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have non-minimal couplings to gravity. Observables following from such MSSM-inspired

multifield inflation are calculated and a number of consistent inflationary scenarios are con-
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1 Introduction

The inflationary models, which solve successfully the horizon, flatness and relic prob-

lems [1–3] and generate the primordial density perturbations finally initiating the formation

of galaxies and large-scale structure [4–6], are the most reasonable models for the evolu-

tion of the early Universe. In simplest case inflation is controlled by a single scalar field

(the inflaton) with an effective potential that plays a role of the cosmological constant

during inflation.

A fundamental step towards the unification of physics at all energy scales could be

the possibility to describe the inflation using particle physics models. In numerous models

(for a review see [7]) the role of the inflaton has been performed by the Standard Model

(SM) Higgs boson [8–15] or a boson in Grand Unified Theories (GUTs) [16, 17] or a scalar

boson in supersymmetric (SUSY) models [18–20] (see [21, 22] as reviews). A number of

advantages of simplified SUSY GUTs in comparison with nonsupersymmetric GUTs such

as naturally longer period of exponential expansion and better stability of the effective

Higgs potential with respect to radiative corrections due to cancelation of loop diagrams

have been noted quite long ago [23].

Thus, the implementation of inflationary scenario within a well-defined model of par-

ticle physics consistent with collider phenomenology where the inflaton is unambiguously

identified is a longstanding problem. The only candidate on the role of the inflaton in

the SM is the Higgs boson. The Higgs-driven inflation [9–15] was originally proposed as
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a single-field model based on the SM in the unitary gauge. This minimal model uses the

Higgs isodoublet Φ interaction with gravity of the form ξRΦ†Φ (R is the scalar curvature

and ξ is a positive constant). The Higgs-driven inflation leads to the spectral index value

ns = 0.967 and the tensor-to-scalar ratio r = 3 · 10−3 which are in agreement with the

Planck Collaboration data [24–27]. However, the effects of Goldstone bosons should be

included at an energy scale relevant to inflation in the model which is actually multifield.

For the Higgs-driven inflation it was found [28] that the multifield effects are negligibly

small during inflation and do not influence the observable quantities, such as the spectral

index of primordial perturbations and the ratio of squared amplitudes for the tensor and the

scalar perturbations (tensor-to-scalar ratio). This fact and the known considerations about

the need to extend the SM, which could be an effective limit of GUTs, supersymmetry,

supergravity or other beyond the SM theories, lead to the belief that inflation that is

compatible with recent observations [24–27] might have been generated by several fields.

It has been shown [29, 30] that there is a class of inflationary models with two scalar

fields non-minimally coupled to gravity that provides good agreement with the Planck

data. Hybrid inflation proposed in [31–33] which involves the potential of two scalar fields

ensures inflationary expansion, explains the observed spectrum of density fluctuations not

requiring the unnatural scalar field amplitudes at the Planck scale. At the same time, a

greater degree of uncertainty arises in the theory. Identification of the two scalar fields

in the framework of a gauge theory model is not simplified, the initial conditions are not

unambiguously fixed [34] theoretically in the two-dimensional field space and their tuning

is needed to ensure adequate phenomenological consequences.

It should be noted that some tension is observed between the experimental data and

predictions of the minimal model. In to order to explain cosmic microwave background

observables in the Higgs-driven inflationary scenario the parameter of non-minimal coupling

should be very large (ξ ∼ 104). So large value of ξ is not satisfactory from general theoretical

backgrounds because it leads to violation of perturbative unitarity at the scale MPl/ξ which

is smaller than the expected inflationary range above the MPl/
√
ξ (MPl denotes the Planck

mass). In order to restore unitarity above the scale MPl/ξ, “new physics” (new particles

interacting with the SM ones) should be introduced which modify the SM Higgs potential.

The more serious problem of a large ξ value in the SM is the renormalization group evolution

(RGE) of meaningful parameters which demonstrates unsatisfactory matching with the

measured Higgs boson and top quark masses [35] as soon as the inflationary range of the

order of MPl/
√
ξ or above is concerned. In order to reduce the value of ξ, an extremely

small value of the effective quartic coupling λeff(µ) near the Planck scale is needed. At the

Higgs boson mass mh = 125 GeV such value of λeff(µ) can be achieved at the top quark

mass which is more than 2σ below its observable central value [36–38]. In this case, the

value of ξ necessary for a satisfactory inflationary scenario decreases thus allowing to avoid

the problem of perturbative unitarity violation below the inflationary scale. Note that

the GUT motivated inflationary model [39] predicts the same order of the parameter for

a non-minimal coupling. However, there are cosmological models (see, for example [40])

with the same function of the non-minimal coupling and even polynomial potential of the

fourth order that could provide a suitable inflationary parameters at small values of ξ.
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Apparent tensions arising in connection with parameter matching of the Higgs-driven

inflation model increase the popularity of models with new physics at the TeV and multi-

TeV scales. New particles consistent with restrictions on the new physics imposed by

the LHC data provide extensive opportunities to improve significantly the Higgs-driven

inflationary model. Analogue of this single-field model for the multifield scenarios is based

on an observation that redefined fields in the Einstein frame practically coincide with

primary fields in the Jordan frame at the low energy scale of the order of superpartners

mass scale MSUSY, reproducing the MSSM potential, while at the scale higher than the

GUT scale the potential in the redefined fields can be slowly changing respecting the slow-

roll approximation of an inflationary scenarios. This observation is sufficiently general.

Recent analyses [41–48] of multifield models showed that unlike the single-field models

they generically provide density (entropy) perturbations which can induce the curvature

perturbation to evolve beyond the cosmological horizon in the process of inflation [49].

Evolution of density perturbations in multifield models should be studied in order to an-

alyze new features in the observables such as non-Gaussianities [50] which are absent in

the single-field inflationary models. Deviations of observable power spectrum calculated in

multifield models from predictions of the single-field models could take place in the power

of one of the three criteria [48, 51]: (i) noncanonical kinetic terms; (ii) violation of slow-roll

approximation; (iii) nonstandard initial ground state (different from Bunch-Davies vac-

uum). The main feature of the multifield models which leads to nonstandard primordial

spectrum is the ability of trajectories of slow-roll fields to rotate in the field space, that oc-

curs due to the presence of bumps and ridges in the effective multifield potential. When the

slow-roll field trajectories turn in the field space, nonstandard contributions to primordial

spectra can be amplified enough to be detectable in the microwave background [52–54].

In this paper we analyze a multifield extension of the standard Higgs-driven inflation

inspired by the MSSM. A few general observations let us make first. In the framework

of a sypersymmetric model the natural class of cosmological models are those with local

supersymmetry (supergravity models). For the case when interactions at an energy scale

below MPl are described by an effective N = 1 supergravity, the general form for the

effective potential of scalar fields in the Einstein frame was derived in [55]. In the notation

of [56] the Lagrangian can be written as

LB=e−G
[
Gk(G

−1)kiG
i + 3

]
−1

2
ĝ2Re f−1

αβ (GiTαji zj)(G
kT βjk zj)+GijDµziD

µz∗j−1

2
R (1.1)

where Gk = ∂G/∂ϕk, ĝ is the gauge coupling constant, T are generators of the groups, Dµ

are covariant with respect to gravity and gauge group, (zi, χi) is the chiral supermultiplet.

The Kähler potential G can be written in terms of the function φ which transforms as

a real vector superfield and the superpotential gs in the following form:

G = 3 log(−φ/3)− log(|gs|2). (1.2)

Equation (1.1) is a consequence of a Lagrangian written in terms of chiral superfields Φ̃:

L = −6

∫
d2θ E

[
R− 1

4
(D2 − 8R)Φ̃†Φ̃ + gs

]
+ h.c., (1.3)
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here R is the superspace curvature and E is chiral density connected with local superspace

basis (see [57]). One can show [58] that minimal coupling to gravity which takes place for

φ = z∗i zi − 3 in the Kähler potential can be modified to a non-minimal coupling R→ R+

p(Φ̃)R instead of the first term in eq. (1.3) by the replacement φ = z∗i zi−3−3(p(z)+h.c.)/2

for a given polynomial form p.1

In the case of the MSSM natural choice is p = ξΦ̄1Φ̄2, where Φ̄1 and Φ̄2 are chiral

Higgs-Higgsino superfields. This choice of p in combination with the general form for

the superpotential gs = Λ + µΦ̄1Φ̄2 (Λ and µ are real constants) leads to problems of

achieving a suitable inflationary scenario, see [58, 59]. For ξ parameter large enough when

different regimes for the ‘flat direction’ tan β parameter are taken, either there is no slow

roll or the potential takes negative values. Not referring here to the possibility of the

MSSM extension with a gauge singlet (non-minimal MSSM or NMSSM) where unsuitable

behavior can be cured, we introduce non-minimal couplings in the non-holomorphic form

(ξ1H
†
1H1 + ξ2H

†
2H2)R (here H1 and H2 are SU(2) spinors and R is the Ricci scalar) that

have no counterparts in supergravity. So only small electroweak quartic couplings g1 and g2

in the D-terms of eq. (1.1) which then appear in the tree-level scalar potential at the SUSY

scale provide grounds to speak about ‘MSSM-inspired’ inflationary scenarios. This sort of

model is not a direct extension of models associated with the MSSM which include scalar

fields minimally coupled to gravity [62–64]. The inflaton fields are identified as Higgs sector

fields, thus, in this case one is talking about the multifield extension of the SM single-field

Higgs inflation. Note that other realizations of the inflationary scenario in the MSSM are

possible, when the inflaton is a combination of squark and slepton fields [65], while the

process of inflation is controlled by flat directions of the MSSM potential which are lifted

by non-renormalizeable superpotential terms and soft supersymmetry breaking terms. It is

assumed that D-terms in eq. (1.1) vanish in the hidden sector. A number of other options

of the MSSM-inspired inflation can be found in [18–23, 62–64, 66].

The model which is considered in the following sections includes two Higgs doublets

coupled with gravity non-minimally. We focus on the two-Higgs doublet MSSM potential in

the mass basis of scalar fields that has been analyzed starting from 1975 [67]. This potential

includes three massless Goldstone bosons and five massive Higgs bosons. Working in the

physical gauge, in this paper we do not take Goldstone bosons into account and consider

inflationary scenarios that include Higgs bosons only. We show that inflationary scenarios

with suitable parameters ns and r are possible at the scale corresponding to the Hubble

parameter H ∼ 10−5MPl. By this way a MSSM-inspired extension of the original Higgs-

driven inflation is constructed.

The structure of the paper is as follows. In section 2 we define the MSSM two-

Higgs-doublet potential in the basis of mass eigenstates for the five Higgs bosons at the

superparticle mass scale. The mixing angles of the SU(2) field eigenstates are chosen in

1Taking frequent in the literature point of view that the main qualitative features at the scale of the

order of MPl are valid despite the loop effects of gravity, there is an opinion that in a simplest case for a

single field any polynomial form p(x) can be adjusted by taking dgs/dx =
√

(3 + p(x) exp(G(x)))/2 (where

x is Re z, (zi,χi) is the chiral supermultiplet) with the following extension of a solution in the form of series

expansion to complex z [60, 61].
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the form which is acceptable for the low-energy Higgs phenomenology. In section 3 the

MSSM-inspired potential taken in the Jordan frame with the polynomial form of the non-

minimal coupling function is transformed to the Einstein frame. Equations of motion

in the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric are described in section 4.

Numerical integration of the equations of motion with the initial conditions which are

adjusted in a way suitable for reproduction of the observable values for the spectral index

ns and the tensor-to-scalar ratio r is preformed in section 5. In section 6 we discuss

briefly the strong coupling (SC) approximation for the MSSM-inspired potential under

consideration. Results are summarized in section 7.

2 The MSSM-inspired Higgs potential

Two Higgs doublets of the MSSM can be parameterized using the SU(2) states

Φ1 =

(
−iω+

1
1√
2
(v1 + η1 + iχ1)

)
,Φ2 =

(
−iω+

2
1√
2
(v2 + η2 + iχ2)

)
, (2.1)

where ω+
1,2 are complex scalar fields, η1,2 and χ1,2 are real fields, the vacuum expectation

values v1 and v2 are usually redefined in (v, tanβ) parametrization: v =
√
v2

1 + v2
2 and

tanβ=v2/v1 (v=246 GeV). Two doublets Φ1 and Φ2 can be used to form the SU(2) ×U(1)

invariant and renormalizable effective potential which breaks gauge symmetry.

The most general two-doublet effective potential can be written as [68]:

V (Φ1,Φ2) = −µ2
1(Φ†1Φ1)− µ2

2(Φ†2Φ2)−
[
µ2

12(Φ†1Φ2) + h.c.
]

+ λ1(Φ†1Φ1)2 + λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+

[
λ5

2
(Φ†1Φ2)(Φ†1Φ2) + λ6(Φ†1Φ1)(Φ†1Φ2) + λ7(Φ†2Φ2)(Φ†1Φ2) + h.c.

]
. (2.2)

Let us consider the action in the Jordan frame

S =

∫
d4x
√
−g̃
[
f(Φ1,Φ2)R̃− δabg̃µν∂µΦ†a∂νΦb − V (Φ1,Φ2)

]
, (2.3)

where g̃ is the determinant of metric tensor g̃µν , and R is the scalar curvature. The factor in

front of the kinetic term is not dependent on fields, so the case of Brans-Dicke gravity-like

models are beyond our analysis. However, δab in front of the kinetic term is not narrowing

the generality of consideration, see details in appendix A. Variation of action with respect

to metric tensor g̃µν and isodoublets Φa of the fields leads to the following equations

f(Φ1,Φ2)

[
R̃µν−

R̃

2
g̃µν

]
= (∇µ∇ν−g̃µν∇α∇α)f(Φ1,Φ2) (2.4)

+2δab
[
∂µ(Φa)

†∂νΦb−
1

2
g̃µν∂α(Φa)

†∂αΦb

]
− 1

2
V (Φ1,Φ2)g̃µν ,

2�Φa =−∂f(Φ1,Φ2)

∂Φ†a
R̃+

∂V (Φ1,Φ2)

∂Φ†a
, (2.5)
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where a = 1, 2, ∇µ is a covariant derivative and the d’Alembert operator acting on the

scalar fields is denoted by � ≡ 1√
−g̃∂µ

(√
−g̃g̃µν∂ν

)
. In the following we are using notations

and normalization conventions for the potential V (Φ1,Φ2) in the generic basis (with λ6,7

terms) from [69, 70], where the mass eigenstates for scalars were constructed.

Note that the potential in eq. (2.2) explicitly violates CP invariance if parameters µ12,

λ5, λ6, or λ7 are complex-valued. For simplicity, we are not considering such possibility in

the following. At the tree-level λ5, λ6, and λ7 are equal to zero in the MSSM two-doublet

potential. Nonzero parameters λ5,6,7 of the effective Higgs potential can be generated by

radiative corrections coming from the sector of soft supersymmetry breaking terms, where

scalars couple to quark superpartners. To simplify the analysis we will not consider this

possibility remaining with the tree-level potential at the MSUSY scale. It is well-known that

radiative corrections are large and in the context of this simplification (when the upper limit

of the light CP-even state mass mh does not exceed the Z-boson mass mZ = 91.2 GeV) it is

impossible to describe adequately the spectrum of Higgs boson masses. However, precision

fitting of the collider data is not the primary purpose at this stage of consideration.

The mass basis of scalars is constructed in a standard way. The SU(2) eigenstates

(ω±a , ηa and χa, a = 1, 2) are expressed through mass eigenstates of the Higgs bosons h,

H0, A and H± and the Goldstone bosons G0, G± by means of two orthogonal rotations(
η1

η2

)
= Oα

(
H0

h

)
,

(
χ1

χ2

)
= Oβ

(
G0

A

)
,

(
ω±1
ω±2

)
= Oβ

(
G±

H±

)
, (2.6)

where the rotation matrix

OX =

(
cosX − sinX

sinX cosX

)
, X = α, β. (2.7)

Masses of the CP-even scalars h and H0 are mh and mH0 , the charged scalar mass is mH±

and the CP-odd scalar mass is mA. At the superpartners mass scale MSUSY the mA and

tanβ can be chosen as the input parameters which fix the dimension-two parameters µ2
1, µ

2
2

and µ2
12 of the Higgs potential, while the dimensionless factors λi (i = 1, . . . , 7) at the tree

level are expressed, using the SU(2) and U(1) gauge couplings g2 and g1, as follows [71, 72]

λtree1,2 (MSUSY) =
g2

1 + g2
2

8
, λtree3 (MSUSY) =

g2
2 − g2

1

4
,

λtree4 (MSUSY) = −g
2
2

2
, λtree5,6,7(MSUSY) = 0. (2.8)

The dimension-two parameters µ2
1, µ

2
2 and µ2

12 are fixed using the minimization conditions:

µ2
1 = −m2

A sin2(β) +
m2
Z

2
cos(2β),

µ2
2 = −m2

A cos2(β)−
m2
Z

2
cos(2β),

µ2
12 = m2

A sin(β) cos(β), (2.9)
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where mZ = v
√
g2

1 + g2
2/2. Then the potential given by eq. (2.2) can be rewritten in the

mass basis of scalar bosons, which are massless Goldstone bosons G0, G+, G− and massive

Higgs bosons h, H0, A, H+, H−:

V (h,H0, A,H
±, G0, G±) =

m2
h

2
h2 +

m2
H0

2
H2

0 +
m2
A

2
A2 +m2

H±H
+H− + I3 + I4, (2.10)

where

m2
h = m2

Z sin2(α+ β) +m2
A cos2(α− β), (2.11)

m2
H0

= m2
Z cos2(α+ β) +m2

A sin2(α− β), (2.12)

m2
H± = m2

A +m2
W . (2.13)

Explicit forms of the interaction terms I3 and I4 are presented in the appendix B. The

mixing angles α and β at the MSUSY scale are connected by the following equation

tan(2α) =
m2
A +m2

Z

m2
A −m2

Z

tan(2β). (2.14)

The scalar resonance with mass 125 GeV which is experimentally observed at the

LHC [73–75] has properties consistent with the SM. However, MSSM identifications are

still possible with limited experimental statistics. Experimental data of the LHC Run I

demonstrates the SM-like couplings of observed Higgs boson to fermions and vector bosons

at the level of statistical significance only on the level slightly better than 2σ [76]. In the

following consideration, the CP-even state h of the MSSM, when it is overridden mass,

which is determined by the radiation corrections from the squark sector, will be identified

as the 125 GeV resonance. In the presence of other scalars H0, A, H+ and H−, which

are not experimentally observed, such identification is possible for the two specific features

in the MSSM parameter space: (i) the decoupling regime [77] and/or (ii) the alignment

limit [78, 79]. In the decoupling regime masses of scalars H0, A, and H± are very large

(they are at multi-TeV scale where also the lightest superpartners can be found), so their

contributions to the observables at the top quark scale are strongly suppressed, while in

the alignment limit H0, A, and H± are not necessarily extremely heavy. The alignment

limit will be used in the following consideration. In this limit β−α ≈ π/2 and the potential

in eq. (2.2) can be simplified by a special choice of mixing angles α and β. After rotation

of scalar isodoublets

Φ
′
1 = −Φ1 sinβ + Φ2 cosβ, Φ

′
2 = Φ1 cosβ + Φ2 sinβ (2.15)

to so-called Higgs basis [71] and the choice of mixing angles β = π/2 and α = 0, the SU(2)

components of isodoublets and the vacuum expectation values are

η1 = H0, η2 = h, v1 = 0, v2 = v. (2.16)

So, in the unitary gauge G0 = G± = 0, we get

χ1 = −A, χ2 = 0, ω±1 = −H±, ω±2 = 0 (2.17)

– 7 –
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and the isodoublet convolutions are given by

(Φ†1Φ1) = H−H+ +
A2

2
+
H2

0

2
≡ 1

2
(Ω2
± + Ω2

0), (Φ†2Φ2) =
h2
v

2
, (2.18)

(Φ†1Φ2) =
hv
2

(H0 + iA), (Φ†2Φ1) =
hv
2

(H0 − iA), (2.19)

where hv = h+v, Ω2
0 = H0

2+A2, and Ω2
± = 2H+H−. The kinetic terms have canonical form

∂µΦ†1∂
µΦ1 = ∂µH

−∂µH+ +
1

2
(∂A)2 +

1

2
(∂H0)2, ∂µΦ†2∂

µΦ2 =
1

2
(∂h)2. (2.20)

It follows from eq. (2.9) that µ2
12 = 0 and the potential in eq. (2.10) becomes

V (hv,Ω0,Ω±) = −m2
1h

2
v +m2

2

(
Ω2

0 + Ω2
±
)

+ ν1(h4
v + Ω4

0 + Ω4
±)− 2ν1h

2
vΩ

2
0 + 2ν2h

2
vΩ

2
± + 2ν1Ω2

0Ω2
±, (2.21)

where

m2
1 =

m2
Z

4
, m2

2 =
m2
A

2
+
m2
Z

4
, (2.22)

ν1 =
g2

1 + g2
2

32
, ν2 =

g2
2 − g2

1

32
. (2.23)

The potential in eq. (2.21) qualitatively corresponds to the MSSM potential at the

scale MSUSY. It is invariant under two-dimensional rotations in (H0, A) space and (H+,

H−) space, what is the consequence of the specific choice of the mixing angles α and

β in the alignment limit. This property allows reducing the number of five physically

significant fields h, H0, A, H+ and H− to the three field combinations, h2
v, Ω2

0 and Ω2
±.

Note that at hv = 0 the potential given by eq. (2.21) is invariant under rotations in the four-

dimensional field space. Tree-level quartic couplings λi, eq. (2.8), are expressed through

the gauge couplings g1,2 which are fixed by collider data, since the gauge boson masses at

tree level mZ = v
√
g2

1 + g2
2/2, mW = v g2/2 and cross sections of W±, Z production are

precisely measured (v =
√
v2

1 + v2
2 = (GF

√
2)−1/2, GF is the Fermi constant). Substituting

mZ = 91.2 GeV and mW = 80.4 GeV, we obtain g1 = 0.36 and g2 = 0.65, which are used

in numerical calculations of section 5.

3 The MSSM-inspired model with non-minimal interaction

Generic action which is dependent on N scalar fields φI , I = 1, . . . , N with the standard

kinetic term and non-minimal coupling to gravity can be written as

SJ =

∫
d4x
√
−g̃
[
f(φI)R̃− 1

2
δIJ g̃

µν∂µφ
I∂νφ

J − V (φI)

]
, (3.1)

where tilde denominates the metric tensor and curvature in the Jordan frame. In our case

V (φI) depends on five real scalar fields

φ1 =
H+ +H−√

2
, φ2 =

H+ −H−√
2i

, φ3 = A, φ4 = H0, φ
5 = hv. (3.2)
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This action can be transformed to the following action in the Einstein frame [80] (see

also [28, 48]):

SE =

∫
d4x
√
−g
[
M2

Pl

2
R− 1

2
GIJgµν∂µφI∂νφJ −W

]
, (3.3)

where

GIJ =
M2

Pl

2f(φK)

[
δIJ +

3f,If,J
f(φK)

]
, W = M4

Pl

V

4f2
,

the reduced Planck mass MPl ≡ 1/
√

8πG, f,I = ∂f/∂φI . Metric tensors in the Jordan and

the Einstein frames are related by the equation

gµν =
2

M2
Pl

f(φI)g̃µν .

In the single-field Higgs-driven inflation the function f has been chosen as a sum of the

Hilbert-Einstein term and the induced gravity term. We choose the function f in an

analogous form:

f(Φ1,Φ2) =
M2

Pl

2
+ ξ1Φ†1Φ1 + ξ2Φ†2Φ2, (3.4)

where ξ1 and ξ2 are positive dimensionless constants. This form of function f follows from

the requirement of renormalizability for quantum field theories in curved space-time [81–84],

where non-minimal couplings appear as renormalization counterterms for scalar fields. We

also assume that vacuum expectation values for scalar fields are negligibly small in com-

parison with MPl.

Note that non-minimal interaction in the form of eq. (3.4) was considered [85] in

the framework of the (nonsuperymmetric) two-Higgs-doublet model, when the boundary

condition eq. (2.8) is not used and the Higgs potential includes seven quartic couplings.

Arbitrariness of the choice of λi is constrained imposing exact or approximate Z2 sym-

metry (discrete symmetry whose breaking results in the appearance of the axion) on the

generic two-Higgs-doublet potential which takes a specific functional form different from

the ‘MSSM-inspired’, eq. (2.21). It is assumed that the Higgs doublets Φ1 and Φ2 in this

simplified potential are (0, v1/
√

2) and (0, v2/
√

2), what happens if the fields ω1,2, η1,2 and

χ1,2 in eq. (2.1) are taken to be zero, so the MSSM mass eigenstates h, H, A and H± are

not specified. In our case the function f depends on the five scalar fields:

f(Φ1,Φ2) =
M2

Pl

2
+
ξ1

2
(Ω2
± + Ω2

0) +
ξ2

2
h2
v. (3.5)

4 Properties of the equations of motion in the FLRW metric

Let us consider a spatially flat FLRW universe with metric interval

ds2 = −dt2 + a2(t)
(
dx2

1 + dx2
2 + dx2

3

)
,

where a(t) is the scale factor. Varying the action in eq. (3.3) with respect to gµν and fields

we get the following equations for the FLRW metric

H2 =
1

3M2
Pl

(
σ̇2

2
+W

)
, Ḣ = − 1

2M2
Pl

σ̇2, (4.1)

– 9 –



J
H
E
P
1
2
(
2
0
1
7
)
0
3
6

where the Hubble parameter H = ȧ/a, σ̇2 = GIJ φ̇I φ̇J , and dots mean the time derivatives.

Field equations have the following form [48]

φ̈I + 3Hφ̇I + ΓIJK φ̇
J φ̇K + GIKW ′,K = 0 , (4.2)

where ΓIJK is the Christoffel symbol for the field-space manifold, calculated in terms of

GIJ , W ′,K = ∂W/∂φK . Hereafter, primes denote derivatives with respect to the fields.

Due to the relationship of inflationary evolution in the Jordan and the Einstein frames,

eqs. (4.1) and (4.2) are equivalent to eqs. (2.4) and (2.5) after transformation of the latter

to Einstein frame.

During inflation the Hubble parameter is positive and the scalar factor is a monotoni-

cally increasing function. To describe the evolution of scalar fields during inflation we use

the number of e-foldings Ne = ln(a/ae), where ae is the value of the scalar factor at the

end of inflation, as a new measure of time. The notation N∗e = −Ne will be also used for

convenience.

Using d/dt = H d/dNe one can write eqs. (4.1) and (4.2) in the form

H2 =
2W

6M2
Pl − (σ′)2

, (4.3)

d lnH

dNe
= − 1

2M2
Pl

(
σ′
)2
, (4.4)

dφI

dNe
= ψI , (4.5)

dψI

dNe
= −

(
3 +

d lnH

dNe

)
ψI − ΓIJKψ

JψK − 1

H2
GIKW ′

,K , (4.6)

where (σ
′
)2 = H2 (σ̇)2. After substitution of eqs. (4.3) and (4.4) a system defined by

eqs. (4.5) and (4.6) includes ten first order equations which are suitable for numeric inte-

gration. Integration was performed by means of built-in subroutines of several computer

algebra systems with cross-checks of results. Note that so far in this section and in the

previous section 3 we have not made any approximations.

In order to calculate the observables, spectral index ns and tensor-to-scalar ratio r,

slow-roll parameters are introduced analogously to the single-field inflation

ε = − Ḣ

H2
, ησσ = M2

Pl

Mσσ

W
, (4.7)

where

Mσσ ≡ σ̂K σ̂J(DKDJW ), (4.8)

σI = φ̇I/σ̇ is the unit vector in the field space and D denotes a covariant derivative with

respect to the field-space metric, DIφJ = ∂Iφ
J + ΓJIKφ

K . Then the spectral index ns and

tensor-to-scalar ratio r at the time when a characteristic scale (50–65 e-foldings before the

end of inflation) is of the order of the Hubble radius in the course of inflation, can be calcu-

lated using the single-field equations valid to lowest order in slow-roll parameters [48, 49]

ns = 1− 6ε+ 2ησσ, r = 16ε. (4.9)
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Scenario ξ1 ξ2 φ1
0 φ2

0 φ3
0 φ4

0 φ5
0

A1 2500 any 0.2 0.24 0.3 0.1 0

A2 2500 any 2×10−3 0 0.45 0.2 0

A3 2500 any 0.2 0.26 0.5 0.6 0

A4 40 any 0.8 0.9 0.5 0.7 0

B1 1100 500 0.3 0.2 0 0 0.1

B2 1100 500 0.4 0.6 0 0 0.3

B3 2200 1000 0.3 0.2 0 0 0.1

B4 2200 2200 0.1 0.1 0 0 0.155

Table 1. Initial conditions (in units of MPl) for trajectories with successful inflationary scenarios,

CP-odd Higgs boson mass mA = 200 GeV. The SU(2) and U(1) gauge couplings are g1 = 0.36 and

g2 = 0.65.

Scenario φ1
in φ2

in φ3
in φ4

in ψ1
in ψ2

in ψ3
in ψ4

in

A1 0.0849 0.1019 0.1274 0.0425 −0.0006 −0.0008 −0.0010 −0.0003

A2 0.0008 0 0.1725 0.0767 −0.000006 0 −0.0013 −0.0006

A3 0.0446 0.0579 0.111 0.134 −0.0003 −0.0004 −0.0008 −0.0010

A4 0.7984 0.8982 0.4990 0.6986 −0.0049 −0.0055 −0.0030 −0.0043

Table 2. Initial conditions (fields in units of MPl) at N∗
e = 65 in the scenarios of type A (see

table 1).

5 Numerical solutions of the equations of motion

The isosurfaces for the potential W (hv,Ω0,Ω±) (one of the three variables is fixed) are

shown in figure 1. At the fixed value of hv, Ω0 or Ω± of the order of 0.1 (in Planck

units) the saddle configuration of the surface is observed, as shown in figure 1(a). A

characteristic feature of W which demonstrates ridges and gullies is shown in figure 1(b). In

the gullies evolution of the field system looks as an infinite expansion at the constant Hubble

parameter. One can see that the slow-roll inflation is possible if the initial condition for hv
or Ω0 is chosen in the vicinity of zero, which is equivalent to four nonzero values of the fields

(A,H0, H
±) or three nonzero values of the fields (hv, H

±). Initial conditions for a number of

successful inflationary scenarios of this sort are presented in table 1. The evolution of fields

superimposed on the Einstein-frame potential for the inflationary scenarios A and B, see

table 1, is shown in figure 2, where the dashed fragments of field trajectories correspond to

the inflationary stage when 0 ≤ N∗e ≤ 65. If we assume that the number of e-foldings during

inflation N∗e = 65, then we get the initial conditions for inflationary trajectories presented

in tables 2 and 3. For scenarios A1, A2, A3, B3, and B4 (see table 4) the value of the Hubble

parameter in the beginning of inflation is Hinit < 3.6 ·10−5MPl. Note that this value of the

Hubble parameter is found to be in good agreement with the observational data [26, 27].

One can see that for the type A inflationary scenarios the field system rolls slowly

down to the potential minimum (see also figures 3(a) and 3(b)), while for the B type
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Scenario φ1
in φ2

in φ5
in ψ1

in ψ2
in ψ5

in

B1 0.2367 0.1578 1.2 · 10−8 −0.0018 −0.0012 −7.7 · 10−7

B2 0.1578 0.2367 −9.9 · 10−21 −0.0012 −0.0018 −1.6 · 10−20

B3 0.1675 0.1117 3.2 · 10−17 −0.0013 −0.00084 5.2 · 10−17

B4 0.1009 0.1009 0.1426 −0.000756 −0.000756 −0.00107

Table 3. Initial conditions (fields in units of MPl) at N∗
e = 65 in the scenarios of type B (see

table 1).

Scenario H [10−5] r ns

A1 2.99983 0.00266259 0.969398

A2 2.99983 0.00266259 0.969398

A3 2.99983 0.00266255 0.969399

A4 187.444 0.00174899 0.969258

B1 6.81778 0.00266322 0.969396

B2 6.81778 0.00266325 0.969396

B3 3.40892 0.00265832 0.969424

B4 2.98224 0.00263611 0.969555

Table 4. The Hubble parameter H (in units of MPl), tensor-to-scalar ratio r and spectral index

ns for successful inflationary scenarios at N∗
e = 65, mA = 200 GeV.

(a) (b)

Figure 1. The isosurfaces of the potential W (hv,Ω
2
0,Ω

2
±) at fixed values of the field configurations

(in units of MPl), where mA = 200 GeV, ξ1 = ξ2 = 10.
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(a) (b)

Figure 2. Parametric plots of the fields’ evolution superimposed on the Einstein-frame potential

for A parameter sets, plot (a), and B parameter sets, plot (b), see the parameter sets in table 1.

The trajectories shown here have the initial condition (in units of MPl): (a) φ50=0 and φ10=0.2,

φ20=0.24, φ30=0.3, φ40=0.1 (red line); φ10 = 2 × 10−3, φ20=0, φ30=0.45, φ40=0.2 (yellow line); φ10=0.2,

φ20=0.26, φ30=0.5, φ40=0.6 (green line); (b) φ30 = φ40 = 0 and φ10=0.3, φ20=0.2, φ50=0.1 (red line);

φ10=0.4, φ20=0.6, φ50=0.3 (yellow line). The dashed lines correspond to the inflationary stage when

0 ≤ N∗
e ≤ 65.

inflationary scenarios, except B4, all nonzero fields demonstrate rapidly damped oscillations

going to zero hv for the number of e-foldings before the end of inflation N∗e � 65, see

figures 3(c) and 3(d). At the same time, significant nonzero value of hv in the initial field

configuration is suitable for inflation in the case B4 when ξ1 = ξ2. Note that inflationary

scenarios with initial conditions denoted by A and B in tables 2, 3 demonstrate remarkable

stability of slow-roll parameters ε, ησσ and observables r and ns. In different cases with the

Hubble parameter H ∼ 10−5MPl the values of ns and r coincide up to three digits. Such

“attractor behavior” when over a wide range of initial conditions the system evolves along

the same trajectory in the course of inflation is known for single-field models [86], but it

is not an obvious observation, generally speaking, for multifield models. In this sense the

phenomenological stability inherent to the single-field Higgs inflation is preserved for the

multifield MSSM-inspired model under consideration.

The problem of perturbative unitarity violation at a large values of ξ parameters men-

tioned in the Introduction may persist in the MSSM although an order of magnitude

smaller values of ξ appear in comparison with the SM Higgs inflation (except A4 scenario,

see table 1). While in the SM for the Higgs inflation a simple unitarity bound can be

derived E < MPl/ξ on the general basis of power-counting formalism for effective theory

(for example, [87]), in the MSSM-inspired models with several fields such a simple criteria

is not reliable and the situation with partial wave unitarity is much more difficult. Recent

analysis [88] for the case of a general two-Higgs-doublet model without any discrete sym-

metry imposed on the scalar potential leads to non-trivial constraints on the masses and

mixings which may depend on the scenario of new physics at a high energy scale.
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(a) (b)

(c) (d)

Figure 3. Evolution of the fields and the Hubble parameter (in units of MPl) as functions of the

number of e-foldings before the end of inflation N∗
e for the scenarios A1 (a), A3 (b), B1 (c) and B2

(d), see table 1. The thin vertical black line corresponds to the number of e-foldings N∗
e = 65. Plot

(d) for the B2 scenario shows the evolution for smaller scale in the N∗
e interval from 460.5 to 457.5.

The evolution (d) for the entire N∗
e interval is similar to plot (c).

6 The strong coupling approximation

It follows from configurations shown in tables 2 and 3 that quite different initial values

of scalar fields and parameters ξ1 and ξ2 appear in all cases in combination with a very

small value of hv. In all cases, but A4, the inflationary parameters practically coincide, see

figure 4 and table 4. In this section, we show that such a pattern can be explained in the

framework of the so-called “strong coupling approximation”. It has been shown in a large

number of analyses [89–97] that there are several classes of the single-field inflationary

models such that within a given class all models predict the same values of observable

parameters ns and r in the leading 1/Ne approximation. These classes are known as

cosmological attractors. A similar analysis of two-field inflationary models has been made

in [29, 98]. For string-motivated supergravity theory in which both the field-space metric

and the potential usually have poles at the same points, the inflationary dynamic and the

corresponding attractor have been studied [99]. The idea of a cosmological attractor is
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(a) (b)

Figure 4. (a) Evolution of the slow-roll parameters ε (light green line), |ησσ| (dashed orange line),

scalar-to-vector ratio r (green line) and spectral index ns (red line) as a number of e-foldings before

the end of inflation N∗
e ; (b) (ns,r) contour at 55 ≤ N∗

e ≤ 65.

based on an observation that the kinetic term in Jordan frame practically does not affect

the slow-roll parameters if the “strong coupling regime” is respected during inflation. In

the case of multifield models the field system is in the SC regime if the following inequality

is respected:

δIJ∂µφ
I∂νφ

J � 3

f(φK)
f,If,J∂µφ

I∂νφ
J . (6.1)

In the approximation of eq. (6.1) the action given in eq. (3.3) can be written as

SE =
M2

Pl

2

∫
d4x
√
−g
[
R− 3gµν

2f2(φK)
f,If,J∂µφ

I∂νφ
J −

M2
PlV (φI)

2f2(φI)

]
(6.2)

and rewritten in the equivalent form

SE =

∫
d4x
√
−g

[
M2

Pl

2
R− gµν

2
∂µ

[√
3

2
MPl ln

(
f

f0

)]
∂ν

[√
3

2
MPl ln

(
f

f0

)]
−
M4

PlV

4f2

]
,

where f0 is a positive constant with the same dimension as f . The role of inflaton in the

strong coupling approximation is performed by the “effective field”

Θ =

√
3

2
MPl ln

(
f

f0

)
, (6.3)

in terms of which the action SE includes the standard kinetic term of Θ and does not include

kinetic terms of any other scalar fields which can be interpreted as model parameters. This

circumstance allows one to calculate the inflationary parameters in the SC approximation

using the single-field model. If we adjust Θ in such a way that Θ = 0 corresponds to Ω0 = 0

and Ω± = 0, then f0 = M2
Pl/2.

The single-field model consistent with the above-mentioned scenarios A and B (see

tables 2 and 3) can be easily defined. In the scenario A we set φ5 = hv = 0 during
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inflation, while in the scenario B (except B4) one can observe that inflation starts when

h2
v �

4∑
I=1

(
φI
)2
.

We do not consider the case B4 here. In all other cases we can neglect hv and write the

potential in the form

Vsc = m2
2

(
Ω2

0 + Ω2
±
)

+ ν1

(
Ω2

0 + Ω2
±
)2
.

The function f is approximated by

fsc =
M2

Pl

2
+
ξ1

2

(
Ω2
± + Ω2

0

)
(6.4)

and thereby

Vsc =
m2

2

ξ1

(
2f −M2

Pl

)
+
ν1

ξ2
1

(
2f −M2

Pl

)2
, (6.5)

so the Einstein frame potential can be written as follows

Wsc =
M4

Pl

(
M2

Pl − 2fsc

)
[(M2

Pl − 2fsc)ν1 −m2
2ξ1]

4f2
scξ

2
1

. (6.6)

Using m2
2ξ1 �M2

Plν1 we get from eq. (6.6)

Wsc '
M4

Plν1

ξ2
1

(
M2

Pl

2fsc
− 1

)2

=
M4

Plν1

ξ2
1

(
1−

M2
Pl

2f0
e−
√

6Θ/(3MPl)

)2

. (6.7)

The slow-roll parameters are

ε =
M2

Pl

2

(
W ′Θ
W

)2

=
4

3

(
e
√

6Θ/(3MPl) − 1
)−2

, η = M2
Pl

W ′′Θ
W

=
4
(
e
√

6Θ/(3MPl) − 2
)

3
(
e
√

6Θ/(3MPl) − 1
)2 .

With these analytic expressions for the slow-roll parameters in the SC approximation the

inflationary parameters can be easily calculated. It is convenient to express the inflationary

parameters as a functions of fsc

ns = 1−
8M2

Pl

(
M2

Pl + 2fsc

)
3
(
M2

Pl − 2fsc

)2 , r =
64M4

Pl

3
(
M2

Pl − 2fsc

)2 . (6.8)

Straightforward numerical cross-checks demonstrate that the ratio

Csc =

∣∣∣∣∣f(φK)δIJ φ̇
I φ̇J

3f,If,J φ̇I φ̇J

∣∣∣∣∣ (6.9)

is less than 7×10−5 in the scenario A and 2×10−4 in the scenario B, so the SC approxima-

tion is meaningful. It is demonstrated in table 5 that in all cases the values of inflationary

parameters r and ns calculated using eq. (6.8) are close to the parameter values that

have been found numerically in section 5. Note in this connection that the primordial
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Scenario fin/M
2
Pl r ns

A1 43.346 0.00291 0.96815

A2 44.834 0.00271 0.96925

A3 44.937 0.00270 0.96932

A4 44.125 0.00280 0.96874

B1 45.123 0.00268 0.96945

B2 45.024 0.00269 0.96938

B3 45.266 0.00266 0.96955

Table 5. The inflationary parameters in the strong coupling approximation calculated at hv = 0,

mZ = 0 and mA = 0.

non-Gaussianities which do not arise in the single-field inflationary models should be very

small in the case under consideration as soon as the reduction to a single-field scenario is

precise enough. It should be mentioned that fin/M
2
Pl close to 44 is not a sufficient condition

for an inflationary scenario with suitable values of ns and r. For a large number of initial

data with such values of fin/M
2
Pl, but beyond the abovementioned A and B type scenarios,

acceptable inflationary evolution is not observed.2

7 Summary

In this paper we constructed a MSSM-inspired extension of the original Higgs-driven in-

flation [9–15] using the two-Higgs-doublet potential of the MSSM which is simplified in

a way suitable for calculation of transparent symbolic and numerical results for the main

observables, the spectral index ns and the tensor-to-scalar ratio r. The shape of the MSSM

potential surface in the Einstein frame where ridges and bumps influence the trajectory

in the fields space is different from the usual form in models of hybrid inflation. The

model under consideration incorporates multiple non-minimally coupled scalar fields and

non-canonical kinetic terms in the Einstein frame which are induced by the curvature of

the field-space manifold. For these reasons, the evolution of fields is generically different

from slow-roll, at least for some time interval during inflation.

The analysis of the background inflation dynamics demonstrated that after setting up

the initial conditions for the five-dimensional field configuration such simplified MSSM-

inspired model successfully describes the Higgs-driven inflation consistently with the ob-

servations of the Planck and BICEP2 collaborations. Two types of consistent inflationary

scenarios are found with the initial conditions denoted as A and B, see table 1, which

demonstrate the remarkable stability of the observables with respect to the shift of the ini-

tial field system configuration. The main difference between these two cases is the presence

of rapid field oscillations in the initial phase of case B before the beginning of inflation,

2The initial conditions Ω± = 0 and both hv and Ω0 nonzero lead to exotic situation when the field

trajectory rapidly (after ∼ 0.05 e-foldings) rolls into the gully h2
v = Ω2

0 (see figure 1(b)). This direction is

not absolutely flat (the case when critical points are degenerate and not isolated [100]), but so close to flat

that cannot be analysed by numerical methods. Simple estimate with fin = 45 and ξ1 + ξ2 ∼ 2 · 103 gives

an extremely long slow-roll with the number of e-foldings of the order of 1012.
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while oscillations are absent in case A. During the period of cosmological evolution which

determines the observables, hv field is negligibly small so the value of ξ2 parameter prac-

tically does not influence the result and in the MSSM-inspired model degenerate values of

ξ1 and ξ2 are always meaningful. Inflation occurs for field values much smaller than the

Planck scale, although no suitable expansion scenario was found for initial state when hv,

Ω0 and Ω± are very small at the same time. In all cases trajectories of the system do not

turn steeply in the field space, so specific features of the potential like bumps and ridges

are not expected to induce primordial non-Gaussianities with a magnitude large enough to

be detectable in the cosmic microwave background.

Multifield model under consideration demonstrates rather strong attractor behavior

and can be mapped to the single-field model with the effective inflaton field defined by

eq. (6.3). Such models share very close results for the spectral index and the tensor-to-

scalar ratio in combination with negligible non-Gaussianity, which are in good agreement

with the latest experimental data.

In conclusion let us also note that an important point beyond our analysis is the stabil-

ity of results with respect to radiative corrections. The flatness of the effective potential in

the region of the field amplitudes of the order of MPl is an essential property for a suitable

slow-roll. While the quantum gravity corrections are expected to be rather small of the or-

der of V/M4
Pl ∼ g2

p/ξ
2, the corrections induced by the SM fields and the superpartner fields

involved in the F and D soft supersymmetry breaking Lagrangian terms require careful

analysis which is dependent on the MSSM parametric scenario under consideration. For ex-

ample, in the “natural MSSM scenario” which is used for LHC analyses the superpartners of

quarks show up at the multi-TeV scale, while gauginos decouple. At the one-loop resummed

level the superpartner threshold corrections to the two-doublet MSSM potential are ex-

pressed by Coleman-Weinberg terms ∆V = 1/(64π2)Sp[(V
′′
(φ))2(log(V

′′
(φ)/µ2) − 3/2)],

where second derivatives taken at the local minimum of Higgs potential are equal to masses

of scalars. Nontrivial significant contributions are provided in the higher orders of per-

turbation theory by nonrenormalizable operators [101]. Fermionic and bosonic loops give

contributions of different signs which could partially compensate each other. Contributions

of the SM vector bosons and fermions are smaller than the MSSM ones because of small

gauge and Yukawa couplings, so main corrections from the third generation of quark super-

partners interacting with Higgs isodoublets must not spoil a small slope of the potential.

Important correction can be provided also by the renormalization group (RG) evolution

of ξ non-minimal couplings from the top quark scale to the MPl scale. RG evolution gives

at least a factor of two for the value of ξ in the framework of SM Higgs-driven inflation,

but moderate changes of the order of ten percent in the inflationary region. Models which

are described by the RG-improved effective action [102–104] should provide an improved

precision for observables. Careful MSSM evaluations which are beyond our analysis are

appropriate in order to ensure stability of results.
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A General action for non-minimal Higgs interactions in the MSSM

In the general case one can write the action for non-minimal interaction of the MSSM

Higgs doublets with gravity in the form (here we redefine f(Φ̃1, Φ̃2) =
M2

Pl
2 [1 + %(Φ̃1, Φ̃2)])

S =

∫
d4x
√
−g
{
M2

Pl

2

[
1 + %(Φ̃1, Φ̃2)

]
R− gµνGIJ∂µΦ̃†I∂νΦ̃J − V(Φ̃1, Φ̃2)

}
, (A.1)

where

GIJ =

(
G11 G12

G21 G22

)
,

%(Φ̃1, Φ̃2) =
∑
a,b

ξ̂ab(Φ̃
†
aΦ̃b) +

∑
a,b,c,d

ẑabcd(Φ̃
†
aΦ̃b)(Φ̃

†
cΦ̃d) + . . . ,

V(Φ1,Φ2) = −
∑
a,b

µ̂ab(Φ̃
†
aΦ̃b) +

∑
a,b,c,d

λ̂abcd(Φ̃
†
aΦ̃b)(Φ̃

†
cΦ̃d).

One can find some (may be non-unitary) transformation Φ̃a → Φa = UabΦ̃b to diagonalize

GIJ → δIJ , so Uab is

U †acG
cdUdb = δab.

After such transformation the action can be written as

S =

∫
d4x
√
−g
{
M2

Pl

2
[1 + ρ(Φ1,Φ2)]R− gµνδIJ∂µΦ†I∂νΦJ − V (Φ1,Φ2)

}
, (A.2)

where

ρ(Φ1,Φ2) =
∑
a,b

ξab(Φ
†
aΦb) +

∑
a,b,c,d

zabcd(Φ
†
aΦb)(Φ

†
cΦd) + . . . ,

V (Φ1,Φ2) = −
∑
a,b

µab(Φ
†
aΦb) +

∑
a,b,c,d

λabcd(Φ
†
aΦb)(Φ

†
cΦd).

Thus one can always start with the action in the form (A.2) or (2.3) without loss of

generality.

B Higgs potential in the mass basis

The potential given in eq. (2.2) can be written in terms of the mass eigenstates, which are

massless Goldstone fields G0, G+, G− and massive Higgs bosons h, H0, A, H+, H−,3 in

the following form

V (h,H0, A,H±, G0, G±) =
m2
h

2
h2 +

m2
H

2
H2

0 +
m2
A

2
A2 +m2

H±H+H− + I3 + I4,

3For convenience, we rewrite H±, G0, and G± as H±, G0, and G±, correspondingly.
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where

I3 =
v

8

(
g2
p

{
sα+β [c2αh

3 + c2βh(A2 −G2
0 − 2G−G+)]

+ cα+β [c2αH
3
0 − c2βH0(A2 −G2

0 − 2G−G+)]

+
hH0

2
[(cα−β − 3c3α+β)h− (sα−β + 3s3α+β)H0]

+ 2s2βAG0(sα+βh− cα+βH0)

}
+ 2ig2

2A(H+G− −H−G+)

+ h[(g2sα−β + g2
psα+3β)H+H− − (g2

mcα−β + g2
pcα+3β)(H+G− +H−G+)]

− H0[(g2cα−β + g2
pcα+3β)H+H− + (g2

msα−β + g2
psα+3β)(H+G− +H−G+)]

)
,

I4 =
g2
p

8

{
− s4β

[
AG0(G+G− −H+H−) +H+G+(G2

− −H2
−)

+H−G−(G2
+ −H2

+) +
G2

0 −A2

2
(AG0 +H+G− +H−G+)

]
− 2c4βH+H−G+G− + s2

2β(G2
+H

2
− +G2

−H
2
+)

+ c2
2β

[
G4

0 +A4

4
+G+G−(G+G− +G2

0) +H+H−(H+H− +A2)

]
+ [c2β(A2 −G2

0) + 2s2βAG0]

[
c2α

(h2 −H2
0 )

2
+ s2αhH0

]
+

1

4

[
(1− 3c4α)h2H2

0 + (1− 3c4β)A2G2
0 + c2

2α(h4 +H4
0 ) + 2s4αhH0(h2 −H2

0 )
]}

+ i
g2

2

4
(H−G+ −H+G−)[sα−β(hA+H0G0) + cα−β(hG0 −H0A)]

+
1

4

[
(g2

1s
2
2β − g2

2c
2
2β)AG0(H−G+ +H+G−)− (g2

1c2βs2α + g2
2s2βc2α)hH0G+G−

]
+

1

16

[
(2g2

2 + g2
mc2(α−β) − g2

pc2(α+β))(h
2G+G− +H2

0H+H−)

+ (2g2
2 − g2

mc2(α−β) + g2
pc2(α+β))(H

2
0G+G− + h2H+H−)

− (g2 + g2
pc4β)(H+H−G

2
0 +G+G−A

2)
]

+
1

8
(g2

1s2βc2α + g2
2c2βs2α)(h2 −H2

0 )(H+G− +H−G+)

+
hH0

8

[
(g2
ps2(α+β)−g2

ms2(α−β))H+H−−(g2
pc2(α+β)+g2

mc2(α−β))(H−G+ +H+G−)
]
,

m2
h = m2

Zs
2
α+β+m2

Ac
2
α−β , m2

H = m2
Zc

2
α+β+m2

As
2
α−β , m2

H± = m2
A +m2

W , mW =
v

2
g2,

sinα = sα, etc., and

g2
p = g2

1 + g2
2, g2

m = g2
2 − g2

1, g2 = g2
1 − 3g2

2.
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