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1 Introduction

Hard exclusive processes play a prominent role in exploring the strong interaction dynamics

of hadronic reactions in the framework of QCD. The pion-photon transition form factor

γ∗γ → π0 at large momentum transfers (Q2) serves as one of the simplest exclusive pro-

cesses for testing the theoretical predictions based upon perturbative QCD factorization.

The hard-collinear factorization theorem for the pion-photon form factor Fγ∗γ→π0(Q2) can

be demonstrated at leading power in 1/Q2 utilizing both diagrammatic approaches [1–3]

and effective field theory techniques [4]. The hard coefficient function entering the leading-

twist factorization formula has been computed at one loop [5–7], and at two loops [8] in

the large β0 approximation. In virtue of the fact that the twist-2 pion distribution am-

plitude (DA) is defined by an axial-vector light-ray operator, a subtle issue in evaluating

QCD corrections to the hard function in dimensional regularization lies in the definition

the Dirac matrix γ5 in the complex D-dimensional space demanding a new set of algebraic

identities and various prescriptions for the treatment of γ5 have been proposed to meet

the demand of precision QCD calculations in different contexts (see [9, 10] for an overview

and [11–15] for more discussions). Employing the trace technique, the γ5 ambiguity of
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dimensional regularization was resolved by adjusting the way of manipulating γ5 in each

diagram to preserve the axial-vector Ward identity [6]. We will demonstrate in this paper

the equivalence of factorization formulae for the pion-photon transition form factor con-

structed with naive dimensional regularization (NDR) and ’t Hooft-Veltman (HV) schemes

of the γ5 matrix, using the spinor decomposition technique [16–18] and the evanescent

operator approach [19, 20].

Confronting the theoretical predictions with the precision experimental measurements

of the π0γ∗γ form factor at accessible Q2 evidently necessities a better understanding of

the subleading power terms in the large momentum expansion, due in particular to the

scaling violation implied by the BaBar data [21]. The significance of the power suppressed

contributions to Fγ∗γ→π0(Q2) was highlighted by evaluating the soft correction to the

leading twist effect with the dispersion approach [22, 23] and turned out to be crucial to

suppress the contributions from higher Gegenbauer moments of the twist-2 pion DA (see

also [24, 25]). An attractive advantage of the dispersion approach [26] is that the subleading

power “hadronic” photon correction is taken into account effectively by modifying the

spectral function in the real-photon channel at the price of introducing two nonperturbative

parameters (i.e., the vector meson mass mρ and the effective threshold parameter s0). This

effective method allows continuous improvement of the theoretical accuracy for predicting

the pion-photon form factor by including the next-to-next-to-leading order (NNLO) QCD

correction to the twist-2 contribution and the finite-width effect of the unstable vector

mesons in the hadronic dispersion relation [27–30]. Further applications of this technique

were pursued in radiative leptonic B-meson decay [31, 32] and electro-production of the

pseudoscalar eta mesons [33] and of tensor mesons [34] in an attempt to “overcome” the

difficulty of rapidity divergences emerged in the direct QCD calculations of the subleading

power contributions. It is then in demand to provide an independent QCD approach to

compute the above-mentioned power corrections for the sake of boosting our confidence on

the reliability of both theoretical tools. Another objective of this paper is to construct the

light-cone sum rules (LCSRs) for the hadronic photon effect in the pion-photon transition

form factor with photon distribution amplitudes (DAs) [35] at the next-to-leading order

(NLO) in αs.

Applying the transverse-momentum-dependent (TMD) factorization scheme for hard

exclusive processes [36], the leading power contribution to the pion-photon form factor was

also computed at O(αs) with the diagrammatic approach [37] (see also [38, 39]), and the

joint summation of the parametrically large logarithms ln2 k2
⊥/Q

2 and ln2 x in the hard

matching coefficient was performed in Mellin and impact-parameter spaces [25]. However,

the subleading power contribution to Fγ∗γ→π0(Q2) has not been discussed systematically in

TMD factorization (see however [40] in the context of the pion electromagnetic form factor).

Further development of the TMD factorization for the π0γ∗γ form factor with a definite

power counting scheme for the intrinsic transverse momentum and of the factorization-

compatible TMD pion wave functions [41] will be essential to put this factorization scheme

on a solid ground, albeit with the intensive applications to many hard exclusive pro-

cesses [42–46]. The dedicated BaBar and Belle measurements [21, 47] of Fγ∗γ→π0(Q2) also

stimulated intensive theoretical investigations with various phenomenological approaches
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as well as lattice QCD simulations (see for instance [48–50]). In particular, an “exotic”

twist-two pion DA with the non-vanishing end-point behaviour was proposed [51, 52] to

accommodate the anomalous BaBar data at high Q2, but was soon critically examined

in [22] concluding that a reasonable description of the BaBar data in [51, 52] is achieved

rather due to the introduction of a sizable nonperturbative soft correction from the TMD

pion wavefunction.

The outline of this paper is as follows: in section 2 we recalculate the one-loop hard

function entering the factorization formula for the pion-photon form factor at leading power

in 1/Q2 with both the NDR and HV schemes of γ5, and demonstrate the renormalization-

scheme independence of the factorization formulae for physical quantities explicitly. It will

be shown that our expression of the NLO hard-scattering kernel in the NDR scheme re-

produces the classical result obtained by Braaten [6] and the renormalization-prescription

dependence of the short-distance coefficient at O(αs) will be cancelled precisely by the

scheme dependent twist-2 pion DA at one loop. We then establish QCD factorization

for the vacuum-to-photon correlation function defined with a pseudoscalar interpolating

current for the pion state and an electromagnetic current carrying a space-like momen-

tum qµ (q2 = −Q2) at one loop in section 3. It will be further proved that the resulting

hard matching coefficients obtained in the NDR and HV schemes are related by the finite

renormalization constant term, which is introduced in the HV scheme in order to fulfill the

Adler-Bardeen theorem for the non-renormalization of the axial anomaly [11, 53, 54]. The

next-to-leading-logarithmic (NLL) resummation improved LCSR for the hadronic photon

correction to Fγ∗γ→π0(Q2) will be also presented with the aid of the parton-hadron duality

ansatz. Taking advantage of the newly derived subleading power correction and the twist-

four effect from both the two-particle and three-particle pion DAs at tree level [22, 26], we

will provide updated theoretical predictions for the pion-photon form factor in section 4

with distinct nonperturbative models for the twist-2 pion DA. A summary of our obser-

vations and the concluding remarks are presented in section 5. We collect the two-loop

evolution functions for the leading twist DAs of the pion and the photon in appendix A

and display the spectral representations of the convolution integrals for the construction

of the NLL LCSR of the hadronic photon contribution in appendix B.

2 Factorization of the leading power contribution

We will first compute the leading power contribution to the pion-photon form factor at

one loop

〈π(p)|jem
µ |γ(p′)〉 = g2

em εµναβ q
α pβ εν(p′)Fγ∗γ→π0(Q2) , (2.1)

with both the NDR and HV schemes for the γ5 matrix in D dimensions, applying the

technique of soft-collinear effective theory (SCET) and the evanescent operator approach.

The main purpose of this section is to provide an alternative way to establish the QCD

factorization theorem for the leading twist contribution to the π0γ∗γ form factor at the

operator level. Here, q = p − p′, p refers to the four-momentum of the pion, the on-shell
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Figure 1. Diagrammatical representation of the tree-level contribution to the partonic amplitude

γ γ∗ → q q̄ induced by two electromagnetic currents.

photon carries the four-momentum p′ and

jem
µ =

∑
q

gemQq q̄ γµ q , ε0123 = −1 . (2.2)

We further introduce a light-cone vector n̄µ parallel to the photon momentum p′, define

another light-cone vector nµ along the direction of the momentum p in the massless pion

limit, and employ the following power counting scheme at large momentum transfer

n̄ · p ∼ n · p′ ∼ O(
√
Q2) , n · p ∼ O(Λ2/

√
Q2) . (2.3)

2.1 QCD factorization of Fγ∗γ→π0(Q2) at tree level

QCD factorization for the leading-twist contribution to the γ∗γ → π0 form factor at tree

level can be established by inspecting the four-point QCD matrix element

Πµ = 〈q(x p) q̄(x̄ p)|jem
µ |γ(p′)〉 (2.4)

at leading order (LO) in αs, where x indicates the momentum fraction carried by the

collinear quark of the pion and x̄ ≡ 1 − x. Computing the two diagrams displayed in

figure 1 yields

Π(0)
µ = − ig

2
em(Q2

u −Q2
d)

2
√

2n̄ · p
εν(p′)

{
[ū(xp)γµ,⊥ 6 n̄γν,⊥v(x̄p)]

x̄
− [ū(xp)γν,⊥ 6 n̄γµ,⊥v(x̄p)]

x

}
= − ig

2
em(Q2

u −Q2
d)

2
√

2n̄ · p
εν(p′)

[
1

x̄′
∗ 〈OA,µν(x, x′)〉(0) − 1

x′
∗ 〈OB,µν(x, x′)〉(0)

]
. (2.5)

Here, 〈OA,µν〉(0) and 〈OB,µν〉(0) denote the tree-level partonic matrix elements of the

collinear operators OA,µν and OB,µν in SCET

〈Oj, µν(x, x′)〉 ≡ 〈q(x p) q̄(x̄ p)|Oj, µν(x′)|0〉 = ξ̄(x p) Γj, µν ξ(x̄ p) δ(x− x′) +O(αs) , (2.6)

and the convolution integration is represented by an asterisk. The definition of the SCET

operator Oj, µν in the momentum space is given by

Oj, µν(x′) =
n̄ · p
2π

∫
dτ e−i x

′ τ n̄·p ξ̄(τ n̄)Wc(τ n̄, 0) Γj, µν ξ(0) , (2.7)
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with the collinear Wilson line

Wc(τ n̄, 0) = P

{
Exp

[
i gs

∫ τ

0
dλ n̄ ·Ac(λ n̄)

]}
(2.8)

and

ΓA,µν = γµ,⊥ 6 n̄ γν,⊥ , ΓB,µν = γν,⊥ 6 n̄ γµ,⊥ . (2.9)

To facilitate the determination of the hard function entering the leading power factor-

ization formula of Fγ∗γ→π0(Q2), we employ the SCET operator basis {O1, µν , O2, µν , OE, µν}
with

Γ1, µν = g⊥µν 6 n̄ , Γ2, µν = i ε⊥µν 6 n̄ γ5 , ΓE, µν = 6 n̄
(

[γµ,⊥, γν,⊥]

2
− i ε⊥µν γ5

)
, (2.10)

where OE, µν is an evanescent operator vanishing in four dimensions and

g⊥µν ≡ gµν −
nµn̄ν

2
− nν n̄µ

2
, ε⊥µν ≡

1

2
εµναβn̄

α nβ . (2.11)

It needs to be pointed out that the ε-tensor is always defined in four dimensions, since its

indices will be never contracted with a D-dimensional index. The effective operator O1, µν

cannot couple with a collinear pion state due to the parity conservation. Taking advantages

of the operator identities

OA,µν = − (O1, µν +O2, µν +OE, µν) ,

OB,µν = − (O1, µν −O2, µν −OE, µν) , (2.12)

we observe that the two tree-level diagrams in figure 1 give rise to the identical contribution

to the pion-photon transition form factor and such observation can be further generalized

to all orders in QCD applying the charge-conjugation transformation.

We now employ the operator matching equation with the evanescent operator

Πµ =

[
i g2

em (Q2
u −Q2

d)

2
√

2 n̄ · p
εν(p′)

] ∑
i

Ti(x
′) ∗ 〈Oi, µν(x, x′)〉 , (2.13)

and expand all quantities to the tree level, yielding

T
(0)
1 (x′) =

1

x′
− 1

x̄′
, T

(0)
2 (x′) = T

(0)
E (x′) =

1

x′
+

1

x̄′
. (2.14)

Utilizing the definition of the leading twist pion DA on the light cone

〈π(p)|ξ̄(y)Wc(y, 0) γµ γ5 ξ(0)|0〉 = −i fπ pµ
∫ 1

0
du ei u p·y φπ(u, µ) +O(y2) , (2.15)

it is straightforward to derive the tree-level factorization formula of the π0γ∗γ form factor

FLP
γ∗γ→π0(Q2) =

√
2 (Q2

u −Q2
d) fπ

Q2

∫ 1

0
dxT

(0)
2 (x)φπ(x, µ) +O(αs) . (2.16)
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Figure 2. Diagrammatical representation of the one-loop contribution to the partonic amplitude

γ γ∗ → q q̄ induced by two electromagnetic currents. The corresponding symmetric diagrams ob-

tained by exchanging the two photon states are not shown.

2.2 QCD factorization of Fγ∗γ→π0(Q2) at O(αs)

We proceed to compute the NLO QCD correction to the four-point partonic amplitude Π
(1)
µ

at leading power in 1/Q2 for the determination of the hard function T2 at O(αs). It needs

to be stressed that the QCD matrix element Πµ defined by two electromagnetic currents is

independent of the prescription of γ5 in the D-dimensional space and the renormalization

scheme dependence of the perturbative matching coefficient T2 comes solely from the ra-

diative correction to the twist-2 pion DA φπ(x, µ), whose definition depends on the precise

treatment of the Dirac matrix γ5 in dimensional regularization, due to the infrared sub-

traction. Evaluating the hard contribution to the one-loop diagrams displayed in figure 2

with the method of regions [55] leads to

Π(1a)
µ =

ig2
em(Q2

u −Q2
d)

2
√

2n̄ · p
αsCF

2π
εν(p′)〈O2,µν(x, x′)〉(0) (2.17)

∗
{

1

x′x̄′

[
−
(

ln x̄′ +
x′

2

)(
1

ε
+ ln

µ2

Q2

)
+

1

2
ln x̄′

(
ln x̄′ − 2− x̄′

)
− 2x′

]
+ . . . ,

Π(1b)
µ =

ig2
em(Q2

u −Q2
d)

2
√

2n̄ · p
αsCF

2π
εν(p′)〈O2,µν(x, x′)〉(0)

∗
{

1

x̄′

[
−1

2

(
1

ε
+ ln

µ2

Q2
− ln x̄′

)
− 2

]}
+ . . . , (2.18)

Π(1c)
µ = − ig

2
em(Q2

u −Q2
d)

2
√

2n̄ · p
αsCF

4π
εν(p′)〈O2,µν(x, x′)〉(0) ∗

{
1

x̄′

[
1

ε
+ ln

µ2

x̄′Q2
+ 1

]}
+ . . . ,

(2.19)

Π(1d)
µ =

ig2
em(Q2

u −Q2
d)

2
√

2n̄ · p
αsCF

2π
εν(p′)〈O2,µν(x, x′)〉(0)

∗
{

ln x̄′

x′

[
1

ε
+ ln

µ2

Q2
− 1

2
ln x̄′ + 5

]}
+ . . . , (2.20)

where the ellipses represent terms proportional to 〈O1, µν(x, x′)〉(0) and 〈OE, µν(x, x′)〉(0).

Adding up different pieces together we can readily obtain the QCD matrix element Πµ at
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O(αs)

Π(1)
µ =

i g2
em (Q2

u −Q2
d)

2
√

2 n̄ · p
εν(p′) 〈O2, µν(x, x′)〉(0) ∗ A(1)

2,hard(x′) + . . . , (2.21)

where the γ5-prescription independent amplitude A
(1)
2,hard reads

A
(1)
2,hard(x′) =

αsCF
4π

{
1

x̄′

[
−
(
2 ln x̄′ + 3

) (1

ε
+ ln

µ2

Q2

)
+ ln2 x̄′ + 7

x̄′ ln x̄′

x′
− 9

]
+
(
x′ ↔ x̄′

)}
. (2.22)

Expanding the matching equation (2.13) to the one-loop order yields[
i g2

em (Q2
u −Q2

d)

2
√

2 n̄ · p
εν(p′)

] ∑
i

A
(1)
i (x′) ∗ 〈Oi, µν(x, x′)〉(0) (2.23)

=

[
i g2

em (Q2
u −Q2

d)

2
√

2 n̄ · p
εν(p′)

] ∑
i

[
T

(1)
i (x′) ∗ 〈Oi, µν(x, x′)〉(0) + T

(0)
i (x′) ∗ 〈Oi, µν(x, x′)〉(1)

]
.

Now we are in a position to derive the master formula for the one-loop perturbative match-

ing coefficient T
(1)
i by implementing both the ultraviolet (UV) renormalization and the

infrared (IR) subtraction. Following the strategy presented in [18] the UV renormalized

matrix element of the SCET operator Oi, µν at O(αs) is given by

〈Oi, µν〉(1) =
∑
j

[
M

(1)R
ij,bare + Z

(1)
ij

]
∗ 〈Oj, µν〉(0) , (2.24)

where the bare matrix element M
(1)
ij,bare depends on the IR regularization scheme R. Ap-

plying the dimensional regularization for both the UV and IR divergences, the bare matrix

element M
(1)
ij,bare vanishes due to scaleless integrals entering the relevant one-loop compu-

tation. Inserting (2.24) into (2.23) and comparing the coefficient of 〈O2, µν〉(0) give rise to

T
(1)
2 = A

(1)
2 −

∑
i=1,2,E

T
(0)
i ∗ Z(1)

i2 . (2.25)

We then need to evaluate the above-mentioned renormalization constants Z
(1)
i2 individually.

Computing the one-loop SCET matrix element 〈O1, µν〉(1) leads to

〈O1, µν〉(1) = Z11 〈O1, µν〉(0) , (2.26)

indicating the absence of the operator mixing between O1µν and O2µν under renormaliza-

tion. The renormalization constant Z11 governs the renormalization-scale evolution of the

leading twist (longitudinally polarized) ρ-meson DA. In addition, the IR subtraction term

T
(0)
2 ∗ Z(1)

22 will remove the collinear contribution to the QCD amplitude Πµ at one loop

so that the matching coefficient T
(1)
2 only encodes the information of strong interaction

dynamics at the hard scale. Technically, the collinear subtraction has been automatically

implemented in the above computation of the QCD matrix element Πµ, since only the

– 7 –
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hard contribution computed with the expansion by regions enters the expression of A
(1)
2,hard

displayed in (2.22).

We are now ready to discuss the renormalization constant ZE2 of the evanescent oper-

ator OE, µν for the derivation of the final result of the matching coefficient T
(1)
2 . Applying

the renormalization prescription that the IR finite matrix element of the evanescent oper-

ator 〈OE, µν〉 vanishes with dimensional regularization applied only to the UV divergences

and with the IR singularities regularized by any parameter other than the dimensions of

spacetime [19, 20] and making use of the identity (2.24) yield

Z
(1)
E2 = −M (1)off

E2 . (2.27)

The one-loop matching coefficient of the physical operator O2, µν can be readily obtained

by substituting (2.27) into (2.25)

T
(1)
2 = A

(1)
2 − T

(0)
2 ∗ Z(1)

22 + T
(0)
E ∗M (1)off

E2 = A
(1)
2,hard + T

(0)
E ∗M (1)off

E2 . (2.28)

The one-loop contribution to the matrix element of the evanescent operator OE, µν
depends on the renormalization prescription of γ5 in the D-dimensional space. We will

employ both the NDR and HV schemes of γ5 below for the illustration of the prescription

independence of the factorization formula of Fγ∗γ→π0(Q2) at O(αs) and at leading power

in 1/Q2. This amounts to showing that the renormalization scheme dependence of the

short-distance coefficient function cancels against that of the twist-2 pion DA precisely.

Evaluating the SCET diagrams displayed in figure 3 with the Wilson-line Feynman rules,

we find that only a single diagram 3(a) can generate a nonvanishing contribution to M
(1)off
E2

using the NDR scheme of γ5, which turns out to be proportional to the spin-dependent

term of the Brodsky-Lepage evolution kernel [1, 2]. The resulting expression of the infrared

subtraction term T
(0)
E ∗M (1)off

E2 is given by

T
(0)
E ∗M (1)off

E2

∣∣
NDR

=
αsCF

2π

∫ 1

0
dy

(
1

y
+

1

ȳ

)
4
[ ȳ
x̄′
θ(y − x′) +

y

x′
θ(x′ − y)

]
=
αsCF

2π
(−4)

(
ln x̄′

x′
+

lnx′

x̄′

)
. (2.29)

However, computing the one-loop matrix element of the evanescent operator OE, µν with

the HV scheme of γ5 leads to

T
(0)
E ∗M (1)off

E2

∣∣
HV

= 0 . (2.30)

Inserting (2.22), (2.29) and (2.30) into the master formula (2.28), we obtain

T
(1)
2 (x′, µ) =

αsCF
4π

{
1

x̄′

[
−
(
2 ln x̄′ + 3

)
ln
µ2

Q2
+ ln2 x̄′ + δ

x̄′ ln x̄′

x′
− 9

]
+
(
x′ ↔ x̄′

)}
,

(2.31)

where the renormalization scheme dependent parameter δ is given by

δ =

−1 , [NDR scheme]

+7 . [HV scheme]
(2.32)
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(a) (b) (c)

Figure 3. The one-loop SCET diagrams contributing to M
(1)off
E2 and the vertex “⊗” indicating an

insertion of the evanescent operator OE, µν .

Our result of T
(1)
2 in the NDR scheme is identical to that presented in [6] using the trace

formalism.

We now aim at demonstrating the renormalization prescription independence of the

one-loop factorization formula for the pion-photon form factor

FLP
γ∗γ→π0(Q2) =

√
2 (Q2

u −Q2
d) fπ

Q2

∫ 1

0
dx
[
T

(0)
2 (x) + T

(1),∆
2 (x, µ)

]
φ∆
π (x, µ) +O(α2

s) ,

(2.33)

where the superscript “∆” indicates the γ5-scheme in dimensional regularization. Taking

advantage of the relation of the twist-2 pion DA between the NDR and HV schemes

φHV
π (x, µ) =

∫ 1

0
dy Z−1

HV(x, y, µ)φNDR
π (y, µ) , (2.34)

where the finite renormalization kernel Z−1
HV is given by [56]

Z−1
HV(x, y, µ) = δ(x− y) +

αsCF
2π

4

[
x

y
θ(y − x) +

x̄

ȳ
θ(x− y)

]
+O(α2

s) . (2.35)

It is then straightforward to show that∫ 1

0
dxT

(0)
2 (x)

[
φHV
π (x, µ)− φNDR

π (x, µ)
]

=
αsCF

2π
(−4)

∫ 1

0
dy

(
ln ȳ

y
+

ln y

ȳ

)
φNDR
π (x, µ) +O(α2

s) , (2.36)

which cancels against the renormalization scheme dependence of the NLO hard function

T
(1),∆
2 (x, µ) as displayed in (2.31). We emphasize again that the γ5-prescription inde-

pendence of the leading power factorization formula for Fγ∗γ→π0(Q2) stems from the fact

that the QCD matrix element 〈q(x p) q̄(x̄ p)|jem
µ |γ(p′)〉 itself is free of the γ5 ambiguity in

dimensional regularization and both the NDR and HV prescriptions can be employed to

construct QCD factorization theorems for hard processes provided that the corresponding

matching coefficients are computed in an appropriate way without overlooking the potential

evanescent operators.

The renormalization scale independence of the factorization formula (2.33) can be

readily verified by making use of the evolution equation of the pion DA φπ(x, µ)

µ2 d

dµ2
φπ(x, µ) =

∫ 1

0
dy V (x, y)φπ(y, µ) , (2.37)
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where the evolution kernel V (x, y) can be expanded perturbatively in QCD

V (x, y) =
∑
n=0

(αs
4π

)n+1
[Vn(x, y)]+ , (2.38)

with the “plus” function defined as

[f(x, y)]+ = f(x, y)− δ(x− y)

∫ 1

0
dt f(t, y) , (2.39)

and the LO Brodsky-Lepage kernel given by [1, 2]

V0(x, y) = 2CF

[
1− x
1− y

(
1 +

1

x− y

)
θ(x− y) +

x

y

(
1 +

1

y − x

)
θ(y − x)

]
. (2.40)

It is appropriate to point out that the one-loop evolution kernel V0(x, y) is independent of

the γ5 prescription in the complex D-dimensional space, however, the two-loop evolution

kernel V1(x, y) does depend on the renormalization scheme. Applying the renormalization-

group (RG) equation (2.37) then leads to

d

d lnµ
Fγ∗γ→π0(Q2) = O(α2

s) . (2.41)

We further turn to sum the parametrically large logarithms of Q2/µ2 in the short-

distance function at next-to-leading-logarithmic (NLL) accuracy employing the standard

RG approach in the momentum space. Technically, the desired NLL resummation can

be readily achieved by setting the factorization scale of order µ ∼
√
Q2 and evolving the

leading twist pion DA up to that scale at two loops. The NLO evolution kernel V1(x, y)

was first obtained with the diagrammatic approach in the light-cone gauge [57, 58], then in

the Feynman gauge [59, 60], and was further reconstructed [61] based upon the knowledge

of the conformal anomalies and the available forward DGLAP splitting functions at O(α2
s).

The two-loop evolution potential V1(x, y) can be organized as

V1(x, y) = 2Nf CF VN (x, y) + 2CF CA VG(x, y) + C2
F VF (x, y) , (2.42)

where Nf is the number of the active quark flavours. The explicit expressions of the kernels

VN , VG and VF are given by [62]

VN (x, y) = −2

3
θ(y − x)

[
5

3
F (x, y) +

x

y
+ F (x, y) ln

x

y

]
+ (x↔ x̄ , y ↔ ȳ) , (2.43)

VG(x, y) =

{
θ(y − x)

[
67

9
F (x, y) +

17

3

x

y
+

11

3
F (x, y) ln

x

y

]
+H(x, y)

}
+ (x↔ x̄ , y ↔ ȳ) , (2.44)

VF (x, y) = 4

{
θ(y − x)

[
− π2

3
F (x, y) +

x

y
−
(

3

2
F (x, y)− x

2 ȳ

)
ln
x

y

− (F (x, y)− F (x̄, ȳ)) ln
x

y
ln

(
1− x

y

)
+

(
F (x, y) +

x

2 ȳ

)
ln2 x

y

]
− x

2 ȳ
lnx (1 + lnx− 2 ln x̄)−H(x, y)

}
+ (x↔ x̄ , y ↔ ȳ) , (2.45)
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where we have introduced the functions F (x, y) and H(x, y) as follows

F (x, y) =
x

y

(
1 +

1

y − x

)
, (2.46)

H(x, y) = θ(x− ȳ)

[
2 (F (x, y)− F (x̄, ȳ)) Li2

(
1− x

y

)
− 2F (x, y) lnx ln y

+ (F (x, y)− F (x̄, ȳ)) ln2 y

]
+ 2F (x, y) Li2(ȳ) [θ(x− ȳ)− θ(y − x)]

+ 2 θ(y − x)F (x̄, ȳ) ln y ln x̄− 2F (x, y) Li2(x) [θ(x− ȳ)− θ(x− y)] . (2.47)

In order to perform the NLL QCD resummation, it turns out to be convenient to adopt

the Gegenbauer expansion of the pion DA

φπ(x, µ) = 6x x̄
∞∑
n=0

an(µ)C3/2
n (2x− 1) , (2.48)

where the LO coefficient a0(µ) = 1 is renormalization invariant due to the normalization

condition. The exact solution to the two-loop RG equation (2.37) can be constructed

from the forward anomalous dimensions and the special conformal anomaly matrix in the

Gegenbauer moment space [63, 64], and we obtain (see also [22])

an(µ) = ENLO
V,n (µ, µ0) an(µ0) +

αs(µ)

4π

n−2∑
k=0

ELO
V,n(µ, µ0) dkV,n(µ, µ0) ak(µ0) , (2.49)

where both n and k are non-negative even integers and the explicit expressions of ENLO
V,n and

dkV,n are collected in appendix A. Inserting (2.48) into (2.33) and employing the technique

developed in [65], we obtain

FLP
γ∗γ→π0(Q2) =

3
√

2 (Q2
u −Q2

d)

Q2
fπ

∞∑
n=0

an(µ)Cn(Q2, µ) +O(α2
s) , (2.50)

where the hard coefficient Cn(Q2, µ) in the NDR scheme of γ5 is given by

Cn(Q2, µ) = 1 +
αs(µ)CF

4π

{[
4Hn+1 −

3n(n+ 3) + 8

(n+ 1)(n+ 2)

]
ln
µ2

Q2
+ 4H2

n+1 − 4
Hn+1 + 1

(n+ 1)(n+ 2)

+ 2

[
1

(n+ 1)2
+

1

(n+ 2)2

]
+ 3

[
1

(n+ 1)
− 1

(n+ 2)

]
− 9

}
, (2.51)

with the harmonic number defined as Hn = Σk=n
k=1 1/k.

3 The subleading-power correction from photon DAs

In this section we aim at evaluating the power suppressed contribution to the pion-photon

form factor due to the hadronic photon effect at O(αs) with the LCSR approach. To this

end, we construct the following vacuum-to-photon correlation function

Gµ(p′, q) =

∫
d4z e−i q·z 〈0|T

{
jem
µ,⊥(z), jπ(0)

}
|γ(p′)〉

= −g2
em ε

⊥
µναβ q

α p′β εν(p′)G(p2, Q2) , (3.1)
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defined with an electromagnetic current (2.2) carrying a four-momentum qµ and a pion

interpolating current jπ whose explicit structure is as follows

jπ =
1√
2

(
ū γ5 u− d̄ γ5 d

)
. (3.2)

Here we have introduced the convention ε⊥µναβ ≡ gρ⊥µ ερναβ . Following the standard strat-

egy, the primary task for the sum-rule construction consists in the demonstration of QCD

factorization for the considered correlation function (3.1) at space-like interpolating mo-

mentum p = p′ + q. Due to the appearance of γ5 in the QCD matrix element (3.1), the

nonminimal renormalization of the axial current (dependent on the γ5 prescription) will

be performed to restore the Ward identities of chiral gauge theories order by order in per-

turbation theory (see the discussion of subsection 3.2 for the details). We will employ

both the NDR and HV schemes of the Dirac matrix γ5 to establish the QCD factorization

formula of the transition amplitude (3.1) at O(αs) and then derive the NLL resummation

improved LCSR for the hadronic photon correction to the π0γ∗γ form factor. Furthermore,

the power counting rule for the external momenta

|n · p| ∼ n̄ · p ∼ n · p′ ∼ O(
√
Q2) , (3.3)

will be adopted to determine the perturbative matching coefficient entering the factoriza-

tion formula of Gµ(p′, q) to the one-loop order.

3.1 The hadronic photon effect at tree level

QCD factorization for the correlation function (3.1) at tree level can be established by

investigating the following four-point QCD amplitude

Π̃µ =

∫
d4z e−i q·z 〈0|T

{
jem
µ,⊥(z), jπ(0)

}
|q(x p′) q̄(x̄ p′)〉 (3.4)

at LO in αs. Evaluating the two diagrams in figure 4 leads to

Π̃(0)
µ = − i gem

2
√

2

n̄ · p
Q2

[
1

x r + x̄
+

1

x̄ r + x

] ∑
q=u ,d

ηq Qq q̄(x̄ p
′) γ5 6n γµ,⊥ q(x p′)

= − i gem

2
√

2

n̄ · p
Q2

∑
q=u ,d

ηq Qq

[
1

x′ r + x̄′
+

1

x̄′ r + x′

]
∗ 〈ÕA,µ(x, x′)〉(0) , (3.5)

where r = −p2/Q2, ηu = 1 and ηd = −1. The partonic matrix element of the (anti)-

collinear SCET operator ÕA,µ at tree level is given by

〈Õj,µ(x, x′)〉 ≡ 〈0|Õj,µ(x′)|q(x p′) q̄(x̄ p′)〉 = χ̄(x̄ p′) Γ̃j, µ χ(x p′) δ(x− x′) +O(αs) . (3.6)

The explicit definition of the (anti)-collinear operator Õj,µ in the momentum space is

Õj,µ(x′) =
n · p′
2π

∫
dτ ei x

′ τ n·p′ χ̄(0)Wc̄(0, τn) Γ̃j, µ χ(τn) , (3.7)
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q p

µ γ5

x p′ x̄ p′x p′ x̄ p′

q p

γ5 µ

(a) (b)

Figure 4. Diagrammatical representation of the tree-level contribution to the QCD amplitude Π̃µ

defined in (3.4).

where we have suppressed the flavour indices of Õj,µ for brevity, Γ̃A,µ = γ5 6n γµ,⊥ and the

corresponding Wilson line is defined as

Wc̄(0, τn) = P

{
Exp

[
−i gs

∫ τ

0
dλn ·Ac̄(λn)

]}
. (3.8)

To achieve the hard-collinear factorization for the correlation function (3.1), we intro-

duce the SCET operator basis {Õ1,µ, ÕE,µ} with

Γ̃1, µ =
nα

2
ε⊥µναβ σ

νβ , Γ̃E, µ = γ5 6n γµ,⊥ −
nα

2
ε⊥µναβ σ

νβ , (3.9)

where ÕE,µ is an evanescent operator. Applying the operator matching equation including

the evanescent operator

Π̃µ = − i gem

2
√

2

n̄ · p
Q2

∑
q=u ,d

ηq Qq
∑
i

T̃i(x
′) ∗ 〈Õi,µ(x, x′)〉 , (3.10)

and expanding all quantities to the tree level, we can readily find that

T̃
(0)
1 (x′) = T̃

(0)
E (x′) =

1

x′ r + x̄′
+

1

x̄′ r + x′
. (3.11)

Making use of the leading twist photon DA defined in [35]

〈0|χ̄(0)Wc̄(0, y)σαβ χ(y)|γ(p′)〉

= i gemQq χ(µ) 〈q̄q〉(µ)
[
p′β εα(p′)− p′α εβ(p′)

] ∫ 1

0
du e−iu p

′·y φγ(u, µ) , (3.12)

the tree-level factorization formula of the form factor G(p2, Q2) can be written as

G(p2, Q2) = −Q
2
u −Q2

d√
2Q2

χ(µ) 〈q̄q〉(µ)

∫ 1

0
dx T̃

(0)
1 (x)φγ(x, µ) +O(αs) , (3.13)

where the magnetic susceptibility of the quark condensate χ(µ) encodes the dynamical

information of the QCD vacuum [66].
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(a) (b) (c) (d)

Figure 5. Diagrammatical representation of the one-loop contribution to the QCD amplitude

Π̃µ (3.4). The corresponding symmetric diagrams obtained by exchanging the electromagnetic

current and the pion interpolating current are not shown.

Applying the standard definition for the pion decay constant

〈0|jπ|π(p)〉 = −i fπ µπ(µ) , µπ(µ) ≡ m2
π

mu(µ) +md(µ)
, (3.14)

we can write down the hadronic dispersion relation of G(p2, Q2)

G(p2, Q2) =
fπ µπ(µ)

m2
π − p2 − i0 F

NLP
γ∗γ→π0(Q2) +

∫ ∞
s0

ds
ρh(s,Q2)

s− p2 − i0 . (3.15)

The final expression of the LCSR for the hadronic photon correction to the pion-photon

form factor can then be derived by implementing the continuum subtraction and the Borel

transformation with the aid of the parton-hadron duality

FNLP
γ∗γ→π0(Q2) = −

√
2
(
Q2
u −Q2

d

)
fπ µπ(µ)

χ(µ) 〈q̄q〉(µ)

∫ 1

u0

du

u
exp

[
− ū Q

2 − um2
π

uM2

]
φγ(u, µ)

+ O(αs) , (3.16)

with u0 = Q2/(s0+Q2). Employing the power counting scheme for the sum rule parameters

s0 ∼M2 ∼ O(Λ2) , ū0 ∼ O(Λ2/Q2) , (3.17)

we can obtain the scaling behaviour of the hadronic photon effect at large Q2

FNLP
γ∗γ→π0(Q2)

FLP
γ∗γ→π0(Q2)

∼ O
(

Λ2

Q2

)
. (3.18)

3.2 The hadronic photon effect at one loop

To construct the NLL LCSR for the hadronic photon effect, we first need to establish the

one-loop factorization formula for the correlation function (3.1) at the leading power in

1/Q2. Following the strategy for demonstrating QCD factorization of the leading power

contribution presented in section 2, the perturbative matching coefficient entering the fac-

torization formula of the form factor G(p2, Q2) can be determined by evaluating the one-

loop diagrams for the QCD amplitude Π̃µ (3.4) in figure 5. We will compute the hard
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contributions from these diagrams one-by-one with both the NDR and HV schemes apply-

ing the strategy of regions.

The one-loop QCD correction to the electromagnetic vertex diagram displayed in fig-

ure 5(a) is free of the γ5 ambiguity and a straightforward calculation yields

Π̃(1a)
µ

∣∣
NDR

= Π̃(1a)
µ

∣∣
HV

=
i gem

2
√

2

n̄ · p
Q2

αsCF
4π

∑
q=u ,d

ηq Qq 〈Õ1,µ(x, x′)〉(0) ∗
{

1

x′ r + x̄′
1

x′ r̄

×
([

2 ln
(
x′ r + x̄′

)
+ x′ r̄

] [1

ε
+ ln

µ2

Q2
− 1

2
ln
(
x′ r + x̄′

)
− x′ r̄

4
+

3

2

]
+
x′ r̄ (x′ r̄ + 10)

4

)}
+ . . . , (3.19)

where the term proportional to 〈ÕE,µ(x, x′)〉 is not shown explicitly. Due to the appearance

of γ5 in the pion interpolating current, the one-loop QCD correction to the pion vertex

diagram depends on the γ5 prescription employed in the reduction of the Dirac algebra.

Computing the hard contribution from the one-loop diagram 5(b) in both the NDR and

HV schemes gives

Π̃(1b)
µ

∣∣
NDR

= − i gem

2
√

2

n̄ · p
Q2

αsCF
4π

∑
q=u ,d

ηq Qq 〈Õ1,µ(x, x′)〉(0) ∗
{

1

x′ r + x̄′

×
(

2

[
r

x̄′ r̄
ln

(
x′ r + x̄′

r

)
+ 1

] [
1

ε
+ ln

µ2

Q2
− 1

2
ln r − 1

2
ln
(
x′ r + x̄′

)
− x̄′ r̄

2 r

]
+
x̄′ r̄

r
+ 2

)}
+ . . . , (3.20)

Π̃(1b)
µ

∣∣
HV

= Π̃(1b)
µ

∣∣
NDR

+
2αsCF

π
Π̃(0a)
µ + . . . , (3.21)

where Π̃
(0a)
µ represents the tree-level contribution to the diagram 4(a) and can be obtained

from (3.5) by keeping only the first term in the square bracket. The self-energy correc-

tion to the intermediate hard propagator displayed in figure 5(c) is independent of the γ5

prescription in the D-dimensional space and we obtain

Π̃(1c)
µ

∣∣
NDR

= Π̃(1c)
µ

∣∣
HV

=
i gem

2
√

2

n̄ · p
Q2

αsCF
4π

∑
q=u ,d

ηq Qq 〈Õ1,µ(x, x′)〉(0)

∗
{

1

x′ r + x̄′

[
1

ε
+ ln

µ2

Q2
− ln

(
x′ r + x̄′

)
+ 1

]}
+ . . . . (3.22)

We finally turn to compute the hard contribution from the one-loop box diagram shown

in figure 5(d), which depends on the actual prescription of γ5 adopted in the calculation

of the corresponding QCD amplitude. Evaluating the contribution from the box diagram

with both the NDR and HV schemes, we find that the corresponding hard coefficients only

contribute at O(ε), vanishing in four-dimensional space. Explicitly,

Π̃(1d)
µ

∣∣
NDR

= Π̃(1d)
µ

∣∣
HV

= 0 . (3.23)
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Collecting different pieces together, we derive the NLO QCD correction to the four-point

amplitude Π̃µ as follows

Π̃(1)
µ = − i gem

2
√

2

n̄ · p
Q2

∑
q=u ,d

ηq Qq 〈Õ1,µ(x, x′)〉(0) ∗ Ã1,hard(x′) + . . . , (3.24)

where the renormalization prescription dependent hard amplitude Ã1,hard is given by

Ã1,hard(x′)
∣∣
NDR

=
αsCF

4π

{
1

x′ r + x̄′

[
2

x′ x̄′ r̄

(((
x′ r − x̄′

)
ln(x′ r + x̄′)− x′ r ln r

)
(

1

ε
+ ln

µ2

Q2
− 1

2
ln(x′ r + x̄′)− 1

2
ln r

))
− 1

x′r̄
(ln r + 3) ln(x′ r + x̄′)− 3

]
+ (x′ ↔ x̄′)

}
, (3.25)

Ã1,hard(x′)
∣∣
HV

= Ã1,hard(x′)
∣∣
NDR

+
2αsCF

π
T̃

(0)
1 (x′) . (3.26)

Applying the strategy to implement the IR subtraction for the four-point QCD ampli-

tude Πµ discussed in section 2, the master formula for the one-loop hard coefficient of the

physical SCET operator Õ1,µ can be written as

T̃
(1)
1 = Ã

(1)
1 − T̃

(0)
1 ∗ Z̃(1)

11 + T̃
(0)
E ∗ M̃ (1)off

E1 = Ã
(1)
1,hard + T̃

(0)
E ∗ M̃ (1)off

E1 , (3.27)

where the bare matrix element M̃
(1)off
E1 represents the QCD mixing of the evanescent opera-

tor ÕE,µ into Õ1,µ at one loop. It is obvious that the infrared subtraction term T̃
(0)
E ∗M̃

(1)off
E1

suffers from the γ5 ambiguity in dimensional regularization. The corresponding SCET di-

agrams at one loop are in analogy to that displayed in figure 3, but with the vertex “⊗”

indicating an insertion of ÕE,µ. Computing these effective diagrams with dimensional reg-

ularization applied to the UV divergences and with the IR singularities regularized by the

fictitious gluon mass, we find that M̃
(1)off
E1 vanishes at one loop with the NDR scheme of

γ5 and it receives a nonvanishing contribution of O(ε) with the HV scheme of γ5 from the

effective diagram with a collinear gluon exchange between two external quarks. We are

then led to conclude that

T̃
(0)
E ∗ M̃ (1)off

E1

∣∣
NDR

= T̃
(0)
E ∗ M̃ (1)off

E1

∣∣
HV

= 0 . (3.28)

Inserting (3.28) into (3.27) yields

T̃
(1)
1 = Ã

(1)
1,hard (3.29)

for both the NDR and HV schemes of the γ5 matrix, with Ã
(1)
1,hard presented in (3.25)

and (3.26). We mention in passing that the γ5 scheme dependence of the short-distance

function T̃
(1)
1 will not be cancelled by the one-loop QCD correction to the twist-2 photon DA

defined by the light-cone matrix element of the tensor current, which is clearly free of the

γ5 ambiguity in dimensional regularization, and the γ5 ambiguity of Ã
(1)
1,hard can be traced

back to the renormalization prescription dependence of the QCD amplitude (3.4) itself.
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To preserve the one-loop character of the axial anomaly, an additional finite countert-

erm must be introduced [11]

ZPHV(µ) = 1− 2αs(µ)CF
π

+O(α2
s) , (3.30)

when performing the UV renormalization of the pseudoscalar current in the HV scheme.

Making use of (3.11), (3.25), (3.26) and (3.29), it is then straightforward to verify that

ZPHV(µ)
[
T̃

(0)
1 (x′) + T̃

(1)
1 (x′, µ)

]
HV

=
[
T̃

(0)
1 (x′) + T̃

(1)
1 (x′, µ)

]
NDR

(3.31)

at one loop, which provides a nontrivial check to justify the obtained one-loop hard am-

plitude T̃1. The NLO factorization formula for the vacuum-to-photon correlation function

can be further derived as follows

G(p2, Q2) = −Q
2
u −Q2

d√
2Q2

χ(µ) 〈q̄q〉(µ)

∫ 1

0
dx
[
T̃

(0)
1 (x) + T̃

(1)
1 (x, µ)

]
NDR

φγ(x, µ) +O(α2
s) .

(3.32)

With the NLO hard coefficient function T̃
(1)
1 at hand, we can also obtain the one-loop

short-distance function entering the factorization formula of the H → J/ψ γ form factor at

leading power in 1/m2
H by taking the r →∞ limit of T̃

(1)
1 and by performing the analytical

continuation in the variable p2, which reproduces the expression displayed in (3.17) of [67]

(see also [68, 69]) computed from an alternative approach precisely.

We are now in a position to demonstrate the factorization-scale independence of (3.32)

by employing the RG equation of the leading twist photon DA

µ2 d

dµ2
[χ(µ) 〈q̄q〉(µ)φγ(x, µ)] =

∫ 1

0
dy Ṽ (x, y) [χ(µ) 〈q̄q〉(µ)φγ(y, µ)] , (3.33)

with the perturbative expansion of the evolution kernel

Ṽ (x, y) =
∑
n=0

(αs
4π

)n+1
Ṽn(x, y) . (3.34)

The one-loop renormalization kernel Ṽ0(x, y) is given by [70]

Ṽ0(x, y) = 2CF

[
x̄

ȳ

1

x− y θ(x− y) +
x

y

1

y − x θ(y − x)

]
+

− CF δ(x− y) . (3.35)

Taking into account the factorization scale dependence of T̃
(1)
1 (x, µ), we can further deduce

d

d lnµ
G(p2, Q2) = − 3

2

αs(µ)CF
π

Q2
u −Q2

d√
2Q2

χ(µ) 〈q̄q〉(µ)

∫ 1

0
dx T̃

(0)
1 (x)φγ(x, µ) +O(α2

s) .

(3.36)

The residual µ-dependence of G(p2, Q2) originates from the UV renormalization of the QCD

pseudoscalar current defining the correlation function (3.1). Taking advantage of the evo-

lution equation of the QCD renormalization constant for the pseudoscalar current [71, 72]

d

d lnµ
lnZP (µ) =

∑
n=0

(
αs(µ)

4π

)n+1

γ
(n)
P , γ

(0)
P = 6CF , (3.37)
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and distinguishing the renormalization scale of the QCD current from the factorization scale

due to the IR subtraction (see [73] for more details), we can then find that the expression

for the form factor G(p2, Q2) (3.32) is indeed factorization-scale invariant at O(αs).

We proceed to perform the NLL resummation for the parametrically large logarithms

in the short-distance function T̃
(1)
1 , which can be achieved alternatively by fixing the fac-

torization scale as µ ∼
√
Q2 and by evolving the twist-2 photon DA from the hadronic

scale to that scale. To this end, we need the two-loop coefficient of the evolution kernel

Ṽ (x, y) [61, 74, 75]

Ṽ1(x, y) =
Nf

2
CF ṼN (x, y) + CF CA ṼG(x, y) + C2

F ṼF (x, y) , (3.38)

where the explicit expressions of the kernel functions are [74]

ṼN (x, y) =

{
−4

3

[
2 θ(y − x) F̃ (x, y)

(
ln
x

y
+

5

3

)]
+

+ (x↔ x̄ , y ↔ ȳ)

}
+

26

9
δ(x− y) ,

(3.39)

ṼG(x, y) =

{
−2

[
θ(y − x)

x

y
+ θ(y − x̄)

x̄

y

]
+ (x↔ x̄ , y ↔ ȳ)

}
− H̃(x, y)

+

{[
2 θ(y − x) F̃ (x̄, ȳ)

(
11

3
ln
x

y
+

67

9
− π2

3

)]
+ (x↔ x̄ , y ↔ ȳ)

}
+

[
−221

18
− 12 ζ(3) +

4π2

3

]
δ(x− y) , (3.40)

ṼF (x, y) =

{
4

[
θ(y − x)

x

y
+ θ(y − x̄)

x̄

y

]
+ (x↔ x̄ , y ↔ ȳ)

}
+ 2 H̃(x, y)

+

{
4

[
θ(y − x)

(
F̃ (x, y) ln2 x

y
+

1

yȳ
lnx ln x̄− 3

2
F̃ (x, y) ln

x

y

−
(
F̃ (x, y)− F̃ (x̄, ȳ)

)
ln
x

y
ln

(
1− x

y

))]
+

+ (x↔ x̄ , y ↔ ȳ)

}
+ 4

[
11

8
+ 6 ζ(3)− 2π2

3

]
δ(x− y) , (3.41)

with

F̃ (x, y) =
x

y

1

y − x , (3.42)

H̃(x, y) = −4

[
θ(y − x)

(
F̃ (x̄, ȳ) ln x̄ ln y − F̃ (x, y) [Li2(x) + Li2(ȳ)] +

π2

6
F̃ (x, y)

)
+θ(x− ȳ)

([
Li2

(
1− x

y

)
+

1

2
ln2 x

]
+ F̃ (x, y) [Li2(ȳ)− lnx ln y]

+F̃ (x̄, ȳ) Li2(x̄)

)]
+ (x↔ x̄ , y ↔ ȳ) . (3.43)

Applying the Gegenbauer expansion of the twist-2 photon DA [35]

φγ(x, µ) = 6x x̄

∞∑
n=0

bn(µ)C3/2
n (2x− 1) , (3.44)
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and implementing the conformal consistency relation discussed in [63], the two-loop evolu-

tion of the Gegenbauer moment bn(µ0) can be constructed as follows

χ(µ) 〈q̄q〉(µ) bn(µ) = ENLO
T,n (µ, µ0)χ(µ0) 〈q̄q〉(µ0) bn(µ0)

+
αs(µ)

4π

n−2∑
k=0

ELO
T,n(µ, µ0) dkT,n(µ, µ0)χ(µ0) 〈q̄q〉(µ0) bn(µ0) , (3.45)

with even k, n ≥ 0. The detailed expressions the evolution functions ENLO
T,n and dkT,n can be

found in appendix A. Combining everything together we arrive at the NLL resummation

improved factorization formula

G(p2, Q2) = −
(
Q2
u −Q2

d

)
√

2Q2

∑
n=0

[χ(µ) 〈q̄q〉(µ) bn(µ)] C̃n(Q2, µ) +O(α2
s) . (3.46)

where the perturbative matching coefficient C̃n(Q2, µ) is defined by

C̃n(Q2, µ) =

∫ 1

0
dx
[
T̃

(0)
1 (x) + T̃

(1)
1 (x, µ)

]
NDR

[
6x x̄C3/2

n (2x− 1)
]
. (3.47)

We will not present the analytical result of C̃n(Q2, µ) by evaluating the appeared convo-

lution integral explicitly, since the continuum subtraction needs to be performed for the

dispersion representation of (3.47) in order to construct the desired LCSRs for the hadronic

photon correction to the pion-photon form factor.

Employing the spectral representations of the convolution integrals displayed in ap-

pendix B, it is straightforward to derive the dispersion form of the NLL factorization for-

mula

G(p2, Q2) = −
√

2
(
Q2
u −Q2

d

)
Q2

χ(µ) 〈q̄q〉(µ)

∫ ∞
0

ds

s− p2 − i 0

×
[
ρ(0)(s,Q2) +

αsCF
4π

ρ(1)(s,Q2)

]
, (3.48)

where we have exploited the symmetric property of the photon DA φγ(x, µ) = φγ(x̄, µ)

due to the charge-parity conservation. The resulting QCD spectral densities ρ(i)(s,Q2)

(i = 0, 1) can be written as

ρ(0)(s,Q2) =
Q2

Q2 + s
φγ

(
Q2

Q2 + s
, µ

)
, (3.49)

ρ(1)(s,Q2) = 2

∫ 1

0

du

ū

{
θ

(
u− Q2

Q2 + s

)
Q2

Q2 + s

[
ū− u
u

ln

(
µ2

u s− ū Q2

)
+

3

2

ū

u

]
+ ln

(
µ2

s

) [
Q2

Q2 + s
− P ū Q2

ū Q2 − u s

]}
φγ (u, µ)

+
Q2

Q2 + s

∫ 1

0
du θ

(
u− Q2

Q2 + s

) {
2 ln

(
u s− ū Q2

Q2

) [
ln

(
µ2

u s− ū Q2

)
+ ln

(
µ2

Q2

)
+

3

2

]
− ln2

(
µ2

Q2

)
+ ln2

(
µ2

s

)
− π2

3
+ 3

}
d

du
φγ(u, µ) , (3.50)
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where P indicates the principle-value prescription. The NLL LCSRs for the subleading

power contribution to the π0γ∗γ form factor can be further derived as

FNLP
γ∗γ→π0(Q2) = −

√
2
(
Q2
u −Q2

d

)
fπ µπ(µ) Q2

χ(µ) 〈q̄q〉(µ)

∫ s0

0
ds exp

[
−s−m

2
π

M2

]
×
[
ρ(0)(s,Q2) +

αsCF
4π

ρ(1)(s,Q2)

]
+O(α2

s) . (3.51)

Collecting different contributions together, we now present the final expression for the

pion-photon form factor including the twist-4 correction computed in [22, 26]

Fγ∗γ→π0(Q2) = FLP
γ∗γ→π0(Q2) + FNLP

γ∗γ→π0(Q2) + F tw−4
γ∗γ→π0(Q2) , (3.52)

where the explicit expressions of FLP
γ∗γ→π0 and FNLP

γ∗γ→π0 are displayed in (2.50) and (3.51),

respectively. The obtained factorization formula of F tw−4
γ∗γ→π0 from both the two-particle

and the three-particle pion DAs at tree level reads

F tw−4
γ∗γ→π0(Q2) = −

√
2
(
Q2
u −Q2

d

)
Q4

∫ 1

0
dx

Fπ(x, µ)

x2
+O(αs) , (3.53)

where the definition of the twist-4 pion DA Fπ can be found in (38) of [22] and keeping

only the leading conformal spin (i.e., “S”-wave) contribution we obtain

Fπ(x, µ) =
80

3
δ2
π(µ)x2 (1− x)2 . (3.54)

The nonperturbative parameter δ2
π is defined by the local QCD matrix element

〈0|gs q̄ G̃µν γν q|π(p)〉 = i fπ δ
2
π(µ) pµ , (3.55)

with the renormalization-scale evolution at one loop

δ2
π(µ) =

[
αs(µ)

αs(µ0)

] 32
9β0

δ2
π(µ0) . (3.56)

Several comments on the general structure of the π0γ∗γ form factor (3.52) are in order.

• It is apparent that the twist-four correction to the π0γ∗γ form factor is suppressed by a

factor of δ2
π/Q

2 compared with that of the leading twist contribution. Such subleading

power contribution turns out to be numerically significant at Q2 ≤ 5 GeV2 due to the

large prefactor “80/3” entering the asymptotic expression of Fπ(x, µ), however, it is

still far from sufficient to generate the scaling violation at Q2 ∼ 40 GeV2 indicated by

the BaBar measurement [21]. Furthermore, it is of high interest to compute the NLO

correction to the twist-four contribution in order to develop a better understanding

of factorization properties of the high twist effects, where the infrared subtraction

for constructing the factorization formula is complicated by the mixing of different

twist-four pion DAs under the QCD renormalization.
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• The twist-six correction to the pion-photon form factor computed from the disper-

sion approach [22] is partially absorbed into the hadronic photon effect FNLP
γ∗γ→π0(Q2)

displayed in (3.51). The precise correspondence of distinct contributions in two frame-

works cannot be established without identifying the operator-level definitions of the

“soft” corrections in [22], which originate from the nonperturbative modification of

the QCD spectral density appeared in the dispersion form of the π0γ∗γ∗ form factor.

• The subleading power corrections from the yet higher twist pion/photon DAs, which

are not taken into account in this work, are conjectured to be suppressed by only

one power of Λ2/Q2 due to the absent correspondence between the twist counting

and the large-momentum expansion [22]. A direct calculation of the two-particle and

three-particle corrections to the pion-photon form factor from the twist-three and

twist-four photon DAs based upon the LCSR approach is in demand to verify this

interesting hypothesis.

• We do not include the NNLO QCD correction to the leading power contribution

in the large β0 approximation [8] on account of the absence of a complete NNLO

contribution, which also necessitates the three-loop evolution equation of the twist-

two pion DA [76] to obtain the factorization formula at the next-to-next-to-leading-

logarithmic accuracy. A recent discussion of the NNLO radiative corrections in the

framework of the dispersion approach can be found in [30].

4 Numerical analysis

We are now ready to explore the phenomenological consequences of the hadronic photon

correction to the pion-photon form factor applying the master formula (3.52). In doing

so, we will first need to specify the non-perturbative models for the twist-2 pion DA, the

magnetic susceptibility χ(µ), the Gegenbauer moments of the photon DA, and to determine

the “internal” sum rule parameters entering the expression (3.51).

4.1 Theory input parameters

The fundamental ingredients entering the NLL factorization formula of the leading power

contribution are the Gegenbauer moments of the twist-2 pion DA. Tremendous efforts have

been devoted to the determinations of the lowest moment a2(µ) from the direct calculations

with the QCD sum rules pioneered by Chernyak and Zhitnitsky (CZ) [77] and with the

lattice simulations, and from the indirect calculations by matching the LCSR predictions

with the experimental data. To quantify the systematic uncertainty from the Gegenbauer

moments, we will consider the following four models for the leading twist pion DA

a2(1.0 GeV) = 0.21+0.07
−0.06 , a4(1.0 GeV) = −

(
0.15+0.10

−0.09

)
, (BMS) ;

a2(1.0 GeV) = 0.17± 0.08 , a4(1.0 GeV) = 0.06± 0.10 , (KMOW) ;

an(1.0 GeV) =
2n+ 3

3π

(
Γ[(n+ 1)/2]

Γ[(n+ 4)/2]

)2

, (Hol.) ;

a2(1.0 GeV) = 0.5 , an>2(1.0 GeV) = 0 , (CZ) . (4.1)
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The obtained Gegenbauer coefficients in the Bakulev-Mikhailov-Stefanis (BMS)

model [30, 78] are computed from the QCD sum rules with non-local condensates ab-

sorbing the high-order terms in the operator-product-expansion (OPE) partially (see, how-

ever, [79]). The first and second nontrivial Gegenbauer moments of the KMOW model [80]

are determined by comparing the LCSR predictions for the pion electromagnetic form fac-

tor, including the NLO correction to the twist-2 effect and the subleading terms up to

twist-6, with the intermediate-Q2 data from the JLab experiment. The holographic model

of the twist-2 pion DA [81]

φHol
π (x, µ0) =

8

π

√
x (1− x) (4.2)

is motivated by the correspondence between the string theory in the five-dimensional anti-

de Sitter space and conformal field theories in the physical space-time (see also [82] for a

similar end-point behaviour of the pion DA) and implementing the Gegenbauer expansion

of φHol
π (x, µ0) leads to the expression of an displayed in (4.1). For the phenomenological

analysis of the π0γ∗γ form factor, we will truncate the expansion of the “holographic”

model at n = 12, which was demonstrated to be a good approximation in [22]. It needs

to be pointed our that the values of the second Gegenbauer coefficient in the first three

models of (4.1) are in line with the recent lattice determinations [83] within the theory

uncertainties and the CZ model is introduced for the illustration purpose to understand

the model dependence of the predictions for the pion-photon form factor.

The normalization parameter for the twist-four pion DAs will be taken as δ2
π(1 GeV) =

(0.2±0.04) GeV2 computed from the QCD sum rules [84] (see also [85]). We further adopt

the value of the quark condensate density 〈q̄q〉(1 GeV) = −
(
256+14
−16 MeV

)3
determined

in [80]. A key nonperturbative quantity appearing in the twist-2 photon DA is the mag-

netic susceptibility of the quark condensate χ(µ) describing a response of the QCD vacuum

in the presence of an external photon field. Different QCD-based approaches have been

proposed to evaluate χ(µ) (see, e.g., [35, 86, 87]) with the aid of the resonance informa-

tion from the experimental data and the interval χ(1 GeV) = (3.15± 0.3) GeV−2 [35] will

be employed in the numerical calculations. In contrast, our understanding of the higher

Gegenbauer moments of the leading twist photon DA is rather limited, even for the leading

non-asymptotic correction due to b2(µ0). The available information of the second Gegen-

bauer coefficient mainly comes from the QCD sum rules constructed from the correlation

function with a light-ray tensor operator and a local vector current, which unfortunately

give rise to the theory predictions sensitive to the choice of the input parameters. The

crude estimate b2(1 GeV) = 0.07 ± 0.07 from [85] will be used in our numerical analysis

and an independent determination from the lattice QCD calculation will be very welcome

in the future.

A natural choice of the factorization scale in the leading power factorization for-

mula (2.50) is µ2 = 〈x̄〉Q2 with 1/4 ≤ 〈x̄〉 ≤ 3/4 corresponding to the characteristic virtu-

ality of the intermediate quark displayed in figure 1(a), and it will be frozen at µ = 1 GeV

for 〈x̄〉Q2 < 1 GeV2 at low Q2 in order not to run into the nonperturbative QCD regime

(see [8] for the discussion about the BLM proposal). Along similar lines, the factoriza-
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Figure 6. Left : distinct contributions to the π0γ∗γ form factor from the twist-two pion DA (“LP”)

with the BMS model at NLL, from the hadronic photon effect (“NLP”) at NLL and from the twist-

four pion DAs (“tw-4”) at LO. The solid curve is obtained by adding up the above-mentioned three

pieces together with the central inputs. Right : dependence of perturbative QCD corrections to the

leading power contribution and to the hadronic photon effect with the BMS model, at LL and NLL

accuracy, on the momentum transfer accessible at the BaBar and Belle experiments.

tion scale entering the NLL LCSRs for the hadronic photon effect (3.51) will be taken as

µ2 = 〈x〉M2 + 〈x̄〉Q2 as widely employed in the sum rule calculations [22].

Finally, the determination of the Borel mass M2 and the threshold parameter s0 can be

achieved by applying the standard strategies described in [88, 89], and we can readily obtain

M2 = (1.25± 0.25) GeV2 , s0 = (0.70± 0.05) GeV2 , (4.3)

in agreement with the intervals adopted in [90].

4.2 Predictions for the π0γ∗γ form factor

Now we will turn to investigate the phenomenological significance of distinct terms con-

tributing to the pion-photon form factor. Taking the BMS model for the twist-two pion DA

as an example, it is apparent from figure 6 that the twist-four correction and the hadronic

photon contribution generate the destructive and constructive interference with the lead-

ing power effect (a similar observation for the high twist corrections already made in [22])

and there appears to be a strong cancellation between these two mechanisms in the whole

Q2 ≤ 40 GeV2 region.1 However, both subleading power effects become rapidly suppressed

with the growing of the momentum transfer squared in contrast to the numerically sizeable

soft power correction estimated from the dispersion approach [22]. Such discrepancy may

be ascribed to the very definition of the “soft” effect in the formalism of [26], roughly

corresponding to the ρ-resonance contribution to the π0γ∗γ form factor with the parton-

hadron duality approximation, which has no transparent counterpart in the framework of

1Both the twist-four correction and the hadronic photon effect are sizeable at Q2 ∼ [2, 6] GeV2, implying

that the predicted π0γ∗γ form factor in the moderate Q2 region should be taken cum grano salis, due to

the yet unaccounted subleading power corrections, which can be potentially non-negligible at low Q2.
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Figure 7. Left : the Q2 dependence of the LL, NLO and NLL contributions to the π0γ∗γ form

factor with the BMS model. Right : theory predictions for the pion-photon form factor with dif-

ferent models of the twist-two pion DA presented in (4.1). The experimental data are taken from

CLEO [91] (purple squares), BaBar [21] (orange circles) and Belle [47] (brown spades).

perturbative QCD factorization. In addition, the NLL radiative corrections are observed

to give rise to approximately O(15 %) (almost Q2-independent) shift to the LL predictions

for both the leading power contribution and the hadronic photon effect.

To understand the phenomenological impact of the QCD resummation for the large

logarithms appearing in the factorization formula for the leading power contribution and in

the LCSRs for the hadronic photon correction, we further present in figure 7 our predictions

for the π0γ∗γ form factor, at LL, NLO and NLL accuracy, with the BMS model. The

NLO QCD corrections are found to induce O (25 %) reduction of the tree-level results at

10 GeV2 ≤ Q2 ≤ 40 GeV2, however, the NLL resummation effect will enhance the NLO

predictions by an amount of approximately O (10 %), in accordance with the pattern for

the perturbative QCD corrections observed in [32, 88]. Inspecting the model dependence of

pion-photon form factor on the leading twist pion DA displayed in figure 7 implies that the

theory predictions with both the holographic and KMOW models can reasonably balance

the BaBar and Belle data at high Q2 without resorting to the “exotic” end-point behaviour

as advocated in [51, 52]. In fact, we have checked that the predicted π0γ∗γ form factor

with the flat pion DA will overshoot both the BaBar and Belle data, in most Q2 region of

interest, at least in our framework. Given the fact that the end-point behaviour of the twist-

two pion DA in the holographic model differs from the standard postulation, motivated

by the conformal expansion analysis, as employed for the KMOW model, we conclude

that the local information of the pion DA cannot be extracted from the experimental

measurements of the pion-photon form factor even in the leading power approximation.

It needs further to be pointed out that our predictions with the holographic and KMOW

models do not match the experimental data at 2 GeV2 ≤ Q2 ≤ 8 GeV2 well, where the
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power suppressed contributions from the yet higher-twist pion and photon DAs will become

more pronounced and actually the large-momentum expansion applied for the construction

of the factorization formula also becomes questionable. By contrast, the theory predictions

from the dispersion approach [22, 23] can result in a satisfactory description of the BaBar

and Belle data in the whole Q2 region by introducing the nonperturbative modification of

the QCD spectral density function. Moreover, it becomes apparent that the computed pion-

photon form factor with the BMS model and the asymptotic pion DA are less favorable by

the experimental measurements at high Q2, albeit with the reasonable agreement achieved

at low Q2. Also, confronting the theory predictions from the CZ model with the BaBar and

Belle data indicates a large value of the second Gegenbauber moment a2(µ0) is not favored,

in agreement with the recent lattice QCD calculations [83, 92]. It is worthwhile to mention

that the pion-photon transition form factor depends on the strong interaction dynamics

encoded by the higher-twist pion DAs and the photon DAs (including the uncalculated

effects from higher Fock states), hence measuring Fγ∗γ→π0(Q2) cannot be simply considered

as a way of determining the higher Gegenbauer moments of the leading twist pion DA in

the kinematic region accessible at the current experiments.

We present our final predictions for the π0γ∗γ form factor from the expression (3.52)

with three different models of the twist-two pion DA in figure 8, including the theory

uncertainties due to the variations of the input parameters discussed before. To account

for the yet higher-twist corrections discussed in the end of section 3, we have doubled the

theory uncertainties of the twist-4 term F tw−4
γ∗γ→π0(Q2) for a crude estimate. In addition, we

assume that the missing NNLO QCD correction can be (partially) taken into account by

varying the factorization scale µ in the interval as specified above, and a direct calculation of

the two-loop hard function T
(2)
2 (x, µ) from the operator matching equation (2.13) will be in

demand for an unambiguous analysis. We further assigned 20% uncertainty for the first six

nontrivial Gegenbauer coefficients of the holographic model in the numerical estimation for

the illustration purpose. It turns out that the dominant theory uncertainties originate from

the shape parameters of the leading twist pion and photon DAs instead of the variations

of the factorization scales. Precision determinations of the higher Gegenbauer coefficients

for both two DAs along the lines of [83, 92] will be essential to pin down the presently

sizeable theory uncertainty in order to meet the challenge of the (potentially) more accurate

experimental measurements at the BEPCII collider [93] and the SuperKEKB accelerator.

Concluding this section we make a few comments on the earlier QCD calculations of

the pion-photon form factor in the literature.

• Applying the dispersion approach the subleading power “soft” contribution to the

π0γ∗γ form factor was demonstrated in [22, 23] to be essential to accommodate the

experimental data at low Q2. However, the absence of the operator-level definition

for the numerically prominent soft correction makes it difficult to trace back the

corresponding dynamical mechanism in the SCET framework. It was further argued

in [22, 23] that measuring the pion-photon form factor alone is not sufficient to

determine the shape of the leading-twist pion DA unambiguously, in accordance with

our observation made above.
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(a) (b)

(c)

Figure 8. The Q2 dependence of the π0γ∗γ form factor computed from (3.52) with (a) the holo-

graphic model, (b) the KMOW model, and (c) the BMS model. The shaded regions represent the

combined theory uncertainties obtained by adding the separate errors in quadrature. The exper-

imental data points from CLEO [91] (purple squares), BaBar [21] (orange circles) and Belle [47]

(brown spades) are also displayed here.

• Implementing the threshold resummation for the enhanced logarithms (αs(µ) lnx)n

in TMD factorization, the resulting theory predictions provide a reasonable descrip-

tion of the CLEO and BaBar data at Q2 ≤ 40 GeV2 on account of the Q2-dependent

threshold function [94]. However, the importance of the small x region would invali-

date QCD factorization for the π0γ∗γ form factor, since the power counting scheme

for the momentum fraction x ∼ O(1) cannot be justified consequently.

• Employing the LCSR approach developed in [26], a systematic analysis of the π0γ∗γ

form factor at 1 GeV2 ≤ Q2 ≤ 5 GeV2 with an emphasis on reducing the theoretical

uncertainties from a wide variety of sources was carried out in [30], and the obtained
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theory predictions were found to comply with the available experimental data. Fur-

ther development along this line can be achieved by working out a complete NNLO

correction to the leading twist contribution and by performing an NLO computation

for the twist-4 correction on the theoretical aspects.

5 Conclusion

Applying the standard OPE technique with the evanescent operator(s) we revisited the

demonstration of QCD factorization for the pion-photon transition form factor at leading

power in 1/Q2 with both the NDR and HV schemes for γ5 in the D-dimensional space.

It has been shown explicitly at one loop that the renormalization scheme dependence

of the short-distance matching coefficient and the twist-two pion DA are cancelled out

precisely rendering the γ5-prescription independence of the factorization formula for the

leading power contribution to Fγ∗γ→π0(Q2). This can be readily understood from the

fact that the QCD matrix element defined by two electromagnetic currents are free of

the γ5 ambiguity and the renormalization scheme dependence of the hard function arises

from the infrared subtraction term completely. In the same vein, we established QCD

factorization of the desired correlation function at one loop for the construction of the

LCSRs for the hadronic photon contribution to the pion-photon form factor. By contrast,

the corresponding QCD matrix element defined with an interpolating current for the pion

and an electromagnetic current suffers from the γ5 ambiguity, which can be resolved by

applying the Ward identities of chiral gauge theories. The finite renormalization term

introduced in the HV scheme to restore the appropriate Ward-Takahashi identities was

found to provide the very transformation function to construct the hard matching coefficient

in the NDR scheme. The NLL resummation of the parametrically large logarithms was also

implemented by solving the relevant two-loop evolution equations in momentum space.

Taking into account the leading power contribution and the hadronic photon effect

at NLL as well as the twist-four correction from the pion DAs at tree level, we further

explored the phenomenological consequence of the perturbative QCD corrections and the

subleading power contributions. Interestingly, the observed strong cancellation between

the two power suppressed mechanisms leads to the insignificant correction to the leading

power contribution (almost) in the whole Q2 region accessible at the current experiments.

In addition, we paid a particular attention to the model dependence of the theory predic-

tions for Fγ∗γ→π0(Q2) on the twist-two pion DA. Both the holographic and KMOW models

turned out to balance the BaBar and Belle data reasonably well at high Q2, despite the

visible discrepancy at low Q2 which could be compensated by the unaccounted subleading

power corrections of both perturbative and nonperturbative origins. It was also demon-

strated that the end-point behaviour of the pion DA cannot be extracted by matching the

theory predictions for the pion-photon form factor with the experimental measurements.

Aiming at a better confrontation with the BaBar and Belle data, further improve-

ments of our calculations can be made by first carrying out the perturbative correction to

the twist-4 contribution from both the two-particle and three-particle pion DAs, which is

also of conceptual interest in the framework of perturbative QCD factorization, and then
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by evaluating the high twist contributions from the photon DAs with the LCSR approach.

Phenomenological applications of the techniques discussed in this work can be also pursued

in the context of the γ∗γ → (η(′) , ηc) transition form factors [33, 95] for understanding the

quark-gluon structure of eta mesons and heavy quarkonium states, the radiative leptonic

B-meson decays for the determination of the inverse moment λB, the radiative penguin

decays of B-mesons for the precision test of the quark-flavour structure of the Standard

Model, and the radiative heavy-hadron decays for constraining the magnetic susceptibility

of the quark condensate [86]. To conclude, the anatomy of the subleading power contribu-

tions for the exclusive hadronic reactions is of high interest for understanding the general

structures of the large momentum/mass expansion in QCD and for hunting new physics

in the quark-flavour sector as indicated by the various flavour “anomalies” observed at the

ongoing experiments.
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A Two-loop evolution functions

A.1 RG evolution of the twist-2 pion DA at two loops

We first collect the explicit expressions of the RG functions ENLO
V,n and dkV,n appeared in the

two-loop evolution matrix of the twist-2 pion DA, following closely [22]. Our conventions for

the QCD beta-function and the anomalous dimensions of the local conformal operator [63]

OV,k(µ) = (i n̄ · ∂)k q̄(0) 6 n̄ γ5 C
3/2
k

(
n̄·
↔
D /n̄ · ∂

)
q(0) (A.1)

are given by

µ
dαs(µ)

dµ
= β(αs) = −2αs

∑
n=0

βn

(αs
4π

)n+1
, (A.2)

γV,n(αs) = −
∑
n=0

γ
(0)
V,n

(αs
4π

)n+1
. (A.3)

The first three perturbative coefficients of βn are

β0 = 11− 2Nf

3
, β1 = 102− 38Nf

3
, β2 =

2857

2
− 5033Nf

18
+

325N2
f

54
, (A.4)

and the well-known LO anomalous dimension γ
(0)
V,n reads

γ
(0)
V,n = 2CF

(
1− 2

(n+ 1)(n+ 2)
+ 4

n+1∑
k=2

1

k

)
. (A.5)
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The NLO anomalous dimension γ
(1)
V,n can be obtained from the convolution integral

γ
(1)
V,n = − 8(2n+ 3)

(n+ 1)(n+ 2)

∫ 1

0
dx

∫ 1

0
dy [V1(x, y)]+ y ȳ

[
C3/2
n (2x− 1)

]2
. (A.6)

Making use of the harmonic sums [96, 97]

Sl(n) =

n∑
k=1

1

kl
, S′l(n) = 2l−1

n∑
k=1

[
1 + (−1)k

] 1

kl
, S̃(n) =

n∑
k=1

(−1)k

k2
S1(k) ,

(A.7)

the above-mentioned integral (A.6) can be further computed as [98]

γ
(1)
V,n = 4

(
C2
F −

1

2
CF CA

) {
4 (2n+ 3)

(n+ 1)2 (n+ 2)2
S1(n+ 1)− 2

3n3 + 10n2 + 11n+ 3

(n+ 1)3 (n+ 2)3

+ 4

(
2S1(n+ 1)− 1

(n+ 1)(n+ 2)

) (
S2(n+ 1)− S′2(n+ 1)

)
+ 16 S̃(n+ 1)

+ 6S2(n+ 1)− 3

4
− 2S′3(n+ 1)− 4 (−1)n+1 2n2 + 6n+ 5

(n+ 1)3 (n+ 2)3

}
+ 4CF CA

{
S1(n+ 1)

(
134

9
+

2 (2n+ 3)

(n+ 1)2 (n+ 2)2

)
− 4S1(n+ 1)S2(n+ 1)

+S2(n+ 1)

(
−13

3
+

2

(n+ 1)(n+ 2)

)
− 43

24

− 1

9

151n4 + 867n3 + 1792n2 + 1590n+ 523

(n+ 1)3 (n+ 2)3

}
+ 2CF Nf

{
− 40

9
S1(n+ 1) +

8

3
S2(n+ 1) +

1

3
+

4

9

11n2 + 27n+ 13

(n+ 1)2 (n+ 2)2

}
. (A.8)

According the master solutions displayed in (53) and (54) of [63] and comparing with (2.49),

we can readily find that [22]

ELO
V,n(µ, µ0) =

(
αs(µ)

αs(µ0)

)γ(0)V,n/(2β0)

,

ENLO
V,n (µ, µ0) = ELO

V,n(µ, µ0)

1 +
αs(µ)− αs(µ0)

8π

γ
(0)
V,n

β0

γ(1)
V,n

γ
(0)
V,n

− β1

β0

 , (A.9)

and the off-diagonal evolution coefficient dkV,n reads

dkV,n =
Mk
V,n

γ
(0)
V,n − γ

(0)
V,k − 2β0

1−
(
αs(µ)

αs(µ0)

)(
γ
(0)
V,n−γ

(0)
V,k−2β0

)
/(2β0)

 . (A.10)

The matrix element Mk
V,n is given by

Mk
V,n =

(k + 1) (k + 2) (2n+ 3)

(n+ 1)(n+ 2)

[
γ

(0)
V,n − γ

(0)
V,k

] {8CF A
k
n − γ(0)

V,k − 2β0

(n− k)(n+ k + 3)

+ 4CF
Akn − ψ(n+ 2) + ψ(1)

(k + 1)(k + 2)

}
, (A.11)
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with

Akn = ψ

(
n+ k + 4

2

)
− ψ

(
n− k

2

)
+ 2ψ(n− k)− ψ(n+ 2)− ψ(1) ,

ψ(z) = d ln Γ(z)/dz . (A.12)

A.2 RG evolution of the twist-2 photon DA at two loops

Along the lines of the discussion for the pion DA, we first need the anomalous dimensions

of the following conformal operator

OνT,k(µ) = (i n · ∂)k q̄(0) 6nγν,⊥ C3/2
k

(
n·
↔
D /n · ∂

)
q(0) , (A.13)

which can be perturbatively expanded in QCD

γT,n(αs) = −
∑
n=0

γ
(0)
T,n

(αs
4π

)n+1
. (A.14)

The one-loop anomalous dimension γ
(0)
T,n is given by [68, 70]

γ
(0)
T,n = 2CF

(
1 + 4

n+1∑
k=2

1

k

)
, (A.15)

and the NLO anomalous dimension γ
(1)
T,n can be extracted from the two-loop splitting

function for the twist-2 transversity distribution in deep-inelastic scattering (DIS) [98–100]

γ
(1)
T,n = 4C2

F

[
−1

4
− 2S1(n+ 1) + S2(n+ 1)

]
+

16

9
Nf CF

[
3

8
− 5S1(n+ 1) + 3S2(n+ 1)

]
+ CACF

[
−20

3
+

572

9
S1(n+ 1)− 58

3
S2(n+ 1)− 16S1(n+ 1)S2(n+ 1)

]
− 8CF

(
CF −

1

2
CA

) {
1

4
+

1 + (−1)n

(n+ 1)(n+ 2)
− 5

2
S2(n+ 1) + S′3(n+ 1)

− 8 S̃(n+ 1)− S1(n+ 1)
[
1 + 4S2(n+ 1)− 4S′2(n+ 1)

]}
. (A.16)

The explicit expressions of the RG functions ENLO
T,n and dkT,n can be obtained from that of

ENLO
V,n and dkV,n given above with the replacement rule γ

(i)
V,n → γ

(i)
T,n (i = 0, 1) [63, 67].

B Spectral representations

We present the dispersion representations of convolution integrals entering the NLL QCD

factorization formula (3.32) in order to construct the sum rules for the hadronic photon

correction to the pion-photon form factor. We have verified the spectral representations in

what follows numerically by checking the corresponding dispersion integrals.

1

π
Ims

∫ 1

0
du

1

u r + ū

u r − ū
u ū r̄

ln(u r + ū)φγ(u, µ)

=
Q2

Q2 + s

∫ 1

0
du θ

(
u− Q2

Q2 + s

) [
ū− u
u ū

+ 2 ln

(
u s− ū Q2

Q2

)
d

du

]
φγ(u, µ) . (B.1)
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1

π
Ims

∫ 1

0
du

1

u r + ū

u r − ū
u ū r̄

ln2(u r + ū)φγ(u, µ)

=
Q2

Q2 + s

∫ 1

0
du θ

(
u− Q2

Q2 + s

) {[
2 ln2

(
u s− ū Q2

Q2

)
− 2π2

3

]
d

du

+ 2
ū− u
u ū

ln

(
u s− ū Q2

Q2

) }
φγ(u, µ) . (B.2)

1

π
Ims

∫ 1

0
du

1

u r + ū

u r − ū
u ū r̄

ln(u r + ū) ln r φγ(u, µ)

=
Q2

Q2 + s

∫ 1

0
du

{
ū− u
u ū

[
θ

(
u− Q2

Q2 + s

)
ln

(
s

Q2

)
+ ln

∣∣∣∣u s− ū Q2

Q2

∣∣∣∣] φγ(u, µ)

+

[
ln2

∣∣∣∣u s− ū Q2

Q2

∣∣∣∣+ θ

(
u− Q2

Q2 + s

) (
2 ln

(
u s− ū Q2

Q2

)
ln

(
s

Q2

)
− π2

)]
× d

du
φγ(u, µ)

}
. (B.3)

1

π
Ims

∫ 1

0
du

1

u r + ū

r

ū r̄
ln r φγ(u, µ)

= − Q2

Q2 + s
ln

(
s

Q2

)
φγ

(
Q2

Q2 + s
, µ

)
−
∫ 1

0

du

ū

[
Q2

s+Q2
+ P ū Q2

u s− ū Q2

]
φγ(u, µ) . (B.4)

1

π
Ims

∫ 1

0
du

1

u r + ū

r

ū r̄
ln(u r + ū) ln r φγ(u, µ)

=
Q2

Q2 + s

∫ 1

0
du

{
− 1

ū

[
θ

(
u− Q2

Q2 + s

)
ln

(
s

Q2

)
+ ln

∣∣∣∣u s− ū Q2

Q2

∣∣∣∣] φγ(u, µ)

+
1

2

[
ln2

∣∣∣∣u s− ū Q2

Q2

∣∣∣∣+ θ

(
u− Q2

Q2 + s

) (
2 ln

(
u s− ū Q2

Q2

)
ln

(
s

Q2

)
− π2

)]
× d

du
φγ(u, µ)

}
. (B.5)

1

π
Ims

∫ 1

0
du

1

u r + ū

r

ū r̄
ln2 r φγ(u, µ)

= − Q2

Q2 + s

[
ln2

(
s

Q2

)
− π2

]
φγ

(
Q2

Q2 + s
, µ

)
−2 ln

(
s

Q2

) ∫ 1

0

du

ū

[
Q2

Q2 + s
+ P ū Q2

u s− ū Q2

]
φγ(u, µ) . (B.6)

1

π
Ims

∫ 1

0
du

1

u r + ū

1

u r̄
(ln r + 3) ln (ū+ u r) φγ(u, µ)

=
Q2

Q2 + s

∫ 1

0
du

{
− φγ(u, µ)

u

[
θ

(
u− Q2

Q2 + s

) (
ln

(
s

Q2

)
+ 3

)
+ ln

∣∣∣∣u s− ū Q2

Q2

∣∣∣∣]
−1

2

[
ln2

∣∣∣∣u s− ū Q2

Q2

∣∣∣∣+ θ

(
u− Q2

Q2 + s

) ((
2 ln

(
s

Q2

)
+ 3

)
ln

(
u s− ū Q2

Q2

)
− π2

)]
× d

du
φγ(u, µ)

}
. (B.7)
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Here, the parameter p2 in the definition of r should be understood as s in the above

convolution integrals and P represents the principle-value prescription.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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