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Iñaki Garćıa-Etxebarriaa and Diego Regaladoa,b

aMax Planck Institute for Physics,
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1 Introduction

One of the biggest strengths of string theory lies on its ability to reformulate field theory

questions in terms of geometry. In particular cases the relevant geometry is of a partic-

ularly tractable form (for instance, a Calabi-Yau manifold), and we can apply powerful

techniques in algebraic geometry to study various aspects of the associated field theory.

Very well known examples are the Seiberg-Witten solutions of N = 2 SYM and SQCD

with gauge group SU(2) [1, 2], which are beautifully geometrized in string theory in terms

of F-theory [3]. More generally, a large number of field theory results can be understood

in terms of “geometric engineering” of QFTs [4], which reduces subtle questions in field

theory to questions about string theory on specific geometries.

Along somewhat related lines, starting in particular with [5], it has been recently real-

ized that for a particular class of N = 2 theories, namely those obtainable from compacti-

fication of the six dimensional (0, 2) SCFT on a Riemann surface, much of the interesting

information of the four dimensional theory can be understood in terms of properties of the

compactification space. The resulting formalism is very rich and powerful, and has yielded

beautiful insights into the properties of four dimensional field theories. (See [6] for a nice

review of some of these developments.)

Nevertheless, it is well known that classical geometry is not the only context in which

string theory is well defined, so a natural question to ask is whether the ideas above can be

– 1 –



J
H
E
P
1
2
(
2
0
1
7
)
0
4
2

extended in an interesting way once we allow ourselves to abandon the realm of classical

geometry. A particular case of interest to us here is that of U-manifolds [7–10]: these

are spaces which are locally geometric, but which involve string dualities in the transi-

tion functions between local patches. Clearly, ordinary geometries are a subclass of such

constructions, where the patching functions are diffeomorphisms, but one can reasonably

expect the class of non-geometric constructions to be significantly larger than the class of

constructions with a geometric interpretation. If this expectation holds, it is then also rea-

sonable to expect that the space of field theories accessible using non-geometric techniques

is also significantly larger than that accessible using ordinary geometric constructions.

In this note we aim to give some first steps in this direction, by constructing a class

of non-geometric compactifications of M-theory which engineer various interesting field

theories. The theories that we construct explicitly in this note are

• The N = 3 theories constructed in [11], rewritten as M5 branes on a T 2 inside a

non-geometric compactification.

• The six-dimensional (0, 2) SCFTs of exceptional type arising directly from a non-

geometric compactification of M-theory down to six dimensions.

• A new class of N = 3 theories associated to the exceptional (0, 2) theories by com-

pactification on a T 2 inside a non-geometric background, combining the two con-

structions above.

The first two classes of theories are already known from geometric constructions, but

the third one is new. One can already find evidence for its existence from the four dimen-

sional field theory perspective. Indeed, the construction of the N = 3 theories presented

in [11], as quotients of N = 4 U(N) SYM, relies on having an R-symmetry group SO(6)R
together with an enhanced symmetry (for certain values of the coupling) contained in the

duality group SL(2,Z). These properties are not exclusive of the U(N) theory, but are also

present in N = 4 SYM with gauge group DN or En, which are self-dual under Montonen-

Olive duality.1,2 Thus, it is natural to assume that one can take an N = 3 quotient of these

N = 4 theories. In this note we will focus on the exceptional cases, the generalization to

the orthogonal case being straightforward.

We will provide an M-theory construction of these theories in terms of singular U-

folds, which we expect to be intrinsically non-geometric. What we mean by “intrinsically

non-geometric” is simply that there is no duality frame in which the system is described

1The action of duality for non-simply laced groups is more complicated, and in particular it also acts on

the moduli space for the G2 and F4 theories [12]. It would be rather interesting to extend the formalism in

this paper to these cases.
2More precisely, in the cases of E6 and E7 the self-dual forms of the group that will appear in our

geometric construction are (E6 × U(1))/Z3 and (E7 × U(1))/Z2, with the extra U(1) factors associated to

center-of-mass modes of the string configuration. This is in analogy with the fact that a stack of M5 branes

on T 2 gives rise to a gauge group U(N) = (SU(N) × U(1))/ZN , and not simply SU(N). The difference

is important since neither E6 or E7 are invariant under S-duality, but rather map to their adjoint forms

E6/Z3 and E7/Z2.
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by string theory in a geometric background.3 This does not mean that geometry is entirely

useless: as we shall see some aspects of the problem can still be fruitfully geometrized using

arguments similar to those in [7] and [13–16].

We will start in § 2 by reconstructing the N = 3 theories found in [11] in terms of an

M5 wrapping a T 2 in an M-theory U-fold background. In § 3.1 we will construct the E-

type (0, 2) theories in six dimensions in terms of M-theory compactified on a five-manifold

(elaborating on an observation in [8, 17]). We then combine both constructions in § 3.2

in order to engineer the theories of interest. We conclude in § 4 with a discussion of the

(numerous) directions for further research.

2 M5 brane construction of known N = 3 theories

In this section we obtain the four dimensional N = 3 theories constructed in [11] (see

also [18–23]) from the (0, 2) AN−1 theory in six dimensions.4 Along the way we will be

naturally lead to consider non-geometric compactifications of M-theory.

2.1 S-fold construction

Let us start by briefly reviewing the construction of the four dimensional N = 3 theories

of [11]. The basic idea is to take certain quotient of four dimensional N = 4 SYM with gauge

group U(N) by a ZN=3
k symmetry of the theory, which includes both R-symmetry rotations

and SL(2,Z) duality. In order for the quotient to make sense, the coupling constant of the

original theory must be tuned to a particular value that lies at strong coupling, so that

part of the duality group becomes an actual symmetry. The quotient then projects out the

corresponding marginal deformation together with four of the supercharges [19, 24]. More

specifically, the quotient we need to take is ZN=3
k = ZRk · Zτk for k = 3, 4, 6, where ZRk is

generated by

Rk =

 R̂−1k 0 0

0 R̂k 0

0 0 R̂k

 ∈ SO(6)R (2.1)

with R̂k being a 2π/k rotation in two dimensions. The S-duality quotient Zτk is generated,

for k = 3, 4, 6, by the following matrices in SL(2,Z)

S3 =

(
0 −1

1 −1

)
, S4 =

(
0 −1

1 0

)
, S6 =

(
1 −1

1 0

)
. (2.2)

3Our expectation is based on the fact that the two ingredients we combine for constructing these two

theories are geometric in distinct duality frames, or more concretely because we take an O(5, 5;Z) U-duality

action which cannot be conjugated into a geometric subgroup. This shows that our construction cannot be

conjugated into pure geometry, but it does not show that a disconnected class of geometric constructions

for these exceptional N = 3 theories cannot exist.
4Strictly speaking, the torus compactification of the (2, 0) AN−1 theory (as engineered by putting IIB

string theory on C2/ZN , for example) yields a N = 4 SYM theory with algebra su(N), and thus a gauge

group such as SU(N) or SU(N)/ZN . In the rest of the paper, when we talk about the (2, 0) AN−1 theory, we

actually mean the six dimensional (2, 0) theory living on a stack of M5 branes, whose torus compactification

yields N = 4 U(N) SYM. We will never make use of the “genuine” AN−1 theory, so hopefully no confusion

will arise from our imprecise use of language.
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A simple string construction of these theories is to consider M-theory with N M2

branes in R1,2 ×C3 × T 2, where the underline denotes the dimensions spanned by the M2

branes. Upon taking the F-theory limit, the M2 branes lift to D3 branes in R1,3 × C3,

which realizes four dimensional N = 4 SYM with gauge group U(N) in their worldvolume.

The key point is that in the M-theory description, both the SO(6)R R-symmetry group

and the SL(2,Z) duality are manifest geometrically. Thus, one can take a conventional

orbifold in the M-theory side, namely R1,2× (C3×T 2)/Zk, which after taking the F-theory

limit reproduces the quotient in the four-dimensional gauge theory. This yields an N = 3

theory on the worldvolume of a stack of D3 branes probing a generalized orientifold, dubbed

S-fold in [22].5

2.2 N = 3 from six dimensions

Now we would like to obtain the four dimensional N = 3 theories from the (0, 2) AN−1
superconformal field theory in six dimensions. The R-symmetry group of these theories is

SO(5)R and the supercharges transform in the (4,4) of SO(5, 1)× SO(5)R.

2.2.1 From M5 branes to D3 branes

Four dimensional N = 4 SYM with gauge group U(N) can be obtained from the (0, 2)

AN−1 theory by compactifying it on a torus [25]. In this construction, the S-duality group

SL(2,Z) of the four dimensional theory is manifest geometrically, as the group of large

diffeomorphisms acting on the torus. In contrast, the full R-symmetry group SO(6)R is

only present in the limit in which the size of the torus vanishes, where SO(5)R enhances

to SO(6)R. Since the quotient we want to take in the N = 4 theory involves a subgroup

of SO(6)R which is not in SO(5)R, it is not immediately clear how to proceed in terms of

the (0, 2) theory when the size of the torus is finite. In order to do so, we need to make

the symmetry we want to quotient by manifest in the UV. In the following we do so by

starting with a specific M-theory configuration of M5 branes and interpret the result in

field theory terms afterwards.

Let us consider a system of N M5 branes on R1,3 × S1
M × S1

T × S1
E ×C2. If we reduce

along the M-theory circle S1
M , we have Type IIA with N D4 branes on R1,3 × S1

T ×S1
E×C2.

T-duality along S1
T brings us to Type IIB with N D3 branes on R1,3 × S̃1

T × S1
E × C2. In

this last picture we see that, due to the two circles in the transverse space to the D3

branes, the R-symmetry group SO(6)R is broken, and is only recovered in the IR where

these circles decompactify, as mentioned earlier. In general, we expect it to be broken to

SO(4)×Z2, where SO(4) acts on C2 and Z2 acts by reflection on the torus T̃ 2
E = S̃1

T ×S1
E .

However, if we tune the complex structure τ̃E of T̃ 2
E to be, for example, τ̃E = i, we see

that the symmetry group is enhanced to SO(4) × Z4, with Z4 acting on T̃ 2
E as a rotation

by π/2, namely

Z4 : (x̃T , xE) −→ (−xE , x̃T ) (2.3)

5We restrict to the case without torsion fluxes in the whole paper. A systematic discussion of fluxes in

S-folds can be found in [22]. As we discuss in the conclusions, we expect that some or all of these discrete

degrees of freedom can be encoded into a discrete twist along the compactification torus.
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where (x̃T , xE) are coordinates on T̃ 2
E . Thus, in that particular situation, even though we

do not have the full R-symmetry SO(6)R, we have precisely the ZR4 within SO(6)R that we

need in the construction of the N = 3 theories. Similarly, if we tune τ̃E = eiπ/3, we have an

enhanced Z6 R-symmetry, which allows to construct the rest of the N = 3 theories in [11].

In the following we restrict to the case Z4 for simplicity, with generalization to the other

cases being straightforward.

Since the original description in terms of M5 branes is dual to the one involving D3

branes, we know that such Z4 symmetry must be there too. In order to identify it in terms

of M5 branes, we dualize back tracing carefully the Z4 that acts on the torus T̃ 2
E .

2.2.2 From D3 branes back to M5 branes

The first step is to T-dualize along S̃1
T , which gives Type IIA with N D4 branes on

R1,3 × S1
T × S1

E × C2. Since upon T-duality we exchange τ ↔ ρ, the complexified

Kähler parameter

ρ =

∫
T 2
E

B + i
√

detG (2.4)

of T 2
E = S1

T × S1
E is equal to ρE = i. Here G is the metric on the torus T 2

E . In particular,

this means that the radii of T 2
E (in string frame) are constrained by rT rE = 1 and that the

NSNS B-field is zero when integrated over T 2
E .

In this picture, the Z4 symmetry (2.3) is no longer geometric since, for the closed string

sector, it exchanges momentum states in one direction with winding modes in the other.

Type IIA on a two-torus has a T-duality group O(2, 2;Z), which can be written as

O(2, 2;Z) = (SL(2,Z)τE × SL(2,Z)ρE ) o (ZτE↔ρE2 × Z(τE ,ρE)↔(−τE ,−ρE)
2 ). (2.5)

Here SL(2,Z)τE acts geometrically on T 2
E , while SL(2,Z)ρE does it non-geometrically, since

it acts on ρE , which contains the volume modulus, by the usual linear fractional transfor-

mations. Generically, this is a duality and not a symmetry, in the sense that it identifies

states with different values of the fields at infinity. However, for the special value ρE = i,

we see that the Z4 ⊂ SL(2,Z)ρ, acting as6

ρE −→ −
1

ρE
, (2.6)

becomes a symmetry, since it leaves the asymptotic value of all the fields fixed. Thus, for

ρE = i, we may take the quotient by Z4. Regarding the action on the open string degrees

of freedom of the D4 branes, at the massless level, this Z4 exchanges the position along the

transverse circle S1
E with the Wilson line along S1

T .

The next step is to take the M-theory lift of this configuration and, in particular, of

the Z4 action (2.6). As explained in [26], the duality group of M-theory on T 3 is given by

SL(3,Z) × SL(2,Z)ρ, where the first factor acts in the natural way on T 3 and the second

6A useful way of viewing this transformation is as a T-duality along S1
T , followed by a T-duality along

S1
E , followed by a rotation exchanging the two coordinates.
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corresponds to certain electric-magnetic duality in eight dimensions. Indeed, it exchanges

the M-theory three-form C along the eight non-compact dimensions with its Hodge-dual

potential or, equivalently, maps unwrapped M2 branes to wrapped M5 branes. In addition,

it acts on the M-theory ρ parameter by linear fractional transformations, where ρ is given

now by

ρ =

∫
T 3

C + i
√

detG (2.7)

with G the metric on T 3. This provides the M-theory lift of the T-duality group of Type

IIA on T 2.

Thus, we find that the M-theory lift consists of N M5 branes on R1,3 × S1
M × S1

T ×
S1
E × C2 with ρ = i, where ρ is now the M-theory modulus. Having ρ = i implies that

RMRTRE = 1 , (2.8)

where RM , RT , RE are the radii of S1
M , S

1
T , S

1
E in the M-theory metric.

As we mentioned earlier, the S-duality group SL(2,Z) of four dimensional N = 4 SYM

arises from large diffeomorphisms of the torus wrapped by the M5 branes. Thus, in order to

have Zτ4 within SL(2,Z) to be an actual symmetry, we have to tune the complex structure

τ of S1
M × S1

T to be τ = i which, in particular, implies that

RM = RT . (2.9)

Thus, requiring the presence of both the R-symmetry ZR4 (eq.(2.8)) and the S-duality Zτ4
(eq.(2.9)) leaves only one free parameter, namely

RM = R , RT = R , RE =
1

R2
. (2.10)

Notice that the ZN=3
4 action we want to quotient by in four dimensions to construct the

N = 3 theories is present for every value of R. The four dimensional superconformal theory

is obtained when R → 0. In this limit, the two-torus wrapped by the M5 branes becomes

small while the transverse circle decompactifies.

To summarize, we can obtain the four dimensional N = 3 theories in this context

by considering N M5 branes probing certain non-geometric singularity. More explicitly,

we need to consider N M5 branes on R1,3 × (S1
M × S1

T × S1
E × C2)/Zk, where Zk is the

combined action

Zk = ZRk · Z̃Rk · Zτk . (2.11)

Here ZRk is a rotation acting on C2 generated by

Rk =

(
R̂−1k 0

0 R̂k

)
, (2.12)

where R̂k is a 2π/k rotation in two dimensions. Moreover, Z̃Rk is a non-geometric quotient

generated by acting on the ρ parameter of T 3 = S1
M × S1

T × S1
E , which fixes ρ to a specific

value such that the volume of T 3 is of order one. Finally, Zτk acts on T 2 = S1
M × S1

T as

u→ e2πi/ku, where u is a flat complex coordinate on T 2. This fixes the complex structure

of the torus to a particular value.
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2.2.3 Supercharges

It is interesting to compute the amount of supersymmetry preserved by the configuration

described above directly. If we consider N M5 branes on R1,3 × S1
M × S1

T × S1
E × C2, the

sixteen supercharges preserved by the M5 branes transform as [7]7

(S+
4 , S

+
4 )− 1

2
, 1
2
⊕ (S+

4 , S
−
4 )− 1

2
,− 1

2
⊕ (S−4 , S

+
4 ) 1

2
,− 1

2
⊕ (S−4 , S

−
4 ) 1

2
, 1
2

(2.13)

under

SO(1, 3)× SO(4)R ×U(1)τ ×U(1)ρ , (2.14)

where S±4 are the positive/negative chirality spinors of either SO(1, 3) or SO(4). Further-

more, U(1)τ corresponds to the rotations on the torus wrapped by the M5 branes and

U(1)ρ is the bundle associated to the duality group SL(2,Z)ρ, defined as follows. Given an

SL(2,Z)ρ bundle with transition functions

M =

(
a b

c d

)
∈ SL(2,Z)ρ , (2.15)

the U(1)ρ bundle is obtained by using transition functions eiarg(cρ+d).

We can compute how the supercharges transform under the discrete group (2.11) and

those that are not invariant will be projected out. More explicitly, ZRk acts on the super-

charges as

ZRk :

(S±4 , S
+
4 )p,q → (S±4 , S

+
4 )p,q

(S±4 , (+
1
2 ,−

1
2))p,q → e−2πi/k(S±4 , (+

1
2 ,−

1
2))p,q

(S±4 , (−1
2 ,+

1
2))p,q → e2πi/k(S±4 , (−1

2 ,+
1
2))p,q .

(2.16)

Under the non-geometric action Z̃Rk we find

Z̃Rk :
(S±4 , •)p, 1

2
→ eπi/k(S±4 , •)p, 1

2

(S±4 , •)p,− 1
2
→ e−πi/k(S±4 , •)p,− 1

2
,

(2.17)

where the bullets stand for omitted S±4 terms. Finally, under the rotation of the torus

wrapped by the M5 branes we find that

Zτk :
(S±4 , •) 1

2
,q → eπi/k(S±4 , •) 1

2
,q

(S±4 , •)− 1
2
,q → e−πi/k(S±4 , •)− 1

2
,q .

(2.18)

Under the combined action Zk = ZRk · Z̃Rk · Zτk, only twelve supercharges remain invariant

so we have N = 3, as expected.

7In our conventions, the M5 brane preserves (0,2) supersymmetry in six dimensions.
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2.3 Field theory interpretation

Up to now we have discussed how to obtain the four dimensional N = 3 from six dimensions

by using the M-theory construction in terms of M5 branes. However, it should be possible

to understand this procedure directly in terms of the (0, 2) theory. For concreteness we

will discuss the case k = 4 in the following but the other cases work analogously.

Let us start by looking at the moduli space of the abelian (0, 2) theory (just one M5

brane in flat space), which is

M = R5 . (2.19)

The R-symmetry group SO(5)R acts on the moduli space in the obvious way. Notice that

there is an additional Z2 symmetry of the theory that acts as the element (−1) ∈ O(5)

on the moduli space and which, in order commute with the supercharges, must act also

with a minus sign on the self-dual two-form potential B. In the M-theory construction,

this corresponds to the possibility of taking an M5 brane on an orbifold R5/Z2. Since the

resulting space is non-orientable, the orbifold action must be accompanied by C → −C [27],

which induces B → −B on the M5 brane. Gauging such Z2 provides the field theory

construction of the (0, 2) D-type theories in terms of the A-type ones.8 Thus, the full

symmetry group of the theory is SO(5)R × Z2, the same as the isometry group of the

moduli space that leaves the origin fixed.

When we compactify the theory on a square torus T 2 = S1
M × S1

T , the moduli space

becomes

M = R5 × S1
h , (2.20)

where S1
h corresponds to the scalar ϕ that comes from the holonomy of the two-form

potential along T 2, namely

exp

[
i

∫
T 2
τ

B

]
= exp [iRMRT ϕ] , (2.21)

where RM and RT are the radii of the torus. From this we see that the radius of the

circle S1
h in moduli space is (RMRT )−1 and that this corresponds to turning on a relevant

deformation in the six dimensional theory. If we compactify a direction transverse to the

M5 (R→ S1
p), the moduli space is

M = R4 × S1
p × S1

h (2.22)

with S1
p of radius RE . This amounts to turning on an irrelevant deformation of the (0, 2)

theory that breaks the R-symmetry group from SO(5)R to SO(4)R, so the full symmetry

group is generically SO(4)R × Z2. Since the Z2 acts on the potential as B → −B, it acts

by reversing all the coordinates in the moduli space (2.22).

8Strictly speaking, this provides a variant of the D-type theory in which the global Z2 symmetry of

the DN theory is gauged, analogous to the difference between a gauge theory with gauge group SO(2N)

and O(2N). This subtlety becomes more clear when one looks carefully at the different possible boundary

conditions of the holographic dual [22].
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From the M-theory construction discussed above, we expect that for a particular value

of this irrelevant deformation (RE), there is an enhancement of the symmetry group of the

theory to SO(4)R × Z4. One can find evidence for this directly in field theory by looking

at the isometries of moduli space (2.22). Indeed, the two S1 factors form a complex torus

T 2
ph = S1

p × S1
h with complex structure τph. When τph = i, there is an enhancement of

the isometry group of the moduli space to SO(4)R × Z4. In particular, this happens when

the radii of S1
p and S1

h are the same, namely when RE = (RMRT )−1, cf. (2.8). Thus, we

conclude that the complex structure τph is precisely the same as the ρ parameter of the

M-theory construction presented above. The enhanced discrete symmetry acts as

Z4 : (φ, ϕ)→ (−ϕ, φ) , (2.23)

where φ is the position along the transverse circle. We see that it exchanges the position

modulus along S1
E with the holonomy coming from B on S1

M × S1
T , as expected.

In the simplest construction of the class S theories [5], the transverse space to the M5

branes is taken to be R5. This means that the full R-symmetry group SO(5)R can be used to

topologically twist the theory and preserve supersymmetry. In our case, by compactifying

one of the directions in the transverse space, we break the R-symmetry to SO(4)R, but for

special values of the transverse radius, there is an enhancement to SO(4)R × Z4, which is

not contained in SO(5)R. This extra symmetry can be used to perform a compactification

such that the four dimensional theory preserves N = 3 supersymmetry. In this sense, our

construction can be regarded as a generalization of the class S theories.

3 New N = 3 theories of exceptional type

3.1 Six dimensional (0,2) E-type theories from M-theory

The six dimensional (0,2) ADE theories first appeared as the low energy description of

ADE singularities in Type IIB [25]. Such singularities are locally of the form C2/Γ, where

Γ is a finite subgroup of SU(2). However, in order to provide an M-theory realization of

these theories, it is useful to consider instead a singular elliptic fibration over C such that,

upon decompactification of the fiber, we recover C2/Γ.9 As we go around the singularity,

the fiber undergoes a monodromy given by an element of SL(2,Z)τ , which characterizes

uniquely the type of singularity of the corresponding Weierstrass model (see table 1). In

particular, such a monodromy acts on the complex structure of the fiber as

τ → aτ + b

cτ + d
,

(
a b

c d

)
∈ SL(2,Z)τ . (3.1)

Away from the singular point, the space is locally given by C × T 2 and the group

SL(2,Z)τ is part of the T-duality group of Type IIB on T 2, see eq.(2.5).

9In our construction the transverse geometry has some compact directions, so the four dimensional

theory arising upon compactification of the 6d AN−1 theory includes a free U(1) multiplet, i.e. we have the

U(N) theory.
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AN−1 DN E6 E7 E8

Monodromy

(
1 N

0 1

) (
−1 4−N
0 −1

) (
0 −1

1 −1

) (
0 −1

1 0

) (
1 −1

1 0

)
Table 1. Monodromy of ADE singularities in elliptic fibrations. For the case DN we restrict N ≥ 4.

If we T-dualize along one of the directions of the fiber, we map Type IIB to Type IIA

and exchange τ ↔ ρ, which means that we have an elliptic fibration with a monodromy

acting on ρ, not on τ . This is an example of a non-geometric space, sometimes referred to

as a T-fold.

As shown in table 1, the corresponding monodromy for the case of AN−1 acts on the

Kähler parameter as ρ→ ρ+N , i.e. a shift in the B-field. This means that the singularity is

magnetically charged under B which, together with having sixteen preserved supercharges,

implies that such an object is a stack of NS5 branes. Notice that since the monodromy

does not act on the volume of T 2, we may decompactify it.

For the case of DN , the action on ρ is the same as for AN−3, but the monodromy

differs by an overall sign. This corresponds to having N NS5 branes in the presence of an

ON5, defined as Type IIA modded out by I4(−1)FL [28].

For the exceptional cases, the interpretation is rather different. Let us consider for

concreteness the case of E7, for which the monodromy acts as ρ → −1/ρ. Unlike the

previous cases, this involves a genuine stringy duality that (for vanishing B-field) sends

the volume of the fiber to its inverse. In particular, this implies that, at the singularity,

the value of ρ is given by the fixed point of ρ → −1/ρ, namely ρ = i. Thus, we cannot

decompactify the fiber, in contrast with the AN and DN cases. For E6 and E8, the ρ

modulus is fixed at the singularity to ρ = eiπ/3.

This shows that all the six dimensional (0,2) theories can be engineered in Type IIA,

as long as we allow to have singular non-geometric compactification spaces.

Now that we have a Type IIA construction of these theories, we can obtain the

M-theory lift, as done in the previous section. The non-geometric action on the torus

T 2 in Type IIA lifts to a non-geometric action on the M-theory three torus T 3 [26]. Thus,

we find that we can engineer the (0,2) ADE theories in M-theory by considering a non-

geometric T 3 fibration over C, where the monodromy acts on the complexified volume of

T 3, as in table 1.

Similarly to the Type IIA case, we can interpret the AN−1 and DN cases as correspond-

ing to a stack of N M5 branes, either in flat space or in an orbifold R5/Z2 [28]. However,

for the exceptional cases the monodromy acts non-trivially on the volume of T 3, so we

cannot decompactify the fiber. In these cases, the six dimensional superconformal point

is reached, in the IIB description, when we decompactify the fiber, namely ρIIB → i∞,

keeping gIIB fixed. In terms of the M-theory data, this corresponds (for E7) to taking the

limit R→ 0 in

RA = R−2c−1 , RT = Rc−1 , RM = Rc2 , (3.2)
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where c = (gIIB)
1
3 and RA, RT , RM are the radii of T 3 = S1

A × S1
T × S1

M in the M-theory

metric. Here S1
T is the circle along which we T-dualize and S1

M is the M-theory circle.

Notice that the M-theory complexified volume is ρ = i for every c and R in (3.2).

Since the M-theory configuration is dual to the original Type IIB setup, we know that

it preserves sixteen supercharges of the same chirality. However, it is instructive to compute

this directly in M-theory for the exceptional cases. Consider for the moment M-theory on

R1,5 × (C× T 3), so the supercharges transform as(
S+
6 ,

1

2
,

1

2
,2

)
⊕
(
S+
6 ,−

1

2
,−1

2
,2

)
⊕
(
S−6 ,

1

2
,−1

2
,2

)
⊕
(
S−6 ,−

1

2
,

1

2
,2

)
(3.3)

under SO(1, 5)×U(1)C×U(1)ρ×SU(2), where U(1)C is the rotation group in C and S±6 are

positive/negative chirality spinors in six dimensions. Here U(1)ρ × SU(2) is the maximal

compact subgroup of the (continuous version of the) duality group SL(2,Z)ρ × SL(3,Z).

In order to compute the supercharges that survive the quotient, we may regard the

non-geometric T 3 fibration over C as (C×T 3)/Zp where Zp acts non-geometrically. Namely,

it is given by the combined action

Zp = ZC
p · Zρp , (3.4)

where ZC
p acts on C as a rotation by 2π/p and Zρp acts on ρ via the monodromy in table 1.

We have that p = 3, 4, 6 correspond to E6, E7 and E8, respectively. This is analogous

to the statement that the original Weierstrass model for the singular elliptic fibrations of

type IV ∗, III∗ and II∗ is birational to orbifolds of the form (C × T 2)/Zp, for p = 3, 4, 6.

In the geometric case, the Weierstrass model and the orbifold are not physically equiva-

lent, since the singularity structure is different in each case, and thus the corresponding

superconformal field theories are also different. However, the amount of supersymmetry

preserved is indeed the same in both cases so in the following, for simplicity, we will use

an orbifold description of the U-fold, which correctly encodes the monodromies associated

to the singularity, to compute the amount of supersymmetry preserved. As we will see,

this gives the expected number of supercharges. We stress, however, that this is not the

U-fold that yields the E-type superconformal field theories we are interested in, which is

rather given by the U-dual of the Weierstrass model which one needs for constructing the

exceptional (0, 2) theories.

On the one hand, under the rotation in C, the supercharges (3.3) transform as

ZC
p :

(
S+
6 ,±1

2 ,±
1
2 ,2
)
→ e±iπ/p

(
S+
6 ,±1

2 ,±
1
2 ,2
)

(
S−6 ,±1

2 ,∓
1
2 ,2
)
→ e±iπ/p

(
S−6 ,±1

2 ,∓
1
2 ,2
)
.

(3.5)

On the other hand, under the non-geometric monodromy in the fiber, these transform as

Zρp :

(
S+
6 ,±1

2 ,±
1
2 ,2
)
→ e±iπ/p

(
S+
6 ,±1

2 ,±
1
2 ,2
)

(
S−6 ,±1

2 ,∓
1
2 ,2
)
→ e∓iπ/p

(
S−6 ,±1

2 ,∓
1
2 ,2
)
.

(3.6)

Clearly, the combined action (3.4) preserves all the supercharges of negative chirality and

projects out the rest, which gives (0,2) supersymmetry, as expected.

– 11 –



J
H
E
P
1
2
(
2
0
1
7
)
0
4
2

3.2 New N = 3 theories

As we mentioned in the introduction, the idea of quotienting N = 4 SYM by a combination

of appropriate R-symmetry and SL(2,Z) transformations does not require the original

group to be U(N), and should extend in particular to N = 4 theories with exceptional

gauge groups, which are also self-dual for certain values of the coupling (with the subtlety

mentioned in footnote 1 taken into account). This field theory argument suggests that the

quotient exists and yields N = 3 theories. However, with current technology it is difficult

to analyze the resulting theories directly in field theory from the quotient viewpoint, which

is one reason why having a string realization is useful.

While the construction presented in [11] using D3 branes is well suited to get the

quotient of the U(N) theory, it does not seem to generalize to the exceptional cases, since

there is no known construction of N = 4 E-type SYM using D3 branes. However, as

we will see in the following, one can obtain a string realization of these by combining

appropriately the non-geometric construction of the (0,2) E-type theories presented above

with the N = 3 quotient of section 2.2. Let us start with M-theory on a five-torus,

R1,3 × S1
a × S1

b × S1
c × S1

d × S1
e × C, where we will denote the different subtori as T 2

ab =

S1
a × S1

b , etc.

E-type quotient. As explained in the previous section, the non-geometric orbifold that

encodes the monodromies associated to the U-fold that yields the E-type (0,2) theories is

R1,3×T 2
ab×(T 3

cde×C)/ZEp , where ZEp acts as in (3.4), which we repeat here for convenience.

ZEp = ZC
p · Zρp , (3.7)

where ZC
p acts on C as a rotation by 2π/p and Zρp acts on the ρ parameter of T 3

cde (which

we denote by ρE) by the monodromy in table 1. For p = 3, 4, 6 we obtain the (0,2) E6,7,8

theory on R1,3 × T 2
ab. This quotient requires ρE to be either ρE = eiπ/3 for p = 3, 6 or

ρE = i for p = 4.

S-fold quotient. The non-geometric quotient, discussed in section 2.2, that produces

the S-fold is given by R1,3 × (T 3
abc × T 2

de × C)/ZSk , where ZSk is the combined action

ZSk = ZRk · Z̃Rk · Zτk . (3.8)

Here ZRk is a rotation by 2π/k on T 2
de×C, as in (2.12), Z̃Rk acts on the ρ parameter of T 3

abc

(denoted by ρS) via the monodromy in table 1 and Zτk is a 2π/k rotation on T 2
ab. In order

to being able to perform this quotient, we need to set ρS = τab = τde = eiπ/3 for k = 3, 6

and ρS = τab = τde = i for k = 4.

Thus, we conclude that the four dimensional exceptional N = 3 theories arise when

we take the (non-geometric) S-fold quotient of the U-fold that produces the E-type (2,0)

theories. In four dimensional field theory terms, the label p denotes the parent gauge group

E6,7,8 and the label k is the kind of N = 3 quotient, or S-fold. If we take, for instance,

the case p = k = 4, the constraints of the ρ and τ parameters imply that, out of the five

independent radii of T 5, only one is independent, namely

Ra = Rb = Rd = Re = R , Rc = R−2 . (3.9)

The four dimensional theory is reached when R→ 0.
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In appendix A, we describe how the monodromies are embedded in the duality group of

M-theory on T 5, namely O(5, 5;Z). We use this embedding for computing the supercharges

preserved by the non-geometric orbifold

R1,3 × (C× T 5)/(ZEp × ZSk ) . (3.10)

This computation shows that the theory indeed preserves twelve supercharges in four

dimensions.

4 Conclusions

In this note we have constructed a new set of N = 3 SCFTs in four dimensions associated

with exceptional algebras. We have no reason to discard the existence of a purely geometric

construction of these theories, but the simplest approach, in terms of the (0, 2) E-type

theories in six-dimensions, led us naturally to consider M-theory on U-manifolds, rather

than an ordinary geometric compactification.

Along the way we have encountered a surprise: the action on the M5 brane worldvolume

involves a discrete generator which is not part of the usually considered (geometric) SO(5)

R-symmetry group. It should be interesting to see whether use of this extra symmetry can

be useful for extending the class of N = 2 theories in four dimensions that can be analyzed

along the lines of [5]. In particular, it should be enlightening to approach, from this six-

dimensional viewpoint, the N = 3 theories constructed here and in [11]. A first interesting

step would be to reformulate the exotic discrete Zk action leading to the N = 4→ N = 3

breaking in terms of the two dimensional theory associated with the four dimensional theory

of interest [29]. We hope to report on this topic in the future.

One well known aspect of (0, 2) theories compactified on T 2 is that one can include

variants with a non-trivial twisting by an outer automorphism along the T 2, for instance

in order to construct the non-simply laced N = 4 theories [30, 31], or in order to construct

new N = 2 theories [32]. We have not considered twisting by such outer automorphisms

in this note, but it would be a very interesting direction for further work. In particular, we

expect such a construction to describe some or all of the S-fold variants discussed in [11, 22].

Another interesting direction is to generalize the class of compactifications slightly,

to include spaces in which the T 2 factor is fibered non-trivially over the four-dimensional

base, while preserving some supersymmetry. This setup appears naturally in the AN−1
case, where the resulting N = 4 theories with duality defects are useful for understanding

aspects of the physics of euclidean D3-branes in F-theory language [33–47]. There is no

known corresponding notion of an “exceptional instanton”, but the abstract study of the

generalization of such duality defects to exceptional theories should be interesting in any

case, and the non-geometric backgrounds described in this note give one way of explicitly

constructing such setups.

More generally, it is natural to wonder whether non-geometric engineering leads to a

richer class of possibilities for constructing six and four dimensional field theories beyond

those accessible via geometric techniques, as we suspect to be the case in the particular

example we have studied here. Of course, one always ends up having to pay the piper: our
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understanding and control of U-manifolds, particularly their moduli spaces and singular-

ities, is still in its infancy, so currently we can say rather less about this class of theories

than about those with geometric constructions. For instance, a basic question about the

theories we have constructed that is not straightforward to answer is determining the di-

mension of their Coulomb branch (for instance, in order to connect, down the road, with

the classification program of [21, 48–50]). The natural object to study would be the set

of supersymmetric deformations of the U-manifold we constructed, and to our knowledge

there is currently no simple way of approaching this question.

Nevertheless we hope that the existence of the exceptional theories constructed in

this note provides good motivation for taking this “non-geometric engineering of QFTs”

viewpoint seriously, and developing it further.
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A Details on the N = 3 exceptional quotient

The duality group of M-theory on T 5 is O(5, 5;Z). The maximal compact subgroup of the

continuous version is SO(5) × SO(5), and the supercharges transform as

(S+
6 ,1,4)⊕ (S−6 ,4,1) (A.1)

under SO(1, 5) × SO(5) × SO(5). We would like to understand how the monodromies of

the E-type and S-fold quotients are embedded in SO(5) × SO(5) and how they act on the

supercharges. Recall that the 4 of SO(5) is{(
1

2

1

2

)
,

(
1

2
− 1

2

)
,

(
−1

2

1

2

)
,

(
−1

2
− 1

2

)}
. (A.2)

In the following we will omit the 1
2 and simply write (++), etc.

Firstly, there is an SO(5)S ⊂ SO(5)×SO(5) that corresponds to the structure group of

T 5, i.e. the geometrical SO(5)S . Clearly, such a subgroup must act in the same way on the

supercharges of both chiralities. This can be seen by taking an eleven dimensional spinor

and decomposing it according to the splitting R1,10 → R1,5 × T 5, namely

S11 = (S+
6 ,4)⊕ (S−6 ,4) . (A.3)

Thus, from (A.1) and (A.3), we see that SO(5)S is embedded as

SO(5)S = {(g, g) ∈ SO(5)× SO(5)} , (A.4)

so it is the diagonal subgroup. We define also the anti-diagonal subgroup

SO(5)A = {(g, g−1) ∈ SO(5)× SO(5)} . (A.5)

– 14 –



J
H
E
P
1
2
(
2
0
1
7
)
0
4
2

The E-type and S-fold quotients involve geometric rotations in two different tori, T ab

and T de, of T 5. Then, we choose the Cartan subalgebra of SO(5) × SO(5) such that the

Cartan of SO(5)S corresponds to rotations along T 2
ab and T 2

de. The quotients also involve

non-geometric actions on two three-tori, T 3
abc and T 3

cde, which correspond to the Cartan

of SO(5)A.

Example: geometric rotation around T 2
ab. Consider a rotation of 2π/k around T 2

ab.

The action on the supercharges (A.1) isS+
6 ,1,

++

+−
−+

−−

→ exp

2πi
1

2k


+1

+1

−1

−1



S+

6 ,1,

++

+−
−+

−−

 (A.6)

S−6 ,
++

+−
−+

−−

,1

→ exp

2πi
1

2k


+1

+1

−1

−1



S+

6 ,

++

+−
−+

−−

,1

 . (A.7)

The rotation acts on the first entry of the weight and in the same way for both supercharges.

Example: non-geometric rotation around T 2
abc. Consider a non-geometric rotation

of 2π/k around T 3
abc. The action on the supercharges (A.1) is dictated by the embed-

ding (A.5) and isS+
6 ,1,

++

+−
−+

−−

→ exp

2πi
1

2k


−1

−1

+1

+1



S+

6 ,1,

++

+−
−+

−−

 (A.8)

S−6 ,
++

+−
−+

−−

,1

→ exp

2πi
1

2k


+1

+1

−1

−1



S+

6 ,

++

+−
−+

−−

,1

 . (A.9)

The non-geometric rotation acts on the first entry of the weight and in the opposite way

for both supercharges.

Supercharges. The quotient that yields the exceptional N = 3 theories is ZEp × ZSk , so

the supercharges that survive must be invariant under both ZEp and ZSk separately. Since

these quotients involve an additional C, we split the supercharges in (A.1) as(
S+
4 ,

1

2
,1,4

)
⊕
(
S−4 ,−

1

2
,1,4

)
⊕
(
S+
4 ,−

1

2
,4,1

)
⊕
(
S−4 ,+

1

2
,4,1

)
, (A.10)

which is how they transform under SO(1, 3)×U(1)C × SO(5)× SO(5).
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E-type quotient. This consists of a rotation around C together with a non-geometric

rotation around T 3
cde. The latter acts on the second weight in the opposite way for (1,4)

and (4,1).

We findS+
4 ,

1

2
,1,

++

+−
−+

−−

→ exp

2πi
1

2k


1− 1

1 + 1

1− 1

1 + 1



S+

4 ,
1

2
,1,

++

+−
−+

−−

 (A.11)

S−4 ,−1

2
,1,

++

+−
−+

−−

→ exp

2πi
1

2k


−1− 1

−1 + 1

−1− 1

−1 + 1



S−4 ,−1

2
,1,

++

+−
−+

−−

 (A.12)

S+
4 ,−

1

2
,

++

+−
−+

−−

,1

→ exp

2πi
1

2k


−1 + 1

−1− 1

−1 + 1

−1− 1



S+

4 ,−
1

2
,

++

+−
−+

−−

,1

 (A.13)

S−4 , 1

2
,

++

+−
−+

−−

,1

→ exp

2πi
1

2k


1 + 1

1− 1

1 + 1

1− 1



S−4 , 1

2
,

++

+−
−+

−−

,1

 . (A.14)

This shows that only half of the supercharges survive, namely

(
S+
4 ,

1

2
,1,++

)
⊕
(
S+
4 ,

1

2
,1,−+

)
⊕
(
S−4 ,−

1

2
,1,+−

)
⊕
(
S−4 ,−

1

2
,1,−−

)
⊕
(
S+
4 ,−

1

2
,++,1

)
⊕
(
S+
4 ,−

1

2
,−+,1

)
⊕
(
S−4 ,

1

2
,+−,1

)
⊕
(
S−4 ,

1

2
,−−,1

)
.

(A.15)

S-fold quotient. In this case we have to take a quotient by a geometric rotation in

C, T 2
ab and T 2

de. The last two act on the first and second entries of the weight vector,

respectively, and in the same way for (1,4) and (4,1). We also need to take a quotient by

a non-geometric rotation in T 3
abc.

The action of this quotient on the supercharges (A.15) that survive the E-type quo-

tient is (
S+
4 ,

1

2
,1,++

)
→ exp

{
2πi

1

2k
(1 + 1− 1− 1)

}(
S+
4 ,

1

2
,1,++

)
. (A.16)

The four contributions to the phase exp
{

2πi 1
2k (1 + 1− 1− 1)

}
should be understood as

coming, in order, from: 1) rotation in C, 2) rotation in T 2
ab, 3) rotation in T 2

de and 4)

– 16 –
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non-geometric rotation in T 3
abc. The action on the rest is(

S+
4 ,

1

2
,1,−+

)
→ exp

{
2πi

1

2k
(1− 1− 1 + 1)

}(
S+
4 ,

1

2
,1,−+

)
(A.17)(

S−4 ,−
1

2
,1,+−

)
→ exp

{
2πi

1

2k
(−1 + 1 + 1− 1)

}(
S−4 ,−

1

2
,1,+−

)
(A.18)(

S−4 ,−
1

2
,1,−−

)
→ exp

{
2πi

1

2k
(−1− 1 + 1 + 1)

}(
S−4 ,−

1

2
,1,−−

)
(A.19)(

S+
4 ,−

1

2
,++,1

)
→ exp

{
2πi

1

2k
(−1 + 1− 1 + 1)

}(
S+
4 ,−

1

2
,++,1

)
(A.20)(

S+
4 ,−

1

2
,−+,1

)
→ exp

{
2πi

1

2k
(−1− 1− 1− 1)

}(
S+
4 ,−

1

2
,−+,1

)
(A.21)(

S−4 ,
1

2
,+−,1

)
→ exp

{
2πi

1

2k
(1 + 1 + 1 + 1)

}(
S−4 ,

1

2
,+−,1

)
(A.22)(

S−4 ,
1

2
,−−,1

)
→ exp

{
2πi

1

2k
(1− 1 + 1− 1)

}(
S−4 ,

1

2
,−−,1

)
. (A.23)

We see that, in total, twelve supercharges survive the action of ZEp and ZSk . Thus, the

quotient ZEp × ZSk yields an N = 3 theory in four dimensions.
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[40] M. Cvetič, I. Garcia Etxebarria and J. Halverson, Three looks at instantons in F-theory —

New insights from anomaly inflow, string junctions and heterotic duality, JHEP 11 (2011)

101 [arXiv:1107.2388] [INSPIRE].

[41] M. Bianchi, A. Collinucci and L. Martucci, Magnetized E3-brane instantons in F-theory,

JHEP 12 (2011) 045 [arXiv:1107.3732] [INSPIRE].

[42] M. Bianchi, A. Collinucci and L. Martucci, Freezing E3-brane instantons with fluxes,

Fortsch. Phys. 60 (2012) 914 [arXiv:1202.5045] [INSPIRE].
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[49] P.C. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of

N = 2 SCFTs II: construction of special Kähler geometries and RG flows,

arXiv:1601.00011 [INSPIRE].
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