loop in the fundamental representation
	Leading term
	Conformal gauge
	Results

	Concluding remarks
	Conventions
	Conformal properties
	D-functions in the light-cone limit
	Gauge field in the instanton background

