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Abstract: We present the minimal model of electroweak baryogenesis induced by

fermions. The model consists of an extension of the Standard Model with one electroweak

singlet fermion and one pair of vector like doublet fermions with renormalizable couplings

to the Higgs. A strong first order phase transition is radiatively induced by the singlet-

doublet fermions, while the origin of the baryon asymmetry is due to asymmetric reflection

of the same set of fermions on the expanding electroweak bubble wall. The singlet-doublet

fermions are stabilized at the electroweak scale by chiral symmetries and the Higgs potential

is stabilized by threshold corrections coming from a multi-TeV ultraviolet completion which

does not play any significant role in the phase transition. We work in terms of background

symmetry invariants and perform an analytic semiclassical calculation of the baryon asym-

metry, showing that the model may effectively generate the observed baryon asymmetry

for percent level values of the unique invariant CP violating phase of the singlet-doublet

sector. We include a detailed study of electron electric dipole moment and electroweak

precision limits, and for one typical benchmark scenario, we also recast existing collider

constraints, showing that the model is consistent with all current experimental data. We

point out that fermion induced electroweak baryogenesis has irreducible phenomenology at

the 13 TeV LHC since the new fermions must be at the electroweak scale, have electroweak

quantum numbers and couple strongly to the Higgs. The most promising searches involve

topologies with multiple leptons and missing energy in the final state.
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1 Introduction

The explanation of the baryon asymmetry of the universe is one of the outstanding prob-

lems in particle physics. The only baryogenesis mechanism that we know of which nec-

essarily requires new physics at the electroweak scale and is therefore most likely to be

experimentally testable is electroweak baryogenesis (EWBG) [1], for reviews see [2–4]. It

relies on the nucleation of Higgs vacuum bubbles at the electroweak phase transition, on

which fermions reflect asymmetrically, creating an excess in some global charge which is

processed into a baryon asymmetry by weak sphalerons [5, 6]. For the mechanism to be

effective, the Standard Model Higgs potential requires modifications, in order to ensure

the nucleation of bubbles with a Higgs condensate larger than the critical temperature of

the phase transition. This is the strong first order phase transition requirement, which

ensures that the baryon asymmetry is not washed out by the same weak sphalerons which

create the asymmetry in the first place. For these bubbles to be nucleated at the critical

temperature, an energy barrier in the effective potential is needed in order to separate
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the electroweak symmetric phase (outside the bubble) from the electroweak broken phase

(inside the bubble). Also, a new source of CP violation is required for efficient generation

of an asymmetry, since Standard Model CP violation is insufficient due to the suppression

factors in the Jarlskog invariant [7, 8].

With the exception of the fermionic models presented in [9–12] and models with dynam-

ical Yukawa couplings [13–17], the literature has overwhelmingly concentrated in coupling

new scalars to the Higgs in order to induce the strong first order phase transition, mostly

because the barrier may be generated with a negative Higgs quartic stabilized by a thresh-

old (H†H)3 term as in [18], which at tree level may only be generated by integrating out

heavy scalars, or because in a large temperature expansion of the Higgs effective poten-

tial, scalars contribute to a negative cubic term which induces a barrier, while fermions do

not [2]. For a classification of the extensive literature on scalar models see [19]. However,

new scalars introduce additional tuning in the theory, since they are not stable at the

electroweak scale. Also, the simplest scalar models involve only singlets, in which case the

only irreducible phenomenology involves precision Higgs physics [20–24] which may require

a new high energy collider.

This motivates us to revisit fermion induced electroweak baryogenesis. We draw ad-

ditional motivation from the following observation. Both fermions and scalars contribute

to the Higgs thermal potential if they obtain mass from the Higgs mechanism, and only

in a large temperature expansion is clear that scalars contribute most efficiently to the

barrier. If instead one performs a small temperature expansion, one finds that the leading

contribution to the thermal potential is exactly the same for both fermions and bosons,

and is proportional to [25]

− T 2m2(φ)

2π2
K2

(
m(φ)/T

)
+O

(
T 2m(φ)2e−2m(φ)/T

)
, (1.1)

where φ is the Higgs field, m(φ) is the mass of the fermion or boson, and K2 a modified

Bessel function. So in cases in which the critical temperature is smaller than the masses

of the fermions contributing to the effective potential, fermionic models may be equally

as effective as scalar models in inducing a barrier radiatively. From (1.1), we see that the

key element is the relation between the mass of the fermion and the Higgs condensate, so

the problem reduces to identifying what type of mass relation leads to the formation of a

barrier in the effective potential.

In the Standard Model, at temperatures right above the critical temperature for the

phase transition, the Higgs effective potential around the origin of Higgs field space mono-

tonically increases with the Higgs field, so there is no energy barrier leading to a strong

first order phase transition [26]. Introducing new chiral fermions at the electroweak scale

which obtain their masses only from the Higgs condensate delays the phase transition [9],

but does not modify the picture around the origin of field space (even though at large

field excursions new fermions lead to instabilities in the Higgs potential due to their zero

temperature contributions). The reason is that the masses of chiral fermions and there-

fore their thermal potential (1.1) are monotonically increasing with the Higgs field, so the
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full Higgs effective potential retains the same qualitative behavior of the Standard Model

effective potential around the origin of Higgs field space.

The picture changes when we introduce new fermions that have both vector-like masses

and masses obtained from mixing with other fermions in the electroweak broken vacuum.

In this case, the masses of the fermions depend on the Higgs in a qualitatively different

manner, since the condensate may induce level splitting, which reduces the mass of the

lightest eigenstate of the mass matrix and increases the mass of the heavier ones. Schemat-

ically and around the origin of Higgs field space, the mass of the lightest new fermion is

m ∼M −y2φ2/M , where y is a renormalizable coupling between the new fermions and the

Higgs, M a vector like mass term, and the second term represents level splitting. In this

case, the mass of the lightest fermion decreases with increasing values of the Higgs conden-

sate φ, leading to a reduction in the thermal effective potential. There is then a competition

between the Standard Model terms, which tend to restore electroweak symmetry, and the

new fermionic terms which have the opposite effect. In this work we present a simple model

realizing the above mass relation, for which we find that there are large regions of parameter

space in which at the critical temperature, around the origin the monotonically increasing

Standard Model terms dominate while close the electroweak scale the negative contribution

from the fermionic terms dominates. At field ranges φ ∼M/y level splitting stops, the mass

of the lightest fermion (and therefore its thermal potential) starts growing, and the poten-

tial is stabilized. Higher order Standard Model terms also help in stabilizing the potential.

The summarized effect is the formation of an energy barrier separating the minimum at the

origin of field space from a second minimum where electroweak symmetry is broken. At even

larger field ranges and most importantly, at zero temperatures, the new fermions lead to an

instability which the Standard Model thermal terms cannot counteract, so this minimal pic-

ture is insufficient. In order to solve this issue, we introduce stabilizing irrelevant operators

of the type (H†H)n with n ≥ 3, which may be interpreted as threshold corrections coming

from a multi-TeV UV completion which does not play any role in the formation of the bar-

rier (differently from [18]), since the effects of the corresponding irrelevant operators at the

electroweak scale are suppressed by powers of the electroweak scale over the TeV-scale cut-

off of the UV completion. We present a schematic picture of the full mechanism in figure 1.

It is easy to find the minimal fermionic model leading to a strong first order phase

transition by exhaustion. The two most minimal anomaly free extensions of the Stan-

dard Model with new fermions coupling to the Higgs at renormalizable level are, with

one multiplet the right handed neutrino ψS and with two multiplets a vector like doublet

ψL, ψL [27]. In both cases, the new fermions couple to the Higgs by mixing with Standard

Model fermions, and these couplings are generically strongly constrained [27]. Most im-

portantly, neither the right handed neutrino model nor the vector like doublet model lead

to level splitting, and they do not generate a strong first order phase transition. The next

simplest fermionic extension of the Standard Model is a combination of the two models

above, and contains three fermion multiplets, one SU(2) singlet ψS and a vector like SU(2)

doublet ψL, ψL [27–32]. In this case, one can write down Yukawas with the Higgs without
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Figure 1. Schematic representation of the Higgs effective potential as a function of the Higgs field

φ at the critical temperature of the electroweak phase transition, in a model with a barrier induced

by new electroweak-scale fermions.

involving Standard Model fermions, ψLH
c ψS , ψLH ψS .1 These Yukawas may be large,

so these fermions may lead to a large effect on the Higgs effective potential at one loop.

Moreover, in this singlet-doublet model the Higgs field induces level splitting between the

neutral singlet-doublet fermions.

In this work we demonstrate that the singlet-doublet model is in fact a complete realiza-

tion of fermion induced electroweak baryogenesis, by showing that it leads to a strong first

order phase transition, has the requisite CP violating phase leading to the generation of the

baryon asymmetry, and is consistent with all current experimental data. The CP violating

phase is unique and may also be observed in electron electric dipole moment experiments.

We point out that the collider phenomenology of fermion induced electroweak baryogenesis

is significantly different from the more popular models of scalar induced EWBG. Since in

fermion induced EWBG the new fermions must be at the electroweak scale and have elec-

troweak quantum numbers, they are pair produced and decay via electroweak gauge bosons

and the Higgs leading to a rich set of final states, with the largest discovery potential in

final states with multiple leptons and missing energy.

To the best of our knowledge, the model presented here is the first complete imple-

mentation and phenomenological study of purely fermion induced EWBG. Previous works

mostly follow the ideas of [9, 11] and [14]. In the seminal work [9] it was first realized that

the strong first order phase transition may be induced by fermions in a supersymmetric

context, but in that work the effective potential is radiatively stabilized by new scalars

which lead to a contribution to the barrier, so it is not straightforward to quantify and

study the effect of the fermions alone. Here we show with a simplified model that the bar-

rier may be generated exclusively by fermions while simultaneously stabilizing the potential

with threshold corrections without affecting the strength of the phase transition, we isolate

1The gauge representation and hypercharges of the singlet-doublet fermions are entirely fixed by the

requisite Yukawa couplings and anomaly cancellation.
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the requirements for fermion induced EWBG to be effective and we identify the irreducible

phenomenology. In [11] the barrier is generated by integrating out heavy fermions, but

the baryon asymmetry is not explored and there is no proof that the potential may be

stabilized without affecting the strength of the phase transition. In [14] it is shown that

if one allows for dynamical Yukawa couplings a strong first order phase transition may

be induced, but a new vacuum state responsible for the dynamics of the Yukawas must

be introduced (for explicit constructions see [15, 17]). Here we concentrate in the simpler

case of constant Yukawas and induce the strong first order phase transition using only the

dynamics of the new fermions in the Higgs vacuum.

This paper is organized as follows. In section 2 we present the model, and we carefully

work throughout in terms of background symmetry invariants, in order to keep track of

the unique CP violating phase of the model. In section 3 we numerically determine the

strength of the phase transition from the full one-loop Higgs effective potential in the CP

conserving case, we study electroweak precision limits and comment on the stability of

the Higgs potential and Landau poles. In section 4 we include CP violation, and study

the corresponding phenomenology. We perform an analytic, semiclassical, and background

symmetry invariant calculation of the baryon asymmetry, and study electron electric dipole

moment constraints. In section 5 we present and combine all the results, including the

baryon asymmetry, strength of the phase transition, electroweak precision, and electric

dipole moment constraints. In section 6 we briefly comment on the collider phenomenology.

We conclude in section 7.

2 Singlet-doublet model at finite temperatures

Consider the Standard Model extended with a fermionic singlet ψS and a vector like elec-

troweak doublet ψL, ψL, with gauge charges defined in table 1. We assign a discrete Z2

charge to the singlet and doublet fermions, also specified in table 1, which forbids mixing

with the standard model fermions. The most general Lagrangian at the renormalizable

level for the singlet-doublet fermions, the Higgs doublet with hypercharge Y (H) = 1, and

the SM fermions, respecting the discrete Z2 symmetry is

DµH
†DµH + iψ†L σ

µDµ ψL + iψ†
L
σµDµ ψL + iψ†S σ

µDµ ψS

− V (H)−
[
yuij QiHuj − ydijQiHcdj − y`ijLiHc`j

+
1

2
mS ψSψS +mLψLψL − λd ψLH

c ψS + λu ψLH ψS + h.c.

]
, (2.1)

where the tree-level renormalizable Higgs potential is defined as

Vtree ≡ m2H†H +
λ

2
(H†H)2 . (2.2)

We normalize the Higgs condensate as

φ2

2
≡ 〈H†H〉 , (2.3)
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SU(3)c SU(2)L U(1)Y Z2

ψS 1 1 0 −1

ψL 1 2 −1 −1

ψL 1 2 1 −1

Table 1. Field content of the singlet-doublet model. The singlet and doublet fermions are odd

under the Z2, while the standard model fermions are even. The discrete symmetry forbids Yukawas

involving the singlet and doublet fermions and standard model fermions, and makes the lightest

fermion of the singlet-doublet sector stable.

where without loss of generality we can work in a gauge with φ ≥ 0. At zero temperature

the potential is minimized at φ(T = 0) ≡ v = 246 GeV.

The background (spurious) symmetry group of the model corresponds to Standard

Model flavor group cross a U(1)S ×U(1)L ×U(1)L group specified in table 2. The singlet-

doublet model contains five physical observables, or equivalently, five invariants under the

U(1)S ×U(1)L ×U(1)L background symmetry.

The CP even invariants are four, and may be chosen to be the absolute values of

the singlet and doublet Lagrangian masses
∣∣mS

∣∣, ∣∣mL

∣∣ and the absolute values of the two

Yukawa couplings
∣∣λu∣∣, ∣∣λd∣∣. In this work we will be interested in electroweak-scale values

for the Lagrangian masses
∣∣mS

∣∣, ∣∣mL

∣∣ ∼ O(102 GeV), since heavier singlet-doublet fermions

would decouple from the thermal plasma at the electroweak phase transition and would not

lead to significant effects on the effective theory. This choice is of course technically natural:

the smallness and stability of the singlet-doublet masses at the electroweak scale within any

high scale UV completion is ensured by the chiral symmetries of the singlet-doublet sector.2

The final remaining physical parameter of the theory is a unique CP odd invariant

Imλuλdm
∗
Sm
∗
L. In the case in which any of the parameters λu, λd,mS or mL are zero, the

CP odd invariant vanishes and there is no effective CP violation in the theory. For non

vanishing Yukawas and singlet-doublet masses the CP odd invariant may be traded for the

invariant CP violating phase

δCP ≡ Arg
(
λuλdm

∗
Sm
∗
L

)
∈ 0, 2π . (2.4)

The singlet-doublet sector violates CP whenever δCP 6= 0, π, and conserves CP otherwise.

δCP is the required source of CP violation for a baryon asymmetry to be obtained in this

model.

2Choosing electroweak scale singlet-doublet Lagrangian masses leads to a coincidence of scales problem:

in this theory there is no explicit (dynamical) relation between the singlet-doublet lagrangian masses, and

the electroweak scale itself. For brevity we will not comment any further on this problem, whose solution

would require further details about the UV completion.
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U(1)S U(1)L U(1)L

ψS −1

ψL −1

ψL −1

mS 2

mL 1 1

λu 1 1

λd 1 1

Table 2. Background U(1)S × U(1)L × U(1)L charges of the Singlet-Doublet model. All the

Standard Model fields are neutral under the background symmetry group U(1)S ×U(1)L ×U(1)L,

while the Singlet-Doublet fermions are neutral under the non-abelian Standard Model flavor group.

Note that the CP violating phase δCP defined in equation (2.4) is a CP odd invariant.

We define the charged an neutral components of the fermionic doublets as

ψL ≡

(
ψ0
L

ψ−

)
, ψL ≡

(
ψ+

ψ0
L

)
. (2.5)

The spectrum of the theory consists of one charged Dirac pair formed with ψ+ and ψ−,

and three neutral Majorana fields. The charged fields ψ± do not couple to the Higgs, so

their non-negative, background symmetry invariant Dirac mass squared is

(m±F )2 =
∣∣mL

∣∣2 . (2.6)

On the other hand, the symmetric complex mass matrix for the neutral Majorana fields

ψS , ψ
0
L, ψ

0
L

in the electroweak broken vacuum defined in (2.3) is

M≡


mS

λuφ√
2

λdφ√
2

λuφ√
2

0 mL

λdφ√
2
mL 0

 = U


m1 0 0

0 m2 0

0 0 m3

 UT . (2.7)

where the mass singular values mi, i = 1, 2, 3 corresponding to the mass eigenstates ψi
are by definition non-negative, and the matrix U is a unitary singular value decompo-

sition matrix, which is defined by (2.7) only up to a reparametrization symmetry inde-

pendent of the background symmetry, corresponding to right multiplication by a discrete

unitary matrix. Under a background symmetry transformation the matrix U transforms

by left multiplication with a diagonal unitary matrix with the charges specified in table 2,
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diag(e−iα, e−iβ , e−iγ), where α, β and γ are arbitrary phases. Physical observables are

invariants under both the discrete reparametrization and background symmetry transfor-

mations. For instance, the three mass singular values are invariants. To make this explicit,

note that the hermitian mass squared matrix is

M†M =


∣∣mS

∣∣2 + φ2

2

[ ∣∣λu∣∣2 +
∣∣λd∣∣2 ] 1√

2

[
φλum

∗
S + φmLλ

∗
d

]
1√
2

[
φm∗Sλd + φmLλ

∗
u

]
∣∣mL

∣∣2 + 1
2φ

2
∣∣λu∣∣2 1

2φ
2λdλ

∗
u∣∣mL

∣∣2 + 1
2φ

2
∣∣λd∣∣2

 ,

(2.8)

which has a characteristic equation given by

− det(M†M− xI) = x3 + ax2 + bx+ c = 0 , (2.9)

with coefficients

a = −2
∣∣mL

∣∣2 − ∣∣mS

∣∣2 − [ ∣∣λu∣∣2 +
∣∣λd∣∣2 ]φ2 ,

b =
∣∣mL

∣∣4 + 2
∣∣mLmS

∣∣2 +

([ ∣∣λu∣∣2 +
∣∣λd∣∣2] φ2

2

)2

,

+
∣∣mL

∣∣2[ ∣∣λu∣∣2 +
∣∣λd∣∣2 ]φ2 − [m∗Lm∗Sλuλd + h.c.

]
φ2 ,

c = −
∣∣mL

∣∣4∣∣mS

∣∣2 +
∣∣mL

∣∣2[m∗Lm∗Sλuλd + h.c.
]
φ2 −

∣∣mLλuλd φ
2
∣∣2 . (2.10)

Since the coefficients a, b, c in (2.10) are explicitly background and reparametrization in-

variant, the mass squared singular values of the neutral singlet-doublet sector which are

the solutions of the characteristic equation (2.9) are also invariants. For completeness they

are given by

m2
i = − 1

3C

[
aC + ωiC

2 +
A

ωi

]
,

A = a2 − 3b ,

B = 2a3 − 9ab+ 27c ,

C =

[
B

2
+

1

2

√
B2 − 4A3

]1/3
,

ω1 = 1 , ω2 = −1

2
+ i

√
3

2
, ω3 = ω∗2 , (2.11)

with i = 1, 2, 3.

In this work, we are interested in studying the finite temperature effective Higgs poten-

tial, which determines the nature of the electroweak phase transition. Up to one-loop, the

effective potential is determined by the tree level potential (2.2), plus a zero-temperature

and a finite temperature 1-loop contribution. The zero-temperature one-loop contribution

is given by

V1-loop ≡
1

64π2

∑
a

(−1)ξga

[
m4
a

(
log

(
m2
a

µ2

)
− 3

2

)
+ Pa(φ

2)

]
, (2.12)
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where µ is the renormalization scale, all couplings must be interpreted as effective couplings

at that scale, and a is an index that runs over all boson and fermion fields obtaining mass

from the Higgs mechanism. ξ = 1 for fermions, ξ = 0 for bosons. ga corresponds to the

degrees of freedom of the corresponding field, which is equal to 1 for a real scalar, 2 for a

Weyl fermion, 3 for a neutral massive gauge boson. We only consider the contributions to

the effective potential coming from the three new neutral Majorana fermions with masses

specified in (2.11), from the W boson (mW = g2φ/2), the Z boson (mZ = mW cos θW ) and

from the top quark (mt = ytφ/
√

2). We neglect the subleading contributions coming from

all the rest of the particles in the Standard Model. The functions Pa(φ
2) in (2.12) depend

on renormalization conditions, which are chosen to be

∂

∂φ
V1-loop

∣∣∣∣
φ=v

= 0 ,
∂2

∂φ2
V1-loop

∣∣∣∣
φ=v

= 0 , (2.13)

which up to a field independent term set the functions Pa(φ
2) to [9, 11]

Pa(φ
2) = αaφ

2+βaφ
4 , (2.14)

αa =
1

64π2

[(
−3

ωaω
′
a

v
+ω′a+ωaω

′′
a

)(
log

ωa
µ2
− 3

2

)
− 3

2

ωaω
′
a

v
+

3

2
ω′2a +

1

2
ωaω

′′
a

]
, (2.15)

βa =
1

128π2v2

[
2

(
ωaω

′
a

v
−ω′a−ωaω′′a

)(
log

ωa
µ2
− 3

2

)
+
ωaω

′
a

v
−3ω′2a −ωaω′′a

]
, (2.16)

where we defined

ωa = m2
a

∣∣∣
φ=v

, ω′a =
dm2

a

dφ

∣∣∣
φ=v

, ω′′a =
d2m2

a

dφ2

∣∣∣
φ=v

. (2.17)

The renormalization conditions (2.13) ensure that there is no explicit renormalization scale

dependence in (2.12) (up to a field independent term), and that up to one-loop, the elec-

troweak symmetry breaking condition and Higgs boson mass expression are given by the

usual tree level expressions

∂

∂v

[
Vtree + V1-loop

] ∣∣∣
φ=v

=
√

2m2v +
λ√
2
v3 = 0 , (2.18)

m2
h = (125 GeV)2 =

∂2

∂v2

[
Vtree + V1-loop

]∣∣∣
φ=v

= m2 +
3

2
λv2 = λv2 , (2.19)

where in the last equality of (2.19) we made use of (2.18). These relations set the tree level

Higgs quartic defined in (2.2) to λ = 0.26 and the Lagrangian mass to m2 = −1
2λv

2.

Finally, the one-loop, finite temperature correction to the Higgs effective potential is

given by

∑
a=i,t,W,Z

(−1)ξ
gaT

4

2π2

∫ ∞
0

dxx2 log
(

1− (−1)ξ exp
[
−
√
x2 +m2

a/T
2
])
, (2.20)

where again, ξ = 1 for fermions, ξ = 0 for bosons. ga corresponds to the degrees of freedom

of the corresponding field, and for simplicity we only consider the contributions from the
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singlet-doublet neutral fermions, gauge bosons, and the top quark. In the next section

we will find that in the parameter space for which a strong first order phase transition is

obtained, the critical temperature Tc is always smaller than the mass of singlet-doublet

fermions running in the loops, so we refrain from performing any high temperature ex-

pansion of the potential throughout this work, and we numerically evaluate the thermal

integrals 2.20 without any approximations. Regarding higher loop corrections, we leave

for future investigations the effect of adding one-loop thermal masses to the bosons and

fermions contributing to (2.20). Since at the critical temperature these corrections are of

order 1
16

∣∣λu,d∣∣2T 2
c <

∣∣m2
i

∣∣ [33], we do not expect them to modify our conclusions. The full

temperature dependent effective potential is obtained by summing (2.2), (2.12) and (2.20).

3 Strong first order phase transition from electroweak scale fermions

In this section we study the strength of the electroweak phase transition in the singlet-

doublet model. The electroweak breaking condensate that minimizes the potential at the

critical temperature Tc is φ(Tc) ≡ vc. In what follows, we numerically determine the critical

temperature Tc of the electroweak phase transition, and the strength of the phase transition

vc/Tc from the full thermal effective potential given by the sum of (2.2), (2.12) and (2.20).

For simplicity and with the purpose of concentrating on the strength of the phase transition,

in this section we limit ourselves to the CP conserving Singlet-Doublet model, and postpone

studying the effects of CP violation to sections 4 and 5. A sufficient condition for CP conser-

vation in the Singlet-Doublet sector is δCP = 0, π, in which case and without loss of general-

ity we may choose a field basis in which the Yukawas λu, λd and the masses mS ,mL are real.

The scenario δCP = π corresponds to choosing three out of the four real Lagrangian

parameters (λu, λd,mS ,mL) to be positive and one negative. For this choice we find that

level splitting only happens when
∣∣λu∣∣ 6= ∣∣λd∣∣ and is insufficient. In particular, in the case∣∣λu∣∣ =

∣∣λd∣∣ the mass of the lightest neutral singlet-doublet fermion is either independent of

or monotonically increasing with the Higgs field, and the mechanism explained in the intro-

duction is not realized. A numerical analysis confirms that no strong first order phase tran-

sition is found for the choice δCP = π, so we do not study this case any further in this work.

For the rest of this section we concentrate in the case δCP = 0, where without loss of

generality the Yukawas and Lagrangian masses may all be taken to be non-negative. We

find that this case is a realization of the mechanism explained in the introduction leading

to a barrier in the Higgs effective potential and to a strong first order phase transition.

The results are shown in figure 2, where in solid lines we plot contours of the strength

of the phase transition vc/Tc. We also show dashed contours of m1, the mass of the

lightest neutral fermion of the singlet-doublet sector, and in the background we provide

a colored density plot of the critical temperature Tc. In gray we show the areas excluded

by electroweak precision constraints at 95% confidence level according to the procedure

described in appendix A, which makes use of the STUVWX parameter formalism [34].

On the left panel of the figure, we first study the results as a function of the singlet-

doublet Yukawas, where we fixed both Lagrangian masses to be close to the electroweak

scale, mL = 330 GeV , mS = 360 GeV. In this case, we see that a strong first order phase
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transition is obtained for Yukawa couplings in the range 1.5 . λu,d . 3. We also find

that the critical temperature in the regions of parameter space where a strong first order

phase transition occurs is always smaller than the lightest singlet-doublet fermion mass

m1 as advertised in the introduction. The cases λu,d � λd,u generically do not lead to

a strong first order phase transition: we find that the strength of the phase transition is

maximized along the λu = λd direction. Along this direction (or more generally, along

the
∣∣λu∣∣ =

∣∣λd∣∣ direction if we also allow for a physical CP violating phase), the singlet-

doublet sector has an enhanced SU(2)R custodial symmetry which ensures a vanishing T

parameter [29, 30, 35–37]. In spite of this, from the figure we see that for the order one

Yukawas and non-decoupled singlet-doublet fermions needed for the strong first order phase

transition, the λu = λd direction is generically excluded, mostly due to a large S parameter.

Moving slightly away from the λu = λd direction leads to a small positive T parameter,

which improves the electroweak precision fit for non-vanishing S (see figure 6), avoiding

thus the electroweak precision constraints. On the other hand, the regions with λu,d � λd,u
are excluded mostly due to a large T parameter. We conclude that generically, in order to

avoid electroweak precision constraints while obtaining a strong first order phase transition,

one needs to choose large (but perturbative) Yukawas λu, λd, and the two Yukawas must be

similar. It is worth noting that the choice of similar singlet-doublet Yukawas arises quite

naturally in a singlet-doublet sector which preserves custodial symmetry at the scale of

some UV completion, in which case the singlet-doublet Yukawas at the electroweak scale

would only be split by radiative custodial-breaking corrections.

In figure 2 on the right, we study the results as a function of the singlet-doublet

Lagrangian masses, where we fixed the Yukawas to λu = 2 , λd = 2.5. We find that

a strong first order phase transition is obtained for a large range of Lagrangian masses

at the electroweak scale. For Lagrangian masses above ∼ 1 TeV, the effects of the new

fermions in the Higgs effective potential are Boltzmann suppressed at the scale of the

electroweak phase transition, and no strong first order transition is found. Of course,

one could take even larger Yukawas, in which case the singlet-doublet masses could be

as high as a few TeV as in [11]. However, as we will see in the next section, the baryon

asymmetry is generated by reflection of the same set of singlet-doublet fermions on the

bubble wall. Taking the singlet-doublet fermions much above the electroweak scale would

suppress their abundance in the plasma at the critical temperature, and would lead to a

highly suppressed baryon asymmetry. On the opposite case, when both Lagrangian masses

are smaller than ∼ 300 GeV a strong first order phase transition is not achieved either.

This can be understood by taking the limit mS ,mL → 0 in which case the neutral singlet-

doublet fermions get mass only from the Higgs mechanism, no level splitting occurs, our

mechanism is not realized and no barrier is created. Finally, note that the strength of the

phase transition is maximal near mL = mS , and is left approximately unchanged upon

exchange of mL and mS . This is a feature inherited from the λu = λd custodial SU(2)R
symmetric case, in which only two out of the three neutral fermions couple to the Higgs,

and the eigenvalues of the mass squared matrix entering the Higgs effective potential are

exactly symmetric under mS ↔ mL. The small asymmetry under the exchange mL ↔ mS

in the right panel of figure 2 is due to the small deviation from the λu = λd case.
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Figure 2. Solid: contours of the strength of the phase transition φc/Tc, as a function of the

singlet-doublet Yukawas λu,d for mL = 330 GeV ,mS = 360 GeV (left), and as a function of mL,S

for λu = 2 , λd = 2.5 (right). Dashed: contours of the mass m1 of the lightest singlet-doublet

fermion in GeV. Colored background: density plot of the critical temperature Tc of the electroweak

phase transition. Gray: excluded by the electroweak precision analysis described in appendix A.

In the introduction we made the observation that fermions may be equally as effective

as scalars in inducing a barrier thermally using a small temperature expansion of the po-

tential, provided that there exists level splitting in the fermion sector, as we have confirmed

here. For completeness, we now also elaborate on the validity of a large temperature ex-

pansion in fermion induced EWBG. When the barrier is thermally induced by new scalars,

it is sufficient to work up to order O(T ) in the high temperature expansion to find that

the barrier is created by a negative Higgs cubic term. This proves to be insufficient for

understanding the origin of the barrier in fermion induced EWBG since in this case the

critical temperature is not larger than the masses of the fermions. To capture the effects of

the fermions on the barrier, one must include terms of order O(log T 2). By keeping these

terms, [11] and [12] point out that in fermion induced EWBG, the origin of the barrier in

the large temperature expansion may be associated with a negative Higgs quartic which is

stabilized by a positive sextic term. We remind the reader that for the purpose of presenting

results, including the ones in figure 2, we do not perform any small or large temperature ex-

pansion, and we work with the full 1-loop thermal potential (2.20) evaluating it numerically.

3.1 Stability of the Higgs potential and Landau poles

We found that in the singlet-doublet model, a strong first order phase transition requires

large values of the Yukawas, λu, λd, as in the models presented in [9, 11]. This leads to an

instability of the zero temperature Higgs potential below the TeV scale. In order to solve

this problem, we introduce stabilizing irrelevant operators coming from a multi-TeV UV

completion

1

Λ2n−4
n

(H†H)n , (3.1)
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with n ≥ 3. For illustration, in this section we consider a typical benchmark point with

λu = 2, λd = 2.5,mS = 330 GeV,mL = 360GeV which according to figure 2 leads to a

strong first order phase transition. In this case, the Higgs potential instability is around

φ ≈ 500GeV. In order to stabilize the potential up to the cutoff of the theory, it suffices

to add the operator

(H†H)3/Λ2 , (3.2)

with cutoff Λ ≤ 1.1 TeV. This stabilizing operator may be easily obtained from integrating

out a multi-TeV scalar [38]. The new scalar leads to a new tuned scale in the theory but in

the multi-TeV range, where a UV completion which solves both the Higgs and new scalar

hierarchy problems may be manifest.

One may worry that the stabilizing operators (3.1) affect the nature of the electroweak

phase transition, either through the thermal effects of the underlying dynamics, or through

its effect on the zero-temperature potential. However, if the underlying dynamics corre-

sponds to a multi-TeV UV completion and the cutoffs Λn are much larger than the scale

of the electroweak phase transition which is of the order of the electroweak scale ∼ v, the

thermal effects of the underlying dynamics are Boltzmann suppressed and are negligible,

while the zero-temperature effects are suppressed by powers of (v/Λn)2n−4. As a concrete

example, for the benchmark point mentioned above with the stabilizing operator (3.2) and

Λ = 1.1 TeV, we find that the correction to the strength of the phase transition due to the

stabilizing operator is less than 3%. This observation is quite general: we find that for all

the Yukawas leading to a strong first order phase transition, one can always choose a multi-

TeV UV completion leading to operators of the form (3.2) such that the effects of the UV

completion on the strength of the phase transition are at the percent level at most. This is

a rather novel feature of our model, which ensures that the origin of the strong first order

phase transition is entirely due to the new fermions in the theory, and extra multi-TeV

scalars which may be the origin of the stabilizing operators do not play any significant role

in either the formation of the barrier leading to the strong first order phase transition, nor

on the calculation of the baryon asymmetry to be presented in the next section.

Finally, the large Yukawas lead to Landau poles above the TeV scale. For the bench-

mark point above, using the one-loop beta functions given in appendix C, we find that a

Landau pole for the Yukawas is obtained at ∼ 40 TeV. This also points to the need of build-

ing a UV completion for the theory, which is beyond the scope of this work. Alternatives

for the UV completion were already listed in [31]. They involve either providing a compos-

ite description of the model, or making copies of the singlet-doublet fields, and promoting

the corresponding multiplet fields to multiplets of a non-abelian gauge symmetry.

4 CP violation in the singlet-doublet model

In this section we discuss the effects of CP violation in the singlet-doublet model. For

our purposes, the two main features of considering a non-zero CP violating singlet-doublet

phase are the generation of a baryon asymmetry during the electroweak phase transition

and the generation of an electron electric dipole moment (EDM). Since there is a single

effective CP violating phase in the singlet-doublet sector, both observables are related. We
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start by estimating the baryon asymmetry in 4.1, and in section 4.2 we present the limits

from the electron EDM on the singlet-doublet effective phase.

4.1 The baryon asymmetry: an analytic estimate

In this section we perform an approximate semiclassical calculation of the baryon asymme-

try in the CP violating singlet-doublet model. Our objective here is to present the simplest

possible calculation of the baryon asymmetry which describes in a straightforward and in-

tuitive way much of the physics that one would expect from a more precise calculation. For

this reason, we work in the thin-wall limit and closely follow the techniques presented in [6,

8, 39], even though more modern and sophisticated techniques exist to obtain the baryon

asymmetry [3, 40–46]. In appendix D we estimate the bubble width and show that the

thin-wall limit is a rather unrealistic assumption, but the thin-wall result that we present

here is analytic, so it provides valuable intuition, and correctly captures many features of a

more exact calculation: it explicitly depends on the unique CP odd invariant of the theory,

illustrates Boltzmann decoupling, and describes the dependence of the asymmetry on the

wall height and width and on all the Lagrangian parameters of the singlet doublet sector.

We start by discussing the relevant timescales for the problem at temperatures close

to the electroweak scale. The largest interaction rates correspond to the singlet-doublet

Yukawa mediated processes, which for λu,d ∼ 2 − 3, we estimate to be 10−2 T , the strong

sphaleron rate which is of order 10−3 T [47] and the top Yukawa interaction is estimated

to have a similar rate of 10−3 T . For a wall velocity of vw = 0.1, quarks diffuse in front of

the bubble wall at a rate of 10−3 T , while leptons diffuse at a rate of 10−4 T [48]. Finally,

electroweak sphalerons have a rate of 10−6 T [49]. We take all the rest of the Yukawa

interactions in the Standard Model to be out of equilibrium and we neglect them in the

rest of the calculation.

This hierarchy of scales motivates the following simple picture for the production of

the baryon asymmetry. First, an asymmetry in some global quantum number carried out

by the vector-like doublets ψL, ψL is produced due to asymmetric scattering of the neu-

tral components of the doublets on the bubble wall. Then, the fastest interaction rates,

namely the strong sphalerons, singlet-doublet Yukawas and top quark Yukawas transform

this vector-like doublet asymmetry into a chiral asymmetry for the Standard Model lep-

tons and quarks. It turns out that this process is inefficient in the minimal singlet-doublet

model, since strong sphalerons wash out most of the resulting chiral asymmetry in the

model (like in the minimal supersymmetric standard model case, see [9, 39, 50]), up to cor-

rections inversely proportional to the strong sphaleron rate. This introduces an additional

complication in the calculation of the baryon asymmetry. For the sake of brevity, we leave

a detailed investigation of this issue for future work, and in this paper we assume that all of

the vector-like doublet asymmetry is efficiently transformed into a chiral asymmetry. This

would be the case for instance if we allow the vector-like doublets to decay to standard

model leptons and a new scalar or pseudoscalar (which must be odd under the Z2 symme-

try of table 1). The obtained chiral asymmetry then diffuses in front of the bubble wall for

a distance equal to the mean free path of the fermions transporting the chiral asymmetry.

Then, the slowest relevant process in the problem, namely the electroweak sphaleron inter-
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actions (which are active in front of the bubble wall), convert this chiral asymmetry into

a baryon asymmetry, that eventually diffuses into the true vacuum inside the electroweak

bubble. Finally, since the phase transition is strongly first order, the washout of the asym-

metry inside the bubble by electroweak sphalerons is strongly suppressed, and the comoving

baryon asymmetry density remains unaltered for the rest of the evolution of the universe.

We start by providing an analytic calculation of the asymmetry created by reflection of

the singlet-doublet fermions on the wall. First, we must define the global quantum number

being created by asymmetric reflection on the wall. We choose this global quantum number

to be “doublet number” U(1)D, under which ψL has charge +1 ψL has charge −1. To ensure

this number is approximately conserved and not washed out in the false vacuum, we also

assign U(1)D charge −1 to the Higgs, and +1 to the doublet fermions of the SM, so doublet

number is only violated by the slow down type Yukawa interactions, which we neglect.3

In the thin wall approximation, where the bubble thickness l and wavelength are much

smaller than the mean free path of the incoming fermions, the interactions with the bubble

wall are captured by reflection and transmission coefficients of the incoming fermion wave.

Since the bubble wall is macroscopic, we treat the reflection problem as one-dimensional,

and the singlet-doublet fermions as plane waves. In [8, 39], the reflection coefficients are

calculated perturbatively from the Dirac equation, and a simple interpretation for the result

is provided, which we briefly summarize here. First, the fermions emerge from the thermal

ensemble at some position which we define to be z = 0. They propagate, and reflect on the

bubble wall a finite number of times, where each reflection in the perturbative calculation

corresponds to one insertion of a space dependent fermion mass matrix. The bubble wall

has a shape which we define to be

φ(z) =
1

2
vc ξ

(
z − zw
l

)
, (4.1)

where vc is the critical condensate at the electroweak phase transition, l the bubble width,

zw the bubble wall position and ξ is a dimensionless function which specifies the shape of

the bubble and satisfies limx→∞ ξ(x) = 2 , limx→−∞ ξ(x) = 0. The space dependent mass

matrix is obtained by using the vacuum profile (4.1) in the mass matrix (2.7), and is given by

M(z) =


mS

1
2
√
2
λuvc ξ

(
z−zw
l

)
1

2
√
2
λdvc ξ

(
z−zw
l

)
1

2
√
2
λuvc ξ

(
z−zw
l

)
0 mL

1
2
√
2
λdvc ξ

(
z−zw
l

)
mL 0

 . (4.2)

The result of the perturbative calculation is an expression for the reflection and transmis-

sion coefficients as an expansion in powers of the fermion mass matrix M over the energy

of the incoming fermions ω,M/ω. The expansion for the 3×3 reflection coefficient matrix

for incoming (right moving) singlet or doublet fermions from the unbroken phase into

3A more careful analysis requires finding the quantum number that is orthogonal to hypercharge in order

to avoid Debye screening. We omit this technical detail which at most leads to a O(1) correction to the

calculation [51, 52].
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outgoing (left moving) singlet or doublet fermions is up to order O
(
M5/ω5

)
given by [8, 39]

R =

∫ ∞
0

dz1 e
2(iω−γ)z1M†(z1)

+

∫ ∞
0

dz1

∫ 0

z1

dz2

∫ ∞
z2

dz3 e
2(iω−γ)(z1−z2+z3)M†(z1)M(z2)M†(z3)

+

∫ ∞
0

dz1

∫ 0

z1

dz2

∫ ∞
z2

dz3

∫ 0

z3

dz4

∫ ∞
z4

dz5e
2(iω−γ)(z1−z2+z3−z4+z5)

×M†(z1)M(z2)M†(z3)M(z4)M†(z5)

+ O
(
M7

ω7

)
. (4.3)

The parameter γ in (4.3) is a small damping term, which accounts for loss of coherence

in the reflection due to interactions with the plasma and regulates the oscillatory inte-

grals (4.3). We may understand the effect of γ in the calculation by comparing it with the

other two energy scales in (4.3): the fermion energy ω and the inverse bubble wall width

1/l. First, we expect the damping rate to be of the order of the interaction rate with Higgs

bosons in the plasma, due to the large singlet-doublet Yukawas needed to achieve the

strong first order phase transition. For λu,d ∼ 2 − 3, we estimate that these interactions

have a rate ∼ 10−2 T , which for a critical temperature of order Tc ∼ 100 GeV leads to

γ ∼ 1 GeV. On the other hand, the energy of the incoming singlet-doublet fermions is of

course larger than the singlet-doublet fermion masses, ω >
∣∣mS,L

∣∣, which as discussed in

section 3 are order electroweak scale. This means that ω ≥ O(102 GeV)� γ. The bubble

width is estimated to be 1/l ∼ 101 − 102 GeV in appendix D. To summarize, the damping

rate is the smallest scale in (4.3), γ � 1/l, ω. Then, to zeroth order in γl and γ/ω, we

may treat γ just as a regulator of the oscillatory integrals (4.3), which after integration

may be set to zero. The error due to this approximation is of order O(γl, γ/ω) � 1. In

the rest of this paper we omit writing γ explicitly, with the implicit assumption that all

oscillatory integrals are regulated as described.

The reflection matrix for the CP conjugate processes R is obtained by replacing the

symmetric mass matrix M(z) in (4.3) by its complex conjugate. The leading order term

for the reflection asymmetry in doublet number arises at O
(
M6/ω6

)
, and is given by

Tr
[
R†Q̂DR−R

†
Q̂DR

]
= 4

∫ ∞
0

dz1

∫ ∞
0

dz2

∫ 0

z2

dz3

∫ ∞
z3

dz4

∫ 0

z4

dz5

∫ ∞
z5

dz6

× sin 2ω(z1 − z2 + z3 − z4 + z5 − z6)

×Im Tr
[
M(z1)Q̂DM†(z6)M(z5)M†(z4)M(z3)M†(z2)

]
+O

(
M8

ω8

)
, (4.4)

where the doublet number charge matrix is Q̂D = diag (0, 1,−1). Using the fermionic mass

matrix (4.2) in the doublet number reflection asymmetry (4.4), taking the trace of the
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matrices and performing a change of integration variables zi = xil, i = 1 . . . 6, we obtain

Tr
[
R†Q̂DR−R

†
Q̂DR

]
=

∣∣mSmL

∣∣v4c
8ω6

∣∣λuλd∣∣(λ∗uλu − λ∗dλd)Ξ(lω) sin δCP

+O
(
M7

ω7

)
, (4.5)

where we defined the dimensionless function Ξ(lω)

Ξ(lω) = (lω)6
∫ ∞
0

dx1

∫ ∞
0

dx2

∫ 0

x2

dx3

∫ ∞
x3

dx4

∫ 0

x4

dx5

∫ ∞
x5

dx6

× sin
[
2lω(x1 − x2 + x3 − x4 + x5 − x6)

]
×ξ(x1)

[
ξ(x3)ξ(x5)− ξ(x2)ξ(x4)

]
ξ(x6) . (4.6)

The function Ξ(lω) contains all the information of the bubble wall shape. Note that the

reflection asymmetry (4.5) is independent of the wall position zw. This result is valid as

long as the singlet-doublet fermion emerges from the thermal ensemble far from the bubble

wall, zw � l. In this case the bubble wall position only leads to a phase e2iωzw in the

reflection coefficient, which does not affect the reflection probability.

In this work, for concreteness we take the bubble profile to have the usual kink shape [2,

48] which corresponds to the bubble shape function

ξ(x) = 1 + tanhx . (4.7)

Inserting the bubble shape (4.7) in (4.6), the function Ξ(lω) may be integrated analytically

with some effort. The result is

Ξ(lω) =
3

32π2
(πlω)3 csch2(πlω)

[ (
1 + πlω coth(πlω)

) (
γE + ψ0(−ilω)

)
+ilωψ1(−ilω)

]
+ c.c. , (4.8)

where γE = 0.578 is the Euler constant and ψn(x) = dn+1/dxn+1 log Γ(x), n = 0, 1 are

polygamma functions. For reference we plot Ξ(lω) in figure 3. Inserting (4.8) in (4.5) gives

an analytic leading order expression for the reflection asymmetry of the vector-like doublet

number.

The transmission asymmetry for left moving singlet-doublet fermions coming from the

broken phase may be similarly obtained from a perturbative calculation. However, it is

simpler to obtain the transmission asymmetry by unitarity, which relates the reflection and

transmission coefficients by

Tr
[
T †Q̂DT − T

†
Q̂DT

]
= −Tr

[
R†Q̂DR−R

†
Q̂DR

]
. (4.9)

The doublet number asymmetry in front of the wall may now be calculated in terms

of the reflection and transmission asymmetries, but before proceeding and as a sanity

check, let us consider some interesting limiting cases of the reflection asymmetry (4.5).

First, the reflection asymmetry vanishes in the limit ω much larger than the wall height
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Figure 3. Plot of the function Ξ(lω) given in (4.8). l is the bubble width and ω the energy of the

incoming singlet-doublet fermion. The reflection asymmetry (4.5) is proportional to the function

Ξ(lω), which contains all the information of the bubble profile (4.7), as may be seen from (4.6).

(which is controlled by λu,d vc ) as expected, since in this case the incoming singlet-doublet

fermion has enough energy to penetrate in the bubble without reflecting. The asymmetry

also vanishes when mS ,mL, λu or λd are zero, since in this case there is no effective CP

violation in the singlet-doublet model. Interestingly, in our leading order calculation, the

reflection asymmetry vanishes when
∣∣λu∣∣ =

∣∣λd∣∣, which corresponds to the custodial SU(2)R
symmetric limit discussed in section 3, but we do not expect this to hold at higher orders

in the M/ω expansion. Straightforward evaluation of the function Ξ(lω) given in (4.8)

(or inspection of the plot in figure 3) indicates that there is a strong suppression of the

reflection asymmetry both for lω � 1 and lω � 1. The limit lω � 1 corresponds to the

case in which the quantum mechanical coherence needed for the reflection asymmetry is

lost, due to interference from reflection at different points of the bubble profile [8]. The

opposite limit lω � 1 corresponds to a zero thickness “step wall”, in which case all CP

violation in the mass matrix in the broken vacuum may be rotated away by a unitary

transformation [53], so no asymmetry is created either. The reflection asymmetry is non-

zero away from these two limits, and is maximal for a bubble wall of thickness l ∼ 1/ω.

The doublet number asymmetry density in front of the bubble wall is given in terms

of the doublet number reflection and transmission asymmetries by [8]

nD = T 2

∫ ∞
max(mS ,mL)

dω

2π

[
Tr
[
nu(ω)

(
R†Q̂DR−R

†
Q̂DR

)]
+ Tr

[
nb(ω)

(
T †Q̂DT − T

†
Q̂DT

)] ]
, (4.10)

where nu(b)(ω) is the unbroken (broken) phase density matrix for the right (left) moving

singlet and doublet fermions boosted to the wall frame. At lowest order in the expansion
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of mass over energy the density matrices are just proportional to the identity matrix [39]

nu,b(ω) =
1

eγw(1∓vw)ω/Tc
diag (1, 1, 1) +O

(
M
ω

)
, (4.11)

where vw is the bubble wall velocity, the minus sign is for the unbroken phase right moving

fermions, and the plus sign for the broken phase left moving fermions. Tc is the temperature

at which the baryon asymmetry is created, which we take to be the critical temperature

for the electroweak phase transition. In this work we will not study the case of ultra-

relativistic bubbles, and we work at leading order in vw. Using (4.9) and (4.11) in (4.10)

and expanding to first order in vw we obtain

nD = 2vwT
2
c

∫ ∞
max(mS ,mL)

dω

2π
n0(ω)

[
1− n0(ω)

] ω
Tc

×
∣∣mSmL

∣∣v4c
8ω6

∣∣λuλd∣∣(λ∗uλu − λ∗dλd)Ξ(lω) sin δCP (4.12)

×

[
1 +O

(
v2w,
M7

ω7

)]
,

where n0(ω) = (eω/Tc + 1)−1 is the Fermi-Dirac distribution.

As already discussed in the beginning of this section, we assume that all the vector-like

doublet asymmetry nD is efficiently converted into the chiral asymmetry density nL(x) in

front of the wall, where x is the distance from the wall. For simplicity, we assume that

the chiral asymmetry density nL(x) is constant and equal to nD up to a distance ∆ from

the wall and zero beyond that distance, where ∆ is the mean free path of the fermions

transporting the chiral asymmetry,

nL(x) =

{
nD for x ≤ ∆

0 for x > ∆
. (4.13)

We take the mean free path to be ∆ = 100/T , which is the mean free path of the SM

leptons [48, 54, 55], motivated by the possibility discussed in the beginning of this section

that the singlet-doublet fermions may decay to Standard Model leptons, such that the

chiral asymmetry is a lepton asymmetry. The baryon asymmetry is obtained from the

space-dependent chiral asymmetry nL(x) which biases weak sphaleron interactions, and is

given by [48]

nB = − 9

T 3
c vw

Γsph

∫ ∞
0

dxnL(x) +O

(
Γ2
sph∆2nD

v2wT
6
c

)
, (4.14)

where the weak sphaleron rate per unit volume at the electroweak phase transition is [49]

Γsph ≈ 10−6 T 4
c , (4.15)

Using (4.13) in (4.14) we obtain

nB = − 9∆

T 3
c vw

ΓsphnD

[
1 +O

(
Γ2
sph∆2

v2wT
6
c

)]
. (4.16)
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Finally, using (4.13) in (4.16) we get

nB = −18∆

Tc
Γsph

∫ ∞
max(mS ,mL)

dω

2π
n0(ω)

[
1− n0(ω)

] ω
Tc

×mSmLv
4
c

8ω6

∣∣λuλd∣∣(λ∗uλu − λ∗dλd)Ξ(lω) sin δCP (4.17)

×

[
1 +O

(
vw,
M7

ω7
,
Γ2
sph∆2

v2wT
6
c

)]
,

where we remind the reader that the function Ξ(lω) is given in expression (4.8), n0(ω/Tc)

is the Fermi-Dirac distribution, Γsph is the sphaleron rate (4.15) and ∆ = 100/T . Expres-

sion (4.18) is a leading order, analytic, background symmetry invariant estimation of the

baryon asymmetry, and is the main result of this section. The critical temperature and crit-

ical condensates at the electroweak phase transition Tc, vc are numerically determined from

the finite temperature Higgs effective potential as described in section 3. The baryon asym-

metry (4.18) depends on all the five CP invariants of the singlet-doublet model described

in section 2, namely the CP even invariant magnitudes of the singlet-doublet Yukawas∣∣λu∣∣, ∣∣λd∣∣ and Lagrangian masses
∣∣mS

∣∣, ∣∣mL

∣∣, and the CP odd invariant phase δCP defined

in equation (2.4). The baryon asymmetry vanishes if any of these parameters is zero, since

in this case there is no CP violation in the singlet-doublet model. The baryon asymmetry

also depends on the bubble wall width l, but is independent within our approximation of

the bubble velocity vw. The approximation is valid as long as the weak sphaleron rate may

be considered to be slow with respect to the expansion of the bubble, Γsph∆/T 3 < vw. For

very slow bubbles, vw � Γsph∆/T 3, the baryon asymmetry washout due to electroweak

sphalerons in the unbroken phase must be included in the calculation, and expression (4.16)

needs to be replaced by nB = −9nD

[
1−exp(−Γsph∆/(T 3vw))

]
, which vanishes in the limit

vw → 0 (since nD is linear in vw, see eq. (4.13)). This is to be expected, since for a static

bubble the system is in equilibrium and no baryon asymmetry can be generated. For ultra-

relativistic bubbles, our lowest order velocity expansion breaks down. In what follows we

stick to the case Γsph∆/T 3 < vw � 1 and work with expression (4.18).

4.2 The electron electric dipole moment

A singlet-doublet phase δCP 6= 0, π leads to an electron EDM through two-loop Barr-

Zee diagrams [56]. The two loop diagrams were calculated in [30], results that we use

to set limits on the effective singlet-doublet CP violating phase by comparing with the

experimental limits on the electron EDM [57].

In figure 4 we present the limits on the (absolute value) sine of the CP violating

phase (2.4),
∣∣ sin δCP

∣∣. On the left, we present the exclusion region as a function of the ab-

solute value of the singlet-doublet Lagrangian masses, by setting them equal for simplicity,∣∣mL

∣∣ =
∣∣mS

∣∣, and by fixing the absolute value of the Yukawas at
∣∣λu∣∣ =

∣∣λd∣∣ = 2.5. We

also include contours of the electric dipole moment de/e. We generically find that for such

Yukawas, for 200 GeV .
∣∣mL

∣∣ =
∣∣mS

∣∣ . 900 GeV, the effective phase is constrained to

be at the percent level or below. The limits degrade at lower masses, since in the limit of
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Figure 4. Solid : contour plots of the absolute value electron electric dipole moment in the singlet-

doublet model as a function of
∣∣ sin δCP

∣∣ and equal singlet-doublet Yukawas
∣∣λu∣∣ =

∣∣λd∣∣ for
∣∣mL

∣∣ =∣∣mS

∣∣ = 300 GeV (left), and as a function of
∣∣ sin δCP

∣∣ and equal singlet-doublet model Lagrangian

masses
∣∣mL

∣∣ =
∣∣mL

∣∣ for
∣∣λu∣∣ =

∣∣λd∣∣ = 2.5 (right). Red : region excluded by the electron EDM

limit [57],
∣∣de∣∣/e ≤ 8.7× 10−29 cm.

vanishing Lagrangian masses there is no effective CP violation in the singlet-doublet model.

On the right plot we present the limits as a function of the absolute value of the Yukawas,

which for simplicity are set to be equal
∣∣λu∣∣ =

∣∣λd∣∣, for fixed singlet-doublet lagrangian

masses,
∣∣mL

∣∣ =
∣∣mL

∣∣ = 300 GeV. For
∣∣λu,d∣∣ & 1, the singlet-doublet CP violating phase is

again constrained to be at the percent level. The electron EDM is roughly independent of

the absolute value Yukawas for
∣∣λu,d∣∣ & 1. Generically, we conclude that for electroweak-

scale singlet-doublet masses and order one Yukawas close to the custodial preserving limit∣∣λu∣∣ =
∣∣λd∣∣, the singlet-doublet effective CP violating phase, δCP is constrained to be at

most at the few percent level.

5 Putting all together: the baryon asymmetry in the singlet-doublet

model

The baryon asymmetry in the singlet-doublet model (4.18) needs to be compared with the

measured value of the baryon asymmetry of the universe, which is given by [58]∣∣nB , obs∣∣
s

= (8.6 ± 0.09)× 10−11 , (5.1)

where s = g∗(2π
2/45)T 3 is the entropy density and g∗ is the number of degrees of freedom

in thermal equilibrium in the plasma, which we take to be the SM degrees of freedom plus

the singlet-doublet fermions, g∗ = 115.5. The sign of the asymmetry is not determined

in the measurement [58], but for practical purposes we assume that it corresponds to a

positive baryon asymmetry.
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The results are shown in figure 5, where we plot contours of the baryon asymme-

try (4.18) over the entropy density, nB/s. In the plots we fix the effective CP violating

phase to
∣∣δCP

∣∣ = 4× 10−2, which is basically close to the maximum phase allowed by the

electron EDM, as discussed in section (4.2), for electroweak scale singlet-doublet masses

and Yukawas larger than one. The sign of the phase is not relevant for the EDM limit

discussed in section (4.2), but is in principle measurable in a low energy experiment and

is correlated with the sign of the baryon asymmetry, and for the plots we set the sign of

the phase to be negative. We also set the bubble wall width to a value consistent with the

thin-wall approximation, l = 3×10−3 GeV−1. A more realistic estimate of the width is from

a factor of a few to an order of magnitude larger (see appendix D), but the analytic thin

wall result will help us to understand some of the main features of the baryon asymmetry

in the singlet doublet model. Considering thicker, more realistic walls beyond the validity

of our thin-wall approximation leads to an exponentially suppressed baryon asymmetry

in our simplified calculation due to lost of quantum coherence, as one can see from (4.8),

and requires a more sophisticated analysis (see for instance [45, 59, 60]) which we leave

for future work. In the plots we also show contours of the strength of the phase transition

vc/Tc in dashed gray lines. Note that we cut the contours of the baryon asymmetry (4.18)

in the regions of parameter space where the strength of the phase transition is less than

one, since in that region the baryon asymmetry is washed out by weak sphalerons. Finally,

we show in blue and red the regions excluded by the electroweak precision constraints (see

appendix A), and by the electron EDM limits discussed in section 4.2.

On the left of figure 5, the results are shown as a function of the absolute value of the

singlet-doublet Yukawas
∣∣λu∣∣, ∣∣λd∣∣ for fixed Lagrangian masses

∣∣mS

∣∣ = 360 GeV,
∣∣mL

∣∣ =

330 GeV. We see that the model is able to reproduce the baryon asymmetry for Yukawas of

order 2 .
∣∣λu,d∣∣ . 3. The star shows a typical benchmark point, presented in table 3, which

leads to a strong first order phase transition, reproduces the baryon asymmetry, and avoids

electroweak precision and EDM constraints. We postpone commenting on the collider con-

straints for this benchmark scenario to section 6. Note that the baryon asymmetry vanishes

along the SU(2)R custodial preserving limit
∣∣λu∣∣ =

∣∣λd∣∣, and the sign of the asymmetry is

opposite for
∣∣λd∣∣ > ∣∣λu∣∣ and

∣∣λu∣∣ > ∣∣λd∣∣. Both these features are an artifact of keeping only

the lowest order term in the mass expansion in the calculation of the baryon asymmetry of

section 4.1. We do not expect these features to survive at higher order in the mass expan-

sion, and we leave the quantification of the departure from the lowest order calculation for

future work. On a different note, from a naive analysis of the baryon asymmetry (4.18), one

would expect it to grow monotonically with larger Yukawas. This is not the case, since if

the Yukawas are too large, the singlet-doublet fermions are heavy and their thermal effects

on the Higgs effective potential are Boltzmann suppressed. In this case, both the strength

of the phase transition vc/Tc and the Higgs critical condensate vc are suppressed. This

not only leads to suppression by washout from electroweak sphalerons in the broken phase,

but also decreases the height of the bubble wall, which is controlled by vc, suppressing the

singlet-doublet reflection asymmetry and therefore the baryon asymmetry (the dependence

of the baryon asymmetry on the wall height may be explicitly seen in (4.18), nB ∝ v4c ).
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Figure 5. Solid: contours of the baryon asymmetry over entropy density nB/s in the singlet-

doublet model, as a function of the absolute value of the singlet-doublet Yukawas
∣∣λu,d∣∣ for

∣∣mL

∣∣ =

330 GeV ,
∣∣mS

∣∣ = 360 GeV (left), and as a function of
∣∣mL,S

∣∣ for
∣∣λu∣∣ = 2 ,

∣∣λd∣∣ = 2.5 (right). In

both panels the effective CP violating phase is δCP = −4×10−2, and the bubble wall width is set to

l = 3×10−3 GeV−1. Dashed: contours of the strength of the phase transition vc/Tc. Blue: excluded

by the electroweak precision analysis described in appendix A. Red: excluded by the experimental

limit on the electron EDM, de ≥ 8.7× 10−29 e cm [57]. Star: benchmark scenario of table 3.

The plot on the right of figure 5 shows the baryon asymmetry as a function of the

Lagrangian singlet-doublet masses for fixed Yukawas,
∣∣λd∣∣ = 2.5,

∣∣λu∣∣ = 2. We see that

generically the baryon asymmetry of the universe can be reproduced only for electroweak-

scale singlet-doublet Lagrangian masses. The baryon asymmetry is suppressed both in the

small and large mass regions, in the first case due to the suppression of the strong first

order phase transition and suppression of the effective CP violating invariant, and in the

latter case mostly due to Boltzmann suppression of the singlet-doublet abundance in the

plasma. The star indicates again the benchmark point of table 3.

Generically, we conclude that in order to obtain the strong first order phase transition

and to obtain the observed baryon asymmetry from reflection of singlet-doublet fermions

on the bubble wall, the singlet doublet fermions must have large Yukawas with the Higgs

and be at the electroweak scale. We expect these features to be generic in all models

of fermion induced electroweak baryogenesis, since they have a generic origin: the large

Yukawas are needed in order to substantially modify the Higgs potential at the electroweak

phase transition, while the new fermions must be below a TeV to avoid suppressing their

abundance from the thermal plasma at the electroweak phase transition.

6 Collider constraints

In this section we briefly comment on the collider constraints on the charged and neutral

components of the minimal singlet-doublet model.
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∣∣mS

∣∣ 360 GeV m1 195.2,GeV∣∣mL

∣∣ 330 GeV m2 345.1 GeV∣∣λu∣∣ 2 m3 900.3 GeV∣∣λd∣∣ 2.5 δCP −4× 10−2

Table 3. Benchmark scenario shown with a star in figure 5. This example point leads to a strong

first order phase transition, reproduces the baryon asymmetry of the universe in the leading order

estimate (4.18), and avoids electroweak precision and EDM constraints. Note that all the singlet-

doublet fermions are close to the electroweak scale.

We start reviewing the limits for singlet-doublet fermion masses below 100GeV. The

irreducible limit on the mass
∣∣mL

∣∣ of the charged component of the doublet fermions

is basically half the Z boson mass [61]. There are stronger constraints from direct pair

production at LEP under certain assumptions for the decay modes and lifetime of the

charged fermion, which set a stronger bound
∣∣mL

∣∣ & 91GeV [62]. There are limits on the

masses of the neutral singlet-doublet fermions if they are below half the Z boson mass from

the Z invisible width, but it is not irreducible. For instance, in the custodial symmetric

limit the lightest neutral singlet-doublet fermion does not couple to the Z. There is a more

important limit on neutral singlet-doublet fermions if they have a Yukawa coupling to the

Higgs of the order of the bottom Yukawa or larger, coming from the Higgs invisible width

measurement [63, 64], which basically rules out neutral singlet-doublet fermions below half

the Higgs mass. The high luminosity LHC will be able to probe pair production of neutral

singlet-doublet fermions if they are mostly doublet up to ∼ 100 GeV even in the compressed

region, from searches assisted by the emission of an initial state radiation jet [65].

In the larger mass region, with singlet-doublet fermions heavier than 100 GeV, the

main collider constraints come from LHC, where singlet-doublet fermions are pair produced

and subsequently decay into the lightest fermion of the singlet-doublet sector, leading to

final states with missing energy, multiple leptons and/or jets. The strongest constraints

come from searches with multiple leptons in the final state, both at CMS [66–68] and

ATLAS [69, 70]. This is the region of interest for our benchmark scenario of table 3, which

we now discuss in more detail.

To study our benchmark scenario, we implement the minimal singlet-doublet fermion

model using FeynRules [71]. The relevant topologies for LHC are pair production of the

charged fermions ψ+ψ−, or production of a charged fermion and a neutral fermion, ψ±ψi,

i = 1, 2, 3. The charged fermions are produced through Drell-Yan, and the neutral singlet-

doublet fermions are produced either through Drell-Yan or through an s-channel Higgs [31].

Since in our benchmark scenario, the third neutral state ψ3 is more than a factor of two

heavier than the rest of the singlet-doublet fermions, its production is subleading, and we

concentrate on production modes involving only ψ± and ψ1,2. For simplicity, we also limit

ourselves to pair production ψ±ψ2 and ψ+ψ−, which are the most similar topologies to the
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σψ+ψ− 2.6× 10−2 pb BR(ψ± →W±ψ1) 1

σψ±ψ2 1.38× 10−2 pb BR(ψ2 → Zψ1) 0.36

BR(ψ2 → hψ1) 0.64

Table 4. Pair production cross sections for the main modes at the 13 TeV LHC leading to mul-

tiple leptons in the final state, and branching fractions of the charged and neutral singlet-doublet

fermions for the benchmark scenario of table 3. The Singlet-Doublet model is implemented with

FeynRules [71] and cross sections and branching fractions are obtained with Madgraph [72].

ones in [66–70], but including also production of ψ1ψ2 does not change the conclusions. We

use Madgraph [72] to perform a Montecarlo simulation for pair production at the 13 TeV

LHC, and to obtain the decay branching fractions of the singlet-doublet fermions. We

tabulate the resulting production cross sections and main decay modes in 4. Regarding the

decay modes, the charged fermion ψ± decays to a W boson and the lightest singlet-doublet

neutral fermion, which is the lightest stable particle in the minimal singlet-doublet sector,

leaving missing energy and leptons or jets. The second heaviest singlet-doublet neutral

fermion ψ2 decays to a Z or Higgs and the lightest neutral singlet-doublet fermion. We

find that the decay through the Higgs is dominant. This is a typical feature of models of

fermion induced electroweak baryogenesis, due to the requisite large Yukawa couplings to

the Higgs, and provides motivation for searches with Higgs mediated decays as in [66]. Note

that the ψ2 decay to a charged doublet fermion and a W ∗ is three body, so it is suppressed.

We subsequently recast the 13 TeV ATLAS limits [69] using CheckMate [73]. The

corresponding CMS multilepton searches [66, 67] are not currently implemented in Check-

Mate, but the limits are expected to be similar. We find that our benchmark scenario

is not currently excluded, for rather trivial reasons. For the kinematics of our benchmark

point, the limit on the production cross section times branching fraction into W and Z

bosons for the pair ψ±ψ2 is O(0.1pb) according to [66]. This limit is one order of magni-

tude larger than the corresponding production cross section times branching fraction for

our benchmark point (see table 4). However, the limits will improve considerably with

more statistics, so the benchmark scenario may be tested at the high luminosity LHC. We

leave a detailed study of the full parameter space of the singlet-doublet model and the

discovery prospects for future work.

Another possibility, is to allow for singlet-doublet fermions to decay to the Standard

Model lepton doublet and a new light scalar or pseudoscalar singlet, as discussed in sec-

tion 4.1. In this case, the charged singlet-doublet fermion decays mostly into a Standard

Model charged lepton, while the singlet-doublet fermions decay invisibly. In this scenario,

the strongest constraints come from pair production of charged singlet-doublet fermions

and depend mostly on the mass splitting between the charged singlet-doublet fermion and

the new scalar or pseudoscalar. We also leave a detailed study of this interesting possibility

for future work.
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7 Conclusions and outlook

We presented the minimal model of electroweak baryogenesis induced only by fermions.

We demonstrated that the model is complete: it leads to a barrier in the effective po-

tential induced entirely by the new fermions and leads to a baryon asymmetry of the

correct order of magnitude in a simplified semiclassical calculation, which was performed

analytically in terms of CP invariants. We showed that in order for the strong first order

phase transition and baryon asymmetry to be generated, the singlet-doublet fermions must

be at the electroweak scale, have large Yukawas with the Higgs and have non-vanishing

Lagrangian masses in order to realize level splitting in the broken vacuum. We also stud-

ied the most relevant experimental constraints, including electroweak precision, electron

dipole moment and collider constraints, showing that the model is consistent with current

experimental data.

Fermion induced EWBG is largely unexplored in the literature in comparison with

scalar induced EWBG, and poses many interesting questions. First, a detailed study of

the phenomenology of fermion induced EWBG is not available. Such a study should include

a full analysis of the irreducible collider constraints and discovery prospects at LHC, which

must include a full recast of multilepton searches. Fermion induced EWBG is a very well

motivated model of new physics at the electroweak scale with strong couplings with the

Higgs, so on its own it is an interesting benchmark scenario for LHC. Also, a study of the

deviation of the self couplings must be carried out, but we point out that this study is

sensitive to the UV completion stabilizing the potential.

On the technical side, a more precise calculation of both the phase transition and the

baryon asymmetry in fermion induced EWBG should be carried out. Due to the large

Yukawas, it would be interesting to study the effects of including higher loop terms in the

effective potential for the calculation of the strength of the phase transition [74]. Also, in

this work we neglected the effect of washout of the chiral asymmetry by strong sphalerons

by suggesting that the singlet-doublet sector may be extended to allow for decays into

Standard Model leptons, but it is important to perform a full calculation of the baryon

asymmetry in the minimal singlet-doublet model including the strong sphaleron effects.

The singlet-doublet model has also been studied in the literature mostly in the context

of dark matter [29–32, 37], but we point out that since in fermion induced EWBG the new

fermions must couple strongly to the Higgs, the lightest singlet-doublet fermion would be

ruled out as a dark matter candidate from direct detection experiments. Generically, if

the relic density of singlet-doublet fermions is large, direct detection experiments severely

constrain the model. One way to avoid potential limits from direct detection is to allow the

lightest singlet-doublet neutral fermion to decay on cosmological timescales, a requirement

that is easily fulfilled by allowing decays into Standard Model leptons as in section 4.1. We

leave the study of singlet-doublet relics and a detailed study of extensions of the model to

accommodate the observed dark matter density for future work.
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A Electroweak precision analysis

The singlet-doublet fermion mass eigenstates couple to electroweak gauge bosons due to

their doublet component, and lead to corrections to the gauge boson self energies at one-

loop. In this section we review the corresponding corrections and limits from electroweak

precision observables.

The one-loop corrections to the gauge boson self energies are most easily obtained in

Dirac notation, so we define four component fermion fields

Ψi ≡

(
ψi

ψ†i

)
, Ψ+ ≡

(
ψ+

ψ†−

)
, (A.1)

where the three fields Ψi, i = 1, 2, 3 are the four-component neutral singlet-doublet Ma-

jorana mass eigenstates of the mass matrix (2.7), and Ψ+ corresponds to a Dirac charged

mass eigenstate. The corresponding mass terms in the Lagrangian are miΨiΨi−mLΨ+Ψ+.

The interactions of the four-component fermion fields with the photon, Z and W± gauge

bosons are

cγAµ Ψ+ γ
µ Ψ+ + cZ+Zµ Ψ+ γ

µ Ψ+ +
1

2
cZVijZµ Ψi γ

µ Ψj +
1

2
cZAij

ZµΨi γ
µγ5 Ψj

+
[
cWViW

+
µ Ψ+ γ

µ Ψi + cWAi
W+
µ Ψ+ γ

µγ5 Ψi + h.c
]
,

where

cγ = e ,

cZ+ =
1

2

(
g2 cos θW − g1 sin θW

)
,

cZVij =
1

4

(
g2 cos θW + g1 sin θW

)(
U∗3iU3j − U∗2iU2j − c.c.

)
,

cZAij
= −1

4

(
g2 cos θW + g1 sin θW

)(
U∗3iU3j − U∗2iU2j + c.c.

)
,

cWVi =
g2√

2

(
U3i − U∗2i

)
,

cWAi
= − g2√

2

(
U3i + U∗2i

)
. (A.2)
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The W boson couplings cWVi and cWAi
in (A.2), are not invariant under the discrete

reparametrization and background symmetry transformations described in section 2. How-

ever, all the one-loop corrections to the gauge boson self energies are invariants under both

the reparametrization and background symmetry transformations. They are given by

Πγγ(q2) = c2γ ΠV (mL,mL, q
2) ,

ΠZZ(q2) =
(
cZ+
)2

ΠV (mL,mL, q
2) ,

+
1

2
cZ∗Vijc

Z
Vij ΠV (−mi,−mj , q

2) +
1

2
cZ∗Aij

cZAij
ΠA(−mi,−mj , q

2) ,

ΠWW (q2) = cW∗Vi c
W
Vi ΠV (mL,−mi, q

2) + cW∗Ai
cWAi

ΠA(mL,−mi, q
2) , (A.3)

where the minus signs come from the different sign conventions for the corresponding

Lagrangian and propagator masses for the fermions in the loops, and the factors of 1/2

correspond to symmetry factors in loops of Majorana fermions. The functions ΠV,A are

given in appendix B.

The corrections to electroweak precision observables coming from new physics much

heavier than the electroweak scale may be studied using the S,T,U parameter formalism [75,

76]. When the new physics is at or below the electroweak scale three additional V,W,X

parameters are needed for the electroweak precision analysis [34]. For generality, in this

work we also consider the case in which at least one of the singlet-doublet fermions is at

or below the electroweak scale, so we make use of the full STUVWX analysis. We make

use of the self-energies (A.3) to calculate the STUVWX parameters defined in [34], from

which we determine fourteen electroweak precision observables [77]

ΓZ = 2.4950− 0.0092S + 0.026T + 0.019V − 0.020X ,

σ0had = 41.484 + 0.014S − 0.0098T + 0.031X ,

R` = 20.743− 0.062S + 0.042T − 0.14X ,

A`FB = 0.01626− 0.0061S + 0.0042T − 0.013X ,

A` = 0.1472− 0.028S + 0.019T − 0.061X ,

Ac = 0.6680− 0.012S + 0.0084T − 0.027X ,

Ab = 0.93463− 0.0023S + 0.0016T − 0.0050X ,

AcFB = 0.0738− 0.015S + 0.010T − 0.033X ,

AbFB = 0.1032− 0.020S + 0.014T − 0.043X ,

Rc = 0.17226− 0.00021S + 0.00015T − 0.00046X ,

Rb = 0.21578 + 0.00013S − 0.000091T + 0.00030X ,

s2θeff
= 0.23150 + 0.0035S − 0.0024T + 0.0078X ,

mW = 80.364− 0.28S + 0.43T + 0.35U ,

ΓW = 2.091− 0.015S + 0.023T + 0.018U + 0.016W . (A.4)

The Standard model input values for the electroweak observables above, which correspond

to their values for STUVWX equal to zero, are taken from [78]. To obtain 95% exclusion
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Figure 6. Gray: allowed region in the S,T plane at 95% confidence level, using a 14-dimensional

χ2 < 23.68 test on the parameters (A.4). In this figure, we set the U, V,W,X parameters to zero.

Standard model experimental inputs and errors are taken from [78].

regions for our singlet-doublet model, we perform a chi-squared analysis on the fourteen

precision observables, and rule out the parameter space leading to χ2 > 23.68. The errors

on the electroweak precision observables needed for the χ2 fit are taken from [77].

As a validation of our fit, in figure 6 we show in gray the 95% confidence level allowed

region in the S, T plane, by setting U, V,W,X to zero. The boundaries of the excluded

region are within ∼ 10% of the ones presented in reference [78], which are obtained per-

forming a similar fit.

B One-loop self-energies

In this appendix we give explicit, analytic expressions for the one-loop self energies required

for the electroweak precision analysis of appendix (A). The self energies are calculated with

Package-X [79, 80], in a field basis where the masses are real.4 The self energies are given

by

ΠA
V

(m1,m2, q
2) =

1

24π2

[
1

3q2
(
3(m2

1 −m2
2)

2 + 6(m2
1 +m2

2)q
2 ± 36m1m2q

2 − 10q4

−9γEq
2(m1 ±m2)

2 + 6γEq
4
)

− 1

2q4
(m6

1 − 3m4
1m

2
2 + 3m2

1m
4
2 −m6

2 ± 6m3
1m2q

2 ∓ 6m1m
3
2q

2

− 3m2
1q

4 ∓ 6m1m2q
4 − 3m2

2q
4 + 2q6) log

(
m2

1

m2
2

)
+

∆

2q4
[
(m2

1 −m2
2)

2 + (m2
1 +m2

2)q
2 ± 6m1m2q

2 − 2q4
]

4Package-X by default works only with positive masses. Here we allow the masses to be positive or

negative. We thank Hiren Patel for the corresponding generalized expressions.
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× log

(
m2

1 +m2
2 − q2 + ∆

m2
1 +m2

2 − q2 −∆

)

+
(
3(m1 ±m2)

2 − 2q2
)[ 1

ε
+ log

(
µ2

m2
1

)] ]
, (B.1)

where the upper signs corresponds to ΠA and the lower signs to ΠV and

∆ =
√

(m2
1 −m2

2)
2 − 2m2

1q
2 − 2m2

2q
2 + q4 . (B.2)

C β functions in the singlet-doublet model

In this appendix we give the beta function for the singlet-doublet Yukawas. We keep only

terms proportional to singlet-doublet Yukawas, top quark Yukawa and gauge couplings

g2, g3. The beta functions are given by

βλu ≡
dλu
d log µ

=
1

16π2
λu

(
5

2
λ∗uλu + 3y∗t yt −

9

4
g22

)
,

βλd =
1

16π2
λd

(
5

2
λ∗dλd + 3y∗t yt −

9

4
g22

)
,

βyt =
1

16π2
yt

(
λ∗uλu + λ∗dλd +

9

2
y∗t yt − 8g23 −

9

4
g22

)
. (C.1)

D Width of the bubble wall

In this appendix we provide an estimate of the width of the bubble wall. We approximate

the wall profile φ(z) as planar, in which case the action at the critical temperature is given

by

S =

∫
dz

[
1

2
∂zφ(z)2 + V

(
φ(z), Tc

) ]
(D.1)

For the purpose of finding an analytic bubble profile, we approximate the temperature

dependent potential by a quartic polynomial

V
(
φ(z), Tc

)
=
λ

8
(φ(z)− vc)2φ(z)2 (D.2)

The approximated potential (D.2) has minima at φ = 0 and φ = vc, which are separated by

a barrier of height λv4c/128. For the approximated quartic potential (D.2), an extremum

of the action is given by the so called kink Ansatz (see for instance [2])

φ(z) =
vc
2

[
1 + tanh

(
z

l

)]
(D.3)

where the wall width l is given by

l =
4

vc

√
1

λ
(D.4)

To obtain the barrier width we proceed as follows. First, we numerically evaluate

the full (non-approximated) one loop effective potential given in section 2 at the critical
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Figure 7. Solid: contours of the bubble width times the critical temperature, l× Tc as a function

of the absolute value of the singlet-doublet Yukawas λu,d for mL = 330 GeV ,mS = 360 GeV (left),

and as a function of mL,S for λu = 2 , λd = 2.5 (right). Dashed: contours of the strength of the

phase transition.

temperature and numerically find vc and the barrier height. We then equate this barrier

height with the barrier height of the approximated potential, λv4c/128, from which we obtain

the quartic coupling λ of the approximated potential. We finally use (D.4) to obtain the

wall width. We plot the resulting wall width (D.4) times the critical temperature in figure 7

as a function of the singlet doublet Yukawas and as a function of the singlet doublet masses.

We find that the barrier width is in the range l × Tc ∼ 1− 5.
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