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1 Introduction

Nonlocal operators and defects enrich our knowledge of interacting quantum field theories:

in theories with mass gap, they can be important order parameters which help to distinguish

different phases. The prototypical examples of such operators are the Wilson and the ‘t

Hooft loops in gauge theories. In conformal field theories on the other hand, conformal

defects lead to a new class of crossing equations, which constrain both operators in the

bulk and operators on the defect [1, 2].

The main focus of this paper is a theory which is a gauge theory and also a conformal

field theory; namely N = 4 super Yang-Mills theory (N = 4 SYM). We in particular study

the three-point function of defect changing operators on the 1/2 BPS Wilson loop.

The 1/2 BPS Wilson loop is a supersymmetric extension of the ordinary Wilson loop,

which is coupled to a scalar as well as to a gauge field,1

W ≡ Tr

[
Pexp

(∮
dτiAµẋ

µ + φin
i|ẋµ|

)]
. (1.1)

Here ni is a six-dimensional unit vector, to be called the R-symmetry polarization, which

designates the scalar coupled to the Wilson loop. Local operators on the loop (denoted by

O) can be introduced by inserting fields inside the trace e.g.

W [O] ≡ Tr

Pexp

(∫ τ

−∞
dτ ′iAµẋ

µ + φin
i|ẋµ|

)
ZL︸︷︷︸
O

Pexp

(∫ ∞
τ
dτ ′′iAµẋ

µ + φiñ
i|ẋµ|

) ,
(1.2)

where Z is a complex scalar field. As indicated, the polarization ni can change across

the operator insertion. The simplest possible operator among them is the one which has

no field insertions and merely changes the polarization. We call such operators the defect

changing operators (DCO).

The spectrum of such operators in the planar limit was studied extensively using in-

tegrability [3–5]. A natural next step in this direction is to compute their three-point

functions.2 For ordinary gauge invariant operators, there exists a nonperturbative frame-

work to study the three-point function [8]. It is based on the fact that, in the AdS/CFT

correspondence, the three-point function is dual to a closed-string world sheet whose topol-

ogy is a pair of pants. The key idea in this approach is to decompose such a pair of pants

into two hexagons and determine the contribution from each hexagon using integrability.

It is then interesting to ask if we can extend this approach to more general observables

involving open strings. The three-point function on the Wilson loop, which we discuss in

this paper, is precisely such an observable; it corresponds to the interaction process of three

open strings in AdS. With an eye toward such a direction, we perform two perturbative

computations in this paper: after summarizing the set-ups and conventions in section 2, we

1Pexp denotes a path-ordered exponential.
2Recently several structure constants on the 1/2 BPS Wilson loop were computed in [6] by taking the

limit of generic smooth Wilson loops. Also, the four-point functions of single-letter operators were computed

at strong coupling using the Witten diagrams in [7].
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first compute the two-point functions of general DCO’s at two loops in section 3. Through

this computation, we reproduce the anomalous dimensions computed previously in the

literature. Furthermore, we also determine the normalizations of the operators, which are

prerequisite for computing the scheme-independent structure constants. We then compute

the three-point function at two loops in section 4. After doing so, we focus on a special

scaling limit called the ladders limit [9] in section 5, and compute the structure constants

at all orders in the rescaled coupling constant using the Schwinger-Dyson equation. These

results would provide important datapoints for developing the integrability-based approach

in the future. In section 6, we conclude and comment on the prospects. A few appendices

are included to elucidate technical details.

Note added: while we were writing up this article, we became aware that A. Cavaglia,

N. Gromov, and F. Levkovich-Maslyuk were working on a similar topic and obtained inde-

pendently the results that overlap the contents of this paper. We thank them for informing

us of their upcoming paper [10].

2 Set-up and conventions

2.1 Set-up for three-point functions

Correlation functions on the 1/2 BPS straight-line Wilson loop are constrained by the

SL(2,R) symmetry preserved by the Wilson loop [11]. This in particular implies that the

space-time dependences of the two- and the three-point functions are completely deter-

mined. Namely, we have

〈W [O1(t1)O2(t2)]〉 =
δ12

|t12|2∆1
,

〈W [O1(t1)O2(t2)O3(t3)]〉 =
C123

|t12|∆1+∆2−∆3 |t23|∆2+∆3−∆1 |t31|∆3+∆1−∆2
,

(2.1)

where ti’s are positions of the operators and tij ≡ ti − tj . ∆i and C123 are the conformal

dimension and the structure constant respectively.

As mentioned in the introduction, the main focus of this paper is the structure constant

of the defect changing operators. The most general three-point functions of such operators

are characterized by three six-dimensional unit vectors nij parametrizing the directions of

the scalars coupled to each segment of the Wilson loop (see figure 1):

〈W [O1(t1)O2(t2)O3(t3)]〉

≡
〈

Tr

[
Pexp

(∫ t1

−∞
dτ iAµẋ

µ + φin
i
31|ẋµ|

)
Pexp

(∫ t2

t1

dτ iAµẋ
µ + φin

i
12|ẋµ|

)
Pexp

(∫ t3

t2

dτ iAµẋ
µ + φin

i
23|ẋµ|

)
Pexp

(∫ ∞
t3

dτ iAµẋ
µ + φin

i
31|ẋµ|

)]〉
.

(2.2)

It is often useful to parametrize the scalar couplings by the angles between vectors nij as

cos θ1 ≡ n31 · n12 , cos θ2 ≡ n12 · n23 , cos θ3 ≡ n23 · n31 . (2.3)

– 3 –
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Figure 1. Three-point function of defect changing operators. Each segment is coupled to a different

scalar specified by the polarizations nij ’s.

2.2 Weak coupling expansion

The structures of the two- and three-point functions given in (2.1) apply only to properly

renormalized operators. However, in the actual computation at weak coupling, we often

study the correlators of un-renormalized (or equivalently bare) operators. It is therefore

useful to know how to extract the conformal data from such un-renormalized correlators.

Let us first analyze the two-point functions. In general, the bare operator OB and the

renormalized operator OR are related as3

OR ≡ ε−γ√
a
OB , (2.4)

where ε ∼ Λ−1 is the cut-off, γ is the anomalous dimension and a is the finite renormal-

ization constant needed to bring the renormalized correlator into a canonical form (2.1).

Substituting (2.4) to (2.1), we can determine the structure of the un-renormalized two-point

function as

〈W [OB(t1)OB(t2)]〉 =
a

|t12|2∆(0)

1

(|t12|/ε)2γ , (2.5)

where ∆(0) is the bare dimension. Both γ and a are functions of the ’t Hooft coupling

constant λ ≡ g2
YMN , and can be expanded as

a = 1 + λa(1) + λ2a(2) + · · · , γ = λγ(1) + λ2γ(2) + · · · . (2.6)

Here we assumed that the correlator is correctly normalized at tree level, namely a|λ=0 = 1.

By expanding the right hand side of (2.5), we obtain the expression at weak coupling,

〈W [OB(t1)OB(t2)]〉 =

(
1 + λA(1) + λ2A(2) + · · ·

)
|t12|2∆

(0)
1

, (2.7)

with

A(1) = a(1) − 2γ(1) log
|t12|
ε

,

A(2) = a(2) − 2a(1)γ(1) log
|t12|
ε

+ 2

(
γ(1) log

|t12|
ε

)2

− 2γ(2) log
|t12|
ε

.

(2.8)

From the relation (2.4) and the structure of the renormalized three-point function (2.1),

we can also determine the structure of the bare three-point functions at weak coupling. To

3Here we ignored the operator mixing since it never appears in the problems studied in this paper.
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simplify the expression, below we set a(1) = 0 as it is satisfied in all the examples studied

in this paper. Then, using the expansion of the structure constant,

C123 = C
(0)
123

(
1 + λc

(1)
123 + λ2c

(2)
123 + · · ·

)
, (2.9)

one can write the result as

〈OB1 (t1)OB2 (t2)OB3 (t3)〉 =
C

(0)
123

(
1 + λB(1) + λ2B(2) + · · ·

)
|t12|∆

(0)
1 +∆

(0)
2 −∆

(0)
3 |t23|∆

(0)
2 +∆

(0)
3 −∆

(0)
1 |t31|∆

(0)
3 +∆

(0)
1 −∆

(0)
2

, (2.10)

with

B(1) = c
(1)
123 −

∑
i

γ
(1)
i log ui ,

B(2) = c
(2)
123 +

1

2

∑
i

a
(2)
i −

∑
i

(
γ

(2)
i + c

(1)
123γ

(1)
i

)
log ui +

1

2

∑
i,j

γ
(1)
i γ

(1)
j log ui log uj .

(2.11)

Here ai and γi are the normalization and the anomalous dimension of the operator Oi
respectively and ui is given by

ui ≡
∣∣∣∣ tijtkitjkε

∣∣∣∣ (2.12)

where {i, j, k} is a cyclic permutation of {1, 2, 3}.
In the following sections, we will compare the results from perturbation with the ex-

pressions (2.7) and (2.10) and read off the anomalous dimension and the structure constant.

2.3 Action and propagators

The Euclidean action4 of N = 4 SYM used in this paper is

S =
1

g2
YM

∫
d4x L , (2.13)

L = Tr

[
− [Dµ, Dν ]2

2
+ (Dµφi)

2 +
[φi, φj ]

2

2
+ iψ̄ΓµDµψ

+ ψ̄Γi[φi, ψ] + ∂µc̄Dµc+ (∂µA
µ)2

]
,

with Dµ ≡ ∂µ − i[Aµ, ]. Here c and c̄ are the ghosts and ΓA = (Γµ,Γi) are the ten-

dimensional Dirac matrices satisfying

tr(ΓAΓB) = 16δAB . (2.14)

To emphasize that the trace here is not over the SU(N) colour degrees of freedom, here we

used the lowercase letters, tr.

4Our convention is essentially the same as (42) in [12]. The differences are

1. We write the action in terms of traces instead of decomposing the fields into the generators of SU(N).

2. We chose the Feynman gauge by setting ξ in (42) of [12] to be 1.

3. A sign error in front of the scalar quartic interaction in [12] was corrected.

– 5 –
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Figure 2. Two-point function of defect changing operators.

Using this action, one can compute the propagators as follows:

Gluon : =
g2

YMδ
acδbd

8π2

δµν
|x− y|2

,

Scalar : =
g2

YMδ
acδbd

8π2

δij
|x− y|2

,

Fermion : =
g2

YMδ
acδbd

8π2

1

|x− y|2
,

Ghost : =
g2

YMδ
acδbd

8π2

1

|x− y|2
,

(2.15)

Here a-d are the color indices and all the propagators are proportional to δacδbd. To compute

the loop corrections, one just need to bring down the interaction terms by expanding e−S

and Wick-contract the fields using the propagators.

3 Two-point functions at two loops

Let us first compute the two-point function of defect changing operators at two loops. The

purpose of this section is twofold; to reproduce the anomalous dimension known in the liter-

ature and to determine the normalization of the operator, which is necessary for extracting

the scheme-independent structure constant from perturbative three-point functions.

3.1 One loop

The two-point function we compute is of the following form (see also figure 2):

〈W [O1(t1)O2(t2)]〉 ≡
〈

Tr

[
Pexp

(∫ t1

−∞
dτ iAµẋ

µ + φiñ
i|ẋµ|

)
Pexp

(∫ t2

t1

dτ iAµẋ
µ + φin

i|ẋµ|
)

Pexp

(∫ ∞
t2

dτ iAµẋ
µ + φiñ

i|ẋµ|
)]〉

.

(3.1)

Owing to the SO(6) invariance, it only depends on the inner product n · ñ and the cou-

pling constant λ. To perform the perturbative computation, we just need to expand the

exponentials in (3.1) and contract them with propagators and vertices.

At one loop, one can only have a single propagator (without vertices). The propagator

can be either a gauge field or a scalar field and takes the form,

Gauge : − λ

8π2

1

τ2
12

, Scalar : (n1 · n2)
λ

8π2

1

τ2
12

, (3.2)

– 6 –
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Figure 3. One-loop corrections to the two-point function of defect changing operators. Owing to

the cancellation between gluons and scalars, the only diagrams that survive are the ones in which

the propagator connects two different segments.

where τ12 = τ1 − τ2 is the distance between two end points and n1 and n2 (which can be

either n or ñ) are the polarization vectors at each end point. The extra minus sign for

gluons comes from factors of i in the exponentials in (3.1). As is clear from (3.2), the

contributions from the gauge field and the scalar field cancel out if n1 = n2, since both n

and ñ have a unit norm. We are thus left with diagrams in which a propagator connects

two segments with different polarizations (see figure 3).

To compute such diagrams, we introduce a UV regularization by cutting out a small

circle of radius5 ε/2 around each operator. This leads to a regularized integral

〈W [O1(t1)O2(t2)]〉1-loop =
λ(n · ñ− 1)

8π2

(∫ t−1

−∞
dτ1

∫ t−2

t+1

dτ2
1

τ2
12

+

∫ t−2

t+1

dτ1

∫ ∞
t+2

dτ2
1

τ2
12

)
,

(3.3)

with t±i = ti ± ε/2. This integral can be easily evaluated using∫ c

d
dτ1

∫ a

b
dτ2

1

τ2
12

= log
(a− c)(b− d)

(a− d)(b− c)
, (3.4)

as

〈W [O1(t1)O2(t2)]〉1-loop =
λ(n · ñ− 1)

4π2
log

t12

ε
+O(ε) . (3.5)

Comparing this with (2.7), we can determine the one-loop normalization a(1) and the

anomalous dimension γ(1) as

a(1) = 0 , γ(1) =
1− n · ñ

8π2
. (3.6)

The result for γ(1) of course matches the one in the literature [13], but it also shows that

the normalization at one loop a(1) vanishes in our scheme.

3.2 Two loops

Let us now proceed to the two-loop computation. At two loops, there appear three types

of diagrams; the ladder, the vertex and the self-energy. Below we are going to evaluate

them one by one.

Ladder diagrams. The first diagrams are the ladder diagrams, which consist only of

propagators. For this class of diagrams, the computation proceeds in a similar manner as

in the previous subsection. Also here, the diagrams that contain propagators connecting

the same segment vanish due to the cancellation between the scalar and the gluon.

5The factor of 1/2 is just a useful convention which simplifies the final result.

– 7 –



J
H
E
P
1
2
(
2
0
1
7
)
0
5
5

Figure 4. Ladder diagrams that contribute to the two-point function at two loops. Here thick

black curves represent either a scalar propagator or a gluon propagator.

Thus only non-zero diagrams are the ones depicted in figure 4, which are given by

L1 =

(
(n · ñ− 1)λ

8π2

)2 ∫ t−1

−∞
dτ1

∫ t−1

τ1

dτ2

∫ t−2

t+1

dτ3

∫ t−2

τ3

dτ4
1

τ2
14

1

τ2
23

,

L2 =

(
(n · ñ− 1)λ

8π2

)2 ∫ t−1

−∞
dτ1

∫ t−2

t+1

dτ2

∫ t−2

τ2

dτ3

∫ ∞
t+2

dτ4
1

τ2
12

1

τ2
34

,

L3 =

(
(n · ñ− 1)λ

8π2

)2 ∫ t−2

t+1

dτ1

∫ t−2

τ1

dτ2

∫ ∞
t+2

dτ3

∫ ∞
τ3

dτ4
1

τ2
14

1

τ2
23

.

(3.7)

Each of these integrals can be evaluated straightforwardly as follows:6

L1 = L3 =

(
(n · ñ− 1)λ

8π2

)2
[
π2

6
− log

t21

ε
+

1

2

(
log

t21

ε

)2
]

+O(ε) ,

L2 =

(
(n · ñ− 1)λ

8π2

)2
[
−π

2

6
+

(
log

t21

ε

)2
]

+O(ε) .

(3.8)

Summing three terms, we get

L ≡ L1 + L2 + L3 =

(
(n · ñ− 1)λ

8π2

)2
[
π2

6
− 2 log

t21

ε
+ 2

(
log

t21

ε

)2
]
. (3.9)

Vertex diagrams. The second diagrams are the ones which contain one interaction

vertex. Written explicitly, they arise from the Wick contraction of the following terms:

i3

3!

∫
dτ1dτ2dτ3

〈
Tr P[A(τ1)A(τ2)A(τ3)]

(
2i

g2
YM

∫
d4xTr{∂µAν(x)[Aµ(x), Aν(x)]}

)〉
+

i

2!1!

∫
dτ1dτ2dτ3

〈
Tr P[Φ1(τ1)Φ2(τ2)A(τ3)]

(
2i

g2
YM

∫
d4xTr {∂µφ(x) [Aµ(x), φ(x)]}

)〉
.

Here A ≡ Aµẋ
µ and Φi ≡ (φ · ni)|ẋ| with n1,2 being the polarization vectors at each

end-point.

The Wick contraction of the above correlator leads to a set of diagrams shown in

figure 5. To illustrate how the computation goes, let us focus on the diagram V1. In the

6The equivalence between L1 and L3 can be shown at the level of integrands by performing the translation

τi → τi − c and the reflection τi → −τi.

– 8 –
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Figure 5. The two-loop diagrams for the two-point function that involve one interaction vertex.

Here again, each black line can be either scalar or gluon.

diagram V1, the contribution from the scalar-scalar-gauge vertex consists of three different

terms depending on the path-ordering:

i

∫
τ1,τ2∈[−∞,t1]

τ1<τ2

dτ1dτ2

∫
τ3∈[t1,t2]

dτ3

[〈
Tr
(
A(τ3)Φ̃(τ2)Φ̃(τ1)

)〉
+
〈

Tr
(

Φ(τ3)A(τ2)Φ̃(τ1)
)〉

+
〈

Tr
(

Φ(τ3)Φ̃(τ2)A(τ1)
)〉]

.

(3.10)

Here Φ ≡ n · φ and Φ̃ ≡ ñ · φ, and we did not write the interaction vertex for brevity.

Among these three terms, the first term, which has two scalars in the segment [−∞, t1],

does not contribute to the final answer since it is proportional to ñ · ñ = 1 and is cancelled

precisely by a similar contribution from the three-gauge vertex. On the other hand, from

the second term we get

(second term) = −λ
2(n · ñ)

4(4π2)3

∫
τ1,τ2∈[−∞,t1]

τ1<τ2

dτ1dτ2

∫
τ3∈[t1,t2]

dτ3 (−∂τ1Y123 + ∂τ3Y123) ,

(3.11)

with (see appendix A for more details)

Y123

(
≡
∫

d4x5

x2
15x

2
25x

2
35

)
= −2π2

(
log |τ12|
τ13τ23

+
log |τ13|
τ12τ32

+
log |τ23|
τ21τ31

)
. (3.12)

In (3.11), the term −∂τ1Y123 comes from the contraction with the interac-

tion
∫
d4xTr(∂µφAµφ) while the term ∂τ3Y123 comes from the contraction with

−
∫
d4xTr(∂µφφAµ). Similarly the third term (3.10) yields7

(third term) = −λ
2(n · ñ)

4(4π2)3

∫
τ1,τ2∈[−∞,t1]

τ1<τ2

dτ1dτ2

∫
τ3∈[t1,t2]

dτ3 (−∂τ3Y123 + ∂τ2Y123) . (3.13)

7Here −∂τ3Y123 comes from the contraction with
∫
d4xTr(∂µφAµφ) while ∂τ1Y123 comes from the con-

traction with −
∫
d4xTr(∂µφφAµ).

– 9 –
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Adding up the two terms, (3.11) and (3.13), and also the contributions from the three-gauge

vertex, we arrive at the following result for the diagram V1:

V1 = −λ
2(n · ñ− 1)

4(4π2)3

∫ t−1

−∞
dτ1

∫ t−1

−∞
dτ2

∫ t−2

t+1

dτ3 ε(τ1 − τ2)∂τ1Y123 . (3.14)

Here we used the permutation symmetry of Y123, Y123 = Y213 etc., to simplify the result

and ε(x) ≡ θ(x)− θ(−x) with θ(x) being the step function.

By performing the similar analysis, we arrive at the following results for other diagrams:

V2 =− λ2(n · ñ− 1)

4(4π2)3

∫ t−1

−∞
dτ1

∫ t−2

t+1

dτ2

∫ t−2

t+1

dτ3 ε(τ2 − τ3)∂τ2Y123 ,

V3 =− λ2(n · ñ− 1)

4(4π2)3

∫ t−2

t+1

dτ1

∫ ∞
t+2

dτ2

∫ ∞
t+2

dτ3 ε(τ2 − τ3)∂τ2Y123 ,

V4 =− λ2(n · ñ− 1)

4(4π2)3

∫ t−2

t+1

dτ1

∫ t−2

t+1

dτ2

∫ ∞
t+2

dτ3 ε(τ1 − τ2)∂τ1Y123 ,

V5 =− λ2(n · ñ− 1)

4(4π2)3

∫ t−1

−∞
dτ1

∫ t−2

t+1

dτ2

∫ ∞
t+2

dτ3 (∂τ1Y123 − ∂τ3Y123) .

(3.15)

To proceed, we perform the integration by parts to each contribution and rewrite them

using ∂xε(x) = 2δ(x) as

V1 =− λ2(n · ñ− 1)

4(4π2)3

[∫ t−1

−∞
dτ2

∫ t−2

t+1

dτ3 Yt−1 23 − 2

∫ t−1

−∞
dτ1

∫ t−1

−∞
dτ2

∫ t−2

t+1

dτ3 δ(τ1 − τ2)Y123

]

=− λ2(n · ñ− 1)

4(4π2)3

[∫ t−1

−∞
dτ2

∫ t−2

t+1

dτ3 Yt−1 23 − 2

∫ t−1

−∞
dτ2

∫ t−2

t+1

dτ3 Y223

]
. (3.16)

We thus get

V ≡ V1 + V2 + V3 + V4 + V5 + V6

= − λ2(n · ñ− 1)

4(4π2)3

[∫ t−1

−∞
dτ2

∫ t−2

t+1

dτ3

(
Yt−1 23 + Yt+1 23 + Yt−2 23 + Yt+2 23

)
+

∫ t−2

t+1

dτ2

∫ ∞
t+2

dτ3

(
Yt−1 23 + Yt+1 23 + Yt−2 23 + Yt+2 23

)
−2

∫ t−1

−∞
dτ2

∫ t−2

t+1

dτ3 (Y223 + Y233)− 2

∫ t−2

t+1

dτ2

∫ ∞
t+2

dτ3 (Y223 + Y233)

]
.

(3.17)

Note that the last line in this expression contains the function Y evaluated at the coincident

points and is therefore divergent. A convenient way to regularize these integrals is to use

the dimensional regularization,8 which renders Y to be

Y ε
223 =

∫
d4−εx5

x4
25x

2
35

=
π2− ε

2

x2−ε
23

Γ
(
1− ε

2

)
Γ
(
− ε

2

)
Γ
(
1 + ε

2

)
Γ(1− ε)

,

Y ε
233 =

∫
d4−εx5

x2
25x

4
35

= Y ε
223 .

(3.18)

8For derivation of (3.18), see for instance appendix A of [15].
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Figure 6. The self-energy diagrams that contribute to the two-loop two-point function. The sum

of these two diagrams is given by (3.20).

Self-energy diagrams. We now discuss the contribution from the self-energy diagrams

(see figure 6). The one-loop correction to the gauge and the scalar propagators were already

computed in the literature and the result in the dimensional regularization reads [14]

=
g4

YMδ
acδbdδµν

2(4π2)3
(Y ε

223 + Y ε
233) ,

= −
g4

YMδ
acδbdδij

2(4π2)3
(Y ε

223 + Y ε
233) .

(3.19)

Here again δacδbd is the color factor.9 Using these corrected propagators, one can compute

the contribution from the self-energy diagrams as follows:

S = −λ
2(n · ñ− 1)

2(4π2)3

[∫ t−1

−∞
dτ2

∫ t−2

t+1

dτ3 (Y ε
223 + Y ε

233) +

∫ t−2

t+1

dτ2

∫ ∞
t+2

dτ3 (Y ε
223 + Y ε

233)

]
.

(3.20)

It is then easy to verify that the contribution from the self-energy diagrams precisely cancels

the divergent terms in (3.17).

Using the expression for Y123 (3.12), one can straightforwardly evaluate the remaining

integral10 to get

V + S = −2(n · ñ− 1)

(
λ

8π2

)2(π2

3
log

t21

ε
+ 3ζ(3)

)
. (3.21)

Final result. Now by summing up all the contributions (3.9) and (3.21), we get the

result for the two-point function at two loops:

〈W [O1(t1)O2(t2)]〉2-loop =

(
λ

8π2

)2
[

(n · ñ− 1)2

(
π2

6
− 2 log

t21

ε
+ 2

(
log

t21

ε

)2
)

− 2(n · ñ− 1)

(
π2

3
log

t21

ε
+ 3ζ(3)

)]
.

(3.22)

By comparing the weak coupling expansion of the two-point function (2.11), one can finally

obtain the two-loop anomalous dimension γ
(2)
j and the constant term a

(2)
j as follows:

a(2) =
1

(8π2)2

[
π2

12
(n · ñ− 1)2 − 3ζ(3)(n · ñ− 1)

]
, (3.23)

γ(2) =
1

(8π2)2

[
(n · ñ− 1)2 +

π2

3
(n · ñ− 1)

]
. (3.24)

Again, the result for γ(2) matches the one in the literature [13].

9Here we did not write them on the left hand side for simplicity.
10In terms of polylogarithms.
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Figure 7. The one-loop diagram for the three-point function which is proportional to (n12 ·n23−1).

The result of the computation is given in (4.1).

4 Three-point functions at two loops

We now set out to compute the three-point functions of DCO’s on the Wilson line, given

explicitly in (2.2). The strategy of the computation is essentially the same as in the

previous section; we list up all possible diagrams and compute each integral explicitly by

using appropriate regularisations. Of course, this is easier said than done; the number of

diagrams that contribute at a given loop order proliferate as we increase the number of

operators.

To circumvent this complication, we use the following trick: when the polarizations

of two segments are identical, the quantum correction involving these two segments must

vanish owing to the supersymmetry. This implies that the polarization vectors nij ’s enter

in the final result only through the combinations11 (nij · nkl − 1). In addition, the final

result must be symmetric with respect to the permutation of the operator labels, 1, 2 and 3.

Therefore, instead of computing all possible diagrams, one can just focus on the coefficients

of certain monomials of (nij ·nkl−1)’s, and symmetrize the resulting expression with respect

to the permutation of the operators to get the full answer.

4.1 One loop

At one loop, the result is linear in (nij ·nkl−1). Therefore by using the trick explained above,

we can just focus on the term proportional to (n12 ·n23−1) and symmetrize the result to get

the full expression. As shown in figure 7, there is only one type of diagrams that produce

this contribution. As in the case of the two-point function, one can straightforwardly

evaluate them as

λ(n12 · n23 − 1)

8π2

∫ t−2

t+1

dτ1

∫ t−3

t+2

dτ2
1

τ2
12

=
λ(n12 · n23 − 1)

8π2
log

t21t32

t31ε
(4.1)

After the symmetrization, we get the full answer,

〈W [O1(t1)O2(t2)O3(t3)]〉1-loop =
λ

8π2

∑
{i,j,k}

(nij · njk − 1) log

∣∣∣∣ tijtjktkiε

∣∣∣∣ , (4.2)

where the sum is over {i, j, k} = {1, 2, 3}, {2, 3, 1}, {3, 1, 2}. Comparing this result with the

weak coupling expansion given in (2.11), one can read off the anomalous dimension and

the structure constant as12

γ
(1)
j =

(1− nij · njk)
8π2

, c
(1)
123 = 0.

11At one loop, the result is linear in such combinations while it consists of linear and quadratic pieces at

two loops.
12Here we already used the fact that the one-loop normalization a(1) vanishes in our scheme. See (3.6).
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(n12 · n23 − 1)2 (n12 · n23 − 1)(n23 · n31 − 1)

Figure 8. The two-loop ladder diagrams. The left diagram produces the term proportional to

(n12 · n23 − 1)2 while the right two diagrams produce the term proportional to (n12 · n23 − 1)(n23 ·
n31 − 1).

As expected the result for the anomalous dimension matches the previous result (3.6). This

also shows that the one-loop structure constant is exactly zero.

4.2 Two loops

At two loops, the result consists of terms quadratic in (nij · njk − 1) and terms linear in

(nij · njk − 1). The quadratic terms come from the ladder-like diagrams while the linear

terms arise from the vertex diagrams and the self-energy diagrams.

Let us first compute the quadratic terms. For this purpose, it is enough to compute

the terms proportional to (n12 · n23 − 1)2 and (n12 · n23 − 1)(n23 · n31 − 1). The diagrams

that contribute to these two terms are given in figure 8. Then, the term proportional to

(n12 · n23 − 1)2 can be computed as

(
(n12 · n23 − 1)λ

8π2

)2 ∫ t−2

t+1

dτ1

∫ t−2

τ1

dτ2

∫ t−3

t+2

dτ3

∫ t−3

τ3

dτ4
1

τ2
14

1

τ2
23

=

(
(n12 · n23 − 1)λ

8π2

)2
[
π2

6
− log

∣∣∣∣ t12t23

t31ε

∣∣∣∣+
1

2

(
log

∣∣∣∣ t12t23

t31ε

∣∣∣∣)2
]
.

(4.3)

On the other hand, the term proportional to (n12 · n23 − 1)(n23 · n31 − 1) is given by

(n12 · n23 − 1)(n23 · n31 − 1)

(
λ

8π2

)2
[∫ t−2

t+1

dτ1

∫ t−3

t+2

dτ2

∫ t−3

τ2

dτ3

∫ ∞
t+3

dτ4
1

τ2
12

1

τ2
34

+

∫ t−1

−∞
dτ1

∫ t−2

t+1

dτ2

∫ t+3

t+2

dτ3

∫ t+3

τ3

dτ4
1

τ2
14

1

τ2
23

]

= −(n12 · n23 − 1)(n23 · n31 − 1)

(
λ

8π2

)2(π2

6
− log

∣∣∣∣ t12t23

t31ε

∣∣∣∣ log

∣∣∣∣ t23t31

t12ε

∣∣∣∣) .

(4.4)

Next we consider the terms linear in (n12 · n23 − 1). The diagrams that give such

contributions are listed in figure 9. The computation of each diagram is a straightforward,

yet tedious task. So we relegate the detail of the computation to appendix B and present

only the final result here:

−(n12 · n23 − 1)

(
λ

8π2

)2(
3ζ(3) +

π2

3
log

∣∣∣∣ t12t23

t31ε

∣∣∣∣) . (4.5)
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Figure 9. The two-loop diagram with one interaction vertex which produces the term linear in

(n12 · n23 − 1). The computation of each diagram is presented in appendix B.

Then, after the symmetrization, we get

〈W [O1(t1)O2(t2)O3(t3)]〉2-loop

=

(
λ

8π2

)2 ∑
{i,j,k}

[
(nij · njk − 1)2

(
π2

6
− log

∣∣∣∣ tijtjktkiε

∣∣∣∣+
1

2

(
log

∣∣∣∣ tijtjktkiε

∣∣∣∣)2
)

− (nij · njk − 1)(njk · nki − 1)

(
π2

6
− log

∣∣∣∣ tijtjktkiε

∣∣∣∣ log

∣∣∣∣ tjktkitijε

∣∣∣∣)
− (nij · njk − 1)

(
3ζ(3) +

π2

3
log

tijtjk
tkiε

)]
.

(4.6)

Here again the sum is over {i, j, k} = {1, 2, 3}, {2, 1, 3}, {3, 1, 2}.
Comparing (4.6) with the weak-coupling expansion (2.11), we can read off the two-loop

anomalous dimension and the structure constant as follows:

γ
(2)
j =

1

(8π2)2

[
(nij · njk − 1)2 +

π2

3
(nij · njk − 1)

]
, (4.7)

c
(2)
123 =

1

(8π2)2

π2

12

∑
{i,j,k}

[
(nij · njk − 1)2 − 2(nij · njk − 1)(njk · nki − 1)

]
. (4.8)

As expected, the result for the anomalous dimension matches the one obtained previously

in (3.24).

5 Three-point functions in the ladders limit

In this section, we consider a special double-scaling limit called the ladders limit. The

ladders limit provides an interesting solvable example of defect conformal field theories in

higher dimensions: as will be explained more in detail in subsection 5.1, the only diagrams

that survive in this limit are the ladder diagrams and one can sum them up by solving the

Schwinger-Dyson equation. Such resummation was performed already in the literature to

compute the static quark potential and the cusp anomalous dimension [9, 16]. A similar
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Figure 10. An example of the diagrams that survive in the ladders limit.

technique (or more precisely, a more refined version of it) can be applied to the computation

of the structure constant of DCOs as we explain below.

Since this section is rather long, let us give a brief outline of what will be discussed

in each subsection. In subsection 5.1, we first explain the set up, namely the ladders limit

for the two-point functions and the three-point functions. After doing so, we introduce a

building block for the computation, which we call the four-point kernel, in subsection 5.2

and compute it using the Schwinger-Dyson equation. We then compute the two-point

function of DCOs and determine their anomalous dimensions and renormalization fac-

tors in subsection 5.3. The calculation of the three-point functions are divided into three

consecutive subsections 5.4–5.6, depending on the number of DCOs with non-vanishing

conformal dimensions.

5.1 Set up

The ladders limit was introduced in [9] as a double scaling limit in which the ’t Hooft

coupling constant λ goes to zero while the angle between the neighboring polarizations is

sent to imaginary negative infinity:

λ→ 0 , λ̂ ≡ eiθλ

4
∼ λ(n · ñ)

2
: fixed , (cos θ ≡ n · ñ) . (5.1)

Since λ goes to zero, all the diagrams which contain gluon propagators or interaction

vertices disappear in the limit. The only diagrams that survive are the ones which have

scalar propagators connecting the two segments since they come with a divergent factor (n ·
ñ) which compensates the vanishing coupling constant. Such diagrams have the structure

of the ladders, hence the name. (See figure 10.)

Alternatively, one can define the ladders limit of DCOs directly in the zero-coupling

N = 4 SYM as follows:

Tr

[
Pexp

(∫ t

−∞
dτ φ̂iv

i|ẋµ|
)

Pexp

(∫ ∞
t
dτ φ̂iṽ

i|ẋµ|
)]

. (5.2)

Here φ̂ is a rescaled scalar field defined by φ̂ ≡ φ/
√
λ and v and ṽ are complex null

vectors related to the effective coupling as λ̂ = (v · ṽ)/2. The equivalence of the two

descriptions can be shown either at the level of diagrams or by carefully taking the limit

of the polarization vectors.13

For the purpose of computing the (cusp) anomalous dimensions [9], one just needs a

two-point function on the Wilson loop, and we only have two polarizations to play with.

13See the discussion in section 4 of [9].
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Figure 11. Examples of diagrams that contribute to the Case I (left), the Case II (middle) and

the Case III (right) three-point functions.

On the other hand, the three-point function has three polarizations and we thus have three

different angles. We can therefore define three effective couplings14

λ̂i ≡
eiθiλ

4
(i = 1, 2, 3) . (5.3)

and take various different limits depending on how we scale θi’s. The simplest among them

is the limit in which one of the angle, say θ2, is sent to infinity while the others are kept

finite. In this limit, we have

Case I : λ̂1 = λ̂3 = 0 , λ̂2 = λ̂ 6= 0 , (5.4)

and the diagrams that survive are the ones which connect the two neighboring segments of

O2. As we see in subsection 5.3, when the effective coupling is zero, the dimensions of the

corresponding DCOs (O1 and O3) vanish. In what follows, we call such operators trivial

operators. The next simplest limit is the limit,

Case II : λ̂1 6= 0 , λ̂2 6= 0 , λ̂3 = 0 . (5.5)

We then have two trivial DCOs and one nontrivial DCO and the diagrams are the ones

depicted in figure 11. Lastly, there is the most complicated limit, in which all three effective

couplings are nonzero.

Case III : λ̂1 6= 0 , λ̂2 6= 0 , λ̂3 6= 0 . (5.6)

These three cases will be discussed separately in subsections 5.4–5.6.

Note that the ladders limit for the three-point function can also be defined directly in

the zero-coupling N = 4 SYM. For instance, the Case III corresponds to the correlator,〈
Tr

[
Pexp

(∫ t1

−∞
dτ φ̂iv

i
31|ẋµ|

)
Pexp

(∫ t2

t1

dτ φ̂iv
i
12|ẋµ|

)
Pexp

(∫ t3

t2

dτ φ̂iv
i
23|ẋµ|

)
Pexp

(∫ ∞
t3

dτ φ̂iv
i
31|ẋµ|

)]〉
,

(5.7)

where vij ’s are complex null vectors and related to the effective couplings as

λ̂j = (vij · vjk)/2.

14See (2.3) for definitions of θi’s.
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Figure 12. The definition of the four-point kernel. It is defined as a sum over all the ladder

diagrams with the endpoints on the black segments in the figure.

5.2 Four-point kernel and the Schwinger-Dyson equation

To compute the correlators in the ladders limit, it is useful to introduce a basic building

block which we call the four-point kernel K(τ1, τ2|τ3, τ4). The function K is defined as a

sum over all the ladder diagrams with the left endpoints in [τ1, τ2] and the right endpoints

in [τ3, τ4]. (See also figure 12)

As shown in figure 13, K(τ1, τ2|τ3, τ4) satisfies the Schwinger-Dyson equation

K(τ1, τ2|τ3, τ4) = 1 +

∫ τ2

τ1

ds

∫ τ4

τ3

dt P (t− s)K(τ1, s|t, τ4) ,

P (x)

(
=

λ

8π2

n · ñ
x2

)
=

λ̂

4π2

1

x2
,

(5.8)

where P (x) is a scalar propagator connecting the two segments, [τ1, τ2] and [τ3, τ4]. By

differentiating both sides, we can derive a differential equation,

∂τ2∂τ3K = −P (τ3 − τ2)K . (5.9)

One can further simplify this differential equation using the conformal invariance. Owing

to the conformal invariance, the kernel K depends on the coordinates only through the

cross ratio

u =
τ12τ34

τ13τ24
. (5.10)

We can therefore rewrite15 (5.9) as a differential equation of one variable, u:[
u(1− u)

d2

du2
+ (1− u)

d

du
− λ̂

4π2(1− u)

]
K(u) = 0 . (5.11)

Since this is a second-order differential equation, there are two linearly independent so-

lutions.16 The correct solution can be selected by imposing the boundary condition,

K(u = 0) = 1 (or equivalently K|τ1→τ2 = K|τ3→τ4 = 1), which comes from the origi-

nal integral equation (5.8). As a result we have

K(u) = (1− u)−Ω
2F1(−Ω,−Ω, 1;u) , (5.12)

with

Ω =
1

2

−1 +

√
1 +

λ̂

π2

 . (5.13)
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Figure 13. The Schwinger-Dyson equation satisfied by the four-point kernel K.

Figure 14. The definition of the (regularized) vertex function. It is given by a sum of diagrams

whose end-points are in [−S,−ε/2] and [ε/2, T ]

Using the four-point kernel, one can compute other physically important quantities.

One such quantity is the vertex function Γε(S, T ), depicted in figure 14. Roughly speaking,

it is given by a sum over the ladder diagrams whose end points are in [−S, 0] and [0, T ].

This quantity is however UV divergent and one has to introduce a point-splitting cut off

to regularize such divergence. Thus, the precise definition is given by

Γε(S, T ) ≡ K(−S,−ε/2 | ε/2, T ) = K

(
(S − ε

2)(T − ε
2)

(S + ε
2)(T + ε

2)

)
(5.14)

Here the subscript ε is introduced to remember that it is a “bare” quantity which depends

explicitly on the cut off. Note that the vertex function also satisfies the differential equation

∂S∂TΓε(S, T ) = P (S + T )Γε(S, T ) , (5.15)

From the explicit form of the four-point kernel, one can determine the leading behavior of

Γε in the limit S, T � ε,

Γε(S, T ) =
A(Ω)

εΩ

(
1

S
+

1

T

)−Ω

︸ ︷︷ ︸
≡ΓIR(S,T )

+O(ε) , A(Ω) =
Γ(2Ω + 1)

Γ(Ω + 1)2
.

(5.16)

As discussed in appendix C, there is an intriguing relation between the vertex function

and the solutions to the Schrödinger equation (also called the Bethe-Salpeter equation)

studied in [9, 16]: by rewriting it in a different coordinate, one can explicitly show that the

leading term ΓIR is related to the ground-state wave function of the Schrödinger equation.

Furthermore, it turns out that the subleading terms in the expansion correspond to the

excited-state wave functions of the same Schrödinger equation. In this sense, the full vertex

function Γε can be regarded as a generating function of such wave functions. From the

defect CFT point of view, the expansion of Γε in ε is nothing but the OPE expansion of the

15To rewrite the differential equation, we used ∂τ2 = −τ14/(τ12τ24) ∂u and ∂τ3 = τ14/(τ13τ34) ∂u
16The other (incorrect) solution is (1 − u)−Ω [2F

∗
1 (−Ω,−Ω, 1;u) + log u 2F1(−Ω,−Ω, 1;u)], with

2F
∗
1 (a, b, c;u) = (∂a + ∂b + 2∂c)2F

∗
1 (a, b, c;u).
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. . .  

Figure 15. The resummation of the ladder diagrams for the two-point function. The contribution

from the left figure on the last line will be denoted by 1st while the one from the right figure will

be denoted as 2nd.

“four-point function” K, with its leading term controlled by a conformal primary DCO and

the subleading terms controlled by its descendants. This provides a physical interpretation

of the solutions to the Schrödinger equation: namely the ground state corresponds to

a conformal primary and the excited states correspond to its descendants. For a more

detailed account on this point, see appendix C.

5.3 Two-point functions and renormalization

As in the two-loop analysis performed in the preceding sections, to extract the scheme inde-

pendent structure constant, one first needs to determine the renormalization factor Z−1/2:

O = Z−1/2OB , (5.17)

Here OB denotes the bare DCO while O denotes the renormalized DCO. The renormal-

ization factor is determined by requiring that the renormalized two-point function has a

canonical form:

〈O(τ1)O(τ2)〉 = Z−1〈OB(τ1)OB(τ2)〉 =
1

|τ12|2∆
. (5.18)

In what follows, we evaluate the two-point function of the bare operators and determine Z.

The two-point function can be computed using the vertex functions as shown in fig-

ure 15. The contribution from each diagram is given as follows:

1st = Γε(∞, τ21) ,

2nd =

∫ τ−2

τ+
1

ds

∫ ∞
τ+
2

dtΓε(∞, s− τ1)P (t− s)Γε(τ2 − s, t− τ2) .
(5.19)

As in the preceding sections, the endpoints are regularized as τ±i = τi ± ε/2. The first

contribution can be approximated by ΓIR and is given by

1st ∼
(τ21

ε

)Ω
. (5.20)
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To evaluate the second contribution, we use the differential equation (5.15) and rewrite

it as

2nd =

∫ τ−2

τ+
1

ds

∫ ∞
τ+
2

dtΓε(∞, s− τ1)(−∂s∂t)Γε(τ2 − s, t− τ2) (5.21)

= −
∫ τ−2

τ+
1

dsΓε(∞, s− τ1)∂sΓε(τ2 − s,∞) (5.22)

In passing to the second line, we used Γε(∗, ε/2) = K(u)|u=0 = 0. Unlike the first contri-

bution, there is a priori no reason to expect that Γε can be approximated by ΓIR in (5.21)

since the arguments of Γε can be of order O(ε). Nevertheless, it turns out that the leading

singular piece in the limit ε � 1 can be computed by replacing Γε with ΓIR. Roughly

speaking, this is because the difference between Γε and ΓIR,

ΓUV ≡ Γε − ΓIR , (5.23)

is of order εΓIR whenever the arguments are O(1) while it is of O(1) only when the ar-

guments are in a small interval of length ε near the origin. Therefore the contribution

from ΓUV is always O(ε) smaller than the contribution from ΓIR. See appendix D for more

detailed arguments.

Once we replace Γε with ΓIR, the computation is straightforward:

2nd
ε�1
= −

(
A(Ω)

εΩ

)2 ∫ τ2

τ1

ds (s− τ1)Ω∂s(τ2 − s)Ω =

(
A(Ω)

εΩ

)2

Ω

∫ 1

0
ds̄ s̄Ω(1− s̄)Ω−1

=
Γ(2Ω + 1)

Γ(Ω + 1)2

|τ12|2Ω

ε2Ω
. (5.24)

In the second equality, we performed the transformation s̄ = (s− τ1)/(τ1 − τ2) and in the

last equality we used

I(a, b) ≡ b
∫ 1

0
ds̄ s̄a(1− s̄)b−1 =

Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 1)
. (5.25)

We thus obtain

〈OB(τ1)OB(τ2)〉 ε�1
=

Γ(2Ω + 1)

Γ(Ω + 1)2

|τ12|2Ω

ε2Ω
. (5.26)

Note that the first contribution 1st only gives a subleading correction. By comparing (5.26)

with (5.18), we conclude that the conformal dimension and the renormalization factor of

the DCO are given by17

∆(λ̂) = −Ω , Z(λ̂) =
A(Ω)

ε2Ω
. (5.27)

As expected, the result for the conformal dimension matches the one in [9].

Before ending this subsection, let us make a further comment on Γε and ΓIR. As

explained above, the leading term in ε � 1 limit can be computed by replacing Γε’s

17Note that the conformal dimension of the DCO is negative. This however is not a contradiction since

the defect CFT we are studying lacks unitarity.
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Figure 16. The resummation of the ladder diagrams for the Case I three-point function.

with ΓIR’s in the diagram with the maximal number of vertex functions. As discussed in

appendix D, this is rather an universal phenomenon and it applies also to the computation

of the multi-point functions. When the effect of the renormalization is taken into account,

this leads to the following recipe of computing the renormalized correlation functions:

1. List up all the diagrams that compute the bare correlators and select those with a

maximal number of vertex functions.

2. Replace Γε in those diagrams with the renormalized vertex function ΓR

ΓR(S, T ) ≡ lim
ε→0

Z−1/2ΓIR(S, T ) =
√
A(Ω)

(
1

S
+

1

T

)−Ω

, (5.28)

and compute the integrals.

In the subsections below, we compute the structure constants following this recipe.

5.4 Case I: 1 nontrivial and 2 trivial DCOs

We now compute the three-point function of one nontrivial DCO and two trivial DCOs.

For simplicity we first consider the case where the operator in the middle is a nontrivial

DCO (see figure 16). In this case, one can easily resum the diagrams by a single vertex

function. Thus, following the prescription at the end of the previous subsection, we obtain

〈O◦1(τ1)O•2(τ2)O◦3(τ3)〉 = ΓR(τ21, τ32) =
C◦•◦

τ−Ω
21 τ−Ω

32 τΩ
31

,

C◦•◦ =
√
A(Ω) =

Γ(2Ω + 1)1/2

Γ(Ω + 1)
.

(5.29)

Here and in what follows, the symbols ◦ and • signify a trivial DCO and a nontrivial DCO

respectively. At weak coupling, the result can be expanded from (5.13) as

C◦•◦ = 1 +
π2

12

(
λ̂

4π2

)2

−
(
π2

6
+ ζ(3)

)(
λ̂

4π2

)3

+O(λ̂4) . (5.30)

The result up to two loops reproduces the perturbative result for the ladder diagrams in the

previous section. At strong coupling (λ̂� 1), on the other hand, the result exponentiates

and is given by

lnC◦•◦ ∼

√
λ̂

2π
ln 2 . (5.31)

The structure of the result suggests the existence of some dual description in terms of

classical string with the tension
√
λ̂. It would be interesting to look for such a description

which reproduces this result.
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Figure 17. The resummation of the ladder diagrams for the Case I three-point function when the

leftmost operator is the nontrivial DCO. Unlike the one in figure 16, the result is given by a sum

of two diagrams shown above (although the structure constant itself must be the same).

As a consistency check, let us also compute the three-point function in which the

rightmost operator is a nontrivial DCO (C•◦◦). Although the result must be equal to C◦•◦
owing to the permutation symmetry, the diagrams are not identical as shown in figure 17.

Written explicitly, we have

C•◦◦

τ−Ω
21 τΩ

32τ
−Ω
31

= ΓR(∞, τ21) +
λ̂

4π2

∫ τ2

τ1

ds

∫ ∞
τ3

dt
ΓR(∞, s− τ1)K(s, τ2|τ3, t)

(t− s)2︸ ︷︷ ︸
(∗)

. (5.32)

Using the Schwinger-Dyson equation (5.9), one can rewrite the second term on the right

hand side as

(∗) = −
∫ τ2

τ1

ds

∫ ∞
τ3

dtΓR(∞, s− τ1)∂s∂tK(s, τ2|τ3, t) . (5.33)

Clearly, the t integral can be trivially performed and we get

(∗) =

∫ τ2

τ1

ds ∂s (1−K(s, τ2|τ3,∞)) ΓR(∞, s− τ1) , (5.34)

where we used K(∗, ∗′|x, x) = 1. By performing the integration by parts and adding the

first term in (5.32), we arrive at a simple formula

C•◦◦

τ−Ω
21 τΩ

32τ
−Ω
31

=

∫ τ2

τ1

ds ∂sΓ
R(∞, s− τ1)K(s, τ2|τ3,∞) . (5.35)

As shown in appendix E, this integral can be evaluated explicitly using the identities of

the hypergeometric functions and we obtain the expected result

C•◦◦ = C◦•◦ =
√
A(Ω) . (5.36)

5.5 Case II: 2 nontrivial and 1 trivial DCOs

Let us now compute the structure constant of the case II correlators,

〈O•1(τ1)O•2(τ2)O◦3(τ3)〉 =
C••◦

τ−Ω1−Ω2
21 τΩ1−Ω2

32 τ−Ω1+Ω2
31

. (5.37)

Since we have two effective couplings λ̂1,2 in this case, we shall distinguish various functions

of the effective couplings by putting subscripts; for instance the dimension of each operator

will be denoted as ∆i = −Ωi ≡ −Ω(λ̂i).
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Figure 18. The resummation of the ladder diagrams for the Case II three-point function. Among

the four diagrams, only the last one gives a dominant contribution in the limit ε→ 0.

The diagrams that contribute to the bare three-point functions are listed in figure 18.

Following the recipe in subsection 5.3, we just consider the diagram with a maximal number

of vertex functions, which in this case is the last diagram. We then get the following

expression for the renormalized three-point function18

〈O•1O•2O◦3〉 =

∫ τ2

τ1

ds

∫ τ3

τ2

dt

∫ τ1

−∞
du

∫ s

τ1

dv (−∂u∂v)ΓR1 (τ1 − u, v − τ1)

×K1(v, s|τ3,∞)(−∂s∂t)ΓR2 (τ2 − s, t− τ2) .

(5.38)

Here we have already replaced the scalar propagators with the derivatives using the equa-

tion (5.9). In (5.38), the integral of u can be performed straightforwardly. After doing so,

the integral of v becomes ∫ s

τ1

dv ∂vΓ
R
1 (∞, v − τ1)K1(v, s|τ3,∞) . (5.39)

This integral is essentially the same as the right hand side of (5.35). Therefore, using the

result there, we can evaluate it to get

〈O•1O•2O◦3〉 = τΩ1
31

√
A(Ω1)

∫ τ2

τ1

ds

∫ τ3

τ2

dt

(
s− τ1

τ3 − s

)Ω1

(−∂s∂t)ΓR2 (τ2 − s, t− τ2) (5.40)

= τΩ1
31

√
A(Ω1)A(Ω2)

∫ τ2

τ1

ds

∫ τ3

τ2

dt

(
s− τ1

τ3 − s

)Ω1

(−∂s∂t)
(

(τ2 − s)(t− τ2)

t− s

)Ω2

.

We can now perform the t integral to get

〈O•1O•2O◦3〉 = −τΩ1
31 τ

Ω2
32

√
A(Ω1)A(Ω2)

∫ τ2

τ1

ds

(
s− τ1

τ3 − s

)Ω1

∂s

(
τ2 − s
τ3 − s

)Ω2

. (5.41)

The last integral can be done explicitly19 by performing the following change of variables,

which amounts to performing the Möbius transformation (τ1, τ2, τ3)→ (0, 1,∞):

s̄ =
s− τ1

s− τ3

τ2 − τ3

τ2 − τ1
. (5.42)

18As mentioned above, the notations ΓRi and Ki mean ΓR(λ̂i) and K(λ̂i).
19The integral reduces to the integral for I(a, b) given in (5.25).
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As a result, we get

C••◦ =
√
A(Ω1)A(Ω2)I(Ω1,Ω2) =

Γ(2Ω1 + 1)1/2Γ(2Ω2 + 1)1/2

Γ(Ω1 + Ω2 + 1)
. (5.43)

Note that the result (correctly) reduces to the one in the previous subsection if we set

Ω2 = 0. At weak coupling, the result reads

C••◦ = 1 +
(λ̂1 − λ̂2)2

192π2
+

(λ̂1 − λ̂2)2(λ̂1 + λ̂2)(π2 + 6ζ(3))

384π6
+O(λ̂4) , (5.44)

whereas at strong coupling it reads

lnC••◦ ∼ Ω1 ln
2Ω1

Ω1 + Ω2
+ Ω2 ln

2Ω2

Ω1 + Ω2
, Ωi ∼

√
λ̂i

2π
. (5.45)

The result at two loops at weak coupling matches the ladder contribution to the perturba-

tive result given in section 4.

5.6 Case III: 3 nontrivial DCOs

In this subsection, we compute the most general three-point functions of DCOs,

〈O•1(τ1)O•2(τ2)O•3(τ3)〉 =
C•••

τ−Ω1−Ω2+Ω3
21 τ−Ω2−Ω3+Ω1

32 τ−Ω3−Ω1+Ω2
31

. (5.46)

As shown in figure 19, there are several different diagrams that contribute to this three-

point function. However, only three diagrams (a, b and c in figure 19) contain a maximal

number of vertex functions. Below we compute the contributions from these diagrams

following the recipe in subsection 5.3.

The contribution from the diagram a is given by

a = (−1)×
∫ τ2

τ1

ds

∫ τ3

τ2

dt

∫ τ3

t
du

∫ ∞
τ3

dv ΓR(∞, s− τ1)(−∂s∂t)ΓR(τ2 − s, t− τ2)

×(−∂u∂v)ΓR(τ3 − u, v − τ3) .

(5.47)

Here again we have already replaced the scalar propagators with the derivatives using (5.9).

Since the integrand is a total derivative with respect to u and v, one can perform those

integrals to get

a = −I1 ,

I1 ≡
3∏
i=1

√
A(Ωi)

∫ τ2

τ1

ds

∫ τ3

τ2

dt (s− t)Ω1(−∂s∂t)
(

(τ2 − s)(t− τ2)

t− s

)Ω2

(τ3 − t)Ω3 .
(5.48)

Next we consider the contribution from the diagram b, which is given by

b =

∫ τ2

τ1

ds

∫ τ3

τ2

dt

∫ ∞
τ3

du

∫ τ3

t
dv

∫ τ1

−∞
dw

∫ s

τ1

dxK(x, s|u,∞)

× (−∂w∂x)ΓR(w − τ1, x− τ1)(−∂s∂t)ΓR(τ2 − s, t− τ2)(−∂u∂v)ΓR(τ3 − v, u− τ3) .

(5.49)
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Figure 19. The resummation of the ladder diagrams for the Case III three-point function. To

avoid the double-counting, the diagrams in the first column (depicted in the gray background) must

be summed with a negative sign. Among these diagrams only the last three (encircled by the thick

black line) contribute dominantly in the limit ε→ 0.

By performing the trivial integrals of v and w, we get the integrand with ∂uΓR(∞, u− τ3)

and ∂xΓR(∞, x − τ1). Then, the integral of x coincides with the one we already studied

in (5.35). We can thus evaluate it to obtain

b =
3∏
i=1

√
A(Ωi)

∫ τ2

τ1

ds

∫ τ3

τ2

dt

∫ ∞
τ3

du

(
(s− τ1)(u− τ1)

u− s

)Ω1

× (−∂s∂t)
(

(τ2 − s)(t− τ2)

t− s

)Ω2

∂u

(
(τ3 − t)(u− τ3)

u− t

)Ω3

.

(5.50)

After doing so, we perform integration by parts for the u integral. We then get I1 as a

surface term and the full result reads

b = I1 + I2 , (5.51)

with

I2 =
3∏
i=1

√
A(Ωi)

∫ τ2

τ1

ds

∫ τ3

τ2

dt

∫ ∞
τ3

du (−∂u)

(
(s− τ1)(u− τ1)

u− s

)Ω1

× (−∂s∂t)
(

(τ2 − s)(t− τ2)

t− s

)Ω2
(

(τ3 − t)(u− τ3)

u− t

)Ω3

.

(5.52)
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The contribution from the diagram c can be evaluated in a similar manner and the

result reads

c = I3 ≡
3∏
i=1

√
A(Ωi)

∫ τ2

τ1

ds

∫ τ3

τ2

dt

∫ τ1

−∞
du (−∂u)

(
(s− τ1)(u− τ1)

u− s

)Ω1

× (−∂s∂t)
(

(τ2 − s)(t− τ2)

t− s

)Ω2
(

(τ3 − t)(u− τ3)

u− t

)Ω3

.

(5.53)

Summing up three contributions, we get

〈O•1O•2O•3〉 = a + b + c = I2 + I3 (5.54)

To further proceed, we perform the following change of variables,

s̄ =
τ23

τ21

s− τ1

s− τ3
, t̄ =

τ31

τ32

t− τ2

t− τ1
, ū =

τ12

τ13

u− τ3

u− τ2
. (5.55)

After this change of variables, the spacetime dependence of the three-point function comes

out naturally as a factorized prefactor, and the rest can be combined into a single integral,

C••• =

(
3∏
i=1

√
A(Ωi)

)
× J ,

J ≡ −
∫ 1

0
ds̄

∫ 1

0
dt̄

∫ 1

0
dū ∂ū

[
f(ū, s̄)−Ω1

]
∂s̄
[
f(s̄, t̄)−Ω2

]
∂t̄
[
f(t̄, ū)−Ω3

]
.

(5.56)

with f(x, y) ≡ (1−x)−1+y−1−1. The integral is clearly invariant under any permutation20

of Ωi’s. It is also possible to evaluate the integral J explicitly and express it as an infinite

sum, although the result is rather long. See appendix F for the explicit expression.

Let us now expand the result at weak and strong couplings. At weak coupling, one

obtains

C••• = 1 +
1

192π2

 3∑
i

λ̂2
i − 2

∑
i<j

λ̂iλ̂j

 (5.57)

+
π2 + 6ζ(3)

384π6

 3∑
i=1

λ̂3
i −

∑
i<j

(λ̂2
i λ̂j + λ̂iλ̂

2
j )

+
π2 − 3− 6ζ(3)

192π6
λ̂1λ̂2λ̂3 +O(λ̂4) .

One can easily check that the result is consistent with the direct perturbative computation

in section 4. Also, by sending one of the effective coupling to zero, one recovers the result

in the previous subsection.21

To study the leading behavior at strong coupling (λ̂i � 1), we use the saddle-point

approximation of the integral J ,

J =

∫ 1

0
ds̄

∫ 1

0
dt̄

∫ 1

0
dū eg(s̄,t̄,ū) ,

g(s̄, t̄, ū) = − Ω1 log f(ū, s̄)− Ω2 log f(s̄, t̄)− Ω3 log f(t̄, ū) +O(ln λ̂) .

(5.58)

20The invariance under the cyclic permutation can be seen by the permutation of the integrated variables

while the reflection invariance can be shown by performing x→ 1− x to all the integrated variables.
21The last term at three loops λ̂1λ̂2λ̂3 is truly a new term, which didn’t show up in the results in the

preceding subsections. It would be interesting to understand it from the integrability point of view.
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The subleading term O(ln λ̂) can be neglected for the computation of the leading strong-

coupling behavior. The saddle-point equation ∂s̄g = ∂t̄g = ∂ūg = 0 has two solutions, but

one of them is outside the integration region s̄, t̄, ū ∈ [0, 1] and should be discarded. The

one inside the integration region is given by

(s̄∗, t̄∗, ū∗) =

(
Ω1

Ω1 + Ω2
,

Ω2

Ω2 + Ω3
,

Ω3

Ω3 + Ω1

)
. (5.59)

Evaluating g at this saddle point and multiplying the prefactors
∏
i

√
A(Ωi), we obtain

lnC••• ∼ Ω1 log
2Ω1

Ω1 + Ω2 + Ω3
+ Ω2 log

2Ω2

Ω1 + Ω2 + Ω3
+ Ω3 log

2Ω3

Ω1 + Ω2 + Ω3
. (5.60)

Again the structure of the result suggests that there should be some interpretation in terms

of classical string, and it would be extremely interesting if we can re-derive this result from

such a perspective.

6 Discussion

In this paper, we computed the structure constants on the 1/2 BPS Wilson loop at weak

coupling. We first performed the computation at two loops and then resummed the dia-

grams in the ladders limit. In what follows, we indicate a few possible future directions.

Relation to integrability. As mentioned in the introduction, one of our main motiva-

tions was to provide data for the integrability-based approach. In this regard, a natural

next step is to reproduce the results in this paper by generalizing the hexagon approach22

proposed in [8]. Preliminary investigation suggests that the process involving four (mirror)

particles starts to contribute at as early as two loops while the process involving six parti-

cles shows up at three loops. Such processes appear much later in the ordinary three-point

functions,23 and it is a great advantage of studying DCO’s that we can explore them with

the results already available.

From the string worldsheet point of view, the DCO’s studied in this paper correspond

to the boundary condition changing operators. This viewpoint might provide an alternative

approach to the three-point function on the Wilson loop which is based on the form factor

expansion of the boundary condition changing operators. See [18] for recent discussions on

such form factors in integrable field theories.

Ladders limit. The ladders limit of N = 4 SYM provides an invaluable example of

the (defect) conformal field theories in higher dimensions, which is exactly calculable but

still nontrivial. It would be interesting to explore the properties of the theory further, for

instance, by computing non-planar corrections or higher-point functions. Also interesting

is to study correlators involving operators outside the loop. We can then start exploring

the interplay with the conformal bootstrap [1, 2].

22In a recent paper [17], tree-level three-point functions of non-BPS operators on the Wilson loop were

computed using integrability and the open-string version of the hexagon approach was proposed.
23At 10 and 14 loops respectively.
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Studying the ladders limit would also be useful for the integrability approach itself. To

reproduce the result in the ladders limit using integrability, one needs to resum the mirror

particles. To our knowledge, it is the only limit where we can predict exact answers after

the resummation.24 By studying this limit further, we may be able to learn how to perform

the resummation in the hexagon approach and make connection with powerful methods

developed for the spectrum, such as the thermodynamic Bethe ansatz and the quantum

spectral curve.

Furthermore, in this simple set-up, it might be possible to “derive” the hexagon ap-

proach from the Feynman diagrams. In the hexagon approach, the structure constants

of the DCO’s are given in terms of integration of magnon momenta. On the other hand,

the perturbative methods in the ladders limit yields integrals over the positions of ends of

propagators. Since both integrals are rather simple to analyze, it may be possible to make

direct relation between the two.25 That would help to clarify the origin of the integrability

in N = 4 SYM.

AdS dual of the ladders limit. Yet another interesting problem would be to under-

stand the AdS dual of the ladders limit. A general straight line Wilson loop is dual to

a probe worldsheet living in the AdS2 subspace of AdS5 × S5. In the ladders limit, the

worldsheet becomes tensionless while its boundary term remains nontrivial. Although the

tensionless limit is in general difficult to analyze, it might be possible to make some progress

in this case since one knows the exact answer after the resummation of diagrams. It would

be interesting to try to write down the worldsheet action which reproduces the solutions

to the Schwinger-Dyson equation.

Recently, certain double-scaling limits of N = 4 SYM and related theories are ad-

vocated as the simplest examples of the integrable gauge/string duality [20–25]. These

theories share some features with the ladders limit: first, they have a tensionless limit of

the string theory as the bulk dual. Second, in the integrability description, they both arise

in the limit where the coupling constant vanishes and the twist diverges. In this sense,

the ladders limit may serve as a toy model for such theories. Hopefully understanding the

worldsheet description of the ladders limit may be used as a first step towards constructing

the bulk dual of such theories.

Lastly, we note that similar resummation of the diagrams was performed recently

in [26, 27] to determine the cubic coupling of the bulk dual of the SYK model. Although

the SYK model is physically quite different from the Wilson loop defect CFT since its bulk

dual contains gravity, it might still be interesting to ask if the analysis of the ladders limit

has any bearing on this interesting new class of holography.

24The result at strong coupling also contains information about multi-mirror-particle corrections. How-

ever, unlike the ladders limit, it only predicts the leading exponentially dominating contribution.
25A naive guess is that they are related by the Fourier transformation. It might also be interesting

to explore the relation with the Q-functions since in similar set-ups, it was shown that the Schrödinger

equation and the Q-functions are related [19].
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A Basic integrals

Here we introduce basic integrals following [28], which appear in the perturbative compu-

tation. The first integral is the so-called 1-loop conformal integral which is defined by

X1234 ≡
∫

d4x5

x2
15x

2
25x

2
35x

2
45

, (A.1)

with xij = |xi − xj |. This integral can be evaluated explicitly [29] as

X1234 =
π2Φ(z, z̄)

x2
13x

2
24

, Φ(z, z̄) ≡
2Li2(z)− 2Li2(z̄) + log zz̄ log 1−z

1−z̄
z − z̄

, (A.2)

where z and z̄ are the usual conformal cross ratios:

zz̄ =
x2

12x
2
34

x2
13x

2
24

, (1− z)(1− z̄) =
x2

14x
2
23

x2
13x

2
24

. (A.3)

Another integral which shows up often is the three-point integral given by

Y123 ≡
∫

d4x5

x2
15x

2
25x

2
35

. (A.4)

It can be evaluated using X1234 as

Y123 = lim
x4→∞

x2
4X1234 =

π2Φ(z′, z̄′)

x2
13

, (A.5)

with

z′z̄′ =
x2

12

x2
13

, (1− z′)(1− z̄′) =
x2

23

x2
13

. (A.6)

When all external points are on a single line, these integrals further simplify to

X1234

∣∣
line

= −2π2

(
log(|τ12τ34|)
τ13τ24τ14τ23

+
log(|τ13τ24|)
τ12τ34τ14τ32

+
log(|τ14τ23|)
τ12τ43τ13τ42

)
,

Y123

∣∣
line

= −2π2

(
log |τ12|
τ13τ23

+
log |τ13|
τ12τ32

+
log |τ23|
τ21τ31

)
,

(A.7)

where τi’s are the positions of the external points on the line and τij = τi − τj .
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B Vertex and self-energy diagrams for the three-point functions

In this appendix, we present the detail of the computation of vertex and self-energy dia-

grams that appear in the three-point functions of DCO’s at two loops. As explained in the

main text we focus on the terms proportional to (n12 · n23 − 1).

The contributions from the diagrams listed in figure 9 can be determined in a way

similar to the ones in section 3.2. Essentially the only difference is the range of the inte-

gration. By changing the range of the integration of the analogous diagrams in section 3.2,

one obtains

T1 =− λ2(n12 · n23 − 1)

4(4π2)3

∫ t−2

t+1

dτ1

∫ t−2

t+1

dτ2

∫ t−3

t+2

dτ3 ε(τ1 − τ2)∂τ1Y123 ,

T2 =− λ2(n12 · n23 − 1)

4(4π2)3

∫ t−2

t+1

dτ1

∫ t−3

t+2

dτ2

∫ t−3

t+2

dτ3 ε(τ2 − τ3)∂τ2Y123 ,

T3 =− λ2(n12 · n23 − 1)

4(4π2)3

∫ t−1

−∞
dτ1

∫ t−2

t+1

dτ2

∫ t−3

t+2

dτ3 (∂τ2Y123 − ∂τ3Y123) ,

T4 =− λ2(n12 · n23 − 1)

4(4π2)3

∫ t−2

t+1

dτ1

∫ t−3

t+2

dτ2

∫ ∞
t+3

dτ3 (∂τ1Y123 − ∂τ2Y123) .

(B.1)

As in the computation for the two-point function, we then perform the integration by

parts and decompose the integrals into the δ-function terms and the boundary contribu-

tions. Here again, the δ-function terms are cancelled by the self-energy diagrams and what

remains is

T|finite =− λ2(n12 · n23 − 1)

4(4π2)3

[∫ t−2

t+1

dτ2

∫ t−3

t+2

dτ3

(
Yt−2 23 + Yt+1 23 + Yt−3 23 + Yt+2 23

)
+

∫ t−1

−∞
dτ2

∫ t−3

t+2

dτ3(Yt−2 23 − Yt+1 23) +

∫ t−1

−∞
dτ2

∫ t−2

t+1

dτ3(Yt+2 23 − Yt−3 23)

+

∫ t−3

t+2

dτ2

∫ ∞
t+3

dτ3(Yt−2 23 − Yt+1 23) +

∫ t−2

t+1

dτ2

∫ ∞
t+3

dτ3(Yt+2 23 − Yt−3 23)

]
.

(B.2)

One can then perform the integral to get

T|finite = −(n12 · n23 − 1)

(
λ

8π2

)2(
3ζ(3) +

π2

3
log

∣∣∣∣ t12t23

t31ε

∣∣∣∣) . (B.3)

C Excited states and conformal descendants

In this appendix, we explain the relation between the vertex function Γε and the Schrödinger

equation in [9, 16]. In particular, we clarify the physical meaning of the wave functions

of the Schrödinger equation by showing that they correspond to the three-point functions

of DCOs, and that the excited states of the Schrödinger equation correspond to confor-

mal descendants.
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For this purpose, let us quickly review how the Schrödinger equation comes about from

the differential equation for Γε (5.15). To begin with, we rewrite the equation in terms of

the “radial coordinate”26

S = exp(−x+ y) , T = exp(x+ y) , (C.1)

to get [
−1

4
(∂2
x − ∂2

y)− λ̂

4π2

1

(2 coshx)2

]
Γε = 0 . (C.2)

Physically this rewriting corresponds to considering the theory on R× S3: x describes the

(Euclidean) time difference of the two endpoints while y corresponds to the time of the

“center of mass”. Then, assuming the form of the solution to be

Γε =
∑
N

cNe
ΩNyΨN (x) , (C.3)

one can reduce the differential equation (C.2) to the following one-dimensional Schrödinger

equation: [
− d2

dx2
− λ̂

4π2

1

cosh2 x

]
ΨN (x) = −Ω2

NΨN (x) . (C.4)

The Schrödinger equation with this potential (called the Pöschl-Teller potential) has the

SL(2,R) symmetry27 and is known to be exactly solvable. This can be seen explicitly by

the change of the variable

z =
1

1 + ex
, (C.5)

which maps the problem to the hypergeometric differential equation.

By using the explicit form of Γε shown in (5.14), one can determine which wave func-

tions appear in the expansion (C.3). The result turns out to be given by a sum of two

families of solutions28

Γε =

∞∑
n=0

cne
Ω(n)yΨn(x) +

∞∑
n=0

c̃ne
Ω̃(n)yΨ̃n(x) (C.7)

26If we instead rewrite the equation in terms of the coordinates s = S + T and t = S − T , one arrives at

the “conformal quantum mechanics” [30]; the Schrödinger equation with the inverse square potential. This

description, however, is not very useful for our purpose and we will not discuss it here.
27The difference from the usual conformal quantum mechanics [30] lies in that the “dilatation generator”

of the SL(2,R) is identified not with the Hamiltonian itself but with its square root. See for instance [31].
28As in the main text Ω is defined by

Ω(λ̂) =
1

2

−1 +

√
1 +

λ̂

π2

 . (C.6)
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with

Ω(n) = Ω− n , Ω̃(n) = −Ω− n− 1 ,

Ψn(z) = (z(1− z))
Ω(n)

2 2F1(Ω(n) − Ω,Ω(n) + Ω + 1, 1 + Ω(n); z) ,

Ψ̃n(z) = (z(1− z))
Ω̃(n)

2 2F1(Ω̃(n) − Ω, Ω̃(n) + Ω + 1, 1 + Ω̃(n); z) .

(C.8)

These solutions have several interesting properties. First, they are the only solutions

to (C.4) for which the hypergeometric function reduces to a polynomial. Second, the first

family of solutions with n < Ω decay at x = ±∞ and correspond to the bound states of the

Schrödinger equation (C.4), as discussed in [9]. Note also that, to reconstruct Γε, one needs

to include “unphysical solutions” which blow up at x = ±∞, in addition to such bound

state solutions. Although it might seem counter-intuitive, it has natural interpretation in

terms of the OPE in the defect CFT as we see below.

To see this, recall that the vertex function is obtained as a limit of the four-point

ladder kernel Γε(S, T ) ≡ K(−S,−ε/2 | ε/2, T ). A crucial observation is that the ladder

kernel itself can be interpreted as a certain four-point function of (trivial) DCOs,

Γε(S, T ) = K(−S,−ε/2 | ε/2, T ) = 〈O◦1(−S)O◦2(−ε/2)O◦3(ε/2)O◦4(T )〉 , (C.9)

and the limit ε → 0 corresponds to the OPE limit where O2 and O3 approach. Using the

OPE, one can replace the product of O2 and O3 with an infinite sum,29

O◦2(−ε/2)O◦3(ε/2) =
∑
Õ

ε∆Õc23ÕÕ(0) . (C.10)

Here the sum on the right hand side is over both primaries and descendants, and c23Ô
denotes the structure constant. Using this OPE inside the four-point function (C.9), we

get the following infinite-sum representation for the vertex function

Γε(S, T ) =
∑
Õ

ε∆Õc23Õ〈O
◦
1(−S)Õ(0)O◦4(T )〉 . (C.11)

Let us now compare this sum with the sum over wave functions (C.7). To do so, one has

to know the behavior of 〈O◦1(−S)Õ(0)O◦4(T )〉 (both for primaries and descendants) and

express it in terms of the x and y coordinates. When Õ is primary, the behavior of the

three-point function is well-known,30

〈O◦1(−S)Õprimary(0)O◦4(T )〉 ∝
(
S + T

ST

)∆

. (C.12)

On the other hand, the behavior for the descendants can be computed by differentiation as

〈O◦1(−S)∂nÕprimary(0)O◦4(T )〉 ∝
(
S + T

ST

)∆ n∑
k=0

(
n

k

)
(−1)k(∆)k(∆)n−k

1

SkTn−k
,

(C.13)

29Here we used the fact that the trivial DCOs have zero conformal dimensions.
30For the sake of brevity, below we omit writing the subscript Õ in ∆Õ.
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with (x)k being the Pochhammer symbol. Re-expressing this in terms of x and y, we obtain

(C.13) = e−(∆+n)y(ex + e−x)∆+n
n∑
k=0

(
n

k

)
(−1)k(∆)k(∆)n−ke

2kx(1 + e−2x)−n

= e−(∆+n)y(z(1− z))−
∆+n

2

[
n∑
k=0

(
n

k

)
(−1)k(∆)k(∆)n−kz

n−k(1− z)k

]
.

(C.14)

In the second line, we further rewrote it in terms of z = 1/(1 + ex). The polynomial in the

bracket turns out to be summed into a hypergeometric function 2F1(−n, 1 − 2∆ − n, 1 −
∆− n, z). We thus get the expression

〈O◦1(−S)∂nÕprimary(0)O◦4(T )〉

∝ e−(∆+n)y(z(1− z))−
∆+n

2 2F1(−n, 1− 2∆− n, 1−∆− n, z) .
(C.15)

With the identifications ∆ = −Ω and ∆ = 1 + Ω, this coincides with eΩnyΨn and

eΩ̃nyΨ̃n in (C.8) respectively. We can therefore interpret the sum (C.7) really as the OPE

expansion and the wave functions are identified with the three-point functions:

Γε =
∑

X=DCO,shadow

∞∑
n=0

ε∆X+ncX,n〈O◦1(−S)∂nO•X(0)O◦4(T )〉 ,

〈O◦1(−S)∂nO•DCO(0)O◦4(T )〉 ↔ eΩnyΨn ,

〈O◦1(−S)∂nO•shadow(0)O◦4(T )〉 ↔ eΩ̃nyΨ̃n .

(C.16)

Here O•DCO is a nontrivial DCO, which we studied in the main text, and O•shadow is its

shadow operator,31 which has dimension ∆shadow = 1 − ∆DCO = 1 + Ω. This provides a

clear physical interpretation of the wave functions for the Schrödinger equation (C.4).

D Contribution from the integral of ΓUV

In this appendix, we show that, in the ε → 0 limit, the integrals involving the vertex

function Γε can be approximated by replacing Γε with its IR counterpart, ΓIR. More

precisely the goal is to show that the ratio between the contributions from ΓUV and ΓIR is

given as follows: ∫
ds
∫
dtΓUV(s, t)f(s, t)∫

ds
∫
dtΓIR(s, t)f(s, t)

≤ O (ε log ε)
ε→0→ 0 . (D.1)

Here f(s, t) denotes the rest of the integrand, which may contain other vertex functions,

propagators and the ladder kernels K.

31In unitary CFTs, the shadow operators do not usually show up in the spectrum since they are often

below the unitarity bound. However, the possibility of having both an operator and its shadow in the

spectrum is not totally ruled out. In fact, it is known that some long-range CFTs have such a spectrum.
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For this purpose, it is convenient to split the vertex function in a slightly different way

as follows:
Γε(u) = Γ̃IR(u) + Γ̃UV(u) ,

Γ̃IR(u) =
A(Ω)

(1− u)Ω
.

(D.2)

Since the ratio (ΓIR − Γ̃IR)/ΓIR is always of order O(ε) (regardless of their arguments), it

is enough to show (D.1) for Γ̃IR and Γ̃UV.

Now, let us estimate the maximal value of Γ̃UV. In all the examples studied in the

main text, the cross ratio u = (S−ε/2)(T−ε/2)
(S+ε/2)(T+ε/2) takes values in [0, 1 − ε/C],32 with a O(1)

positive constant C. In this region, the UV vertex Γ̃UV monotonically decreases in u for

Ω ≤ 1 while it monotonically increases in u for Ω > 1.33 Therefore, the maximal absolute

value of the UV vertex is given by

max |Γ̃UV(u)| =

 |1−A(Ω)| (= |Γ̃UV(0)|) for Ω ≤ 1

O
(
ε1−Ω

)
(= |Γ̃UV(1− ε/C)|) for Ω > 1

. (D.3)

Hence, the integral of Γ̃UV can be bounded from above as follows:∫
ds

∫
dt Γ̃UV(s, t)f(s, t) ≤ C̃

εΩ−1

∫
ds

∫
dt f(s, t) . (D.4)

In all the cases encountered in the main text, the integral of f(s, t) can produce at most

logarithmic divergences34
∫
ds
∫
dt(s− t)−2 ∼ log ε. We thus have∫

ds

∫
dt Γ̃UV(s, t)f(s, t) ≤ O

(
log ε

εΩ−1+|f |

)
, (D.5)

where ε−|f | is the singularity contained already in the integrand, f ∼ O(ε−|f |).

On the other hand, since Γ̃IR ∼ ε−Ω × k(s, t) with k(s, t) being the O(1) function, we

can easily estimate its integral as∫
ds

∫
dtΓ̃IR(s, t)f(s, t) ≥ O

(
1

εΩ+|f |

)
. (D.6)

Combining (D.5) and (D.6), we get the estimation (D.1) for Γ̃UV and Γ̃IR.

E Evaluation of the integral (5.35)

Here we compute the integral

integral ≡
∫ τ2

τ1

ds ∂sΓ
R(∞, s− τ1)K(s, τ2|τ3,∞)

=

√
A(Ω)

τΩ
32

∫ τ2

τ1

ds ∂s
[
(s− τ1)Ω

]
(τ3 − s)Ω

2F1

(
−Ω,−Ω, 1;

τ2 − s
τ3 − s

)
.

(E.1)

32u can reach 1 only when S = T = ∞. However, we never encounter an integral whose integration

regions both extend to infinity.
33One can easily verify this by using the definitions of the vertex functions (5.14) and (D.2), and the

series expansion of the hypergeometric function.
34This inverse square behavior comes from a propagator contained in f(s, t).
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As a first step, we perform the change of variables,

x =
s− τ2

s− τ3

τ1 − τ3

τ1 − τ2
, (E.2)

and use the identity 2F1(a, b, c; z) = (1− z)−a−b+c2F1(c− a, c− b, c; z) to get

integral = Ω
√
A(Ω)τΩ

21(1− α)

∫ 1

0
dx (1− x)Ω−1

2F1 (Ω + 1,Ω + 1, 1;αx) , (E.3)

with α = τ21/τ32. To proceed, we rewrite 2F1 using the integral representation as

2F1 (Ω + 1,Ω + 1, 1;αx) =
1

Γ(Ω + 1)Γ(−Ω)

∫ 1

0
dy yΩ(1− y)−Ω−1(1− yαx)−Ω−1 . (E.4)

One can then perform the x integral to get35

integral =

√
A(Ω)τΩ

21(1− α)

Γ(Ω + 1)Γ(−Ω)

∫ 1

0
dy yΩ(1− y)−Ω−1(1− αy)−1 . (E.5)

This is again a hypergeometric integral and we can compute it as follows:

integral =
√
A(Ω)τΩ

21(1− α)2F1 (1,Ω + 1, 1;α) . (E.6)

Finally, using the identity 2F1 (1,Ω + 1, 1;α) = (1− α)−Ω−1, we arrive at

integral =

√
A(Ω)

τ−Ω
21 τΩ

32τ
−Ω
31

. (E.7)

F An infinite sum representation for C•••

Here we explicitly evaluate the integral representation for C••• (5.56), and derive an infinite-

sum representation. First, we perform the following change of variables:

x =
1− ū

1− (1− s̄)ū
, y = 1− (1− s̄)ū , z =

1− t̄
1− (1− ū)t̄

. (F.1)

After taking into account the Jacobian of the transformation, y
(1−xyz)2 , we get

J =
3∏
i=1

Ωi

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dzxΩ1−1yΩ1zΩ3−1

(1− x)Ω1+1(1− y)Ω2−1(1− z)Ω2+1(1− xy)−(Ω1+Ω2−Ω3+1)(1− yz)−(Ω2+1) .

(F.2)

The integrals of x and z yield the hypergeometric functions,

J =

3∏
i=1

Ωi

∫ 1

0
dyyΩ1(1− y)Ω2−1 Γ(Ω3)Γ(Ω2 + 2)

Γ(Ω2 + Ω3 + 2)
2F1(Ω3,Ω2 + 1,Ω2 + Ω3 + 2; y)

× Γ(Ω1)Γ(Ω1 + 2)

Γ(2Ω1 + 2)
2F1(Ω1,Ω1 + Ω2 − Ω3 + 1, 2Ω1 + 2; y) .

(F.3)

35Here we used the integral expression for the hypergeometric function and the identity 2F1(a, 1, a; z) =

(1− z)−1.
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The remaining y integral can be performed using the series expansion of the hypergeometric

function and the Euler integral representation for the generalized hypergeometric function:

3F2

(
α1, α2, α3

β1, β2
; z

)
=

Γ(β1)Γ(β2)

Γ(α1)Γ(β1 − α1)Γ(α2)Γ(β2 − α2)

×
∫ 1

0
ds

∫ 1

0
dtsα1−1(1−s)β1−α1−1tα2−1(1−t)β2−α2−1(1−zst)−α3 .

(F.4)

Finally, we obtain the following expression for the structure constant

C••• =
3∏

k=1

√
A(Ωk)

Γ(Ω1 + 1)2Γ(Ω1 + 2)Γ(Ω2 + 1)Γ(Ω2 + 2)Γ(Ω3 + 1)

Γ(2Ω1 + 2)Γ(Ω2 + Ω3 + 2)Γ(Ω1 + Ω2 + 1)

×
∞∑
k=0

(Ω3)k(Ω2 + 1)k
(Ω2+Ω3+2)kk!

(Ω1 + 1)k
(Ω1+Ω2+1)k

3F2

(
Ω1,Ω1 + Ω2 − Ω3 + 1,Ω1 + k + 1

2Ω1 + 2,Ω1 + Ω2 + k + 1
; 1

)
.

(F.5)

Unlike the integral representation (5.56), this expression is not manifestly symmetric under

the permutation of Ωi’s. One can nevertheless check easily that the expression correctly

reproduces C••◦ by sending one of Ωi’s to zero.
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