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1 Introduction

The noncommutative geometry approach to the structure of space-time has been able

to produce the standard model coupled with gravity, almost uniquely, by using very weak

constraints [3]. In this model, space-time is taken to consist of a continuous 4D Riemannian

manifold tensored with a finite noncommutative space. One of the defining ingredients of

this hyperspace is an operator which coincides with the Dirac operator in the commutative

4D part of the space and can be considered as the generalized noncommutative version

of it. This operator has all the useful geometrical information of the space, and just like

the Dirac operator in the standard model, its structure reveals the fermionic content of

the model. Moreover, in the noncommutative geometry, other information like gauge field

interactions and the scalar sector are embedded in the spectrum of this operator. In the

work of Chamseddine and Connes in [3] and the papers that followed, it was shown that

the simplest possible noncommutative structure has the correct fermionic content and also

leads to the gauge symmetry of the standard model.

The Lagrangian of this model comes from the most general form of the Dirac operator

consistent with axioms of noncommutative geometry plus an additional constrain called the

first order condition. This Lagrangian possesses three important features distinguishing it

from the minimal standard model. First, the couplings of the model are not totally arbitrary

and there are relations between them at the unification scale. These relations are consistent

with grand unified theories such as SU(5) unified theory. Second, in addition to the Higgs,

there is a singlet scalar field present in the spectral action. It is shown that this field

can help the situation with the low Higgs mass which is not otherwise consistent with the

unification of spectral action in high energies [6]. We will see in this letter that the results
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improve if the extra singlet scalar field is taken to be complex. It is also seen that such an

extra scalar field can be responsible for dark matter particle [1, 14]. Finally, right-handed

neutrino appears into the picture automatically as well as its Yukawa interaction. These

terms are needed to give a small mass to the left-handed neutrino by see-saw mechanism

and usually are added to the standard model by hand.

In [6], the singlet scalar field was assumed to be real. Then using 1-loop renormal-

ization group equations, it was shown that the model with the singlet can accommodate

a Higgs field with the mass of order 125GeV. In fact, the reality condition on the sin-

glet field is not necessary and we assume the singlet to be a complex field in this work.

Our consideration shows the model in its most general form is consistent with the cur-

rent experimental values of the Higgs and top quark masses. Furthermore, we use 2-loop

renormalization group equations to compare the following cases: when the added singlet

is a complex field, when it is real, and the pure standard model with neutrino mixing. We

show that while running RG equations from unification scale toward current experimental

energies, the model with added complex singlet behaves slightly better than the other two

cases. Yet, like the standard model itself, one can only attain the experimentally observed

gauge couplings at low energies within some percent of accuracy. This agrees with the

separations of the standard model gauge couplings at the unification scale when we start

from experimental values and run them upward. Subsequently we also discuss the effects

of three-loop corrections.

Since the discovery of the Higgs particle in 2012, researchers started to study the insta-

bility problem of the standard model effective potential more seriously (For example [15]).

Although this instability cannot make the standard model unreliable, even at high en-

ergies, because of the long lifetime of the tunneling process, it still could have dramatic

consequences during the inflation period [2, 16]. It is interesting to check the effect of any

modification of the model on this situation. Therefore the vacuum stability of the models

coming from noncommutative geometry will be addressed and compared with the pure

standard model.

We will show in this letter that even though a few extra terms are added to the

RG equations due to the complex singlet field, yet their effect on the negativity of the

Higgs self-coupling at high energies can be substantial. The reason we cannot predict what

exactly happens for the coupling is that the experimentally unknown right-handed neutrino

Yukawa coupling contributes in the RG equations as well. This coupling also plays a role in

determining the Higgs and top quark masses at low energies. What we can do is to follow

its effect by following RG equations down and looking at the particle masses. The proper

value of right-handed neutrino Yukawa coupling - turns out to be between 0.411 and 0.455

at unification scale as we will see in section 3. The resulting value for this coupling at Z-

boson mass region is also between 0.517 and 0.530, while Yukawa coupling of the top quark

is about 0.995. Besides, the values of scalar sector couplings are derivable in this scale from

RG equations. We argue that in this acceptable range of the couplings, although vacuum

instability is not cured, but the situation is improved by the presence of the complex scalar

field. We use two-loop equations and near to the leading order three-loop equations to

assess the loop correction effects in presence of a complex or real singlet field.
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We stress that the above results are not merely derivable from the standard model plus

a complex singlet. The reason is that in our considerations, we use the initial conditions

predicted by the spectral action approach [8]. Moreover here a neutrino coupling is present

in RG equations and contributes to the values of particle masses. The form of potential is

also restricted and is different from extended standard model cases with complex singlet

described in the literature. In our case, the results for stability are slightly better (e.g.

compare with [11, 14, 17, 20]).

2 The model

After years of investigations by mathematicians to expand the geometrical notions to the

spaces with less constraints than metric spaces, which led to many developments in various

areas of mathematics, finally Alain Connes was able in 1980 to find applicable set of

axioms and definitions to generalize geometrical concepts to a much broader range of

spaces [12]. He also used the new geometry to define a noncommutative torus and studied

its geometrical properties. Later in 1996, Ali Chamseddine and Alain Connes found an

application of this new geometry in physics [3]. They assumed the space-time is a direct

product of 4D Riemannian manifold with a noncommutative space. They also introduced

the spectral action which is based on the spectrum of the Dirac operator and were able to

show that the standard model arises naturally and almost uniquely from these assumptions.

Geometrical structures in noncommutative geometry are defined based on three con-

cepts; a Hilbert space, an algebra of a given set of operators with its faithful representation

on the Hilbert space, and a special operator called Dirac Operator. These are shown to

be enough to define a rich geometry and can yield features of Riemannian manifolds in

expected limits.1 We have therefore a so called spectral triple which is shown by

(A,H, D).

As an example, for a 4D spinorial space-time one can consider Dirac operator to be the

familiar 4 by 4 matrix D = iγµ∂µ. The Hilbert space is then the space of 1 by 4 spinors. In

this case A is the algebra of 4 by 4 complex matrices which is a noncommutative algebra.

Now one way to see the geometrical invariants such as curvature is to look at the spectrum

of the Dirac operator. One can for example use heat kernel method to asymptotically

expand the trace of Dirac operator [18, 22]. This expansion is controlled by a scale called

Λ. Doing so, the first term of the expansion turns out to be the cosmological constant and

the second term gives the total curvature of space-time. Higher orders are higher powers

of the geometrical invariants such as curvature and Ricci tensor.

Unlike Kaluza-Klein type theories which enlarge geometry by assuming extra dimen-

sions, here the added structure is a finite noncommutative space which possesses no space-

time dimensions. In early models, finding noncommutative structures leading to the stan-

dard model was the matter of trial and error. Eventually, in [3], the authors discovered

that a noncommutative space with the algebra

AF = C⊕H⊕M3 (C) (2.1)

1For precise definitions refer to [5, 13].

– 3 –



J
H
E
P
1
2
(
2
0
1
7
)
0
4
0

is able to produce the standard model when it is tensored with the 4D space-time. M3(C)

is the algebra of 3 by 3 matrices on complex numbers, H is the algebra of quaternions

which are represented using 2 by 2 matrices, and C is the algebra of complex numbers.

Later on, the same authors showed that the classification of finite spaces consistent with

the noncommutative geometry requirements leads almost uniquely to the same algebra [4].

They also observed that by letting the Dirac operator to have nonlinear fluctuations, the

consistent algebra is

AF = H⊕H⊕M4 (C) , (2.2)

which leads to the Pati-Salam unified model [10]. As an interesting breakthrough in 2014

it was discovered in [9] that this algebra is dictated by a generalized version of Heisenberg

commutation relations. In this letter we consider the model based on the algebra (2.1),

which is a special case of (2.2) that happens when the perturbations of Dirac operator is

required to be linear. This is called first order condition and we assume its validity in the

current work.

Members of AF are 2 × 2 × 4 = 16 by 16 matrices and members of the Hilbert space

consist of 16 spinors, which means they possess 64 elements. Algebra of the whole space can

be written as direct product of AF with the algebra of functions on the 4D spin manifold.

The latter is the commutative algebra of smooth functions on the spin manifold

A = C∞ (M)⊗ (C⊕H⊕M3 (C)) . (2.3)

We have then 16 spinors and it turns out later that they have exactly the same inter-

actions as fermions in one generation including four right and left handed leptons and 12

colored right and left handed quarks. Next, one can introduce the chirality operator called

γ to enrich the algebra by grading mechanism and add antiparticles to the Hilbert space.

Therefore members of the Hilbert space are now 1 by 128 matrices. Next, we can triple

this space by hand to take into account the three generations of fermions. Dirac operator

of the whole space is then a 384 by 384 matrix which acts on the Hilbert space and is

defined as the tensorial sum of the operators on different parts:

D = DM ⊗ 196×96 + γ5 ⊗DF . (2.4)

The particle content of the model is therefore coming from the above settings of the non-

commutative geometry. Then Dirac action provides dynamic to this fermionic part of the

model.2 The vector and scalar parts of the model are described by the spectral action

which is the trace of Dirac operator and depends only on the sum of its eigenvalues. The

action is:

S = Tr (f(D/Λ)) + 〈ψ,Dψ〉. (2.5)

Lambda is an energy cutoff needed to make dimensionless term out of D. Function f is a

source to generate physical constants such as GN and is required to be positive and even.

2To be able to introduce an inner product and define this part of action consistently, another operator

called reality operator is needed. For exact definitions refer to [4].
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To start, first we need to make the fermionic part covariant under inner automor-

phisms of the Hilbert space by adding inner fluctuations of the Dirac operator under such

automorphisms. The fluctuations associated to the noncommutative space are responsible

for the existence of gauge fields and the Higgs. Inner fluctuations associated with the au-

tomorphisms of the continuous 4D manifold form Riemannian aspects of the curved 4D

space-time. The Dirac action then contains all the fermionic interactions, just like the stan-

dard model when all the vector fields are added to Dirac operator in form of connections.

On top of that, here we get the Yukawa terms and the Higgs as parts of the spectrum of

Dirac operator.

Next, one can use heat kernel asymptotic expansion to compute the trace. Existence

of Λ in the action is crucial so one can rely on the expansion.3 The trace is then reduced

to a series with coefficients known as Seeley deWitt coefficients [19]:

Tr (f (D/Λ)) = Tr
(

F
(

(D/Λ)2
))

=
∞
∑

n=0

Λ4−nF4−nan. (2.6)

The function f is supposed to be positive. The odd terms in the expansion vanish for

manifolds without boundaries. It is equivalent to saying the square of the Dirac operator

has important geometrical information in its spectrum and use a function F such that

F (α2) = f(α). The coefficients an depend only on the geometrical invariants such as

curvature and therefore reveal the geometrical information embedded in the Dirac operator

up to the order defined by powers of Λ. Taylor coefficients F4−n are the spectral function

derivatives at zero for 4− n < 0 and momenta of spectral function for 4− n > 0,

F0 = F (0), F2 =

∫

∞

0

F (u)du, F4 =

∫

∞

0

F (u)udu. (2.7)

These coefficients along with Yukawa couplings make the physical constants. For example

the first one, F4, is related to the cosmological constant and the third one, F0, appears

in the Higgs kinetic term. Normalization of this term causes F0 to show up in the mass

term of fermions as well as all the coupling constants which is the root of unification in

this model [5]. Therefore we trust the model on high energies where the approximation

of expansion (2.6) is expected to work well. The unification of the couplings will be then

what is expected from GUT theories. Writing the renormalization group equations and

running them down to experimental energies is also feasible.

The sum in (2.6) is over even numbers, therefore the forth term is suppressed by Λ2.

We expect Λ to be right below Plank energy which is much higher that any mass in the

model. Therefore it is logical to assume higher terms are irrelevant for our purposes. In

addition, F is expected to be a cutoff function which can control expansion of the trace.

3For the special case of Robertson-Walker metric it is shown that the expansion is valid up to energies

close to the Planck order [7].
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The Dirac operator for the noncommutative space defined by algebra in (2.3) is [[5]]:

DAB = γµ⊗ (2.8)




































Dµ

Dµ + ig1Bµ 0

(Dµ + i
2
g1Bµ)I2×2 −

i
2
g2W

i
µσi

(Dµ − 2i
3
g1Bµ)I3×3 −

i
2
g3V

a
µ λa

0 (Dµ + i
3
g1Bµ)I3×3 −

i
2
g3V

a
µ λa

(Dµ − i
6
g1Bµ)I6×6 −

i
2
g3V

a
µ λaI2×2 −

i
2
g2W

i
µσiI3×3





































⊗ 13

+ γ5⊗








































03 0 (ǫabHb ⊗ k∗ν)6×3 0 0 0

0 03 (H̄a ⊗ k∗e)6×3 0 0 0

(ǫabH̄
b ⊗ kν)3×6 (Ha ⊗ ke)3×6 06 0 0 0

0 0 0 09 0 (ǫabHbδ
j
i ⊗ k∗u)18×9

0 0 0 0 09 (H̄aδji ⊗ k∗d)18×9

0 0 0 (ǫabH̄
bδij ⊗ ku)9×18 (Haδ

i
j ⊗ kd)9×18 018









































The forms of these matrices come from very few axioms, listed in [4], and are not

arbitrary. The zeros appear automatically and are necessary to exclude interactions not

experimentally observed. Nonzero components are named after their coincidences with the

fields and constants in the standard model. The first matrix is block diagonal and contains

all the vector bosons. The second matrix contains Higgs terms. D is a 192 by 192 matrix

and acts on all 48 known fermions.

The Fermionic part at (2.5) justifies chosen names of fields and their coefficients as

for nonzero components of DAB. The first part of D contains gauge fields as it does in

the standard model; B, V , and W stand for the U(1), SU(2), and SU(3) gauge fields

respectively.4 The second part is responsible for all the other fermion-fermion interactions

which justifies the choice of names, Yukawa couplings ki and Higgs scalar fields Ha,b. In the

trace part of action (2.5) on the other hand, there is no fermionic field and the spectrum

generates bosonic and scalar potentials which have the exact same form of standard model

potential terms. In equation (2.11) and what follows, we will study the scalar sector of

the action.

4what we see here is an special case of a general theme, starting with a matrix algebra in the noncom-

mutative geometry, the spectral action principle leads to a counterpart gauge theory.
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To include antiparticles, we can double the algebra, and consequently the Hilbert

space, by assuming the existence of a reality operator J for the geometry as an axiom.

This operator5 causes all the other operators to be the direct sum of two dependent parts

which can be exchanged by the act of J .

The Dirac operator is however not simply the direct sum of fermionic and anti-fermionic

parts. It is shown in [5] that only one off-diagonal element can be nonzero. This element

therefore indicates a singlet that gives mass to a right handed fermion which is coinciding

with a right handed neutrino in the standard model. Dirac operator of the whole space is

therefore a 384 by 384 matrix as we noted before

D =

(

DAB DAB′

DA′B DA′B′

)

, DA′B = DAB′ , DA′B′ = DAB (2.9)

DAB′ =

(

σ 0..

0.. 0..

)

Having the above operator, both parts of the action (2.5) are well defined. The

fermionic part of action is containing fermion-gauge and fermion-Higgs interactions, plus

terms coming from off-diagonal elements of D, which presents scalar-fermionic interactions

absent in the standard model. Since DAB′ has only one nonzero element, only one of the

fermions is involved with this new sigma-interaction and it is natural to call it right-handed

neutrino [6].

〈ψ,Dψ〉 = c νRνR + C.C.+ fermionic and Yukawa interactions (2.10)

Physically important geometrical information is also derivable from this operator and

we need only to find coefficients introduced in (2.6) to identify the bosonic part of the

action (2.5). Calculations up to first three terms yield Einstein-Hilbert action along with

Gauss-Bonnet terms, plus Higgs potential, σ self-interaction, and σ−H interaction. After

proper redefinition of the fields, the scalar potential sector of (2.5) is [5]:

V =
1

2
m2

hH
2 +

1

2
m2

σ|σ|
2 +

1

4
λσ|σ|

4 +
1

4
λhH

4 +
1

2
λhσ|σ|

2H2. (2.11)

We take σ to be a complex singlet with two degrees of freedom. Although H is a

complex doublet with four degrees of freedom, the gauge symmetry allows us to gauge

away three of them. The potential has local minimum which occurs when

λσ|σ|
2 + λhσH

2 +m2

σ = 0, λhH
2 + λhσ|σ|

2 +m2

H = 0 (2.12)

and proposes the symmetry breaking, which we formulate with the following choices of the

vacuum expectation values:

H =

(

0

h+ v

)

, v = 〈h〉
0

(2.13)

σ = w + σ1 + iσ2, w = 〈σ1〉0.

5It is evident that J has the role here as the charge conjugate has in the standard model.
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It is obvious from the above setting that the three scalars now mix and due to the σ1 − σ2
symmetry, one massless Goldstone boson is expected to appear. After substituting (2.13)

into potential (2.11), and diagonalizing the mass matrix of the square terms, the other two

scalar masses turn out to be

m2

± =

(

v2λh +
w2

4
λσ

)



1±

(

1−
v2w2λhλσ − v2w2(λhσ)

2

(v2λh +
w2

4
λσ)2

) 1

2



 . (2.14)

It is believed that a highly massive right handed neutrino can be fitted in the standard

model to explain neutrino oscillations. Such a neutral particle is only able to gain mass

from a singlet scalar field. In the model described above this mechanism is appearing

naturally. The price of this treatment is of course to have a new scalar which is supposed

to be highly massive. Here we have another massless field added to the picture which

appears since σ is a complex field. We therefore suppose w to be much greater than v and

we get

M = w

√

λσ

2
, mh = v

√

2λh

√

1−
λ2

hσ

λhλσ
. (2.15)

The smaller one is responsible for the Higgs mass and is modified by the factor of

√

1−
λ2

hσ

λhλσ

due to the presence of the scalar field. It is remarkable that noncommutative geometry not

only predicts the singlet field and its potential terms, but also relates, in the unification

scale, the scalar couplings to other parameters such as Yukawa couplings and the unified

gauge coupling [5]. Having those relations, we will start from unification and vary all the

free parameters to probe the implications of this formula for the Higgs mass.

2.1 Running of the renormalization group equations

Having the model described in section 2, one can find the effective potential and renormal-

ization group equations in some loop order and run them to explore high energy scales.

There are however two free parameters here. The neutrino Yukawa coupling and the Higgs

self-coupling. Knowing the Higgs mass now, the value of Higgs self-coupling is determined

in the pure standard model as

λh(Mz) =
(125.5)2

2(246.2)2
= 0.1299.

In models with extra scalars though, there is a see-saw mechanism which determines the

Higgs mass and the value of this coupling is not determined even when the mass is measured.

We used SARAH which is a Mathematica package to derive two-loop RG equations

([21]) for this model and presented the results in appendix A. It is clear from RG equations

that the extra field cannot correct the gauge couplings evolutions and therefore is not going

to help the couplings to meet in exactly one point (figure 1). That is because the scalar

field potential terms are quadratic and their couplings appear only in two-loop corrections

of Yukawa couplings evolutions, which themselves enter just in two-loop corrections of the

– 8 –
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Figure 1. The behavior of gauge couplings at the unification scale. Dashed lines are indicating

the evolution of standard model couplings up to one-loop corrections. Yellow solid lines show the

situation is slightly better when two-loop corrections are also taken into account. The black dotted

lines are for RG equations up to three loops for the standard model. The black and yellow lines

are so close that their separation cannot be distinguished in this diagram. This difference is from

the same order of errors that experimental uncertainties create when we run the equations upward.

In all cases, the corrections coming from a real or complex scalar field added to the standard

model is negligible. Red dotted lines have two-loop corrections of the complex scalar field, in the

model described in section 2, and include three-loop corrections of all the other parameters. Yet

again it matches with two-loop corrections suggesting that higher orders are not going to make the

situation any better. The graph on the left compares one-loop RGEs with two-loop equations for

gauge and Yukawa couplings when we start at the same points at high energies and follow them

toward experimental values. Again adding a singlet doesn’t creates meaningful changes.

gauge couplings. The latter is due to the Yukawa interaction of the particles with square

of the singlet. Figure 1 also shows that the added singlet field, no matter is it complex

or real, does not cause meaningful changes in evolution of Yukawa couplings. However,

two-loop corrections shift them for about ten percent if we follow their evolutions to very

different energy scales.

Though replacing the real scalar field with a complex field has no remarkable impli-

cations on the gauge couplings evolutions, it can cause noticeable consequences for the

field couplings as there are new Feynman diagrams between them when we add the imag-

inary component. Choosing acceptable initial values and running RG equations, including

two-loop effects, show that this difference is meaningful. As it is clear from figure 2(a),

starting from the same points, the couplings behave differently at very high energies. These

couplings indicate Higgs mass through the relation (2.15) which can be sensitive to small

variations of the couplings.
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(a) (b)

Figure 2. Running of the couplings incorporating two-loop corrections, toward unification (a) or

from unification (b). Solid lines are for the SM, dots are for when the real scalar singlet is present,

and dashed lines are for the case that the singlet field is complex. In case of SM, except for the

neutrino Yukawa coupling, the initial values are coming from experiments. In all the cases, the

initial values for experimentally unknown couplings are discussed in the next section; when we run

from unification and look for the best fits.

3 Top quark and Higgs masses at low energies

In our approach, we run RG equations downward from the unification scale. The advantage

is that the spectral model predicts initial conditions at high energies, and relates all the

Yukawa couplings to the unified gauge coupling g. Interestingly, the scalar couplings are

also not free parameters at the unification energy, instead they are determined by both g

and the ratio of neutrino and top quark Yukawa couplings [8]. We choose the approach

of [6] and, for simplicity, define the ratio n = (k
ν

kt
)
1

2 at the unification scale. n is one

of the free parameters of the model which can be fixed, then running this along with

other parameters causes predictions for the physical quantities at the experimental arena.

As discussed before however, the unification scale itself and the value of gauge couplings

at this scale is not predicted. Figure 2(b) shows the evolution of all the parameters in

different scenarios. There is about ten percent difference in the values of the couplings at

low energies between real and complex models. Since the effects of higher orders of loop

corrections are negligible, the difference we see here does worth investigating. Another

encouraging fact is that in [6] the effects of the scalar field couplings were shown to be able

to save the model after the Higgs small mass discovery.

The other observation which justifies our consideration reveals itself when we com-

pare two-loop and one-loop equations. Whether complex or real singlet is added to the

Lagrangian, the scalar couplings get modified for about ten percent at low energies and as

noted before this can in principle dramatically modify results of equation (2.15).
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It is notable that if we use initial values coming from the spectral action, it is not

possible to run the minimal standard model from unification scale and find the experimen-

tally acceptable mass of the Higgs particle at low energies. Trivially the reason is that

these initial conditions imply unification of the gauge couplings which does not happen for

minimal standard model. In [6] however, the authors showed initial conditions and RG

equations are consistent with the low Higgs mass for when the added scalar field coming

from spectral model is real. Nevertheless, spectral action imposes no restrictions on the

singlet field. In this section, we consider both complex and real scalars and use two-loop

RG equations to incorporate higher order corrections and asses the importance of loop

corrections. We also study prediction of the theory for top quark mass.

Our main result in this section is that the assumption of existence of a new scalar

field and the predictions of the spectral model at unification are consistent with the known

masses of top quark and Higgs. For simplicity we neglect lighter particles. As it was noted

in section 2 however, the neutrino is assumed to play a significant role since it has a Yukawa

coupling and its mass comes from a see-saw mechanism. The method is straight forward;

we assume the initial conditions predicted in [8]. Then we run the equations supposing

n, g, and U are free parameters. It hands us couplings values at low energies. Then it is

possible to find the best values for these three parameters by minimizing the errors between

the result masses and experimentally known values at low energies. The fact that these

errors exist and are more than experimental uncertainties is very important and we will

discuss it in the next section.

The other important aspect of the situation is to compare two-loop and one-loop

corrections, as we are comparing real scalar and complex scalar fields. Up to one-loop,

there is no remarkable change in top quark mass if we replace the real scalar with a complex

one. However, the two-loop corrections differentiate top quark mass in these two cases.

This differentiation is still one order of magnitude smaller than the current observational

uncertainties. The situation is different for the Higgs mass as it depends directly to the

scalar couplings (eq. (2.15)).

Our considerations shows that there is a rather short range for n and g that everything

fits together. This happens for a U , unification scale, varying between 2 × 1016GeV and

5 × 1018GeV. In figure 3 the lines indicate what initial values are acceptable to meet the

correct particle masses at law energies. It turns out that for a reasonable g, the correct

choices for n and U always exist to fit the Higgs and top quark masses simultaneously in

low energies within the experimentally acceptable values.

To illustrate even more, we show possible choices for g and n at unification energy in

figure 4. The colored strips in two diagrams show all the choices which lead to retrieving

particle masses at low energies, incorporating one-loop or two-loop corrections. As we

noted before however, the correct choice of unification scale is depending on g and n. To

give some examples, the small window of correct choices of g and n for three different

unification energies are indicated by lighter colors on the strips.

Up to two loop corrections, the suitable n is obtained to be around 2.7 for the real

scalar and around 2.5 for the complex scalar case which means that at the unification scale,

Yukawa coupling of neutrino is around 6 times bigger than the top quark coupling.
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Figure 3. Each line shows suitable choices of unification scale and n value at this scale, in order to

revive experimental values of particle masses at low energies. Each set of three lines are for a specific

g value and are illustrated with a particular thickness. The left hand side diagram incorporates

two-loop corrections while the diagram on the right has only one-loop corrections. It can be inferred

from diagrams that within a reasonable range of g, the lines associated with top quark, solid brown

lines, and Higgs, dashed lines, always have a collision point. Therefore suitable n and U can be

always found to assure the low energy values for the Higgs and top quark masses. This is true for

both real and complex cases which are distinguished by blue and green lines respectively.

Figure 4. At any unification scale, there is a small window of choices for unified gauge coupling,

g, and the root of neutrino and top quark Yukawa couplings ratio, n, which lead to consistent

low energy particle masses with experimental values. Two-loop corrections, left diagram, make the

choices a little more restricted.
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3.1 comparing the complex and the real cases

We saw that for both scenarios (complex or real singlets), it is possible to find acceptable

initial conditions. On the other hand, again in both cases, gauge values deviations at low

energies do not fit within the experimental uncertainties. Yet, the situation is slightly

better in the complex case for g3 and g2. For any g at unification, U is about 0.2, and n is

about 0.28 higher in the real case compared with the complex one.

For the standard model alone, best quantities are: g ∼ 0.49 and u ∼ 39 When the

scalar (complex or real) is added, up to one-loop, g ∼ 0.52 and u ∼ 35 and up to two-loop,

g ∼ 0.53 and u ∼ 32 end to the best results.

4 Implications on the vacuum instability

In the standard model, the observed masses of Higgs and top quark imply effective potential

of the Higgs field to become unstable at high energies. This can be seen, in the tree level,

by the fact that the Higgs self-coupling changes its sign at some energy scale below the

unification. For the standard model itself, one can use the renormalization group equations

up to some order and find the point at which λh changes its sign. It turns out that this

happens at the energy scale of order 106GeV6 which is much smaller than the unification

scale. Figure 5 shows two-loop corrections have an effective role to make the situation

better while three-loop corrections are too small to have any significance. Thus, we do not

expect higher order corrections to resolve this issue.

With an additional scalar field, it is interesting to see what happens for the effective

potential. There are two new couplings associated with the scalar quadratic term and its

interaction with the Higgs in the model described earlier. These two couplings along with

the Higgs self-coupling are only constrained by the masses of the Higgs and the supposedly

heavily massive singlet. Therefore there are not enough known initial conditions and one

cannot run the renormalization group equations from low energies. It is however useful to

investigate whether this additional field could in principle modify the equations as much as

needed in order to cure instability. A straightforward investigation shows that the addition

of a complex field could in principle cure the equations (figure 6(a)). As noted before, it

is especially important due to the fact that higher loop corrections are not being expected

to save the potential.

As we saw in the previous sections, there are a number of predictions at high energy

scales in spectral approach which suggest to start from the unification and run RG equa-

tions downward. Doing this gives ideas about the acceptable range of values for couplings;

particularly this is useful for the extra couplings which we have no clue about their mag-

nitudes as they are not constrained with the current experimental data. One result is that

the Higgs self-coupling is stronger than in the pure standard model, and this pushes the

instability of the effective potential to higher energies. It does not affect the Higgs mass

because of the see-saw mechanism between Higgs and new scalar. Figure 6(b) illustrates

6To find this result, in addition of all the known couplings of SM, we take into account the Yukawa of

neutrino which is around 0.5. It shifts the instability to lower energies, however later when we add the

singlet and all the parameters of the model, the instability goes to much higher energies.
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Figure 5. After the Higgs discovery, all of the initial values are known for the standard model

parameters and one can follow the evolution of Higgs self-coupling. The lower line has only one-loop

corrections. The line shifts to the right when two-loop effects are added to RG equations, and the

tunneling time increases consequently. The blue dashed line includes three-loop corrections and

suggests that going to higher orders will not improve the situation.

(a) The initial values used to draw this diagram are

not realistic. However it shows that addition of new

fields can in principle have effects more than higher

loop corrections. The errors of these lines at high

energies due to the experimental uncertainties of the

initial values are less than ten percent of loop effects.

(b) In scalar extended standard model, the coupling

is not determined with Higgs mass and could have a

greater initial value which might save the potential

from being instable.

Figure 6. Comparison between the behavior of Higgs self-coupling in different scenarios.
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what happens when we use such initial conditions. All the couplings in the potential are

now positive all along the way up to unification scale and the potential is expected to be

stable. In this respect both real and complex scalar models behave desirably.

5 Conclusion

The noncommutative model introduced in section 2 adds some familiar extra features to

the standard model, for example a new singlet field with quadratic potential, higher powers

of geometrical invariants, and prediction of gauge couplings unification at high energies.

Our considerations in this paper show that starting from the unification point predicted by

the theory, it is possible to revive both top quark and Higgs masses. We however witnessed

that there is a deviation for the gauge coupling values at experimental arena which is of

the same order of deviation of the gauge couplings in the standard model at unification

scale. Comparing these errors we conclude that the complex singlet field makes the theory

slightly better than the pure standard model or when a real scalar is added; however, the

full treatment is not possible.

Comparing the results of two-loop corrections and near to leading order, for three-

loop, shows that there is no hope for loop corrections to contribute in a significant way.

We believe the root of all of such inconsistencies goes back to the issue of gauge couplings

not meeting at one point and therefore lack of a true unification. Equivalently in noncom-

mutative geometry approach there is unification, but the price in the simple version that

we considered here was that one could not fully revive the gauge couplings at low energies.

Yet, the little change toward better results with this minimal change in the settings of the

standard model might urge us to investigate other more generalized models derived from

noncommutative geometry principles.

The spectral action approach coming from the noncommutative geometry point of view,

however, does not uniquely lead to the model we considered here. Further investigations

showed in 2014 that imposing generalized versions of Heisenberg uncertainty relations leads

to Pati-Salam model as the most general possible outcome of this approach [10]. The model

we considered here is the simplest special case of that general theory. The Pati-Salam model

has a rich content of beyond SM fields that might help the situation and will be the subject

of our further investigations.

A 2-loop RGEs for complex singlet extended standard model

Here we present 2-loop renormalization group equations of the complex singlet extended

standard model with right-handed neutrino. These equations are derived using SARAH

package for Mathematica [21]. The equations are consistent with the literature [11, 14, 20].

dg1
dt

=
41 g1

3

160π2
+

g1
3

12800π4

(

− 15Kν
2 − 85Kt

2 + 199 g1
2 + 135 g2

2 + 440 g3
2

)

,

dg2
dt

=−
19 g2

3

96π2
+

g2
3

7680π4

(

− 15Kν
2 − 45Kt

2 + 27 g1
2 + 175 g2

2 + 360 g3
2

)

,

dg3
dt

=−
7 g3

3

16π2
+

g3
3

2560π4

(

− 20Kt
2 + 11 g1

2 + 45 g2
2 − 260 g3

2

)

,
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dKν

dt
=

Kν

16π2

(

− 9/20 g21 − 9/4 g2
2 + 3Kt

2 + 5/2Kν
2

)

+
1

256π4

(

1/40
(

21 g1
4 − 54 g1

2g2
2 − 230 g2

4 + 240λh
2 + 80λsh

2

+ 5
(

17 g1
2 + 45 g2

2 + 160 g3
2
)

Kt
2 + 15

(

g1
2 + 5 g2

2
)

Kν
2 − 270Kt

4 − 90Kν
4

)

Kν

+
Kν

3

80

(

− 60Kν
2 − 540Kt

2 + 279 g1
2 + 675 g2

2 − 960λh

))

,

dKt

dt
=

Kt

16π2

(

−
17 g1

2

20
− 9/4 g2

2 − 8 g3
2 + 9/2Kt

2 +Kν
2

)

+
1

256π4

(

Kt

600

(

1187 g1
4 − 270 g1

2g2
2 − 3450 g2

4 + 760 g1
2g3

2 + 5400 g2
2g3

2

− 64800 g3
4 + 3600λh

2 + 1200λsh
2 + 75

(

17 g1
2 + 45 g2

2 + 160 g3
2
)

Kt
2

+ 225
(

g1
2 + 5 g2

2
)

Kν
2 − 4050Kt

4 − 1350Kν
4

)

+

(

223 g1
2

80
+

135 g2
2

16
+ 16 g3

2 − 12λh −
27Kt

2

4
− 9/4Kν

2

)

Kt
3 + 3/2Kt

5

)

,

dλh

dt
=

1

16π2

(

27 g1
4

200
+

9 g1
2g2

2

20
+

9 g2
4

8
− 9/5 g1

2λh − 9 g2
2λh

+ 24λh
2 + 4λsh

2 + 12λhKt
2 + 4λhKν

2 − 6Kt
4 − 2Kν

4

)

+
1

256π4

(

−
3411 g1

6

2000
−

1677 g1
4g2

2

400
−

289 g1
2g2

4

80
+

305 g2
6

16
+

1887 g1
4λh

200

+
117 g1

2g2
2λh

20
−

73 g2
4λh

8
+

108 g1
2λh

2

5
+108g2

2λh
2−312λh

3−40λh λsh
2−32λsh

3

+

(

−
171g1

4

100
− 9/4g2

4 +
45g2

2λh

2
+ 80 g3

2λh−144λh
2+1/10g1

2
(

63g2
2+85λh

)

)

Kt
2

−
Kν

2

200

(

18 g1
4 + 15 g1

2
(

4 g2
2 − 20λh

)

+ 150 g2
4 − 300 g2

2λh + 9600λh
2

)

− 8/5 g1
2Kt

4 − 32 g3
2Kt

4 − 3λhKt
4 − λhKν

4 + 30Kt
6 + 10Kν

6

)

,

dλsh

dt
=

λsh

160π2

(

60Kt
2 + 20Kν

2 − 9 g1
2 − 45 g2

2 + 120λh + 80λsh + 80λs

)

−
1

102400π4
λsh

(

− 1671g1
4−450g1

2g2
2+3625g2

4−5760g1
2λh−28800g2

2λh

+ 24000λh
2 − 480 g1

2λsh − 2400 g2
2λsh + 57600λh λsh + 17600λsh

2

+ 38400λsh λs (t)+16000 (λs (t))
2−100

(

17g1
2+45g2

2+160g3
2−288λh−96λsh

)

Kt
2

− 100
(

3 g1
2 + 15 g2

2 − 96λh − 32λsh

)

Kν
2 + 5400Kt

4 + 1800Kν
4

)

,

dλs

dt
=

1

16π2

(

8λsh
2 + 20 (λs (t))

2

)

+
1

256π4

(

48 g1
2λsh

2

5
+ 48 g2

2λsh
2 − 64λsh

3

− 80λsh
2λs (t)− 60 (λs (t))

3 − 48λsh
2Kt

2 − 16λsh
2Kν

2

)

.
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