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1 Introduction

Recently, attractor solutions for relativistic hydrodynamics have been found in various

systems with a high degree of symmetry [1–4]. Besides their relation to the mathematical

theory of resurgence [5, 6], these attractor solutions are interesting because they imply

a firm theoretical foundation for the applicability of hydrodynamics in out-of-equilibrium

situations [2, 7–9]. A key question in this context is if attractor solutions can be found in

systems that do not exhibit additional symmetries.

A central property of hydrodynamic attractor solutions is that they become indis-

tinguishable from solutions of relativistic dissipative hydrodynamics in the limit of small

gradients. As such it is useful to first consider the relativistic generalization of the Navier-

Stokes equations1 [12]

Dε+ (ε+ P )∇λuλ =
η

2
σµνσµν + ζ

(
∇λuλ

)2
, (1.1)

(ε+ P )Duα +∇α⊥P = ∆α
ν∇µ

(
ησµν + ζ∆µν∇λuλ

)
, (1.2)

where ε, P, uµ are the fluid’s local energy density, pressure and velocity, and ∇µ is the geo-

metric covariant derivative. Furthermore, η, ζ are the shear and bulk viscosity coefficients,

D ≡ uµ∇µ, ∇µ⊥ ≡ ∆µν∇ν , ∆µν ≡ gµν + uµuν , σµν ≡ ∇µ⊥u
ν +∇ν⊥uµ −

2
3∆µν∇µuµ and the

mostly plus convention for the metric tensor gµν will be used.

In the absence of any conserved charges, the Navier-Stokes equation for the energy-

density evolution may be rewritten as

Dε

(ε+ P )∇λuλ
=
D ln s

∇λuλ
= −1 +

η

2s

σµνσµν
T∇λuλ

+
ζ

s

∇λuλ

T
, (1.3)

where s, T are the entropy density and temperature, respectively, related to ε, P via the

usual thermodynamic relations. For relativistic systems, which are never incompressible,

1For the purpose of this discussion, the well-known problems of acausality and instability of the Navier-

Stokes equations [10, 11] can be safely ignored.
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the expansion scalar ∇λuλ is generally non-vanishing unless global equilibrium is reached.

Eq. (1.3) then implies that for a given system, the time-evolution of the quantity

A1 =
D ln s

∇λuλ
, (1.4)

will behave similarly for small gradients irrespective of initial conditions. As an example,

consider systems exhibiting conformal symmetry ζ = 0 and η
s = const. In this case, eq. (1.3)

implies that the time evolution of D ln s
∇λuλ

for arbitrary initial conditions will collapse onto a

single curve when expressed as a function of 2sT∇λuλ
ησµνσµν

.

As another example, consider non-conformal systems where the trace of the energy-

momentum tensor of the Navier-Stokes equation is given by Tr Tµν = −ε+ 3P − 3ζ∇λuλ.

The trace of the energy-momentum tensor corresponds to the sum of temporal and spatial

eigenvalues, and thus encodes information about the effective equation of state the system

is experiencing. In equilibrium, ∇λuλ = 0, and hence the trace anomaly implies an equilib-

rium equation of state. For non-conformal systems out of equilibrium, the Navier-Stokes

equation implies that the time-evolution of the quantity

A2 =
TrTµν + ε− 3P

ζT
, (1.5)

will behave similarly for small gradients irrespective of initial conditions if expressed as a

function of the inverse gradient strength

Γ ≡
[
η

2s

σµνσµν
T∇λuλ

+
ζ

s

∇λuλ

T

]−1

. (1.6)

Clearly, Γ reduces to the expression for the scaling strength found in the conformal case

ζ = 0 above.

Real systems exhibit deviations from the behavior predicted by the Navier-Stokes

equation at finite gradient strength. Nevertheless, solutions will tend to the Navier-Stokes

solution in the limit of small gradients, such that it acts as an attractor solution. Less

trivial is the question of whether such an attractor solution extends to the regime of mod-

erate or even large gradients. In practice, one can search for attractor solutions in real

systems or microscopic theories by e.g. studying the time-evolution of quantities such as

A1, A2. For A1, this has been successfully achieved in system with conformal symmetry

and restricted spatial dynamics (Bjorken flow in the longitudinal direction [13] and spa-

tially homogeneous in the transverse directions) in refs. [1–4]. The present work is trying to

extend the understanding of hydrodynamic attractor solutions by studying non-conformal

systems and systems that allow for spatial dynamics.

2 Non-conformal attractor in kinetic theory

Consider a gas of particles with mass m undergoing one-dimensional boost-invariant ex-

pansion according to Bjorken [13]. It is convenient to work in Milne coordinates proper

time τ =
√
t2 − z2 and spacetime rapidity arctanh(z/t) for this system. Kinetic theory
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in the relaxation-time approximation is defined by a single-particle on-shell distribution

function f(xµ, pµ) which obeys the Boltzmann BGK equation [14, 15]

pµ∂µf − pλpσΓµλσ
∂f

∂pµ
=
pµuµ (f − feq)

τR
, (2.1)

where Γµλσ are the Christoffel symbols for Milne coordinates and feq = 2π2ep
µuµ/T . In

these expressions, uµ(xµ), T (xµ) are related to the time-like eigenvector and eigenvalue of

the energy-momentum tensor Tµν(xµ) =
∫
dχpµpνf as2

εuµ ≡ −Tµνuν , (2.2)

with the normalization condition uµuµ = −1. Here ε can be recognized as the local energy

density. For a massive gas at temperature T in equilibrium, the relation between energy

density and temperature is readily calculated from (2.2) with f = feq. Working in units

where the particle mass m = 1, one finds [16]

ε(T ) = 3T 2K2

(
T−1

)
+ TK1

(
T−1

)
, P (T ) = T 2K2

(
T−1

)
(2.3)

s(T ) = K3

(
T−1

)
, c2

s(T ) =

(
3 + T−1K3

(
T−1

)
K2 (T−1)

)−1

(2.4)

η(T ) =
τR
T

∫ T

0
dT ′T ′s(T ′) , ζ(T ) =

5

3
η(T )− τRTs(T )c2

s(T ) (2.5)

for the energy density, pressure P , entropy density s, speed of sound squared c2
s as well

as shear and bulk viscosity coefficients, respectively. Here K(x) denote modified Bessel

functions.

Out of equilibrium, there is no temperature T for the system, but there always is an

energy density that can be found from eq. (2.2). To find the parameter T (ε) in feq, note

that integration
∫
dχpν of eq. (2.1) leads to covariant conservation of the energy-momentum

tensor iff uµT
µν = uµT

µν
eq [16]. Therefore, T (ε) out of equilibrium is required to be chosen

such that the energy density in (2.3) matches the time-like eigenvalue ε of Tµν . Note that

this is not implying that the system evolves with an equilibrium equation of state, which

is a relation between the time-like and space-like eigenvalues of Tµν , but rather only fixing

the setup of the equation (2.1).

In a system that is homogeneous with respect to transverse coordinates x⊥ = (x, y)

and boost-invariant (independent of space-time rapidity), eq. (2.1) implies the following

integral equation for the evolution of the energy-density as a function of proper time [17]:

ε (T (τ)) = Λ4
0D(τ, τ0)h2

(
τ0

τ
√

1 + ξ0
,Λ−1

0

)
+

∫ τ

τ0

dτ ′

τR
D(τ, τ ′)h2

(
τ ′

τ
, T−1(τ ′)

)
, (2.6)

h2(y, z) =
y

2

∫ ∞
0

duu3e−
√
u2+z2

(√
y2 + z2/u2 +

1 + z2/u2√
y2 − 1

arctanh

√
y2 − 1

y2 + z2/u2

)
,

D(τ2, τ1) = e
−

∫ τ2
τ1

dτ ′
τR .

2Note that the integration measure is given by dχ ≡ d4p
(2π)4

√
−detgµν 2Θ(p0)(2π)δ

(
−gµνpµpν −m2

)
.
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Figure 1. Scaling variables A1, A2 for non-conformal kinetic theory in Bjorken flow with Λ0 = 1,

τR = 0.1/T as a function of inverse gradient strength Γ. Note that for A2, scaling the gradient

strength with the sound attenuation length implies that the Navier-Stokes result corresponds to

an area rather than a single curve. The curves labeled ‘Attractor LO approx.’ are generated by

solving eq. (2.7) for ξ0(τ0) and evaluating A1, A2 using (2.8).

For simplicity, τR = Cπ/T with constant Cπ was chosen in the following. Initial conditions

for the system are characterized by choosing a value of ξ0 ∈ [−1,∞) and Λ0 at τ = τ0.

Numerical solutions to eq. (2.6) for Λ0 = 1 and various values of ξ0 can be generated by

the methods outlined in ref. [18]. For a spatially homogeneous and boost-invariant system,

eq. (1.4) becomes A1(τ) = τ∂τ ln s and T∇λuλ
σµνσµν

= 8
3τT , ∇λu

λ

T = τT lead to Γ = τ/γs with

γs ≡ 4
3

η
ε+P + ζ

ε+P the temperature-dependent sound attenuation length.

The results from numerically solving eq. (2.6) are shown in figure 1, along with the

results from the Navier-Stokes equation. One observes that for arbitrary initial choices of

ξ0 at fixed τ0, the subsequent evolution tend to cluster in special ‘attractor solutions’ which

eventually merge with the Navier-Stokes results. In the case of A1, it is possible to find

points close to the attractor solution by employing the technique outlined in [2], namely the

‘slow-roll’ condition ∂τA1|τ=τ0,ξ=ξ0
= 0 [1]. For the case at hand, this condition becomes

(ε+ P )
(
∂τ ε+ τ∂2

τ ε
)
− τ (∂τ ε)

2 (1 + c2
s

)
(ε+ P )2

∣∣∣∣∣
τ=τ0,ξ=ξ0

= 0 , (2.7)

where3

ε(τ0) = Λ4
0h2

(
1√

1 + ξ0
,Λ−1

0

)
, ∂τ ε(τ0) = − Λ4

0

τ0
√

1 + ξ0
h

(1,0)
2

(
1√

1 + ξ0
,Λ−1

0

)
, (2.8)

∂2
τ ε(τ0) =

−1

τR

(
∂τ ε(τ0) +

(ε+ P )

τ0

)
+ Λ4

0

h(2,0)
2

(
1√

1+ξ0
,Λ−1

0

)
τ2

0 (1 + ξ0)
+

2h
(1,0)
2

(
1√

1+ξ0
,Λ−1

0

)
τ2

0

√
1 + ξ0

 .

Solving (2.7) numerically for τR = 0.4
T and τ0 = 0.1, Λ0 = 1 (all in mass units m = 1)

leads to ξ0 ' 17.8. Using this value of ξ0 as initial condition, an attractor solution for

3Another useful relation is ε(T ) = T 4h2(1, T−1).
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A1 may be constructed numerically by solving eq. (2.6). Unlike the case of conformal

theories, repeating the above procedure for different starting times τ0 will lead to a slightly

different attractor curve. This can be understood from the fact that, in the non-conformal

case, A1 is not a simple function of τT alone because there is an additional mass scale

to contend with. As a consequence, an envelope of attractor curves for A1 is shown in

figure 1, suggesting that the attractor in the non-conformal case is an extended object.

The width of the attractor envelope is related to the value of Λ−1
0 and I have checked that

the conformal (zero-width) attractor from ref. [2] is recovered in the limit Λ0 →∞.

Results for A2 are also shown in figure 1. One observes a clustering of trajectories

for arbitrary initial condition similar to A2, again suggesting an attractor solution at early

times that is distinct from the Navier-Stokes result. However, the approach of individual

trajectories to the A2 attractor solution seems to be slower than for A1. The region labeled

‘Attractor’ in figure 1 marks the area where different A1 attractor solutions to eq. (2.6)

have merged. This demonstrates that there are special solutions to eq. (2.6) which are

attractors for A1 and A2 simultaneously.

3 Non-homogeneous attractor in rBRSSS

All attractor solutions discussed so far where restricted to spatially homogeneous systems,

begging the question if attractor solutions survive if the spatial dynamics is not strongly

restricted. To study this question, consider the mock-microscopic theory of resummed

BRSSS (rBRSSS for short) in conformal symmetry, which is defined by an energy momen-

tum tensor Tµν = εuµuν + P∆µν + πµν with the dynamic shear stress πµν obeying the

equations of motion [19]

πµν = −ησµν − τπ
[
〈Dπµν〉+

4

3
πµν∇⊥λ uλ

]
+ κ

[
R<µν> − 2uλuρR

λ<µν>ρ
]

+
λ1

η2
π<µλπ

ν>λ − λ2

η
π<µλΩν>λ + λ3Ω<µ

λΩν>λ . (3.1)

In the following, only flat-space systems where the Ricci and Riemann tensors vanish are

considered. Also, for simplicity I will set λ1 = λ2 = λ3 = 0. The rBRSSS equations of

motion are causal as long as τπ ≥ 2η
sT , cf. ref. [20].

For a spatially homogeneous system, the rBRSSS equations have been shown to possess

a hydrodynamic attractor solution [1]. Fortunately, numerical solvers for rBRSSS equations

are readily available for spatially non-homogeneous systems [21–25]. I will be using the

VH2+1 solver from ref. [21], which solves the rBRSSS equations for systems that are boost-

invariant, but otherwise unrestricted in terms of the dynamics in transverse coordinates

x⊥ = (x, y). Using an optical Glauber model of a Au+Au collision at an impact parameter

of 8 fm with AdS/CFT pre-equilibrium flow [26] as initial condition,4,5 the equations of

4For the details of the implementation of the Glauber model see for instance ref. [20]. In essence, the

initial conditions considered here are qualitatively similar to a two-dimensional Gaussian energy density

ε(τ = τ0, x, y) with different width in x, y.
5While it would have been possible to consider simpler initial conditions, the choice of Glauber+pre-

equilibrium flow corresponds to studying attractors in the superSONIC model used in relativistic ion colli-

sion phenomenology [27, 28].
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Figure 2. Selected trajectories of A1(Γ) from solving rBRSSS equations numerically in 2+1d for a

Au+Au collision at b = 8 fm impact parameter with η
s = 0.16, τπT = 4η

s . The direction of the time

evolution is indicated by arrows on one trajectory. While at early times (not shown), trajectories are

far separated and strongly dependent on initial conditions, at late times one observes a clustering

of trajectories near an apparent attractor solution. The attractor solution does not stop near

Γ1 ' 16, A1 ' −0.96, but system evolution of A1(Γ) slows down dramatically in real time near this

point, making it computationally expensive to continue tracking the attractor.

motion are solved numerically on a lattice in transverse space x⊥. On each lattice point at

each time-step, it is possible to evaluate A1,Γ by locally calculating (1.4), (1.6) numerically.

A representative plot of the resulting trajectories is shown in figure 2.

As can be seen from this figure, trajectories in the A1,Γ plane are initially far separated,

with some of the trajectories being close to the Navier-Stokes result, while others are not.

However, at late times in the system evolution when gradients are no longer dominated

solely by longitudinal Bjorken flow, trajectories cluster near an apparent attractor solution.

Once the system comes close to the regime near Γ ' 16, A1 ' −0.96, evolution of A1(Γ)

slows down dramatically in real time, making it computationally expensive to continue

tracking the attractor. I have checked that the apparent attractor remains unaffected

by choosing different initial temperatures, starting times and impact parameters for the

rBRSSS solution.

4 Findings and interpretations

Prior to the present study, relativistic hydrodynamic attractor solutions had been identified

in systems with a high degree of symmetry (conformal symmetry and spatial homogeneity).

In this work, the existence of attractor solutions for system with broken symmetries (non-

conformal and spatially non-homogeneous) was investigated.

– 6 –
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Findings:

• In the case of non-conformal kinetic theory undergoing Bjorken flow, there exists an

attractor solution for the quantity A1 in eq. (1.4) which is qualitatively similar to, but

quantitatively different from, the known attractor solution of the conformal case [2].

• In the case of non-conformal kinetic theory undergoing Bjorken flow, points close to

the non-conformal attractor can be calculated by a ‘slow-roll’ approximation (2.7).

• In the case of non-conformal kinetic theory undergoing Bjorken flow, the non-

conformal attractor solution for A1 also acts as an attractor for the quantity A2,

which controls the non-equilibrium equation of state (the relation between energy

and non-equilibrium pressure).

• In the case of conformal non-homogeneous rBRSSS theory, there exists an attractor

solution for the quantity A1(Γ) with definitions (1.4), (1.6) that can be constructed

numerically.

• In the case of conformal non-homogeneous rBRSSS theory, the attractor solution

A1(Γ) is only partially known because the numerical evolution slows down dramati-

cally.

Interpretations:

• Together with previous results on this subject, the present work strongly suggests

that non-analytic attractor solutions for relativistic hydrodynamics exist in a broad

class of theories regardless of the underlying symmetries.

• Traditionally, relativistic hydrodynamics has been defined via a gradient expansion,

with Euler equation, Navier-Stokes, BRSSS [19, 29] and Grozdanov-Kaplis theory [30]

the respective complete 0th, 1st, 2nd and 3rd order realizations. However, the hydrody-

namic gradient series is expected to be divergent [1, 5, 6, 31, 32], calling into question

the meaning of solutions to the hydrodynamic gradient series for any non-vanishing

gradient strength [8]. The existence of hydrodynamic attractor solutions provides

this meaning and serves as the foundation for a new, yet to be elaborated, theory of

hydrodynamics out-of-equilibrium [2, 9].

• The existence of an apparent attractor for the non-equilibrium equation of state in fig-

ure 1b eliminates the last remnant of the standard textbook ‘hydrodynamics requires

equilibrium’ paradigm. While the relation between ε, P is by construction controlled

by the thermodynamic results (2.3), the system experiences a non-equilibrium pres-

sure Peff = P − ζB(ε,∇)∇λuλ where ζB is a non-analytic function that depends on

both the energy density as well as the gradient strength (denoted formally as ∇), sim-

ilar to the shear viscosity coefficient ηB defined in ref. [2]. Though not interpreted

in this fashion, non-equilibrium equations of state are now routinely used (and in-

deed required!) to provide precision fits of hydrodynamic models of relativistic ion

collisions to experimental data [33, 34].

– 7 –
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• Given the above findings, it can be considered reasonably likely that an attractor solu-

tion for QCD exists in the context of relativistic ion collisions. This attractor solution

would result in ‘hydrodynamic-like’ behavior of the system without any requirement

of system equilibration. Therefore, it would naturally explain the experimentally

observed ‘hydrodynamic-like’ signatures in relativistic heavy-ion and proton-proton

collisions [35] and possibly even indicate hydrodynamic behavior in electron-positron

collisions [36].

• Besides the immediate application to the field of relativistic nuclear collisions, the

existence of hydrodynamic attractor solutions may have important implications for

relativistic fluid dynamics in general, e.g. by providing a firm foundation for viscous

cosmologies [37–39].

Note added in proof. While this work was being reviewed, results for the non-conformal

kinetic theory attractor were presented by a different group in ref. [40]. The results in

ref. [40] appear to be in full agreement with this work.
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