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1 Introduction

F-theory [1–3] provides a fascinating geometric picture of fundamental forces and matter.

Gauge interactions, matter fields and their interactions are all encoded in the singularities

of elliptically fibered Calabi-Yau (CY) manifolds: codimension-one singularities determine

non-Abelian gauge groups, codimension-two singularities yield the representations of mat-

ter fields [4, 5] and codimension-three singularities their Yukawa couplings [6].

Although the main ingredients of F-theory have been known for two decades, significant

progress towards realistic low energy effective theories have only been made much later by

searching for F-theory vacua that incorporate higher-dimensional grand unified theories

(GUTs) [6–10]. Making use of the geometry of del Pezzo surfaces and U(1) fluxes of

intersecting D7-branes, an interesting class of semi-realistic local GUT models has been

constructed (for reviews, see [11–13]). These local models were then extended to global

GUT models which incorporate gravity, and therefore the full geometry of the CY manifolds

on which F-theory is compactified [14–16].

However, despite the remarkable progress in F-theory model building in recent years,

a number of important conceptual and phenomenological questions still remain open. In

fact, to the best of our knowledge, at present there is no fully satisfactory F-theory GUT

model, which would have to account for symmetry breaking to the standard model gauge

group, the matter content of the (supersymmetric) standard model, doublet-triplet split-

ting, sufficiently suppressed proton decay, supersymmetry breaking and semi-realistic quark

and lepton mass matrices. For example, the usually employed hypercharge flux breaking

generically leads to massless exotic states [17, 18], although this might be avoided in some

models [19] based on a classification of SU(5)×U(1) matter charges accomplished in [20].

Important progress has been made towards implementing Wilson line breaking [21] but a

realistic model still remains to be found. Note that interesting supersymmetric extensions

of the Standard Model have also been obtained without the GUT paradigm [22–25].

The present paper was motivated by a six-dimensional (6d) supergravity (SUGRA)

model with gauge group SO(10)×U(1) [26], based on previous work on orbifold GUTs with

Wilson lines [27–30]. U(1) gauge flux in the compact dimensions plays an important twofold
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role. It generates a multiplicity of quark-lepton generations, and it breaks supersymme-

try [31]. Compactifying to four dimensions, this leads to multiplets split with respect to

either supersymmetry or the GUT symmetry, a picture reminiscent of ‘split supersymme-

try’ [32, 33] or ‘spread supersymmetry’ [34]. From heterotic string compactifications it is

known that six-dimensional SUGRA theories can emerge as an intermediate step in the

compactification to four dimensions [35–38]. 6d string vacua with GUT gauge symmetries

have also been extensively studied in F-theory (for reviews see, e.g. [39, 40]). It is then

natural to ask whether models of this type can be embedded into F-theory or whether

they belong to the ‘swampland’ [41]. In this work we therefore classify a set of 6d global

F-theory models with gauge group SO(10) and some additional gauge factors of small rank.

Recently, F-theory was also used as an efficient tool to describe more exotic phenom-

ena like tensionless strings in a consistent manner. These sectors are realized in F-theory

fibrations where the fiber develops a so-called (4,6,12) singularity in codimension-two in

the base. In six dimensions these singularities have a physical interpretation in terms of

superconformal field theories [42] related to tensionless strings [43]. Following [44] we refer

to these singularities as superconformal points (SCP). They can be viewed as pairs of col-

liding singularities, which can be separated by blow-ups in the base. These blow-ups yield

new tensor multiplets and one obtains a CY manifold without SCPs [45]. The new tensors

couple to the string with a coupling strength given by the size of the blow-up cycle. When

the fiber is fully resolved in codimension one it becomes non-flat over these codimension-

two points [46–48]. This means that the dimension of the fiber jumps and contains higher

dimensional components. In [46] it was then observed that the presence of (4,6,12) singu-

larities implies non-flatness of the resolved fibration. These points are more likely to be

present in theories with large gauge groups, such as SO(10). Hence, as we are considering

resolved SO(10) models, we indeed encounter many theories with superconformal points,

present as non-flat fibers in codimension two. In this analysis we also study these theo-

ries, i.e. matter representations, anomaly cancellation and relations to other theories via

tensionless string transitions [45] in global F-theory models over an arbitrary base.

In the following we systematically study 6d F-theory with gauge symmetry SO(10) and

additional low-rank group factors. Our starting point is the base-independent analysis of

all toric hypersurface fibrations in [49], together with the classification of all tops leading to

non-Abelian gauge groups in [50]. Some global SO(10) models have already been studied

in [51–53]. In our work we extend this to all toric models with torus fibrations described

by a single hypersurface, which includes fibrations with discrete groups, Mordell-Weil U(1)

factors [54] and additional non-Abelian gauge groups over arbitrary bases.1

In our analysis of the 6d F-theory vacua we determine the complete massless matter

spectra, including all SO(10) singlets and non-flat fibers points, i.e. SCPs, using geometric

computations only. For all theories we confirm cancellation of gauge and gravitational

anomalies and we provide the anomaly coefficients base-independently. We find a total

number of 36 different models with additional U(1) symmetries up to rank three, as well

1Independent of the construction a classification of 10-plet matter charges in SO(10)× U(1) theories

was provided in [55].
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as Z2 and Z3 discrete symmetries that are of possible phenomenological interest after

further compactification to four dimensions. In particular for the models with discrete

gauge symmetries, we compute singlet multiplicities and discrete charges of SO(10) matter

multiplets. Furthermore, we discuss the connection of fibrations with different SO(10) tops

via conifold transitions in the generic fiber.

In total around 80% of the models contain SCPs, for which the fiber becomes non-

flat. For those theories we carry out a base-independent blow-up procedure and provide the

anomaly coefficients as well. In the computation of the full spectrum, we find an important

new contribution of non-toric Kähler deformations coming from the non-flat fiber points

that correspond to 6d tensors and have to be taken into account for the correct counting

of neutral singlets. Furthermore, we show that theories with non-flat fibers are connected

to tops that have points in the interior of a face which can often be reached via tensionless

string transition from another top with no superconformal points. In these transitions we

again show the appearance of non-toric Kähler deformations in the fiber in the computation

of base-independent Euler numbers. In particular we discuss these transitions for the first

time in global theories with additional (discrete) Abelian gauge factors over an arbitrary

base.

Our analysis is strongly based on previous studies of SU(5) vacua [47, 56–60]. In

section 2 we describe the various steps of the calculation in detail for one example, a

torus given by the polygon F3 [61], which allows for a U(1) factor. Fibering the ambient

space XF3 over P1, we construct a K3 manifold which can be tuned to have an SO(10)

singularity according to the Kodaira classification [62]. Resolving this singularity with an

SO(10) top produces five P1s which, together with the torus, show the intersection pattern

of the extended SO(10) Dynkin diagram. Particular emphasis is given to the symmetry

enhancements at codimension-two and codimension-three singularities, which yield the loci

of matter fields and Yukawa couplings.2 We find the standard pattern of extended Dynkin

diagrams but also some non-Kodaira fibers generically present where matter curves self-

intersect [63, 64]. To complete the analysis, the multiplicities of matter fields are computed

for the Hirzebruch base F0 = P1 × P1.

In section 3 a base-independent analysis is performed and the matter multiplicities are

evaluated as intersection numbers on the base. A challenging problem is the computation

of the SO(10) singlet spectra. We obtain the multiplicities of all charged and neutral

singlets. This is achieved by unhiggsing the gauge group SO(10)×U(1) to SO(10)×U(1)2

as an intermediate step where the computations are feasible.

Section 4 contains the main result of the paper, the classification and analysis of all

6d toric SO(10) vacua. We briefly review the structure of the fibers describing a torus in

different ambient spaces [61] and the SO(10) tops that can be added to the various poly-

gons [50]. In total there are 36 different models. Using the techniques that were exemplified

in section 2 and 3, we then calculate all matter representations, compute their multiplicities

and confirm cancellation of all anomalies in a base-independent manner for each model.

2Note that Yukawa couplings only occur in codimension 3 and hence do not appear in our 6d models;

however, since our analysis is base-independent, we can classify these points with our methods as well.
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A complete list of these data is given in appendix C. An interesting outcome of our clas-

sification is the frequent appearance of SCPs. We identify these points as an additional

source of (1,1)-forms in the fiber, which is important for counting all neutral degrees of

freedom. After the separation of the codimension-two colliding singularities via a blow-up

in the base we confirm cancellation of all anomalies in these theories as well. Moreover, we

discuss the connection of these theories via higgsings and tensionless string transitions.

Section 5 is devoted to 6d supergravity models with gauge group SO(10)×U(1) which

are phenomenologically promising. These models contain one charged 16-plet that yields

the quark-lepton generations as zero modes in an Abelian flux compactification, and addi-

tional uncharged 16-plets needed for B−L breaking. In addition, these models have several

neutral 10-plets which, via doublet-triplet splitting, yield two Higgs doublet superfields in

the 4d effective theory. We first consider the model in [26] and show that, after adding

charged and neutral SO(10) singlets, all anomalies can be canceled. This model, however,

is not contained in our classification and therefore belongs to the ‘toric swampland’. On the

other hand, variants of this model with charged 10-plets, which have additional vector-like

matter, can be obtained as 6d F-theory vacua.

A summary of our results and a brief discussion of unsolved challenging problems are

presented in section 6. Appendix A gives more details required for a full understanding of

the example discussed in section 2 and 3. In appendix B polynomials and divisor classes are

given for the fibers F2 and F4, as well as the expressions for the functions f and g needed

to obtain the elliptic curves in Weierstrass form. Appendix C contains the data of the

36 models contained in our analysis. Finally, in appendix D a list of phenomenologically

viable models is given.

2 A 6d vacuum with gauge group SO(10)×U(1)

In this section we discuss the explicit geometric construction of a specific global F-theory

model with gauge group SO(10)×U(1). Moreover, we evaluate its matter spectrum, Yukawa

couplings and anomaly coefficients in full detail.

2.1 Torus with non-trivial Mordell-Weil group

Our starting point is an elliptic curve E with a Mordell-Weil group of rank one, which yields

a U(1) gauge group when fibered over an appropriate base space. This is the case for the

torus contained in the two-dimensional toric ambient space dP1 which can be parametrized

by four homogeneous coordinates [u : v : w : e1], with two independent C∗ = (C − {0})
scale transformations modded out.

In order to obtain the elliptic curve E inside the ambient space dP1, one first chooses the

corresponding toric ambient space polygon [61], F3, where each homogeneous coordinate

is associated with a two-dimensional vector (see figure 1, table 1).

One then constructs the dual polygon F ∗3 which, together with F3, defines the polyno-

mial pF3 (see appendix A),

pF3 = s1u
3e2

1 + s2u
2ve2

1 + s3uv
2e2

1 + s4v
3e2

1 + s5u
2we1

+ s6uvwe1 + s7v
2we1 + s8uw

2 + s9vw
2 . (2.1)
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v

w

e1 u

Figure 1. The polygon F3 describing a torus in the ambient space dP1.

coordinates vertices divisor classes [v] [e1]

u (1,−1) [v] 0 1

v (−1, 0) [v] 0 1

w (0, 1) [ve1] 1 0

e1 (0,−1) [e1] 1 −1

Table 1. Coordinates, vertices, divisor classes and intersection numbers (charges of C∗-actions) for

the two-dimensional toric variety dP1.

This polynomial defines a torus in the toric ambient space,

E = {pF3 = 0} , (2.2)

with the coefficients s1, . . . , s9 being generic complex numbers. The vanishing of the ho-

mogeneous coordinates u, v, w and e1 defines four divisors

Du , Dv , Dw , De1 , (2.3)

where Dxi = {xi = 0}.
Since the ambient space dP1 is two-dimensional there are two linear dependencies,∑

i

QaiDxi ∼ 0 , a = 1, 2 , (2.4)

where Qai are the charges of the two C∗-actions. In table 1 we have also listed the in-

tersection numbers of the two divisor classes3 [v] and [e1] with all divisors. One easily

verifies that these intersection numbers play the role of the charges of the two C∗-actions,

xi → λQaixi with λ ∈ C∗, under which the polynomial pF3 transforms homogeneously.

Using the linear dependencies the two remaining divisor classes can be expressed in terms

of the two independent ones,

[u] = [v] , [w] = [v] + [e1] = [ve1] . (2.5)

3We indicate divisor classes by brackets [·].
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Figure 2. The elliptic curve E with two points, ŝ0 and ŝ1 (see text).

The torus E has a ‘zero-point’ P0 which is obtained as intersection4 with the divisor

De1 . On this divisor w can be set to one by a C∗-action (see appendix A), which yields for

the coordinates of P0

ŝ0 = De1 ∩ E : [s9,−s8, 1, 0] . (2.6)

There exists a second rational point P1 on the torus (see figure 2), which can be obtained

from the a tangent tP at P0 along the torus [49],

ŝ1 = {tP = 0} ∩ E , tP = s8u+ s9v . (2.7)

The Mordell-Weil group then defines an addition, P0 → P0 + P1 → P0 + 2P1 → . . .. For

a fibration of the torus over some base the points ŝ0 and ŝ1 become functions of the base

coordinates and define a divisor which corresponds to the generator of a continuous U(1)

symmetry. The divisor is obtained from [ŝ0] and [ŝ1] and can be written as [54]

σ1 ≡ [ŝ1]− [ŝ0] = [v]− [e1] , (2.8)

where we have represented the tangent tP by the divisor class [v].

2.2 K3 manifold

Now we describe the construction of a K3 manifold with an SO(10) singularity leading to

the desired gauge group of the model as well as its resolution to a smooth CY twofold.

Singular limit. We fiber the elliptic curve E over some base space, in the simplest

case a P1. This is achieved by extending the two-dimensional ambient space to a three-

dimensional ambient space for which we choose a polyhedron with vertices given in table 2.

The homogeneous coordinates of the base P1 are z0 and z1.

Like for the ambient space dP1, one can determine the dual polytope and the poly-

nomial pŶ2 that defines a CY twofold Ŷ2 via Ŷ2 = {pŶ2 = 0}. The polynomial pŶ2 turns

out to consist of 28 monomials corresponding to a smooth K3 manifold (see appendix A).

Tuning ten of them to zero yields the following factorization (see (2.1)):

s1 = d1z0 , s2 = d2z
2
0 , s3 = d3z

2
0 , s4 = d4z

3
0 , s5 = d5 ,

s6 = d6z0 , s7 = d7z0 , s8 = d8 , s9 = d9 .
(2.9)

4Such a torus is called elliptic curve.
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coordinates vertices divisor classes Cv Ce1 Cb
u (1,−1, 0) [vz0] 0 2 2

v (−1, 0, 0) [v] −2 1 2

w (0, 1, 0) [ve1z0] 1 0 3

e1 (0,−1, 0) [e1] 1 −2 1

z0 (0, 0, 1) [z0] 2 1 0

z1 (−1, 0,−1) [z0] 2 1 0

Table 2. Coordinates, vertices, divisor classes and intersection numbers (charges of C∗-actions) for

the three-dimensional toric variety dP1 fibered over P1.

The coefficients d1, . . . d9 are homogeneous functions of the base coordinates, di = di(z0, z1)

(see appendix A).5

For the three-dimensional toric variety dP1 fibered over P1 one can define curves as

intersections of divisors with the CY twofold Ŷ2. From the two independent divisor classes

[v] and [e1], and the base coordinate [z0], one obtains the curves6 Cv, Ce1 and Cb:

curves intersections coordinate patch

Cv v ∩ (d1e
2
1z0 + d5e1w + d8w

2) u = 1

Ce1 e1 ∩ (d8u+ d9v) w = 1

Cb z0 ∩ (d5e1u
2 + d8u+ d9v) z1 = 1

(2.10)

In table 2 we have listed the intersection numbers of these curves with fiber and base

divisors,7

[v] · Cv , [v] · Ce1 , [v] · Cb , . . . (2.11)

Note that the self-intersections of the divisors on the smooth CY twofold are [v] · Cv = −2

and [e1] · Ce1 = −2. Hence, these curves correspond to two P1s.

For the chosen values of the parameters of pŶ2 , and therefore the sections si, the CY

twofold Ŷ2 develops singularities that can be related to non-Abelian groups according to the

Kodaira classification. To study these singularities one first uses a standard procedure [65]

that brings the torus (2.1) to Weierstrass form,

F = −y2 + x3 + fx+ g = 0 . (2.12)

Here x and y are certain functions of the homogeneous coordinates u, v, w and e1, and the

coefficients f and g are functions of the base coordinates z0 and z1, di(z0, z1). Expanding

5More precisely, they are sections over the base P1.
6For simplicity, we denote divisors with the same name as the respective coordinates in equations for

intersections.
7For the calculations we used the coordinate patches listed in (2.10), which requires the choice of a

Stanley-Reissner ideal (SRI), see appendix A.
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the sections di (see (A.10)) around z0 = 0, di(z0, z1) = di + O(z0), and using eqs. (B.4)

and (B.5), we find

f = z2
0

(
−1

3
d2

5d
2
7 + z0R1 +O(z2

0)

)
,

g = z3
0

(
− 2

27
d3

5d
3
7 + z0R2 +O(z2

0)

)
,

(2.13)

where R1 and R2 are polynomials in the sections di. The torus is singular at a point (x, y)

when

F =
∂F

∂x
=
∂F

∂y
= 0 . (2.14)

This is the case when the discriminant ∆ vanishes,

∆ = 4f3 + 27g2 = 0 . (2.15)

From eqs. (2.13), (2.15) and the expressions for R1,2 one obtains

∆ = z7
0(P + z0R+O(z2

0)) , (2.16)

where

P = −d3
5d

3
7(d3d5 − d1d7)2d2

9 , (2.17)

and R is a generic polynomial of degree 16 in the di . Clearly, at the base coordinate z0 = 0

the torus is singular at (x, y) = (0, 0). The order (Ord) of this codimension-one singularity

is characterized by the power in z0 of f , g and ∆. From eqs. (2.13) and (2.15) we infer an

Ord(f, g,∆) = (2, 3, 7) singularity which corresponds to the gauge group SO(10) [62].

For a higher-dimensional base the sections di depend on additional coordinates and

can possibly vanish at certain points of the base where in addition to z0 one of the di’s

vanishes. According to eqs. (2.13) and (2.16) the vanishing of some di’s enhances the

singularity of the torus at z0 = 0. Generically, this corresponds to larger symmetries

according to the Kodaira classification.8 The relevant cases are summarized in table 3.

These codimension-two singularities9 will be analyzed in more detail in section 2.3.

Resolved K3 manifold. To analyze the gauge symmetries and the matter content

encoded in the singular K3 manifold, one has to resolve the singularities. This is achieved

by adding an SO(10) ‘top’ [66] to the polytope following the classification of [50]. Since the

gauge group has rank 5, five new coordinates are introduced, which yield five additional

divisor classes,

{D1, . . . , D5} = {[f2], [g1], [g2], [f3], [f4]} . (2.18)

8Note, however, that for these codimension-two singularities Kodaira’s classification does not necessarily

apply.
9Strictly speaking, a CY twofold has no codimension-two singularities. For simplicity we nevertheless

use this notion since we shall later consider an application to a CY threefold.
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locus Ord(f, g,∆) fiber singularity

z0 = 0 (2, 3, 7) SO(10)

z0 = d9 = 0 (2, 3, 8) SO(12)

z0 = d5 = 0 (3, 4, 8) E6

z0 = d7 = 0 (3, 4, 8) E6

z0 = d3d5 − d1d7 = 0 (2, 3, 8) SO(12)

Table 3. Codimension-one and codimension-two singularities of the CY twofold and the associated

symmetry groups.

The vertices of the polytope are listed in table 4. The dual polytope has 18 vertices (see

appendix A), and the sections si in the polynomial (2.1) take the form

s1 = d1z0f
2
2 f4g1 , s2 = d2z

2
0f

2
2 f3f4g

2
1g2 , s3 = d3z

2
0f2f3g1 ,

s4 = d4z
3
0f2f

2
3 g

2
1g2 , s5 = d5f2f4 , s6 = d6z0f2f3f4g1g2 ,

s7 = d7z0f3 , s8 = d8f2f3f
2
4 g1g

2
2 , s9 = d9f3f4g2 ,

(2.19)

where now the sections di depend on the coordinates z1 and z,

di = di(z, z1) , z = z0f2g
2
1g

2
2f3f4 . (2.20)

The polynomial (2.1) together with (2.19) defines a CY twofold Y2 where the singularities

of the tuned CY twofold Ŷ2 have been resolved. The divisor {z0 = 0} is now replaced by

the divisor {z = 0} which is the sum of the base divisor {z0 = 0} and the fiber divisors

{f2 = 0}, . . . , {g2 = 0}, i.e. {z = 0} differs from {z0 = 0} by the sum of the SO(10) Cartan

divisors. Correspondingly, for Y2 the divisors Dz and Dz1 belong to the same divisor class

(see table 4) whereas for Ŷ2 the divisors Dz0 and Dz1 belong to the same class (see table 2).

The polynomial obtained from eqs. (2.1) and (2.19) reads explicitly

pY2 = d1u
3e2

1z0f
2
2 f4g1 + d2u

2ve2
1z

2
0f

2
2 f3f4g

2
1g2 + d3uv

2e2
1z

2
0f2f3g1

+ d4v
3e2

1z
3
0f2f

2
3 g

2
1g2 + d5u

2we1f2f4 + d6uvwe1z0f2f3f4g1g2

+ d7v
2we1z0f3 + d8uw

2f2f3f
2
4 g1g

2
2 + d9vw

2f3f4g2 .

(2.21)

It defines a K3 manifold with resolved SO(10) singularity and will be the basis of the

following calculations.

The presence of additional exceptional divisors changes the linear dependencies. The

divisor classes [u] and [w] can now be written as (see appendix A)

[u] = [v] +D0 +D2 +D3 +D4 , (2.22)

[w] = [v] + [e1] +D0 −D3 −D4 . (2.23)

The intersection of the divisors Dv, De1 , D0, . . ., D5 with the CY twofold Y2 defines

a set of curves that are given in table 5. For each divisor certain coordinates can be set
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coordinates vertices divisor classes Cv Ce1 P1
0 P1

1 P1
2 P1

3 P1
4 P1

5

u (1,−1, 0) [vz0g1g2f3] 0 2 0 1 0 0 0 1

v (−1, 0, 0) [v] −2 1 1 0 0 0 1 0

w (0, 1, 0) [ve1z0g
−1
2 f−1

4 ] 0 0 0 0 0 1 0 1

e1 (0,−1, 0) [e1] 1 −2 1 0 0 0 0 0

f2 (1, 0, 1) D1 0 0 0 −2 1 0 0 0

g1 (1, 1, 2) D2 0 0 1 1 −2 1 0 0

g2 (1, 2, 2) D3 0 0 0 0 1 −2 1 1

f3 (0, 1, 1) D4 1 0 0 0 0 1 −2 0

f4 (1, 1, 1) D5 0 0 0 0 0 1 0 −2

z0 (0, 0, 1) D0 1 1 −2 0 1 0 0 0

z1 (−1, 0,−1) [z] 2 1 0 0 0 0 0 0

z [z] 2 1 0 0 0 0 0 0

Table 4. Coordinates, vertices, divisor classes and intersection numbers (charges of C∗-actions) for

the three-dimensional toric variety dP1 with SO(10) top, fibered over P1. The divisor [z] is given

by [z0f2g
2
1g

2
2f3f4].

to one (see appendix A), which simplifies the calculations.10 The intersection numbers of

divisor classes [xi] and curves Cj = xj ∩ pY2 correspond to the intersections of two divisors

on the CY twofold,

[xi] · Cj = Ci · [xj ] = [xi] · [pY2 ] · [xj ] . (2.24)

All intersection numbers are given in table 4. Note that self-intersection numbers of the

divisors on the CY twofold, i.e. the intersection numbers of the divisors [v], . . .,D5 with

the associated curves Cv, . . .,P1
5, are all equal to −2. The curves Cv and Ce1 are base P1s

whereas P1
0 to P1

5 lie in the fiber.

Particularly interesting are the intersections numbers of the divisors that were intro-

duced to resolve the SO(10) singularity. From table 4 one reads off

Di · P1
j = P1

i ·Dj = −(CSO(10))ij , i, j = 1, . . . 5 , (2.25)

where

CSO(10) =



2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 −1

0 0 −1 2 0

0 0 −1 0 2


(2.26)

10For a divisor {xi = 0} this is the case for coordinates that appear together with xi in the Stanley-

Reissner ideal.
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curves intersections coordinate patches

Cv v ∩ (d1e
2
1z0 + d5we1 + d8w

2f3) (u, f2, g1, g2, f4) = 1

Ce1 e1 ∩ (d8u+ d9v) (w, f2, g1, g2, f3, f4) = 1

P1
0 z0 ∩ (d8f2f3g1u+ d5e1f2u

2 + d9f3v) (w, f4, g2) = 1

P1
1 f2 ∩ (d7z0 + d9f4) (v, e1, w, f3, g2) = 1

P1
2 g1 ∩ (d7z0f3 + d5f2f4 + d9f3f4g2) (u, v, w, e1) = 1

P1
3 g2 ∩ (d3f3g1 + d1f4g1 + d7f3w + d5f4w) (u, v, e1, z0, f2) = 1

P1
4 f3 ∩ (d1z0g1 + d5w) (e1, u, f2, f4) = 1

P1
5 f4 ∩ (d4f2g

2
1g2 + d3f2g1u+ d7w) (v, e1, z0, f3) = 1

Table 5. Curves on the CY twofold Y2 defined as intersections of divisors with Y2. On each divisor

the coordinates enclosed in (. . .) can be set to one by C∗-actions.

P1
0

e1

P1
2 P1

3

vv P1
4

P1
5P1

1

Figure 3. The extended Dynkin diagram of SO(10) obtained from intersections of divisors DI and

curves P1
J , with I, J ∈ {0, . . . , 5}. Intersections of the torus divisors [e1] and [v] are also indicated.

is the SO(10) Cartan matrix. Hence, the divisors Di are referred to as Cartan divisors.

Together with the divisor D0 of the base coordinate z0, the Cartan divisors have the

intersection numbers corresponding to the extended Dynkin diagram of SO(10) (see table 4,

figure 3). One easily verifies that the intersection numbers of the 8 curves Cv,. . . ,P1
5 with

the 11 divisors [u],. . . ,[z1] represent the charges of the 8 C∗-scalings that leave the CY

twofold Y2 invariant.

The exceptional torus divisor [e1] only intersects the affine node,

[e1] · P1
I = (1, 0, 0, 0, 0, 0)I , I = 0, . . . , 5 , (2.27)

whereas the divisor [v] intersects the affine node and one Cartan divisor,

[v] · P1
I = (1, 0, 0, 0, 1, 0)I , I = 0, . . . , 5 . (2.28)

After the resolution of the singularity the divisor (2.8) of the U(1) symmetry has to

be modified such that it is orthogonal to the SO(10) Cartan divisors. It is then given by

the Shioda map [54],

σ(ŝ1) = [v]− [e1] + ([v]− [e1]) · P1
i (C

−1
SO(10))ijDj , (2.29)
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where C−1
SO(10) is the inverse Cartan matrix,

C−1
SO(10) =



1 1 1 1/2 1/2

1 2 2 1 1

1 2 3 3/2 3/2

1/2 1 3/2 5/4 3/4

1/2 1 3/2 3/4 5/4


. (2.30)

A straightforward calculation yields

σ(ŝ1) = [v]− [e1] +
1

4
(4D0 + 6D1 + 12D2 + 14D3 + 9D4 + 7D5) , (2.31)

and one easily verifies

σ(ŝ1) · P1
i = 0 , i = 1, . . . , 5 , (2.32)

i.e., the SO(10) roots do not carry U(1) charge, and the total symmetry group is indeed

SO(10)×U(1). On the other hand, the affine node P1
0 has a nonvanishing intersection with

the U(1) divisor,

σ(ŝ1) · P1
0 = 1 . (2.33)

The construction of a smooth CY twofold described in this section is summarized in

figure 4: the fibration of a torus with two points over a P1 yields a K3 manifold that can be

tuned to have a codimension-one singularity corresponding to the group SO(10). Adding

an SO(10) top to the fibered ambient space this singularity is resolved, leading to a smooth

K3 manifold. The new fiber consists of the torus and five additional P1s which represent

the resolution of the singularity. Finally, the Shioda map orthogonalizes the U(1) factor

with respect to the SO(10) Cartan divisors.

2.3 Matter splits

In the following we investigate the codimension-two singularities in the fiber, which occur

at the four loci listed in table 3. Here the SO(10) symmetry enhances to SO(12) or E6.

One or more P1s of the fiber split into several P1s whose intersections correspond to the

extended Dynkin diagram of the enhanced symmetry.

SO(12) matter locus d9 = 0. At this locus the equation for the curve P1
0 in table 5

changes. The polynomial representing the CY twofold factorizes into three terms which
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Tuning to singular K3

over z0 = 0

R
es
ol
vi
ng

sin
gu
la
rit
ie
s

Shioda map

Figure 4. The fibration of the torus E over P1 (top left) turns via tuning into a singular K3

manifold (top right). Resolution of the singularity generates five P1s with SO(10) intersections

(bottom left); after the Shioda map has been carried out, the U(1) divisor intersects the affine node

P1
0 (bottom right).

means that P1
0 splits into three curves:

nodes nodes after split

P1
0 → z0 ∩ (d5ue1 + d8g1f3) + z0 ∩ f2 + z0 ∩ u

≡ P1
0a + P1

0,2 + P1
0,u

P1
1 f2 ∩ (d7z0)

P1
2 g1 ∩ (d7z0f3 + d5f2f4)

P1
3 g2 ∩ (d1g1f4 + d3v

2g1f3 + d5wf4 + d7v
2wf3)

P1
4 f3 ∩ (d1z0g1 + d5w)

P1
5 f4 ∩ (d3uf2g1 + d4f2g

2
1g2 + d7w)

(2.34)

– 13 –



J
H
E
P
1
2
(
2
0
1
7
)
0
3
5

e1

P1
0,u

P1
0a

P1
0,2

P1
2 P1

3

P1
4

P1
5

Figure 5. Extended Dynkin diagram of SO(12) at the d9 = 0 locus. The affine node has an

intersection with [e1]. The dashed circles indicate SO(10) nodes before the matter split.

The other five P1s are not affected. One easily verifies that the new curves are again P1s

by calculating the corresponding self-intersection numbers:

P1
0a : [z0] · [ue1] · ([z0]− [f2]− [u]) = −2 ,

P1
0,2 : [z0] · [f2] · ([z0]− [ue1]− [u]) = −2 ,

P1
0,u : [z0] · [u] · ([z0]− [ue1]− [f2]) = −2 ,

(2.35)

where the split of the original P1
0 has been taken into account in the last divisor. One of

the split P1
0s is identical to one of the SO(10) P1

i s,

P1
0,2 = P1

2 , (2.36)

P1
0,u intersects with the exceptional torus divisor,

[e1] · P1
0,u = 1 , (2.37)

whereas

[e1] · P1
0a = [e1] · P1

0,2 = 0 . (2.38)

Hence, P1
0,u is the new affine node. The intersections of the new P1

0s are

P1
0,u ∩ P1

0,2 : [z0] · [u] · [f2] = 1 ,

P1
0,u ∩ P1

0a : [z0] · [ue1] · [u] = 0 ,

P1
0a ∩ P1

0,2 : [z0] · [ue1] · [f2] = 1 .

(2.39)

Together with the SO(10) P1s one obtains the extended Dynkin diagram of SO(12) (see

figure 5). The curve P1
0a extends the Dynkin diagram of SO(10) to the Dynkin diagram of

SO(12). P1
0a can be identified as matter curve,

P1
0a = Cωq , (2.40)

with Dynkin label and U(1) charge,

Di · P1
0a = ωi = (1, 0, 0, 0, 0)i , q = σ(ŝi) · P1

0a = 3/2 , (2.41)

corresponding to a 10-plet of SO(10). Since ω is the highest weight of the 10 representation,

all states can be obtained by adding SO(10) P1
i s, i = 1 . . . 5 to P1

0a, which corresponds to

the subtraction of roots αi from ω in the usual way.
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e1P1
0a

P1
0,4

P1
1 P1

2a P1
2,4 P1

3 P1
5

Figure 6. Extended Dynkin diagram of E6 at the d5 = 0 locus. The affine node intersects [e1].

The dashed ellipses indicate SO(10) nodes before the matter split. Two of the E6 nodes occur in

the split of two SO(10) nodes.

E6 matter locus d5 = 0. At this locus the curves P1
0, P1

2 and P1
4 split into two P1s each:

nodes nodes after split

P1
0 → z0 ∩ (d8uf2g1 + d9v) + z0 ∩ f3

≡ P1
0a + P1

0,4

P1
1 f2 ∩ (d7z0 + d9f4)

P1
2 → g1 ∩ (d7z0 + d9g2f4) + g1 ∩ f3

≡ P1
2a + P1

2,4

P1
3 g2 ∩ (d1g1f4 + d3g1f3 + d7wf3)

P1
4 → f3 ∩ z0 + f3 ∩ g1

≡ P1
0,4 + P1

2,4

P1
5 f4 ∩ (d3uf2g1 + d4f2g

2
1g2 + d7w)

(2.42)

The curve P1
0a is the only node which has nonvanishing intersection with [e1] and it therefore

represents the new affine node. The four new nodes all have nonvanishing U(1) charge and

the identification of the matter curve is unique up to complex conjugation and the addition

of SO(10) roots. We choose

P1
0,4 = Cωq , (2.43)

with Dynkin label and U(1) charge

Di · P1
0,4 = ωi = (0, 1, 0,−1, 0)i , q = σ(ŝ1) · P1

0,4 = 3/4 , (2.44)

corresponding to a 16-plet of SO(10). The remaining new P1s can then be written as linear

combinations of the matter curve and SO(10) roots,

P1
0a = −Cω3/4 + P1

0 ,

P1
2a = Cω3/4 − P1

4 + P1
2 ,

P1
2,4 = −Cω3/4 + P1

4 .

(2.45)
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e1P1
0

P1
2a

P1
5a P1

1,5 P1
2,5 P1

3 P1
4

Figure 7. Extended Dynkin diagram of E6 at the d7 = 0 locus. The affine node has an intersection

with [e1]. The dashed ellipses indicate SO(10) nodes before the matter split.

It is straightforward to calculate the intersections of the curves given in (2.42). As a

result one obtains the extended Dynkin diagram of E6 (see figure 6).

E6 matter locus d7 = 0. Here again an enhancement from SO(10) to E6 takes place.

This time the curves P1
2 and P1

5 split into two and three P1s, respectively:

nodes nodes after split

P1
0 z0 ∩ (d5u

2e1f2 + d8uf2g1f3 + d9vf3)

P1
1 f2 ∩ f4 ≡ P1

1,5

P1
2 → g1 ∩ (d5f2 + d9g2f3) + g1 ∩ f4

≡ P1
2a + P1

2,5

P1
3 g2 ∩ (d1g1f4 + d3g1f3 + d5wf4)

P1
4 f3 ∩ (d1z0g1 + d5w)

P1
5 → f4 ∩ (d3u+ d4g1g2) + f4 ∩ f2 + f4 ∩ g1

≡ P1
5a + P1

1,5 + P1
2,5

(2.46)

The affine node P1
0 is unaffected by the splits. The identification of the matter curve is

again unique up to complex conjugation and addition of roots. We choose

P1
2a = Cωq , (2.47)

with Dynkin label and U(1) charge

Di · P1
2a = ωi = (0,−1, 0, 0, 1)i , q = σ(ŝ1) · P1

2a = −1/4 , (2.48)

corresponding again to a 16-plet of SO(10). The other two new roots are linear combina-

tions of the matter curve and SO(10) P1s,

P1
2,5 = −Cω−1/4 + P1

2 , (2.49)

P1
5a = Cω−1/4 − P1

1 − P1
2 + P1

5 . (2.50)
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e1

P1
0

P1
1

P1
2

P1
3a P1

3b

P1
4

P1
3

P1
5

Figure 8. Extended Dynkin diagram of SO(12) at the d3d5 − d1d7 = 0 locus. The affine node

intersects with [e1]. The dashed ellipse indicates the SO(10) node P1
3.

Calculating the intersection numbers of all P1s one finds again the extended Dynkin diagram

of E6. This is displayed in figure 7 where also the split of the SO(10) P1s is indicated by

dashed ellipses.

SO(12) matter locus d3d5 − d1d7 = 0. Finally, at this locus a second enhancement

of SO(10) to SO(12) occurs. In this case only P1
3 splits into two P1s:

nodes nodes after split

P1
0 z0 ∩ (d5u

2e1f2 + d8uf2g1f3 + d9vf3)

P1
1 f2 ∩ (d7z0 + d9f4)

P1
2 g1 ∩ (d5f2f4 + d7z0f3 + d9g2f3f4)

P1
3 → g2 ∩ (d1g1 + d5w) + g2 ∩ (d1f4 + d3f3)

≡ P1
3a + P1

3b

P1
4 f3 ∩ (d1z0g1 + d5w)

P1
5 f4 ∩ (d3uf2g1 + d4f2g

2
1g2 + d7w)

(2.51)

One immediately identifies, up to complex conjugation, the matter curve

P1
3a = Cωq , (2.52)

with Dynkin label and U(1) charge

Di · P1
3a = ωi = (0, 1,−1, 0, 0)i , q = σ(ŝ1) · P1

3a = −1/2 , (2.53)

corresponding to a 10-plet of SO(10). The second new P1 is given by

P1
3b = −Cω−1/2 + P1

3 . (2.54)

The intersection number of all P1s yield the Dynkin diagram displayed in figure 8.

The symmetry enhancements and matter representations at all four matter loci are

summarized in table 6.

– 17 –



J
H
E
P
1
2
(
2
0
1
7
)
0
3
5

locus Ord(f, g,∆) fiber singularity representation

z0 = d9 = 0 (2, 3, 8) SO(12) 103/2

z0 = d5 = 0 (3, 4, 8) E6 163/4

z0 = d7 = 0 (3, 4, 8) E6 16−1/4

z0 = d3d5 − d1d7 = 0 (2, 3, 8) SO(12) 10−1/2

Table 6. Codimension-two loci, enhanced symmetry groups and matter representations.

2.4 Yukawa couplings of SO(10) matter

For completeness, we now consider Yukawa couplings of SO(10) matter. Tuning two coef-

ficients of the polynomial (2.19) to zero, one finds further symmetry enhancements corre-

sponding to codimension-three singularities of a CY fourfold. At these loci three matter

curves intersect and Yukawa couplings are generated.

Let us first consider the locus z0 = d5 = d7 = 0, where also d1d7−d3d5 = 0. According

to table 6 at this locus three matter curves intersect, which leads to the Yukawa cou-

pling 163/416−1/410−1/2. It is instructive to study the matter splits, starting from (2.42)

or (2.46). The result reads:

nodes nodes after split

P1
0 → z0 ∩ (d8uf2g1 + d9v) + z0 ∩ f3 ≡ P1

0a + P1
0,4

P1
1 → f2 ∩ f4 ≡ P1

1,5

P1
2 → g1 ∩ g2 + g1 ∩ f3 + g1 ∩ f4 ≡ P1

2,3 + P1
2,4 + P1

2,5

P1
3 → g2 ∩ g1 + g2 ∩ (d1f4 + d3f3) ≡ P1

2,3 + P1
3b

P1
4 → f3 ∩ z0 + f3 ∩ g1 ≡ P1

0,4 + P1
2,4

P1
5 → f4 ∩ (d3u+ d4g1g2) + f4 ∩ f2 + f4 ∩ g1 ≡ P1

5a + P1
1,5 + P1

2,5

(2.55)

Now all six SO(10) P1s split, yielding eight P1s some of which occur twice. These P1s

provide links between the chains of P1s into which the original SO(10) P1s split. These

links determine the intersection pattern of all P1s and as a result one easily obtains the

extended Dynkin diagram of E7 shown in figure 9. The affine node is again indicated by

the intersection with the divisor [e1], and the dashed ellipses indicate the SO(10) P1s before

the matter splits.

At the locus z0 = d9 = 0 we have chosen the representation 103/2 as matter curve.

Alternatively, we could have chosen the complex conjugate representation 10−3/2 as matter

curve. In this case a Yukawa coupling 163/4163/410−3/2 can be generated at the locus z0 =

d5 = d9 = 0, where we find a non-Kodaira fiber. The intersections of the P1s are displayed

in figure 10, which is reminiscent of the extended E7 Dynkin diagram, with a missing node

in the middle. Such an intersection pattern has previously been observed in [63].

Anticipating d8 = d9 = 0 as locus of singlets with charge three (see (3.5)), we note that

at z0 = d8 = d9 = 0 a Yukawa coupling 10−3/210−3/213 can be generated. We again find a

codimension-three singularity that is not of Kodaira type. The intersection pattern of the
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e1

P1
0a

P1
0 P1

4

P1
0,4 P1

2,4 P1
2,3 P1

2,5 P1
1,5 P1

5a

P1
3bP1

2

P1
3

P1
5

Figure 9. Extended Dynkin diagram of E7 at the locus z0 = d5 = d7 = 0 with Yukawa coupling

163/416−1/410−1/2; the affine node intersects with [e1], the dashed ellipses indicate the SO(10) P1s

before the matter splits.

e1

P1
0,u P1

0,1 P1
0,2 P1

2,4 P1
3 P1

5

P1
0,4P1

0

P1
1

P1
4

P1
2

Figure 10. P1 intersection pattern at z0 = d7 = d9 = 0; non-Kodaira singularity with Yukawa

coupling 163/4163/410−3/2.

e1

P1
0,e1

P1
0

P1
1

P1
0,u P1

0,1 P1
2 P1

3

P1
4

P1
5

Figure 11. P1 intersection pattern at z0 = d8 = d9; non-Kodaira singularity with Yukawa coupling

10−3/210−3/213.

P1s is shown in figure 11. It represents the (non-affine) Dynkin diagram of SO(14). The

torus divisor [e1] wraps the affine node entirely, corresponding to an intersection number

−1, which is indicated by a striped circle. A similar pattern has previously been observed

in [63]. Finally, at the locus z0 = d3d5 − d1d7 = d7 = 0 we find the intersection pattern of

P1s shown in figure 12, which is the non-affine Dynkin diagram of E7. The corresponding

Yukawa coupling is 16−1/416−1/4101/2.

2.5 Calabi-Yau threefold and matter multiplicities

So far we have analyzed the fibration of a torus over a P1 base space, which gave us the

gauge group SO(10)×U(1) and which allowed us, after tuning, to anticipate loci of matter
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Figure 12. P1 intersection pattern at z0 = d3d5 − d1d7 = d7 = 0; non-Kodaira singularity with

Yukawa coupling 16−1/416−1/4101/2.

coordinates vertices

u (1, -1, 0,0)

v (-1, 0, 0 ,0)

w (0, 1, 0,0)

e1 (0, -1, 0,0)

f2 (1, 0, 1, 0 )

g1 (1, 1, 2,0)

g2 (1, 2, 2,0)

f3 (0, 1, 1,0)

f4 (1, 1, 1,0)

z0 (0, 0, 1 , 0)

z1 (-1, 0, -1,0)

z2 (-2,0,0,1)

z3 (0,0,0,-1)

Figure 13. The polytope formed by F3 and an SO(10) top with vertices listed in the table. The

polygon F3 is visible at height 0; four SO(10) vertices appear at height 1 and the other two at

height 2. The vertices corresponding to z1 and the coordinates z2, z3 of the second P1 are not

shown in the figure.

and Yukawa couplings. These all lie in the hyperplane of the GUT divisor Z, which is

the projection of [z0] to the base, and are furthermore characterized by the vanishing of

certain coefficients di of the polynomial pY2 . The di are polynomials in the base coordinates

z0 and z1 (see (A.10)). The multiplicities of the matter fields are fixed once the twofold

Y2 is extended to a threefold Y3. In the following we shall consider the simplest case

which corresponds to adding a second P1 with coordinates z2, z3. The coefficients of the

polynomials di(z0, z1) then also depend on the additional coordinates z2 and z3.
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For this specific case the full threefold geometry is given in figure 13. The polytope is

defined in a four-dimensional lattice Z4 with vertices vi = (v1
i , . . . , v

4
i ). A projection onto

the two-dimensional base space can be obtained by projecting onto the last two coordinates,

(v1
i , v

2
i , v

3
i , v

4
i )

π−→ (v3
i , v

4
i ) . (2.56)

The base coordinates now correspond to vertices in a Z2 lattice, z0 : (1, 0), z1 : (−1, 0),

z2 : (0, 1), z3 : (0,−1), which form the toric diagram of P1 × P1 = F0. This base space has

two divisor classes,

Z ∼ πB([z0]) ≡ H1 , [z2] ∼ [z3] ≡ H2 , (2.57)

with the intersection numbers

H2
1 = H2

2 = 0 , H1 ·H2 = 1 . (2.58)

From the dependence of the coefficients di on the base coordinates (see eq. (A.13)) one

can read off the relations11 between the divisors [di] and the base divisors H1 and H2.

The divisors [di] are effective, i.e. they are linear combinations of H1 and H2 with positive

coefficients,

[d1] ∼ 0 , [d2] ∼ 2H2 , [d3] ∼ H1 + 4H2 ,

[d4] ∼ H1 + 6H2 , [d5] ∼ H1 , [d6] ∼ H1 + 2H2 ,

[d7] ∼ 2H1 + 4H2 , [d8] ∼ H1 [d9] ∼ 2H1 + 2H2 .

(2.59)

Given the intersection numbers (2.58) one can also easily calculate the genus of the GUT

divisor Z,

g = 1− 1

2
([K−1

B ]−Z) · Z

= 1− 1

2
(2H1 + 2H2 −H1)H1 = 0 , (2.60)

where we have used that the anticanonical divisor is given by [K−1
B ] = 2H1 + 2H2. It is

no surprise that the GUT divisor Z is a genus-zero curve since it was just a point on the

one-dimensional base P1 of K3. It is an immediate consequence that the considered model

has no matter multiplets in the adjoint representation of SO(10).

Intersections of the GUT divisor with the four matter loci yield the multiplicities of

matter representations. For instance, for the 10-plet at z = d9 = 0, one has (cf. (2.59))

n[103/2] = [d9] · Z = (2H1 + 2H2) ·H1 = 2 . (2.61)

11A polynomial d ∼ zpzq1z
r
2z

s
3 implies the relation between the divisors [d] ∼ (p + q)H1 + (r + s)H2. If d

is a sum of several monomials, the degree in z0z1 is always p+ q and in z2z3 always r + s (see eq. (A.13)).
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For the other SO(10) representations, and the charged and neutral singlets one finds:

representation locus multiplicity

103/2 z = d9 = 0 2

163/4 z = d5 = 0 0

16−1/4 z = d7 = 0 4

10−1/2 z = 0 = d3d5 − d1d7 4

45 z = 0 0

11 V (I3) 2

12 V (I2) 36

13 V (I1) 76

10 51 + 1

T 1

(2.62)

A detailed, base-independent discussion of the singlet multiplicities will be given in sec-

tion 3.

SO(10) gauge fields live in a space of real dimension eight, defined by a GUT divisor of

codimension one. Similarly, SO(10) matter is located in a six-dimensional subspace defined

by the intersection of two divisors. Once we extend the CY threefold considered so far to a

CY fourfold, the matter points become matter curves which can intersect in the compact

dimensions, leading to the generation of Yukawa couplings. For the considered model this

generic pattern is illustrated in figure 14.

2.6 Anomaly cancellation

With the matter spectrum at hand we can check the vanishing of the irreducible anomalies

as well as the factorization of the remaining anomaly polynomial12 I8. We compute the

neutral singlets in (2.62) from the Euler and Hodge numbers of the threefold,

(h1,1, h2,1)χ = (9, 51)−84 , (2.63)

which we evaluated using SAGE and which coincides with the general formula given in ap-

pendix C. As expected, the nine Kähler deformations come from the six Cartan generators

of the gauge group, one from the torus and two from the base.

The theory contains V = 46 vector multiplets accounting for the gauge fields of the

group SO(10)×U(1), H = 290 hypermultiplets from the charged and uncharged fields

in (2.62), and a single tensor multiplet, T = 1. The irreducible gravitational part of the

anomaly polynomial then reads

I8 ⊃ −
1

5760
(H − V + 29T − 273)

(
trR4 +

5

4
(trR2)2

)
= − 1

5760
(290− 46 + 29− 273)

(
trR4 +

5

4
(trR2)2

)
= 0 ,

(2.64)

12For the normalization of the anomaly polynomial as well as its factorization we use the conventions

of [54, 67].
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z2

z4

Z

d5 = 0

d7 = 0

d3d5 − d1d7 = 0

Figure 14. In a complex three-dimensional space, SO(10) matter is represented by curves in the

plane Z, the locus of the SO(10) gauge fields. The curves of the matter fields 163/4 (z0 = d5 = 0),

16−1/4 (z0 = d7 = 0) and 10−1/2 (z0 = d1d7 − d3d5 = 0) intersect at the codimension-three E7

singularity z0 = d5 = d7 = d1d7 − d3d5 = 0.

i.e., it vanishes for the given field content.

Similarly, we can evaluate the irreducible non-Abelian part of the anomaly polynomial.

Rewriting the traces of adjoint representation, Tr, and spinor representation, tr16, in terms

of tr10 ≡ tr,

tr16 F̃
2 = 2 tr F̃ 2 , tr16 F̃

4 = − tr F̃ 4 +
3

4
(tr F̃ 2)2 ,

TrF̃ 2 = 8 tr F̃ 2 , TrF̃ 4 = 2 tr F̃ 4 + 3(tr F̃ 2)2 ,
(2.65)

we find

I8 ⊃
1

24

(
TrF̃ 4 − 4 tr16F̃

4 − 6 trF̃ 4
)

=
1

24
(2 + 4− 6) trF̃ 4 +

1

24
(3− 3)(trF̃ 2)2 = 0 ,

(2.66)

where F̃ denotes the SO(10) field strength. We see that for the given matter spectrum

even the reducible part vanishes. The remaining contributions to the anomaly polynomial

evaluated with the spectrum (2.62) are

I8 = − 1

16
(trR2)2 +

1

16
trR2 tr F̃ 2 +

99

32
trR2 F 2 − 3

2
trF̃ 2 F 2 − 153

4
F 4 , (2.67)
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with U(1) field strength F . This anomaly polynomial factorizes,

I8 = − 1

16

(
trR2 − trF̃ 2 − 51

2
F 2

)(
trR2 − 24F 2

)
. (2.68)

In the conventions of [67] and section 4.3 this corresponds to the anomaly coefficients

a =

(
2

2

)
, b =

(
−1

0

)
, b11 =

(
−51

4

−12

)
, (2.69)

which match the expressions derived from the general approach in section 4.3.

3 Base-independent matter multiplicities

In this section we extend the discussion for the specific base B = F0 given above to a

general base space. This allows us to derive base-independent expressions for the matter

multiplicities.

3.1 Counting singlets

In section 2.2 we have discussed codimension-two singularities where the GUT symme-

try SO(10) is enhanced to SO(12) or E6 and where matter multiplets are localized with

quantum numbers in the coset of SO(12)/SO(10) and E6/SO(10), respectively. However,

already the torus fibration E admits SU(2) singularities where SO(10) singlets occur as

matter fields with U(1) charge. Once the torus is fibered over a two-dimensional base these

singularities correspond to the loci of matter multiplets. For the tori corresponding to

the 16 ambient spaces, codimension-two singularities have been comprehensively analyzed

in [49] and the U(1) charges of the matter fields have been determined. Adding an SO(10)

top does not change the U(1) charges of the SO(10) singlet fields but it does affect their

multiplicities, which we shall study in this section.

Let us recall how one finds the loci of charged matter fields in the case without an

SO(10) top, following the discussion in [49]. In a first step one has to rewrite the torus

in Weierstrass form. The elliptic curve obtained from F3 has one rational point with

coordinates (x1, y1, z1). In this case the Weierstrass form can be written as [54]

F = −y2 + x3 + fx+ g = 0 ,

f = c− x̂2
1 , g = −cx̂1 − ŷ2

1 . (3.1)

Here c is a constant and we have used a C∗-action, (x, y, z) → (x̂, ŷ, 1) = (x/z2, y/z3, 1),

such that the coordinates of the rational point are (x̂1, ŷ1, 1). A singular point (x, y), with

F =
∂F

∂x
=
∂F

∂y
= 0 ,

occurs if the discriminant

∆ = 4f3 + 27g2

= (4c− x̂2
1)(c+ 2x̂2

1)2 + 54ŷ2
1cx̂1 + 27ŷ4

1 (3.2)
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vanishes. This happens for

ŷ1 = c+ 2x̂2
1 = 0 (3.3)

at (x̂, ŷ) = (x̂1, 0). From eqs. (3.1) and (3.2) we infer that at this point the torus has an

Ord(f, g,∆) = (0, 0, 2) singularity associated with the group SU(2). As expected we have

a codimension-two singularity as in the case of the matter loci discussed in section 2.2.

For a fibration of the torus over a two-dimensional base the two conditions (3.3) define

matter curves. Replacing c by the function f (see eq. (3.1)), and going back to homogeneous

coordinates, the two conditions can be written as

y1 = z4
1f + 3x2

1 = 0 . (3.4)

The coordinates x1, y1, z1 and f are known functions of the coefficients s1, . . . , s9 [49]. The

conditions (3.4) imply that two polynomials, P1(si) and P2(si), vanish. To find the corre-

sponding roots it is helpful to consider P1 and P2 as generators of a codimension-two ideal

and to decompose this into irreducible prime ideals. One finds three prime ideals, I1, I2 and

I3 whose zeros correspond to the loci V (I1), V (I2) and V (I3) of singlets with charge 3, 2 and

1, respectively. For the loci corresponding to the prime ideals I1 and I2 one obtains [49]:

singlet constraint

13 V (I1) : s8 = s9 = 0

12 V (I2) : s4s
3
8 − s3s

2
8s9 + s2s8s

2
9 − s1s

3
9

= s7s
2
8 + s5s

2
9 − s6s8s9 = 0

(s8, s9) 6= (0, 0)

(3.5)

Since the generators of the prime ideal I3 are polynomials of high order, the determination

of the corresponding zeros is technically nontrivial. This problem will be solved in the next

section by unhiggsing the SO(10)×U(1) fiber to an SO(10)×U(1)2 fiber.

In order to count the number of charge-two singlets one has to determine how often

the ideal I1 is contained in I2. This can be done by means of the resultant technique [68].

For the two polynomials Q1(s8, s9) and Q2(s8, s9) of the ideal I2 (see (3.5)) one defines the

resultant with respect to s8,

R = Ress8(Q1, Q2) , (3.6)

which is a polynomial in s9. The resultant has the property that for every root s9 = β of

R there exists a value s8 = α with Q1(α, β) = Q2(α, β) = 0. The explicit expression for

the resultant reads

R = s6
9(s2

4s
3
5 − s3s4s

2
5s6 + s2s4s5s

2
6 − s1s4s

3
6 + s2

3s
2
5s7 − 2s2s4s

2
5s7 − s2s3s5s6s7

+ 3s1s4s5s6s7 + s1s3s
2
6s7 + s2

2s5s
2
7 − 2s1s3s5s

2
7 − s1s2s6s

2
7 + s2

1s
3
7) .

(3.7)

Hence, R has a root of order 6 at s9 = 0, with Q1(0, 0) = Q2(0, 0) = 0. Correspondingly,

the ideal I1 is contained six times in the ideal I2. The singlet multiplicities are determined

by the intersection numbers of the base divisors. For the base F0 = P1×P1 of the previous

section one finds n[13] = [s8] · [s9], n[12] = [Q1] · [Q2]− 6[s8] · [s9].
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Adding the SO(10) top to the fiber changes the singlet multiplicities. As discussed in

section 2.2, the coefficients si now depend on the base coordinates, si = zni
0 di(z0, z1). This

implies that the ideals (3.5) for the singlet localization are modified:

singlet constraint multiplicity

13 V (I1) : d8 = d9 = 0 2

12 V (I2) : d4d
3
8z

2
0 − d3d

2
8d9z0 + d2d8d

2
9z0 − d1d

3
9

= d7d
2
8z0 + d5d

2
9 − d6d8d9z0 = 0

(d8, d9) 6= 0, (z0, d5) 6= 0, (z0, d9) 6= 0 36

(3.8)

Now the two polynomials Q1 and Q2 of the ideal I2 also depend on z0. Note that the two

polynomials, after imposing the factorization, factor out powers of z0 by which we have to

divide, as this leads to unwanted solutions over z0 = 0 where SO(10) charged multiplets are

localized. In order to find the number of singlets with charge q = 2, we have to subtract

the number of solutions of d8 = d9 = 0 as well as those of z0 = d9 = 0, z0 = d5 = 0,

z0 = d7 = 0 and z0 = d3d5 − d1d7 = 0, which correspond to SO(10) matter (see table 3).

The evaluation of the resultant with respect to z0 yields

Resz0(Q1, Q2) = d2
8d

3
9R̂ , (3.9)

where R̂ is a non-factorizable polynomial of degree five in the di. We conclude that the

locus z0 = d9 = 0 is contained three times in the ideal I2.13 Analogously, one can calculate

the resultant with respect to d9, which is given by

Resd9(Q1, Q2) = d6
8z

3
0(d2

3d
2
5d7 − 2d1d3d5d

2
7 + d2

1d
3
7 + d2

4d
3
5z0 − d3d4d

2
5d6z0

− 2d2d4d
2
5d7z0 − d2d3d5d6d7z0 + 3d1d4d5d6d7z0 + d1d3d

2
6d7z0

+ d2
2d5d

2
7z0 − d1d2d6d

2
7z0 + d2d4d5d

2
6z

2
0 − d1d4d

3
6z

2
0) (3.10)

The factor d6
8z

3
0 implies one solution d8 = d9 = 0 to order six, as in the case without

SO(10) top, and a second solution z0 = d9 = 0 to order three, which is consistent with the

resultant (3.9). For the base F0 = P1×P1 the number of charge-two singlets is then given by

n[12] = [Q1] · [Q2]− 6[d8] · [d9]− 3[z0] · [d9] = 36 , (3.11)

where we have used eqs. (2.57)–(2.59).

3.2 Parametrizing the base dependence

So far we have expressed singlet multiplicities in terms of intersection numbers of the base

divisors [di] and [z0]. In order to determine the multiplicities one has to specify a base and

calculate the intersection numbers. A convenient parametrization of the base dependence

has been given in [59, 68]. It has been used in the classification of all toric hypersurface

fibrations [49], and we shall also use it in our analysis of all toric 6d F-theory vacua with

SO(10) gauge symmetry.

13Note that also z0 = d8 = 0 appears to order two, but it does not correspond to an SO(10) matter locus

and therefore no subtraction is needed.
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The toric ambient space XF3 has four coordinates, u, v, w and e1, and the polynomial

pF3 depends on nine coefficients s1, . . . s9. For a fibration over a two-dimensional base all

these quantities become functions of the base coordinates. Equivalently, one can use the

two sections s7 and s9 to parametrize the base dependence. Furthermore, by means of two

C∗-actions one can achieve that only two coordinates, u and v, depend on s7 and s9, and

that this dependence is linear. In terms of divisors, one can demand [59, 68]:

[u]→ H + S9 −K−1
B , [v]→ H + S9 − S7 . (3.12)

Here H is the hyperplane class of the ambient space P2 of the fiber E , S7,9 = [s7,9] and

K−1
B is the anticanonical divisor class of the base, i.e. the sum of all base divisors. The

base dependence of the divisors [si] is determined by the Calabi-Yau condition, i.e. the

vanishing of the first Chern class, which reads in terms of divisors

[u] + [v] + [w] + [e1] +K−1
B − [pY3 ] = 3H + 2[e1]− S7 + 2S9 − [pY3 ] ∼ 0 , (3.13)

where the divisor [pY3 ] cuts out the CY threefold from the ambient space. The polynomial

pY3 is a sum of nine terms all of which have to belong to the same divisor class. Using (2.1)

for the polynomial pY3 and assuming a factorization with respect to z0, i.e. si = zni
0 di, one

obtains from the Calabi-Yau condition (3.13) the relations

[d1] ∼ 3K−1
B − S7 − S9 − n1Z , [d2] ∼ 2K−1

B − S9 − n2Z ,
[d3] ∼ K−1

B + S7 − S9 − n3Z , [d4] ∼ 2S7 − S9 − n4Z ,
[d5] ∼ 2K−1

B − S7 − n5Z , [d6] ∼ K−1
B − n6Z ,

[d7] ∼ S7 − n7Z , [d8] ∼ K−1
B − S7 + S9 − n8Z ,

[d9] ∼ S9 − n9Z .

(3.14)

For ni = 0 these relations reduce to the expressions for the sections si obtained in [59, 68].

Given the loci of the matter field representations, we can now list their multiplicities in

terms of the base divisor classes14 K−1
B , S7, S9 and Z:

representation locus multiplicity

10−1/2 z0 = d3d5 − d1d7 = 0 (3K−1
B − S9 − 2Z)Z

103/2 z0 = d9 = 0 S9Z
163/4 z0 = d5 = 0 (2K−1

B − S7)Z
16−1/4 z0 = d7 = 0 (S7 −Z)Z
45 z = 0 1− (K−1

B −Z)Z/2
13 V (I1) (K−1

B − S7 + S9)S9

12 V (I2)
6(K−1

B )2 +K−1
B (−5S7 + 4S9 − 2Z)

+S2
7 + S7(2S9 + Z)− S9(2S9 + 5Z)

11 V (I3)
12(K−1

B )2 +K−1
B (8S7 − S9 − 25Z)

−S2
9 − 4S2

7 + 6Z2 + S7(S9 + 4Z)

T 9− (K−1
B )2

(3.15)

14For simplicity we omit the dot indicating the intersection product of two divisor classes.
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The loci V (I1) and V (I2) are given in (3.8), the locus V (I3) will be determined in the

following section.

Given the base-independent multiplicities it is straightforward to compute the mat-

ter multiplicities for the base F0 = P1 × P1 that we considered in the previous section.

Comparing the expression for the divisors given in eqs. (3.14) with eq. (2.59) one obtains

K−1
B = 2H1 + 2H2 = S9 , S7 = 3H1 + 4H2 , Z = H1 . (3.16)

With the intersection numbers (2.58) and the base-independent expressions (3.15) one then

finds the matter multiplicities listed in (2.62).

3.3 Unhiggsing the fiber to SO(10)×U(1)2

Our computing power is not sufficient to directly evaluate the resultant of the ideal I3.

Hence, we use an elegant alternative way to obtain the multiplicities of the charged singlets

via unhiggsing SO(10)×U(1) to SO(10)×U(1)2. To this end one enlarges the ambient space

dP1 to dP2 by adding another blow-up point in the polygon of the fiber. The additional

vertex in figure 13 can be chosen as15 (1, 0, 0, 0). The polygon F3 is then changed to F5. It

is straightforward to determine the dual polytope and the polynomial defining the torus,

pF5 = s1u
3e2

1e
2
2 + s2u

2ve1e
2
2 + s3uv

2e2
2 + s5u

2we2
1e2

+ s6uvwe1e2 + s7v
2we2 + s8uw

2e2
1 + s9vw

2e1 .
(3.17)

Compared to (2.1) the polynomial pF5 depends on the additional coordinate and the term

proportional to s4 is missing. This is due to the fact that the polygon dual to F5 has less

vertices than the one dual to F3, which leads to one term less in the associated polynomial.

The elliptic curve E = {pF5 = 0} has three toric rational points, i.e. intersections with the

hypersurface, which read in terms of the coordinates [u : v : w : e1 : e2]:

ŝ0 = De2 ∩ E : [s9 : −s8 : 1 : 1 : 0] ,

ŝ1 = De1 ∩ E : [s7 : 1 : −s3 : 0 : 1] ,

ŝ2 = Du ∩ E : [0 : 1 : 1 : s7 : −s9] .

(3.18)

Again, the si are specialized coefficients that depend on SO(10) fiber coordinates as

well as on the base that we will specify in a moment. The Hodge numbers of the above

elliptically fibered threefold with the SO(10) top are given by

(h1,1, h2,1)χ = (10, 48)−76 . (3.19)

Hence, we indeed get one additional (1, 1)-form corresponding to the additional U(1) that

we traded for 8 complex structure moduli.

Adding the SO(10) top and the base F0 = P1×P1, the coefficients si become functions

of the additional coordinates. These are identical to the ones given in eq. (2.19), except

for s4 which is now missing. In particular one again finds the Ord(f, g,∆) = (2, 3, 7)

15In order to match the conventions in [49] we name e1 : (1, 0, 0, 0) and e2 : (0,−1, 0, 0).
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singularity in the base coordinate z0 for the Weierstrass form of the tuned K3 manifold

(see (2.13), (2.15)),

f = z2
0

(
−1

3
d2

5d
2
7 −

1

2
z0R1 +O(z2

0)

)
,

g = z3
0

(
− 2

27
d3

5d
3
7 + z0R2 +O(z2

0)

)
,

∆ = z7
0

(
−d3

5d
3
7(d3d5 − d1d7)2d2

9 + z0R+O(z2
0)
)
.

As expected, the gauge group SO(10) is unchanged and also the SO(10) matter multiplets

occur at the same codimension-two loci. Due to the three rational points we can now

construct two Shioda maps, corresponding to two U(1) factors. It is straightforward to

compute their intersections with the matter curves yielding their U(1) charges. We obtain:

representation locus

10−1/2,0 z0 = d3d5 − d1d7 = 0

101/2,1 z0 = d9 = 0

161/4,1/2 z0 = d5 = 0

161/4,−1/2 z0 = d7 = 0

(3.20)

The loci of the charged singlets correspond to Ord(f, g,∆) = (0, 0, 2) singularities

associated with the group SU(2). Without SO(10) top they have been determined in [49].

The effect of the SO(10) top can be treated in the same way as for F3. One finds six charge

combinations associated with six ideals I1, . . . , I6 which determine the singlet loci. The

ideals I4, I5, I6 contain several loci which have to be subtracted. The corresponding order

can be determined by means of the resultant method. A lengthy calculation for the loci of

the six charged SO(10) singlets yields:

rep locus contained loci order

11,−1 V (I1) : {d3 = d7 = 0}
11,2 V (I2) : {d8 = d9 = 0}
10,2 V (I3) : {d9 = d7 = 0}

11,1
V (I4) : {d1d

2
9 + d3d

2
8z0 − d2d8d9z0 =

d7d
2
8z0 − d6d8d9z0 + d5d

2
9 = 0}

z0 = d9 = 0

d9 = d8 = 0

2

4

11,0
V (I5) : {−d3d6d7 + d2d

2
7 + d2

3d9 =

−d3d5d7 + d1d
2
7 + d2

3d8z0 = 0}
d3 = d7 = 0 4

10,1

V (I6) : {d5d
3
7d8d

2
9 − d5d6d

2
7d

3
9 + d3d5d7d

4
9

+(d1d
2
7d

4
9d

3
8 − 2d6d

3
7d

2
8d9 + d2

6d
2
7d8d

2
9

+2d3d
2
7d

2
8d

2
9 − 2d3d6d7d8d

3
9 + d2

3d8d
4
9)z0

= d5d
3
7d

2
9 + (d4

7d
2
8 − d6d

3
7d8d9

+d3d6d7d
3
9 − d2d

2
7d

3
9 − d2

3d
4
9z0 = 0}

z0 = d7 = 0

z0 = d9 = 0

d3 = d7 = 0

d7 = d9 = 0

d8 = d9 = 0

1

4

4

20

8

(3.21)
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The loci listed in the third column have to be subtracted with the associated orders from

V (I4), V (I5) and V (I6), respectively, to obtain the loci of the charged singlets. This involves

a set of loci {di = dj = 0}. Together with eq. (3.14) one obtains the base-independent

singlet orders given in table (C.18) of appendix C.

Let us exemplify this procedure for the 11,0 singlets explicitly. Summing up the inter-

section numbers of the divisor classes at the various loci and subtracting the intersection

numbers of the loci they contain with the appropriate multiplicities as given by the orders

obtained from the resultants, one finds

11,0 : ([d3] + [d6] + [d7])([d3] + [d5] + [d7])− 4[z0][d7] . (3.22)

Using the relations (3.14) one obtains the base-independent multiplicity

11,0 : 6(K−1
B )2−2S2

7 +S2
9 + 4Z2 + 3S9Z+K−1

B (4S7−5S9−14Z) +S7(S9 + 2Z) . (3.23)

This is the multiplicity listed in table C.18 of appendix C.

Vacuum expectation values of singlets 11,−1 can higgs the CY threefold with fiber F5

to the one with fiber F3 [49]. The symmetry U(1)×U(1) is then broken to a single U(1)

with unbroken charge

q = q1 + q2 . (3.24)

The SO(10) matter representations listed in (3.20) then become the ones given in (3.15).

For the charged singlets one has 11,2 → 13, {10,2,11,1} → 12 and {11,0,10,1} → 11. Using

the relations (2.58), (2.59) and the intersection numbers given in table C.18, we obtain the

singlet multiplicities listed in (2.62). Finally, from the 11,−1 matter states with multiplicity

n[11,−1] = [d3][d7] = 4 , (3.25)

we obtain the three additional complex structure moduli in the higgsed geometry, after

subtracting the Goldstone mode.

4 Analysis of 6d toric SO(10) vacua

In this section we discuss the general algorithm of our analysis for all SO(10) tops listed

in [50]. This procedure is exemplified in section 2 and 3 for the fiber (F3, top 1).

4.1 Polytopes and tops of SO(10)

Let us consider an elliptically fibered K3 hypersurface in a 3d ambient space given by a

reflexive lattice polytope ∆ with vertices vi = (v1
i , v

2
i , v

3
i ). From this point of view, a top

is a half-lattice polytope ♦ that is obtained by slicing the K3 polytope ∆ into two halves,

a top and a bottom. The top and bottom thus have a common face F0 that contains

the origin as an inner point. This face F0 itself is the ambient space of a CY one-fold,

i.e. a torus, which is the fiber over a generic point in the base P1 of the full K3. Hence,

independent of the base the subpolytope F0 of ∆ at height v3 = 0 always encodes the
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generic torus fiber. The points at height v3 > 0, however, represent resolution divisors Di

that project onto the same point z0 = 0 of the base P1,

Di
π−−→ {z0 = 0} . (4.1)

These Di are the resolution divisors of an ADE singularity in the fiber over the base locus

πB([z0]) ∼ Z. For a reflexive polytope we can define a top ♦ as a lattice polytope whose

vertices satisfy certain inequalities,

♦ = {v ∈ Z3 : 〈m0, v〉 ≥ 0 , 〈mi, v〉 ≥ −1} , (4.2)

for some mi ∈ Z3. By means of a GL(3,Z) transformation we can always set m0 = (0, 0, 1).

The face F0 is a two-dimensional polygon at height zero given by the restriction

F0 = {v ∈ ♦ : 〈m0, v〉 = 0} . (4.3)

For each reflexive polytope ∆ of the K3 ambient space, there is a dual polytope ∆∗ defined

by

∆∗ = {m ∈ Z3 : 〈m, v〉 ≥ −1 ∀ v ∈ ∆} . (4.4)

Analogously, one defines the dual ♦∗ of the top ♦,

♦∗ : {m ∈ Z3 : 〈m, v〉 ≥ −1 ∀ v ∈ ♦} . (4.5)

For vertices16 vs = (v1
s , v

2
s , 0) ∈ F0 one has m1v1

s + m2v2
s ≥ 0, which yields the two-

dimensional dual F ∗0 of F0. Other vertices vt ∈ ♦, vt 6∈ F0 yield the inequalities

m3v3
t ≥ −1−m1v1

t +m2v2
t . (4.6)

With v3
t > 0, this implies a lower bound for the third component of m: m3 ≥ m3

min(m1,m2).

Since there is no upper bound on m3, the dual of the top ♦∗ has the form of a prism with

a cross section given by F ∗0 . To summarize, a top ♦ over some polygon Fi is dual to a half-

infinite extended prism ♦∗ with F ∗i at generic height and unique minimal height vertices

m3
min(m1,m2) (see figure 15). In this way all tops have been classified in terms of F ∗0 and

the m3
min values of the half-open prisms [50].

As first step of our analysis we use eq. (4.2) to construct the tops corresponding to the

Lie algebra D5, as listed in [50].17 Next, we compute the gauge group and matter spectrum,

as explained in the example in section 2. In the following we describe the general algorithm

and mention possible complications that occur in some models.

Base completion of the top. We construct CY threefolds as hypersurfaces in toric

varieties PBFi
with the fibration structure

PFi,top −→ PBFi
(S7,S9,Z) .y π

B

(4.7)

16The relation to the notation in [50] is: v1i = x̄i, v
2
i = ȳi, v

3
i = z̄i, m

1
j = xj , m

2
j = yj , m

3
j = zj .

17Note that we included two tops over F8 and one over F12 which were classified as B5 tops in [50].

However, a careful analysis of the dual edges shows that they correspond to the gauge algebra D5.
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a) b) c)

Figure 15. Example (F3, top 1). The dual prism is given in a) with F ∗
3 at generic height (shaded

in green); b) depicts the top polytope with F3 at height 0 (shaded in green); c) is a 2d projection

of b) where blue circles denote vertices at height 1 and red squares vertices at height 2.

Here, the three divisor classes S7, S9 and Z parametrize the fibration of the fibers XFi over

a base with Z being the GUT divisor.

The hypersurface equation for the CY can be obtained using Batyrev’s construc-

tion [69]. From the top and its dual one obtains the polynomial for a non-compact CY

twofold,

p♦ =
∑
mj∈♦∗

dj
∏
vi∈♦

x
〈mj ,vi〉+1
i =

∑
mj∈♦∗

dj

 ∏
vs∈F0

x
〈mj ,vs〉+1
s

 ∏
vt∈♦,v3>0

x
〈mj ,vt〉+1
t

 . (4.8)

The partial factorization shows that the structure of the hypersurface equation, which

defines a torus in F0 given by the coordinates xs, is preserved (see [48]). For the top

coordinates xt with vertices v3
t > 0 we introduce the notation

vt : {z0, fi, gj} for {z0 : (0, 0, 1) , fi : (v1
i , v

2
i , 1) , gj : (v1

j , v
2
j , 2)} . (4.9)

Here D0 = {z0 = 0} is the base divisor whose dual curve P1
0 corresponds to the affine node,

whereas the coordinates fi are at height v3
i = 1 and the gj are the ‘inner’ SO(10) roots of

height v3
j = 2. Note that these heights correspond to the Dynkin multiplicities of the roots.

In our calculations we add a trivial bottom i.e. a vertex at height v3 = −1 that completes

the top ♦ to a reflexive polytope ∆, with a dual reflexive polytope ∆∗. The infinite sum

over the vertices of ♦∗ now becomes a finite sum over the vertices of ∆∗,

p∆ =
∑

mj∈∆∗

dj
∏
vi∈∆

x
〈mj ,vi〉+1
i =

∑
mj∈∆∗

dj

 ∏
vs∈F0

x
〈mj ,vs〉+1
s

 ∏
vt∈∆,vt 6∈F0

x
〈mj ,vt〉+1
t

 .

(4.10)

The hypersurface equation p∆ = 0 defines a compact CY twofold. The partial factorization

of the coordinates related to the equation that defines a torus in F0 is again preserved. In
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appendix A it is shown that this structure also remains once the base is extended to higher

dimensions.

The base-dependence of the sections di can be fixed by considering the case without top,

see section 3.2. The inclusion of the top then adds the additional coordinates fi, gj and the

corresponding divisors Di that shift the fiber coordinates. Using linear equivalences one has

[x]→ [x]−
∑

aiDi . (4.11)

We take the point z0 : (0, 0, 1) with divisor D0, whose dual P1
0 we choose as the affine node

of the SO(10) Dynkin diagram. D0 satisfies the linear equivalence (see (2.20))

D0 = −
∑
i

liDi + [z], (4.12)

where li are the Dynkin multiplicities and [z] the divisor corresponding to z = z0f2g
2
1g

2
2f3f4,

respectively.

Finally, we want to fix the dependence of the sections si on the SO(10) GUT base

divisor Z after inclusion of the top. Setting all fi = gj = 1, the sections take the form

si = zni
0 di which yields (see section 3.2)

[si] ∼ [di] + niZ . (4.13)

The factors ni give the vanishing orders of the si in Z and characterize the spectrum of

the top uniquely.

In this work we mainly study torus fibers that are cubic curves and blow-ups thereof.

The generic cubic polynomial, corresponding to a torus in the polytope F1, is given by

pF1 = s1u
3 + s2u

2v + s3uv
2 + s4v

3 + s5u
2w

+ s6uvw + s7v
2w + s8uw

2 + s9vw
2 + s10w

3 ,
(4.14)

which has one monomial more than pF3 . Using adjunction, the parametrization of the

torus divisors (see section 3.2) is given by

[u] ∼ H + S7 −K−1
B , [v] ∼ H + S9 − S7 , [w] ∼ H

with H being the hyperplane class of the ambient space P2 of the fiber, and the si are given

by (4.13). The base divisor classes of the sections di are given by

[d1] ∼ 3K−1
B − S7 − S9 − n1Z , [d2] ∼ 2K−1

B − S9 − n2Z ,
[d3] ∼ K−1

B + S7 − S9 − n3Z , [d4] ∼ 2S7 − S9 − n4Z ,
[d5] ∼ 2K−1

B − S7 − n5Z , [d6] ∼ K−1
B − n6Z ,

[d7] ∼ S7 − n7Z , [d8] ∼ K−1
B − S7 + S9 − n8Z ,

[d9] ∼ S9 − n9Z , [d10] ∼ 2S9 − S7 − n10Z .

(4.15)

Other fibers that are related to the cubic curve by a conifold transition can be obtained

by setting the respective section di to zero and using the above relations for the remaining

divisors, as discussed in more detail in section 4.5. However, the polygons F2 and F4 and

their tops lead to biquadric and quartic polynomials, respectively, which cannot be reached

by a transition from pF1 directly. Hence, those curves differ in their general structure and

we summarize their factorization, base-dependence and Weierstrass forms in appendix B.
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4.2 Spectrum computation

The spectrum computation can be split into several steps (see section 2 and 3 for a detailed

example). Here, we summarize the process and add some comments on several features

that appear in different models.

SO(10) matter loci and charges. Since the loci and charges of singlet matter fields are

at z0 6= 0 we can use the results of [49] for them. For the SO(10) charged matter, located

over Z in the base, it is most beneficial to map the curve into its singular Weierstrass form,

i.e. to use the expressions given in appendix B and impose the factorization of (f, g,∆) in

the base coordinate z0, which yields expressions of the form

f = z2
0

(
B2C2 + Cz0R1 +O(z2

0)
)
,

g = z3
0

(
B3C3 + C2z0R2 + Cz2

0R3 + z3
0R4 +O(z4

0)
)
,

∆ = z7
0

(
A2B3C5 + C4z0R5 + · · ·+ z5

0R9 +O(z6
0)
)
,

(4.16)

with A,B, C being reducible matter ideals relevant for the vanishing order in codimension

two, and the Ri being some irreducible polynomials. This corresponds to an SO(10) locus

over Z with matter loci given by the irreducible components of the A,B, C, which we denote

with a subscript Ai, Bi and Ci with associated loci V . If those components vanish together

with z0 = 0, we obtain enhanced singularities and matter representations of SO(10), given

by (see section 2):

(f, g,∆) at V over z0 = 0 fiber type rep multiplicity

Ai = 0 (2, 3, 8) I∗2 10i [Ai]Z
Bi = 0 (3, 4, 8) III 16i [Bi]Z
Ci = 0 (4, 6, 12) non-min SCP [Ci]Z

(4.17)

The 6d multiplicities are given by the intersection of the divisor classes associated with z0

and the irreducible components Ai, Bi, Ci in the base. The type C ideals yield points with

non-minimal singularities that are associated to SCPs. Note that the above factorization

only allows us to deduce the non-Abelian representations. However, different components

of the same type of ideal can have different Abelian charges, which cannot be read off

directly from the singular Weierstrass form.

The Abelian charges are obtained by imposing vanishing of the irreducible components

Ai,Bj in the resolved fiber and studying the splitting of the P1
i curves into several irreducible

P1’s that we identify with the matter nodes,

E fi=0−−−−→ P1
i , (4.18)

P1
i

Aj ;Bj=0−−−−−−−→ P1
m1

+ P1
m2

+ . . . , (4.19)

and a subsequent evaluation of the intersection with the Shioda maps.
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Shioda map and matter charges. First, we identify the SO(10) Cartan matrix from

the intersection of the resolution divisors (CSO(10))ij as in (2.25) in a given triangulation.

Then, we compute an orthogonal basis of U(1) divisors using the Shioda map. In order to

use the matter charges of SO(10) singlets as computed in [49], we choose the zero-sections

ŝ0 and Mordell-Weil generators ŝi as in [49] and include the SO(10) divisors as

σ(ŝi) = [ŝi]− [ŝ0] + (ŝi − ŝ0) · P1
j (C

−1
SO(10))jkDk , (4.20)

which orthogonalizes the U(1) generators and all other non-Abelian group factors, such

that

σ(ŝi) · P1
j = 0 ∀ i, j .

We note that the appearance of the inverse of the non-Abelian Cartan matrix C−1 generi-

cally leads to fractionally charged non-Abelian representations. This is the manifestation

of a non-trivial embedding of some Zn center of the non-Abelian gauge group G into the

U(1) factor [70–72]. Hence, such a factor can lead to non-trivial group quotients and a

global gauge group GX of the form

GX =
U(1)×G

Zp
, (4.21)

where p is some divisor of n which we determine momentarily. This fact is most easily seen

by recalling that the U(1) charges q of massless matter representations can be written in

the form (see (4.20))

q = l +mλ . (4.22)

Here, l and m are integers and λ denotes the Zn center charges of the representations

quantized in units of 1/n. It is readily confirmed that the U(1) charge spacing within the

same G representation is integral. In addition, if there is some non-trivial greatest common

divisor p of m and n it might happen that only a Zp subgroup of the full Zn center of G

is modded out. Due to the form of the U(1) charge generator (4.22), we can identify a

quotient operator gp by solving for the integer l and exponentiating as

gp = e2πi(mλ−q) . (4.23)

This is a Zp operator, that is constructed to be single-valued for all representations of

the total gauge group and therefore can be viewed as the generator of the Zp quotient

appearing in the denominator of (4.21).

In our SO(10) analysis, we have the following center charges λ of representations

1 10 16 45

λ 0 1/2 1/4 0
. (4.24)

The presence of the spinor representation reminds us that we actually have a Spin(10)

group instead of an SO(10) group, whose Z2 center acts on the 10 representation. Note
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that Spin(10) has a Z4 center under which the spinor representation carries the minimal

charge, which reflects the fact that it is a double cover of SO(10).

Hence, in the classification of global gauge groups, we can have two non-trivial cases:

one where the full Z4 center is modded out and one, where only a Z2 subgroup of the center

is modded out. All three cases do appear frequently and are identified via the charge of

the spinor representations as in the following examples:

top spinor rep global gauge group

(F3, top 4) 160 SO(10)×U(1)

(F3, top 6) 161/2 SO(10)×U(1)/Z2

(F3, top 1) 16−1/4 SO(10)×U(1)/Z4

(4.25)

In addition to the elliptic fibration, we also have genus-one fibrations based on F1, F2 and

F4 that do not have sections but only multi-sections [73–76] that intersect the torus E
several times; we denote this multiplicity by k

[s(k)] · E = k . (4.26)

Those theories can be connected to U(1) theories via an unhiggsing similar to section 3.3.

The higgsing process reveals the presence of a discrete symmetry Zk induced by a Higgs

field with non-minimal U(1) charge k. The Zk generators corresponding to the multi-

section s(k) can also be orthogonalized with respect to other non-Abelian group factors

using a modified Shioda map,

σ(s(k)) = [s(k)] + [s(k)] · P1
j (C

−1
SO(10))jkDk . (4.27)

As for the gauge group U(1) above, the discrete gauge factors can mix with the center of

the SO(10), leading to a modification of the global gauge group similar to (4.21).

We want to remark that theories based on the polytope F2 are genus-one fibrations

that generically admit a U(1) and Z2 gauge factor. Here the additional rational sections

appears only in its Jacobian.18 In this case, the Shioda map is generated by the difference

of two linear inequivalent multi-sections.

After having fixed and orthogonalized all generators, the weight ω as well as U(1)

and discrete charges qj , q
(k) of the matter state located on P1

m can be computed by the

intersections

(ωi)qj ,q(k) = (P1
m ·Di)(P1

m·σ(ŝj)),(P1
m·σ(s(k))) . (4.28)

These are also the conventions used for the charges given in appendix C.

Matter multiplicities of uncharged singlets. The CY manifold admits a number of

moduli which manifest themselves in the matter spectrum. For F-theory on a torus-fibered

CY threefold Y3 over a two dimensional base B we have [1–3]

T = h1,1(B)−1 , rank(GY3) = h1,1(Y3)−nSCP−h1,1(B)−1 , Hneut = h2,1(Y3)+1 . (4.29)

18This has also been observed in self-mirror genus-one fibrations with torsional sections in the context of

complete intersection fibers [77].
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Note that the rank of the total gauge group GX has been corrected by the appearance

of SCPs, which we will explain in section 4.4. The number of uncharged singlets can be

inferred from the Euler number χ(Y3) of the CY threefold

Hneut = h1,1(B) + rank(GY3) + nSCP + 2− 1

2
χ(Y3) . (4.30)

As in the rest of our analysis, we want to perform the computation in a base-independent

way and express everything in terms of the Chern classes of the base, the classes S7 and S9

that parametrize the fibration and the GUT divisor Z. To do this we adapt the methods

of [59].

It proves beneficial for the following discussion to introduce the three sets of divisors:

• Dtorus contains all divisors dual to the points of the toric diagram at height zero of

the top (i.e. u, v, w, e1 in the example of section 2.1).

• Dtop contains the divisors in the top at height one and above that are not interior to

facets (i.e. z0, f2, f3, f4, g1, g2 in the example of section 2.2).

• Dfacets contains the divisors in the top at height one and above that are interior to

facets19 (these give rise to SCPs and appear in the example of section 4.4).

First, we use that the total Chern class c(V ) = 1 + c1(V ) + c2(V ) + . . . of a toric variety V

is given in terms of the product of all toric divisors,20 c(V ) =
∏
m(1+Dm). The individual

Chern classes ca(V ) correspond to the terms of appropriate degree (i.e. those with a divisors

in this expansion). In order to express this in a base-independent way, we separate the

contributions from fiber and base as

c(V ) =

dim(B)∑
a=0

ca(B)
∏
α

(1 +Dα)
1

1 + [z]
, (4.31)

The first factor parametrizes the result in terms of the Chern classes of the base. The

second factor includes all toric divisors in the top, Dtop ∪ Dfacets. The third factor takes

into account that the divisor class of D0 that corresponds to the extended node of the

Dynkin diagram already contains the GUT divisor Z of the base, cf. (4.12). This factor is

defined via its formal expansion around [z] = 0.

Since the CY Y3 is given as the anticanonical hypersurface in the toric variety, we can

express the Chern classes ca(Y3) of the CY in terms of the toric Chern classes ca(V ) using

adjunction,

c(Y3) = 1 + c1(Y3) + c2(Y3) + . . . =
c(V )

1 + c1(V )
, (4.32)

where the last term is defined as above by its formal expansion. From this we can extract the

term for the third Chern class c3(Y3) and compute the Euler number as the integral thereof,

χ(Y3) =

∫
Y3

c3(Y3) . (4.33)

19Facets are codimension-one faces.
20In the following we often use the equivalence between divisor classes and their dual (1, 1)-forms.
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The expression obtained from (4.32) can be further simplified and written in terms of an

integration over the base only by making use of the intersection ring defined by the top and

the fact that a k-section of the fibration intersects the fiber in k points. We thus reduce

the polynomial c3(Y3) in the quotient ring obtained from a quotient of the polynomial ring

by the linear equivalence and the Stanley-Reissner ideal (SRI).21

More precisely, we use the linear equivalences to express the divisors in Dtorus in terms

of the base divisors c1(B) ∼ K−1
B , S7, S9 that parametrize the fibration, the GUT divisor

Z, and their shift by the blow-up divisors of the top Dtop ∪ Dfacets. Then we identify

those divisors in Dtorus that correspond to sections [ŝi], as these can be used to rewrite the

integral over c3(Y3) in terms of an integral over the base only, since∫
Y3

Db
iD

b
j [ŝi] =

∫
B
Db
iD

b
j , (4.34)

for any base divisors Db
i , Db

j .

Next we use the properties of the intersection ring. First, we choose a triangulation of

the top to obtain the fiber part of the SRI. For the base part we use the following generic

intersection properties [59]:

Db
iD

b
jD

b
k = 0 , Db

iD
b
jD

t
k = 0 , Df

iD
f
jD

f
k = 0 ,

Db
iD

b
jD

f
k = 0 , Db

iD
t
jD

t
k = −(CSO(10))jkZDb

i , ([ŝi]
2 +K−1

B [ŝi])D
b
i = 0 , (4.35)

where Dt
i ∈ Dtorus and Df

i ∈ Dfacets. The first three properties are true simply because the

codimension of their intersection in the base exceeds its dimension. The fourth property

follows from the fact that the facet points miss the anticanonical hypersurface. The fifth

property makes use of the fact that the intersection of the resolution divisors of the top is

the negative of the Cartan matrix C of the associated gauge group, which in our case is

SO(10). The last property is a direct consequence of adjunction, (KY3 + [ŝi])|[ŝi] = K[ŝi],

where KY3 = 0 for CYs and K[ŝi] = −K−1
B since ŝi is a section. Note that in the case of

multi-sections this is no longer true. Hence, for polytopes F1, F2 and F4 which have only

multi-sections, we perform the computation completely in the ambient space by using that

the CY is the anticanonical hypersurface,

χ(Y3) =

∫
Y3

c3(Y3) =

∫
V
c3(Y3)c1(V ) =

∫
V

(
c3(V )− c1(V )c2(V )

)
c1(V ) , (4.36)

where the last step follows again from adjunction.

In order to illustrate the computation, we present the steps in more detail for the

example of section 2.1, i.e. (F3, top 1). First, we find the total Chern class of V (4.31),

c(V ) =
1

1 + [z]
(1 + c1(B) + c2(B))(1 + [u])(1 + [v])(1 + [w])×

× (1 + [e1])(1 + [z0])(1 + [f2])(1 + [f3])(1 + [f4])(1 + [g1])(1 + [g2]) .

(4.37)

21This computation can be done conveniently in SAGE by defining the quotient ring and using degree

reverse lexicographic ordering for the Groebner basis computation in the division algorithm to obtain an

expression that is linear in the sections in the quotient ring.
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From this we extract the first Chern class and compute the total Chern class of Y3 us-

ing (4.32). We refrain from giving this lengthy expression explicitly. Next, we take the

part corresponding to c3(Y3) and reduce it in the quotient ring of the polynomial ring

generated by the divisor classes modulo the equivalences

[z0]− [f2]− [f3]− [f4]− 2[g1]− 2[g2] ≡ [z] ,

[u]−H − S9 +K−1
B + [f2] + [f3] + [g1] + [g2] ∼ 0 ,

[v]−H − S9 + S7 − [e1] + [f2] + 2[f3] + [f4] + 2[g1] + 3[g2] ∼ 0 ,

[e1] ≡ [ŝ0] , H = [w] ≡ [s(3)] .

(4.38)

We parametrize the base dependence of the divisors in Dtorus following [49]. Due to the

blow-ups encoded in the top, the original linear equivalences now also contain divisors

from Dtop. This model has a zero section ŝ0 corresponding to the toric divisor [e1] and a

3-section s(3) corresponding to [w]. On top of the linear equivalence ideal, we also have the

SRI which can be used to further simplify the expression, where

SRI = SRItop ∪ SRIbase . (4.39)

We can obtain SRItop from any fine star triangulation22 of the toric top, e.g.

SRItop = {ve1, vz0, vf2, vg1, uw, uz0, uf4, ug1, ug2, e1f3, wf3,

z0f3, f3f4, wf2, wg1, wg2, e1f4, f2f4, e1g2, z0g2, f2g2, e1g1} .
(4.40)

In order to keep the computation independent of the base, we choose for SRIbase a generic

SRI which solely originates from codimension counting, i.e. we use the first four properties

of (4.35). With these simplifications we obtain the expression

χ(Y3) = p1 + p2 + p3 + p4 , (4.41)

with

p1 = −6K−1
B [f4][g1]− 5K−1

B [g1]2 − 8K−1
B [g1][g2]− 2K−1

B [g2]2 − [g1]2S7

− 6[g1][g2]S7 − 3[g2]2S7 − 4[f4]2S9 − 7[f4][g1]S9 − 2[g1]2S9 + 7[g1][g2]S9

+ 7[g2]2S9 + 7[f4]2Z + 18[f4][g1]Z + 9[g1]2Z − 2[g1][g2]Z − 9[g2]2Z ,

p2 = [s(3)](−8(K−1
B )2 + 8K−1

B S7 − 2S2
7 −K−1

B S9 + 2S7S9 − 2S2
9

+ 11K−1
B Z − 11S7Z + 5S9Z − 5Z2) ,

p3 = [ŝ0](8(K−1
B )2 − 16K−1

B S7 + 2S2
7 + 9K−1

B S9 − 2S7S9

− 19K−1
B Z + 21S7Z − 10S9Z + 11Z2) ,

p4 = [ŝ0]2(8K−1
B − 10Z) .

(4.42)

22Note that while the intersection ring of the top changes, the physics is invariant with respect to the

choice of a triangulation.
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In order to simplify p1, we use the fifth property of (4.35), i.e. that the divisors of Dtop

intersect as given by the (negative) Cartan matrix of SO(10) over Z. In expressions p2 and

p3 we use that s(3) and ŝ0 are 3- and 1-sections, such that the terms in bracket contribute

three and one times, respectively. Finally, in order to simplify p4, we use the last property

of (4.35) to get an expression linear in [ŝ0], which can then be treated as in p3. After these

steps, we obtain the final expression in terms of base intersections,

χ(X) = −24(K−1
B )2 + 8K−1

B S7 − 4S2
7 + 6K−1

B S9 + 4S7S9 − 6S2
9

+ 30K−1
B Z − 10S7Z + 10S9Z − 20Z2 .

(4.43)

We collect the results for all tops of all polytopes in appendix C.

Matter multiplicities of charged singlets. Lastly, we compute the multiplicity of the

charged SO(10) singlet states by reading off the induced factorization of the top for the

singlet matter ideals Ik given in [49]. Since these ideals are often rather unwieldy, we refer

to [49] for their explicit expressions in most of the cases.

We start by considering a fibration without a top, where the vanishing of a codimension-

two ideal Ik defines the locus of some singlet matter field. After the inclusion of the top

this ideal is changed to Îk. It happens regularly that powers of the base coordinate z0

factor out (see section 3.1) of the two polynomials

Ik = {Q1, Q2} → Îk = {zm0 Q̂1, z
n
0 Q̂2} . (4.44)

In such a case, we have to subtract the factored codimension-one loci z0 = 0 with orders

m and n to obtain the reduced ideal

Îk,red = {Q̂1, Q̂2} . (4.45)

Secondly, the vanishing of the ideal V (Îk) often includes simpler ideals V (Îr,red) associated

to other matter states that we have to subtract in order not to overcount. These subtrac-

tions have been carried out in [49] for all SO(10) singlets, but need to be corrected in the

presence of SO(10) matter and SCP loci.

The subtraction can be carried out by using resultant techniques (see section 3.1).

For this the polynomials Q̂1(x, y) and Q̂2(x, y) of Îk,red are considered as functions on

Îr,red = (x, y). We compute the resultant of Q̂1 and Q̂2 with respect to x as

R(y) = Resx(Q̂1, Q̂2) , (4.46)

as the determinant of the Silvester matrix in x. The resultant polynomial R(y) has elimi-

nated the variable x and vanishes over the locus y = x for which Q̂1 = Q̂2 = 0 is satisfied.

Hence if R(y) factorizes as

R(y) = ynyR̂(y) , (4.47)

the resultant vanishes at y = x = 0 to order ny. Similarly we can take the resultant of

Q̂1, Q̂2 with respect to the y variable:

R(x) = Resy(Q̂1, Q̂2) = xnxR̂(x) . (4.48)
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It is important to remark that nx 6= ny, and hence there is an ambiguity which variable to

take. Throughout this work, we always subtracted min(nx, ny) in case of this ambiguity,

which turns out to be consistent with anomaly cancellation.

The base-independent multiplicity m(Îk) of some singlet field, given by the ideal

V (Îk,red), is finally given by the intersection of its divisor classes minus the multiplicity

of other ideals Îi = (xi, yi) times their resultant orders

m(Îk) = [Q̂1][Q̂2]−
∑
VÎi,red

min(nxi , nyi)[xi][yi] . (4.49)

This completes the computation of the full matter spectrum for an arbitrary top.

All spectra can be found in appendix C for all SO(10) tops given in [50]. We complete

the discussion of the 6d SUGRA models by considering anomaly cancellation of theories

without SCPs in the following.

4.3 Base-independent anomaly cancellation

In this section we analyze the base-independent anomaly cancellation for the models

described above, exemplifying the general procedure for (F3, top 1) with gauge group

SO(10)×U(1). Other models with possible additional non-Abelian factors can be treated

analogously and all anomaly coefficients are given in appendix C. Here, we discuss models

without SCPs; a discussion of anomaly cancellation for models with SCPs after a blow-up

in the base is given in section 4.7. For our investigation we use the relation between the

anomaly coefficients and the second base cohomology H2(B,Z), see e.g. [78], in connection

with the parametrization of the base-dependence in terms of S7, S9, K−1
B , and Z.

Denoting the SO(10) field strength by F̃ and the Abelian field strengths by F , the 6d

anomaly polynomial23 for gauge group SO(10)×U(1) is

I8 = − 1

5760
(H − V + 29T − 273)

(
trR4 +

5

4
(trR2)2

)
− 1

128
(9− T )(trR2)2

− 1

96
trR2

(
TrF̃ 2 −

∑
I

n[RI ] trRI
F̃ 2

)
+

1

24

(
TrF̃ 4 −

∑
I

n[RI ] trRI
F̃ 4

)
+

1

96

∑
I

MI q
2
I trR2F 2 − 1

4

∑
I

n[RI ] q
2
I (trRI

F̃ 2)F 2 − 1

24

∑
I

MI q
4
I F

4 ,

(4.50)

where Tr and trR is the trace in the adjoint representation and representation R of SO(10),

respectively. The sum with respect to I runs over the charged hypermultiplets in the matter

spectrum. A term of the form (trR F̃
3)F is absent since SO(10) does not have a third order

Casimir operator. Rewriting all traces in terms of tr10 ≡ tr, see (2.65), we can split the

anomaly polynomial into an irreducible part

I irred
8 = − 1

5760
(H + 29T − 317)

(
trR4 +

5

4
(trR2)2

)
+

1

24
(2− 2n[45] + n[16]− n[10]) tr F̃ 4 ,

(4.51)

23We use the notations and conventions of [67, 78]. H, V , and T denote the number of hyper-, vector, and

tensor multiplets, respectively. n[RI ] is the multiplicity of hypermultiplets in the SO(10) representation

RI with U(1) charges qI and MI is given by n[RI ]dim(RI).

– 41 –



J
H
E
P
1
2
(
2
0
1
7
)
0
3
5

and a reducible part

Ired
8 = − 1

128
(9− T )(trR2)2 − 1

96
(8− 8n[45]− 2n[16]− n[10]) trR2 tr F̃ 2

+
1

24

(
3− 3n[45]− 3

4
n[16]

)
(tr F̃ 2)2 +

1

96

∑
I

MI q
2
I trR2F 2

− 1

4

∑
I

n[RI ] q
2
I (trRI

F̃ 2)F 2 − 1

24

∑
I

MI q
4
I F

4 .

(4.52)

Note that n[16] includes both 16 and 16-plets.

The irreducible part has to vanish for the matter spectrum of a consistent theory,

leading to a relation between the number of different multiplets and SO(10) representations.

The reducible part can be canceled by the Green-Schwarz mechanism [79, 80] if it factorizes

as

Ired
8 = − 1

32
ΩαβX

α
4 X

β
4 , (4.53)

where the individual factors have to be of the form [67, 78]

Xα
4 =

1

2
aα trR2 + bα tr F̃ 2 + 2bα11F

2 . (4.54)

The matrix Ωαβ is an SO(1, T ) metric specifying the contributions and transformations of

the various 2-form fields in the generalized 6d version of the Green-Schwarz mechanism [81,

82]. It can be identified with the intersection matrix of the base divisors, see e.g. [78]. Let

{Hα} be a basis for H2(B,Z) such that we can express an arbitrary base divisor D as

D =
∑
α

dαHα ∈ H2(B,Z) . (4.55)

The intersection of two base divisors D and D̃ is thus given by

D · D̃ = Ωαβ d
αd̃β , (4.56)

with

Ωαβ = Hα ·Hβ . (4.57)

Since the number of tensor multiplets T in models without SCPs is given in terms of the

anticanonical class of the base K−1
B , one can identify the gravitational anomaly coefficient

aα as the coefficient vector of the anticanonical class of the base [2, 3, 83, 84],

K−1
B =

∑
α

aαHα . (4.58)

We will denote this relation of anomaly coefficients and base divisor classes by e.g. a ∼ K−1
B .

Similarly, the SO(10) anomaly coefficient, which we denote by bα, can be identified

with the GUT divisor Z in the base

Z =
∑
α

bαHα . (4.59)
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An analogous description holds for additional non-Abelian gauge groups that might gener-

ically appear due to the use of a certain ambient space for the fiber, see e.g. [49]. They are

included in appendix C.

Finally, also the Abelian anomaly coefficients can be associated with a geometrical

meaning using the Néron-Tate height pairing involving the Shioda map σ defining the

Abelian group factor [54, 78],

b11 ∼ −πB(σ(ŝ1) · σ(ŝ1)) . (4.60)

For more than one Abelian gauge factor the anomaly coefficients bij can be derived anal-

ogously by using the corresponding Shioda maps σ(ŝi), i.e. bij ∼ −πB(σ(ŝi) · σ(ŝj)). With

this connection to the base geometry we can express the complete factorized anomaly poly-

nomial in terms of an intersection product of the base divisor classes K−1
B , Z, S7, and S9.

We next elucidate the geometric concepts by generalizing the anomaly cancellation

for (F3, top 1) discussed in section 2.6 to a base-independent formulation and show their

equivalence after setting B = F0 and a making a specific choice for S7, S9, and Z.

First we verify that the irreducible gravitational anomaly is indeed canceled. With the

relation between the Euler number and the number of neutral singlets (4.30) as well as the

base-independent expression for χ derived in (4.43), we find24

H − V + 29T − 273 =
∑
I

MI − 30(K−1
B )2 − 1

2
χ(X)− 40 = 0 , (4.61)

where we used the base-independent charged matter spectrum given in (3.15).

With the number of multiplets consistent with the irreducible gravitational anomaly

we can evaluate the reducible part

I8 ⊃ −
1

128
(9− T )

(
trR2

)2
= − 1

32

(
1

2
K−1
B

)2 (
trR2

)2
. (4.62)

For the irreducible SO(10) anomaly we need the base independent number of hypermul-

tiplets in the various SO(10) representations. For the chosen top these are given by (see

table (3.15))

n[10] = (3K−1
B − 2Z)Z ,

n[16] = (2K−1
B −Z)Z ,

n[45] = 1− 1

2
(K−1

B −Z)Z .
(4.63)

The irreducible part of the non-Abelian anomaly is given by

I8 ⊃
1

24
(2− 2n[45] + n[16]− n[10]) tr F̃ 4

=
1

24

(
(K−1

B −Z)Z + (2K−1
B −Z)Z − (3K−1

B − 2Z)Z
)

tr F̃ 4 = 0 .

(4.64)

24Note that hypermultiplets in the adjoint representation only contribute as dim(Adj)− rank(G) degrees

of freedom for the corresponding gauge group in order to avoid overcounting.
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It vanishes independently of the chosen base as has to be the case for a well-defined theory.

The reducible non-Abelian anomaly is given by

I8 ⊃
1

24

(
3− 3n[45]− 3

4
n[16]

)(
tr F̃ 2

)2
=

1

24

(
3

2
(K−1

B −Z)Z − 3

4
(2K−1

B −Z)Z
)(

tr F̃ 2
)2

= − 1

32
Z2
(

tr F̃ 2
)2
,

(4.65)

which is exactly of the form expected from the relation with H2(B,Z), since

Z2 = Ωαβ b
αbβ . (4.66)

For the mixed anomaly involving gravity and the non-Abelian degrees of freedom we find

I8 ⊃ −
1

96
(8− 8n[45]− 2n[16]− n[10]) trR2 tr F̃ 2 =

1

32
K−1
B Z

(
trR2 tr F̃ 2

)
(4.67)

Hence, we see that the non-Abelian and gravitational part of the anomaly polynomial

factorize in the appropriate way and can be written as

I8 ⊃ −
1

32

(
1

2
K−1
B trR2 −Z tr F̃ 2

)2

. (4.68)

Even though we performed the calculation for a specific top, the factorization of the SO(10)

and gravitational anomalies works in the same way for all models without SCPs and the

form of (4.68) is universal for all models with gauge group SO(10).

Similar treatments can be performed after the inclusion of the U(1) factor. The com-

plete anomaly polynomial for (F3, top 1) can be factorized in terms of the base divisor

classes as

I8 = − 1

32

(
1

2
K−1
B trR2 −Z tr F̃ 2 +

1

2
(−24K−1

B + 8S7 − 16S9 + 5Z)F 2

)2

, (4.69)

and we find the U(1) anomaly coefficient

− 6K−1
B + 2S7 − 4S9 +

5

4
Z =

∑
α

bα11Hα . (4.70)

Note that b11 coincides with the base-independent anomaly coefficient derived in [49] up to a

correction term depending on the GUT divisor Z that originates from the orthogonalization

of the U(1) with respect to the Cartan divisors of the SO(10). Hence, the base independent

anomaly coefficients for (F3, top 1) are given by

a ∼ K−1
B , b ∼ −Z , b11 ∼ −

(
6K−1

B − 2S7 + 4S9 −
5

4
Z
)
. (4.71)

In order to verify the above expressions we calculate the anomaly coefficients of the

specific model discussed in section 2.6 using the general base-independent expressions.

Choosing the base divisor classes that parametrize the base (3.16) whose second homology
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basis H2(F0,Z) is given by {H1, H2}, we can calculate the anomaly coefficients explicitly

using the intersection matrix for B = F0 given by

Ωαβ =

(
0 1

1 0

)
. (4.72)

We find

a =

(
2

2

)
, b =

(
−1

0

)
, b11 =

(
−51

4

−12

)
, (4.73)

reproducing the coefficients in (2.69).

Similarly, we can analyze all the models with other gauge groups including the SO(10)

top. All irreducible anomalies vanish base-independently and the remaining reducible part

is factorizable. The anomaly coefficients in terms of base divisors for the models without

SCPs are given by the universal expressions

a ∼ K−1
B , b ∼ −Z (4.74)

for the gravitational and non-Abelian SO(10) part. The remaining anomaly coefficients

depend on the specific model. However, up to an overall sign and a contribution due to the

SO(10) gauge group the coefficients match the expressions derived in [49]. For models with

additional non-Abelian factors G one has to include the corresponding anomalies. Again,

the anomaly coefficients bG are related to the base divisor DG where the gauge group is

located, i.e. bG ∼ −DG. The complete set of Abelian and non-Abelian anomaly coefficients

is included in appendix C.

The description above works in a straightforward fashion for all SUGRA models that do

not have SCPs. However, the latter appear rather frequently in our analysis. Therefore, we

discuss them in the following section and analyze the anomaly cancellation after a blow-up

in the base which resolves the corresponding codimension-two singularity in section 4.7.

4.4 Theories with superconformal matter points

In many of the models we are considering, we have codimension-two points where the

SO(10) divisor Z intersects another curve {ds = 0} in the base, possibly with multiplicity

nSCP = Z[ds], such that the Weierstrass coefficients (f, g,∆) vanish to orders (4, 6, 12).

These points have also been encountered in resolved Tate models [46], where it was observed

that over these points the fiber becomes non-flat. Non-flatness refers to the phenomenon

that the fiber dimension jumps and includes higher dimensional components/curves.

These points have a physical interpretation in terms of strings that become tensionless

over those points [43] which contribute additional degrees of freedom to the theory. This

can be seen by blowing up the intersection points of the divisors Z and [ds] in the base as

depicted in figure 16. These blow-ups remove the non-flat fiber points and introduce addi-

tional 6d tensor multiplets. The vacuum expectation value (vev) of the scalar component

〈s〉 of the tensor multiplet encodes the size of the blow-up mode and parametrizes the cou-

pling constant 〈s〉 = 1/gs of the tensionless string that becomes strong in the blow-down

limit [42] when the curves collide again.
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[ds] Z

SCP1

SCP2

[d̂s] Ẑ

E1

E2

Figure 16. Left: depiction of SCPs at the two simple intersection points of the two divisors [ds]

and Z; right: intersection points separated by two blow-up divisors E1,2.

These singularities are rather frequent in our theories, which can intuitively be under-

stood from the fact that SO(10) needs a divisor with a (2, 3, 7) singularity and therefore a

large tuning already to begin with. Hence, a second divisor can easily bring the resulting

codimension-two singularity to the critical value of (4, 6, 12). Indeed, around 80% of the

analyzed models admit SCPs and in the following we study them and their interplay with

the additional gauge symmetries.

If one is interested in theories without SCPs, there are two possibilities to get rid of

those points:

• Choose a base where the relevant intersections vanish, i.e. Z[ds] = 0 .

• Blow-up the intersections points as in figure 16.

In the following we consider generic bases that include SCPs but use the second option

to smoothly interpolate to a theory without SCPs and confirm anomaly cancellation in

section 4.7.

Similarly to the gauge group, the presence of SCPs is encoded in the structure of the

top as well. For the SO(10) tops, we have seen that we need at least 6 vertices, two at

height two and four at height one, that correspond to the divisors dual to the six roots

of the affine SO(10) Dynkin diagram. However, we also have the option to consider a top

with five vertices at height one, which are placed such that one of them lies in the interior

of a face. As an example, (F5, top 3) is depicted in figure 17. In such a case, the divisor

associated to the fifth vertex does not intersect the CY and therefore does not contribute

an SO(10) root at codimension one, as also observed in [57].

Base independent blow-ups. The SCPs are resolved by adding exceptional divisors

Ei in the base. In our case this implies that the fiber over the new exceptional divisors Ei
is smooth and one does not encounter additional gauge group factors after performing the

blow-up, which resolves the base space B̂. The exceptional divisors have the intersection
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form

Ei · Ej = −δij . (4.75)

Moreover, we can define the map [45]

β∗ : H2(B̂,Z)→ H2(B,Z) , (4.76)

i.e., the push-forward of base divisor classes under the blow-down map β. This map pre-

serves the intersection form and its kernel is generated by the exceptional divisors Ei, with

i ∈ {1, . . . , r}. Moreover, we denote by D∗ = β−1
∗ (D) the full preimage of D ∈ H2(B,Z).

The anticanonical class of the resolved base B̂ is modified as

K−1

B̂
= (K−1

B )∗ −
∑
i

Ei , (4.77)

from which we can derive the number of tensor multiplets T̂ in the blown-up base B̂ with

respect to the number of tensor multiplets T of B,

T̂ = 9− (K−1

B̂
)2 = 9− (K−1

B )2 −
∑
i,j

Ei · Ej = T + r . (4.78)

As expected, T̂ is increased by the number of exceptional divisors introduced during the

blow-up procedure. Similarly, also the other base divisor classes get modified,

Z∗ = Ẑ +
∑
i

nZ,iEi , S∗7 = Ŝ7 +
∑
i

n7,iEi , S∗9 = Ŝ7 +
∑
i

n9,iEi , (4.79)

where the integer parameters nZ,i, n7,i, and n9,i depend on the specific model. The blow-up

is performed in such a way that the base-independent intersections determining the matter

multiplicities (see appendix C) remain of the same form with hatted divisors. However,

the intersections corresponding to the SCPs vanish.

Example: a theory with SCP and its resolution. We consider (F5, top 3) which

is depicted in figure 17. Its generic spectrum and multiplicities are summarized in (C.19)

of appendix C. This top yields the gauge group SO(10)×U(1)2 together with some SCPs.

Here, the SCPs are generically localized over the intersection of Z and [d5] and are counted

by

nSCP = (2K−1
B − S7)Z . (4.80)

To be explicit, we construct a concrete threefold Y3 with base F0 = P1 × P1, where we

denote the two divisor classes by H1 and H2. We realize the CY as the anticanonical
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b)a)

Figure 17. Two depictions of the polytope (F5, top 3) that has SCPs. A projection of the top

is depicted in a) with vertices at height one in blue and those at height two in red. The vertex at

(1,0,1) lies in a face of the top. This face is shaded in blue in figure b) where the interior vertex is

marked in red.

hypersurface in the polytope ∆ with vertices:

coordinates vertices

u (-1, 1, 0,0)

v (0, -1, 0 ,0)

w (1, 0, 0,0)

e1 (0, 1, 0 ,0)

e2 (-1, 0, 0,0)

z1 (0, 0, -1,0)

z2 (0,-1,0,1)

z3 (0,0,0,-1)

coordinates vertices

f1 (0, 1, 1, 0 )

g1 (1, 1, 2,0)

g2 (2, 1, 2,0)

f2 (1, 1, 1,0)

f3 (2, 0, 1,0)

f̂4 (1, 0, 1,0)

z0 (0, 0, 1,0)

(4.81)

With the general expressions in appendix C this amounts to choosing

S9 = K−1
B = 2H1 + 2H2, S7 = 2H1 + 3H2 , (4.82)

The spectrum can then be easily computed, by using the intersections on F0 (2.58) together

with the Hodge and Euler numbers:

(h1,1(Y3), h2,1(Y3))χ = (11, 37)−52 . (4.83)

We find exactly one SCP by computing the intersection

[d5]Z = (2H1 +H2)H1 = 1 . (4.84)
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The rest of the spectrum can be computed similarly and is given by

representation multiplicity

10−1/2,0 3

16−1/4,1/2 3

101/2,1 2

nSCP 1

450,0 0

10,0 38

T 1

representation multiplicity

11,−1 3

11,2 6

10,2 8

1−1,−1 26

11,0 57

10,1 29

(4.85)

When computing the coefficient of the irreducible gravitational anomaly by adding all

perturbative degrees of freedom contained in hyper-, vector and tensor multiplets above,

we find

H − V + 29T − 273 = −29 , (4.86)

i.e. a mismatch of 29 degrees of freedom that enter the irreducible gravitational anomaly

with the same chirality as the tensors before the inclusion of the SCP. This already hints at

the fact that we get nSCP additional tensors on top of the usual T = h1,1(B)−1, cf. (4.29).

Next we want to consider the blow-up geometry. First, we deform the polynomial d5

to factorize as

d5 → z3d̂5 , (4.87)

to enforce the SCP to lie on the toric locus z0 = z3 = 0. We resolve this locus by performing

a blow-up of the ambient space, i.e. by adding the vertex

ê1 : (1,−1, 1, 1) (4.88)

to the 4d polytope ∆. This changes the base from F0 to dP2 and shifts the classes as

Z ∼ H1 − E1 , [z1] ∼ H1 , [z2] ∼ H2 − E1 , [z3] ∼ H2 . (4.89)

with E1 = [e1]. Indeed, we have removed the SCP, as the vertex of E1 subdivides the cone

in F0 which is spanned by the vertices of z0 and z3. For the model at hand, the blow-up

corresponds to a shift in the base divisor classes determining the matter multiplicities as

K−1
B ∼ 2H1 + 2H2 − E1 , S7 ∼ 2H1 + 3H2 − E1 , S9 = 2H1 + 2H2 . (4.90)

Inserting the intersections

H2
1 = 0 , H2

2 = 0 , H1E1 = 0 , H2E1 = 0 , E1E1 = −1 , (4.91)

into the general expressions given in appendix C, we confirm that the spectrum indeed

stays invariant. However, now the SCPs have been removed and T̂ = h1,1(B)− 1 = 2.
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Euler and Hodge numbers in theories with SCPs. Let us investigate the Euler and

Hodge numbers of this theory in more detail as given in (4.83). Naively, the Kähler moduli

of the CY threefold are

h1,1(Y3) = rank(GY3) + h1,1(B) + 1 . (4.92)

From this counting, we would have anticipated only ten Kähler moduli but instead we find

eleven. This additional Kähler modulus is non-toric and is accounted for by the point that

lies in the face, via the Batyrev formula [69]

h1,1(Y3) = l(∆)− 4−
∑

Γ

l◦(Γ)︸ ︷︷ ︸
h1,1toric

+
∑
Θ

l◦(Θ)l◦(Θ∗)︸ ︷︷ ︸
h1,1nt

. (4.93)

Here, l(∆) is the number of points in the polytope ∆, Γ are its edges and Θ denotes

codimension-two faces in ∆ whereas Θ∗ is its dual face in ∆∗ of dimension one. l◦ counts

the points in the relative interior of its argument. Hence, for a regular SO(10) top, all points

are vertices that are not in a face and all divisors are toric, with toric Kähler deformations

associated to them. However, the presence of a point in Θ of the fiber leads generically to

non-toric (1, 1)-forms for a base where its dual face contains non-trivial points as well.

Indeed, in our example the additional non-toric Kähler deformation is associated to

the point f̂4 : (1, 0, 1, 0) which is an interior point of the face

Θf = {(0,−1, 0, 0), (0, 0, 1, 0), (2, 0, 1, 0), (1, 1, 2, 0), (2, 1, 2, 0), (1, 0, 1, 0)} , (4.94)

and accounts for the SCP. This picture is also consistent from the perspective of the resolved

elliptic curve that reads

p(F5, top 3) =d5e
2
1e2f1f2u

2w+d8e
2
1f1f

2
2 f

2
3 f̂4g1g

2
2uw

2+d9e1f2f
2
3 f̂4g2vw

2

+d6e1e2f1f2f3f̂4g1g2uvwz0+d7e2f3f̂4v
2wz0+d1e

2
1e

2
2f

3
1 f

2
2 f̂4g

3
1g

2
2u

3z2
0

+d2e1e
2
2f

2
1 f2f̂4g

2
1g2u

2vz2
0 +d3e

2
2f1f̂4g1uv

2z2
0 .

(4.95)

Over the locus d5 = 0 the fiber becomes reducible,

p(F5, top 3)|d5=0 = f̂4 p3(u, v, w) , (4.96)

where p3(u, v, w) is a degree-three polynomial in the fiber coordinates u, v, w, which

parametrize a smooth torus away from the SO(10) divisor Z. In addition, we find a

P1, given by f̂4, which intersects the CY exactly over the SO(10) divisor Z. Hence, again,

from this perspective the interior point of a face of the SO(10) top , f̂4, yields the non-flat

fiber component over the collision points of Z and [d5].

Performing the blow-up of the SCP in the base by adding the divisor E1 removes the

non-toric (1, 1)-form and introduces a toric one in the base as discussed above.

From these observations, we conclude that the naive counting (4.92) of Hodge numbers

for a CY threefold Y3 has to be modified to include the contribution of non-toric Kähler
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deformations that are represented by the non-flat fiber components, i.e. the SCPs, as

χ(Y3) = 2(h1,1
toric(Y3) + h1,1

nt (Y3)− h2,1(Y3)) , (4.97)

h1,1(Y3) = rank(GY3) + h1,1(B) + 1 + nSCP . (4.98)

Using this identification we can compute the neutral matter spectrum, corrected by the

SCPs from the Euler numbers and generic rank of the gauge group, as

Hneut = h2,1(Y3) + 1 = h1,1(B) + nSCP + 2 + rank(GY3)− 1

2
χ(Y3) , (4.99)

justifying the expression in (4.30). This formula will prove very useful in the superconformal

matter transitions that we consider in the next section.

4.5 Transitions between theories

By considering the explicit structure of the tops it becomes apparent that many models

are related by toric blow-ups/blow-downs, i.e. by the addition/removal of a vertex in the

top ♦. These toric blow-ups also have a physical interpretation that depends on the height

of the vertex. This leads to a distinction of two different transitions, which are depicted

for a specific example in figure 18.

• Higgs transition: such a transition occurs when the change in the vertex occurs

at height v3 = 0. This is the locus of the ambient space polygon F0 of ♦, which

encodes the generic fiber while the SO(10) vertices remain unchanged. Hence, while

the SO(10) gauge group stays unaffected, the generic gauge group encoded in Fi does

change. Concretely, consider two tops (Fi, top A) and (Fj , top B) where (Fj , top B)

has one vertex less. It is well known that such a transition corresponds to a conifold

transition since we first blow-down a divisor of the generic fiber and then resolve with

a complex structure deformation by adding another monomial with base-dependent

section d(i,j) in the residual generic fiber coordinates, consistent with the C∗-actions.

Physically, we can describe this geometric process by a hypermultiplet h in (Fi, top

A) that gets a vev 〈h〉 6= 0, as long as there are enough hypermultiplets to satisfy the

D-flatness conditions in six dimensions. This can also be seen from the difference in

the Euler numbers of the two theories:

χ(Fi, top A) − χ(Fj , top B) = 2n[h] , (4.100)

where n[h] is the multiplicity of the Higgs multiplets in (Fi, top A) that get a vev.

As we blow down one vertex, we lose one Kähler modulus and therefore reduce the

rank of the total gauge group by one. In addition, we find

∆h2,1 = n[h]− 1 (4.101)

additional neutral singlets which give the additional D-flat directions, minus the Gold-

stone bosons of the Higgs multiplets, which is conform with the physical intuition.

Similarly, we can match the multiplicities of the charged spectrum after the higgsing
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SCMT:

Top 1→ 2

SCMT:

Top 2 → 3

Higgs:

F9 → F5

Higgs:

F9 → F5

Figure 18. Example for transitions between four different tops: superconformal matter transitions

(SCMTs) add a point in a face of a top and yield a model with SCPs. Higgs transitions remove a

vertex of the base polytope F0 and reduce the rank of the additional gauge groups besides SO(10).

from matter multiplicities that we had before: if we have two hypermultiplets R and

R′ under the gauge group of theory (Fi, top A) that become the same representation

R̃ under the gauge group in (Fj , top B) (up to charge conjugation), we expect the

resulting multiplicity

n[R̃] = n[R] + n[R′] . (4.102)

Higgs transitions are very helpful for theories with tops over F1, . . . , F4, as in these

models some singlet loci are complicated such that the resultant becomes unfeasible

to compute on a conventional computer. Unhiggsing to a theory with simpler ideals

can help to deduce the matter spectrum, as we exemplified in section 3.3.

• Superconformal matter transition: in such a situation, we introduce a blow-up

in the SO(10) top at height v3 = 1 in the top ♦. The blow-up is introduced such

that one former vertex now lies in a face and therefore does not intersect the CY hy-

persurface in codimension one, i.e. the associated divisor does not introduce another

Cartan generator. In addition, the transition reduces the total spectrum and induces

additional non-flat fiber points at codimension two. Those transitions correspond to

superconformal matter transitions [44] or tensionless string transitions [45] and are

discussed in more detail in section 4.6.

4.6 Transitions to theories with superconformal matter

Similar to the Higgs transitions, we can perform a match of degrees of freedom between

two tops (Fi, top A) and (Fi, top B) where the latter has a point in a face and thus SCPs.

– 52 –



J
H
E
P
1
2
(
2
0
1
7
)
0
3
5

As the two fibrations differ only by a blow-up in the fiber, we expect these theories to be

related by a smooth transition which corresponds to a physical process.

These transitions are very useful when we consider anomaly cancellation of theories

with SCPs by relating them to theories that have a well-defined SUGRA description. This

can be done by tracking the charged matter spectrum in the transition and relating missing

charged multiplets to SCPs in the new theory. To illustrate that point, we consider the

transition between (F5, top 2) and (F5, top 3).

Example of SCP transition. We start with the model (F5, top 2) that has no SCPs.

In terms of the sections di of the fiber in (F5, top 2) we can reach the model (F5, top 3)

simply by tuning d1 such that it factors out one more SO(10) divisor

d
(F5,top 2)
1 → d

(F5,top 3)
1 z0 , (4.103)

which fixes some of the complex structure moduli, that we compute momentarily. Let us

first consider the change in the total spectrum, which is given by:

nSCP = +(2K−1
B − S7)Z , ∆10(−1/2,0) = −(2K−1

B − S7)Z ,
∆16(−1/4,−1/2) = −(2K−1

B − S7)Z , ∆1(−1,−1) = −(2K−1
B − S7)Z ,

∆1(0,1) = −(2K−1
B − S7)Z , ∆h(2,1) = −(2K−1

B − S7)Z .
(4.104)

Indeed, this sums up to exactly the amount of 29× (2K−1
B −S7)Z missing hypermultiplets

from (F5, top 2) that are exchanged for (2K−1
B − S7)Z SCPs. In this matching we have

used that we can compute the change in the neutral hypermultiplets by comparing the

difference in the Euler numbers similar to the Higgs transition case,

∆χ = 2(∆h(1,1) −∆h(2,1)) , (4.105)

which in this case reads

χ(F5, top 3) − χ(F5, top 2) = 4(2K−1
B − S7)Z . (4.106)

From (4.97) we deduce that ∆h(1,1) = (2K−1
B − S7)Z, since the rank of the gauge group

is unchanged. Hence we conclude that the change in the number of complex structure

moduli is ∆h(2,1) = −(2K−1
B − S7)Z, which is exactly the change in the multiplicities of

charged hypermultiplets in (4.104). Hence, we conclude that indeed a multiple of 29 nSCP

hypermultiplets vanish from the perturbative spectrum in order to form nSCP SCPs that

are accounted for by non-toric Kähler deformations of the non-flat fiber components.

4.7 Anomalies in models with superconformal matter

After performing the blow-up procedure described in section 4.4 the CY threefold is smooth

and the theory has a well-defined supergravity limit. In particular, we can check the

factorization of the anomaly polynomial, similarly to section 4.3. There are two possible

scenarios. Either the original theory with SCPs is directly related to a smooth geometry

via a transition, see section 4.6 above, or it belongs to a separate class of models. In the
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first case, we can relate the anomaly polynomial of the blown-up geometry to the model

without SCPs. In the process we can identify the charged and neutral matter multiplets

that vanish in the hypermultiplet sector to account for the additional tensor multiplet after

the resolution of the base. This is exemplified for the model (F5, top 3) with relation to (F5,

top 2) below. In the second scenario, where there is no such transition, we can nevertheless

evaluate the anomaly coefficients after the blow-up by using the fact that the intersection

giving rise to SCPs is resolved by the blow-up. This is exemplified using the model (F5,

top 1) in (C.17). Moreover, all anomaly coefficients and relations are given in appendix C.

We start with discussing the anomaly cancellation for (F3, top 3) with a transition to

(F3, top 2), see section 4.6. In order to study the anomalies in the supergravity theory one

has to resolve the base. The blow-up, see section 4.4, is performed in such a way that the

base-independent intersections determining the matter multiplicities remain of the same

form with hatted divisors. However, the intersection corresponding to SCPs vanishes. The

number of intersection points that lead to SCPs in (F5, top 3) are given by

(2K−1

B̂
− Ŝ7)Ẑ = 0 . (4.107)

All other matter multiplicities differ from that of (F5, top 2) by multiples of this combina-

tion. A non-trivial change arises for

10−1/2,0 : (3K−1

B̂
−Ŝ9−2Ẑ)Ẑ−(2K−1

B̂
−Ŝ7)Ẑ ,

1−1,−1 :
[
6(K−1

B̂
)2+Ŝ2

7 +K−1

B̂
(−5Ŝ7+4Ŝ9−2Ẑ)+Ŝ7(Ŝ9+Ẑ)−2Ŝ9(Ŝ9+Ẑ)

]
−(2K−1

B̂
−Ŝ7)Ẑ

10,1 :
[
6(K−1

B̂
)2−2Ŝ2

7−2Ŝ2
9 +2Ẑ2+K−1

B̂
(4Ŝ7+4Ŝ9−11Ẑ)−3Ŝ9Ẑ+2Ŝ7Ẑ

]
−(2K−1

B̂
−Ŝ7)Ẑ

10,0 :
[
19+11(K−1

B̂
)2+2Ŝ2

7 +2Ŝ2
9 +4Ŝ9Ẑ+8Ẑ2−Ŝ7(Ŝ9+2Ẑ)

−2K−1

B̂
(2Ŝ7+2Ŝ9+7Ẑ)

]
−(2K−1

B̂
−Ŝ7)Ẑ ,

(4.108)

which has to be compared with table (C.18). Hence, we see that the anomaly coefficients

are the same as for (F5, top 2) in terms of the new base cohomology basis

K−1

B̂
=
∑
α

âαĤα , −Ẑ =
∑
α

b̂αĤα , −
(

2K−1

B̂
− 5

4
Ẑ
)

=
∑
α

b̂α11Ĥα ,

−
(
K−1

B̂
− Ŝ7 + Ŝ9 +

1

2
Ẑ
)

=
∑
α

b̂α12Ĥα , −(2K−1

B̂
+ 2Ŝ9 − Ẑ) =

∑
α

b̂α22Ĥα .

(4.109)

Interestingly, the two related models differ by the particle spectrum

− (2K−1
B − S7)Z × (16−1/4,−1/2 ⊕ 10−1/2,0 ⊕ 1−1,−1 ⊕ 10,1 ⊕ 10,0) , (4.110)

which amounts to a multiple of 29 degrees of freedom which are now contained in the

additional tensor multiplets.
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For (F5, top 1) in table (C.17) there is no such transition to a model without SCPs.

However, the anomaly factorizes modulo multiples of the SCP intersection, which vanishes

after the blow-up,

(Ŝ7 − Ẑ)Ẑ = 0 . (4.111)

To demonstrate that, we evaluate the reducible SO(10) anomaly, which reads

I8 ⊃
1

24

(
3− 3n[45]− 3

4
n[16]

)(
trF̃ 2

)2
= − 1

32
(2Ẑ2 − Ŝ7Ẑ)

(
trF̃ 2

)2
= − 1

32

(
Ẑ2 − (Ŝ7 − Ẑ)Ẑ

)(
trF̃ 2

)2
= − 1

32
Ẑ2
(
trF̃ 2

)2
.

(4.112)

This coincides with the result expected from the geometrical interpretation discussed in

section 4.3. The other terms of the anomaly polynomial can be treated in a similar way,

making use of (4.111). The anomaly coefficients read

K−1

B̂
=
∑
α

âαĤα , −Ẑ =
∑
α

b̂αĤα , −
(

2K−1

B̂
− 5

4
Ẑ
)

=
∑
α

b̂α11Ĥα ,

−(K−1

B̂
− Ŝ7 + Ŝ9) =

∑
α

b̂α12Ĥα , −(2K−1

B̂
+ 2Ŝ9 − 2Ẑ) =

∑
α

b̂α22Ĥα .
(4.113)

Again, the anomaly coefficients match those given in [49] up to contributions of the resolved

GUT divisor Ẑ.

5 Towards the Standard Model with high-scale SUSY

The analysis of toric F-theory vacua with gauge group SO(10) has been motivated by the

search for string theory embeddings of six-dimensional grand unified theories. Compactifi-

cation of such 6d GUT models to four dimensions on orbifolds with Wilson lines25 can yield

realistic extensions of the Standard Model [27–29]. More recently, it was realized that the

inclusion of Abelian magnetic flux can relate the multiplicity of quark-lepton generations

to the scale of supersymmetry breaking, leading to extensions of the Standard Model with

high-scale SUSY [26]. In this section we briefly recall the main features of this 6d model

and analyze its realization in toric F-theory compactifications to six dimensions.

5.1 A 6d supergravity SO(10) GUT model

We are particularly interested in Lagrangian 6d models with gauge group SO(10)×U(1)

which allow for an Abelian magnetic flux that commutes with SO(10). Compactifications on

T 2/Z2 with two Wilson lines can break SO(10) to SU(3)×SU(2)×U(1)2, the standard model

gauge group supplemented by U(1)B−L. The gauge boson of the additional U(1) factor

becomes massive by the Stückelberg mechanism. Besides the vector multiplets accounting

for the gauge fields one includes hypermultiplets in the 16 and 10 representation of SO(10).

The standard model Higgs fields arise as components of neutral 10-plets, making use of the

25Note, however, that the consistency of such orbifold compactifications with F-theory compactifications

to four dimensions is an important open question.
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standard doublet-triplet splitting mechanism. For 16-plets charged under the additional

U(1) factor the index theorem implies the appearance of full matter generations of fermionic

zero modes. The bosonic superpartners on the other hand receive masses of the order of the

compactification scale [31]. Furthermore, uncharged 16-plets are needed to spontaneously

break U(1)B−L.

The three quark-lepton generations of the Standard Model are obtained from bulk

16-plets with charges qi. For N flux quanta they have to satisfy the condition∑
i

qiN = 3 , (5.1)

which can be realized in three ways:

charges of 16qi flux quanta N

q1 = q2 = q3 1

q1 = 2q2 1

q1 3

(5.2)

All additional 16-plets have to be uncharged with respect to the U(1) gauge symmetry con-

taining the flux. The 6d model discussed in [26] contains one charged and three uncharged

16-plets. Cancellation of the irreducible gauge anomaly then requires six 10-plets which

are all chosen to be uncharged. One can find a set of charged and uncharged SO(10) singlets

such that all irreducible gauge and gravitational anomalies vanish and the reducible anoma-

lies can be canceled by a Green-Schwarz term. The complete matter spectrum realizing

this is given by

representation multiplicity

161 1

160 3

100 6

11 80

10 86

(5.3)

Specifically one has

H − V + 29T − 273 = 0 (5.4)

for a single tensor multiplet T = 1. The irreducible non-Abelian anomaly vanishes and the

anomaly polynomial factorizes with SO(1,1) metric and anomaly coefficients given by

Ω =

(
0 1

1 0

)
, a =

(
2

2

)
, b =

(
−1

0

)
, b11 =

(
−4

−4

)
. (5.5)

In the following we analyze the models arising in toric F-theory compactifications that

possibly lead to a matter spectrum of the form described above and can be viewed as a

starting point for supersymmetric grand unified theories in the flux background.
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5.2 F-theory realizations

We now analyze the list of toric F-theory models with gauge group SO(10) in terms of their

phenomenological viability for flux compactification of 6d GUTs. The various restrictions

of the matter spectrum and the required absence of additional non-Abelian gauge groups

lead to strong constraints on the allowed base spaces and fibers. The remaining models

are then searched for phenomenologically viable realizations.

F-theory bases. The phenomenological constraints described above lead to certain re-

strictions on the geometry of the base manifold. Demanding a Lagrangian description

requires theories with a single tensor multiplet reducing the allowed bases to the Hirze-

bruch surfaces Fn with n ≤ 12 [85]. Additionally, in order to avoid non-higgsable clusters

we restrict to n ≤ 2 and we are left with only three different possible choices for the base of

the elliptically fibered Calabi-Yau manifold. However, each of the three bases allows vari-

ous possibilities to embed the base divisor classes S7, S9, and Z in terms of the irreducible

divisors H1 and H2 of Fn.

The intersection matrix of Fn is given by

Ω =

(
n 1

1 0

)
, (5.6)

and the anticanonical class reads

K−1
Fn

= 2H1 + (2− n)H2 . (5.7)

Moreover, in order to avoid additional light fields in the 4d effective action we need the

absence of hypermultiplets in the adjoint representation that are connected to the genus

of the GUT divisor Z in the base,

n[45] = 1− 1

2
(K−1

Fn
−Z)Z !

= 0 . (5.8)

Parametrizing Z on Fn in the general form,

Z = aZH1 + bZH2 , (5.9)

with positive integer coefficients aZ , bZ ∈ Z+
0 , we find using (5.6), (5.7) and (5.9),

1

2
naZ(aZ − 1) + aZ + bZ − aZbZ !

= 1 . (5.10)

This restricts the possible embeddings of the GUT divisor Z to genus-zero curves in the

base B = Fn.

F-theory fibers. The restriction to F-theory models without additional non-Abelian

gauge groups limits the ambient spaces of the fiber to F2, F3, F5 and F7. In all other

cases we find either no Abelian gauge factors or additional non-Abelian ones. Moreover,

not all tops lead to 10-plets that are uncharged with respect to at least one of the Abelian

factors, a feature needed to reproduce the Higgs sector of the Standard Model with the
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required doublet-triplet splitting. In addition, neutral 16-plets are needed to break B−L.

Remarkably, this leaves only a single model: (F3, top 4).

Another constraint derived from the fiber is induced by the effectiveness26 of the sec-

tions di, see e.g. [59]. This leads to a positive volume of the physical matter curves as well

as positive intersection numbers. However, it represents a severe restriction on the base

divisor classes S7, S9, and Z in Fn. Analogous to (5.9) we parametrize

S7 = a7H1 + b7H2 , S9 = a9H1 + b9H2 . (5.11)

Plugging this into the expression for the sections di one can derive various inequalities for

the parameters aZ,7,9 and bZ,7,9, which leads to a rather restricted set of viable models.

These inequalities are:

section inequalities

d1 6− a7 − a9 − aZ ≥ 0 , 6− 3n− b7 − b9 − bZ ≥ 0

d2 4− a9 − aZ ≥ 0 , 4− 2n− b9 − bZ ≥ 0

d3 2 + a7 − a9 − 2aZ ≥ 0 , 2− n+ b7 − b9 − 2bZ ≥ 0

d4 2a7 − a9 − 3aZ ≥ 0 , 2b7 − b9 − 3bZ ≥ 0

d5 4− a7 − aZ ≥ 0 , 4− 2n− b7 − bZ ≥ 0

d6 2− aZ ≥ 0 , 2− n− bZ ≥ 0

d7 a7 − aZ ≥ 0 , b7 − bZ ≥ 0

d8 2 + a9 − a7 ≥ 0 , 2− n+ b9 − b7 ≥ 0

d9 a9 ≥ 0 , b9 ≥ 0

(5.12)

Specific models. Let us now examine whether one can obtain the anomaly free model

summarized in (5.3) as a 6d F-theory vacuum. The SO(1,1) metric specifies the base to

be F0 = P1 × P1. Moreover, from the anomaly coefficient for the reducible non-Abelian

anomaly we can deduce, see section 4.3

Z = H1 (5.13)

The matter spectrum containing charged and uncharged 16-plets and neutral 10-plets and

the gauge group SO(10)×U(1) singles out the fiber (F3, top 4). The multiplicities of 16−1

and 100 given in (5.3) further restrict the base divisor classes of S7 and S9 to

S7 = a7H1 + 6H2 , S9 = a9H1 +H2 , (5.14)

with a7,9 ∈ Z+
0 . Plugging this into the base-independent multiplicities of the remaining

matter representations 160 and 101 in (3.15) we find

160 : (2K−1
B − S9 −Z)Z = 3 ,

101 : (3K−1
B − S7 −Z)Z = 0 ,

(5.15)

26The effectiveness of the sections corresponds to semi-positive coefficients for the divisor classes [di] in

the basis {H1, H2} given above.
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as desired. The singlet multiplicities are evaluated accordingly, using (3.15),

13 : 2− a7 − 2a9 ,

12 : − 6 + 4a7 + 16a9 ,

11 : 158− 31a7 + 2a9 .

(5.16)

One immediately verifies that with positive integer coefficients a7 and a9 one cannot re-

produce the multiplicities of charged singlets in table (5.3). We conclude that the model

described in section 5.1 belongs to the ‘toric swampland’, i.e. it cannot be reproduced from

6d F-Theory vacua that are obtained from hypersurfaces in toric varieties.

It is interesting, however, that for a different spectrum of charged SO(10) singlets one

can find a model with the SO(10) matter content of (5.3). Setting a7 = 2 and a9 = 0 yields

the charged singlet multiplicities

singlets multiplicities

13 0

12 2

11 96

(5.17)

This model has the anomaly coefficients

a =

(
2

2

)
, b =

(
−1

0

)
, b11 =

(
−7

−2

)
, (5.18)

and also solves all anomaly constraints, with 68 neutral singlets. However, not all sections

di are effective,

[d1] ∼ 3H1 −H2 , [d2] ∼ 3H1 + 3H2 , [d3] ∼ 2H1 + 7H2 ,

[d4] ∼ H1 + 11H2 , [d5] ∼ H1 − 2H2 , [d6] ∼ H1 + 2H2 ,

[d7] ∼ H1 + 6H2 , [d8] ∼ −3H2 , [d9] ∼ H2 .

(5.19)

The divisor classes [d1], [d5] and [d8] have one negative coefficient, which implies that the

corresponding geometry cannot be smoothly realized.

So far we have required that all 10-plets carry zero U(1) charge. Phenomenologically,

this is not necessary. Two neutral 10-plets are sufficient to realize doublet-triplet splitting.

Further charged 10-plets will lead to zero modes of 10-plets, but this is vector-like matter

which can obtain mass at orbifold fixed points or via couplings to singlet fields. One

can easily repeat the above analysis without specifying the number of uncharged 10-plets.

Instead of eq. (5.14) one then starts from

S7 = a7H1 + b7H2 , S9 = a9H1 +H2 . (5.20)

One again has one charged and three uncharged 16-plets whereas the number of uncharged

and charged 10-plets is now b7 and 6 − b7, respectively. Using (3.15) one obtains for the
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singlet multiplicities

13 : 2− a7 + 4a9 − b7a9 ,

12 : 42− 8a7 − 8b7 + 4a9 + 2a7b7 + 2b7a9 ,

11 : 50 + 17a7 + 18b7 − 4a9 − 8a7b7 + b7a9 .

(5.21)

It is also straightforward to evaluate the divisor classes [di] in terms of a7, b7 and a9. We

find that for a7 = 2, b7 = 3 and a9 = 0 all multiplicities are non-negative and all divisor

classes are effective:

[d1] ∼ 3H1 + 2H2 , [d2] ∼ 3H1 + 3H2 , [d3] ∼ 2H1 + 4H2 ,

[d4] ∼ H1 + 5H2 , [d5] ∼ H1 +H2 , [d6] ∼ H1 + 2H2 ,

[d7] ∼ H1 + 3H2 , [d8] ∼ 0 , [d9] ∼ H2 .

(5.22)

The complete matter spectrum is given by

representation multiplicity

16−1 1

160 3

101 3

100 3

13 0

12 14

11 90

10 62

(5.23)

Since the phenomenological constraints leave only a single model we can scan through

all possibilities for effective sections with the general parametrization for S7, S9 and Z
satisfying all inequalities (5.12). Further demanding the presence of at least two uncharged

10-plets and two uncharged 16-plets for the breaking of the electroweak symmetry and

U(1)B−L, we find 33 possible realizations. 25 of these contain a single charged 16-plet, the

remaining 8 models have three charged 16-plets. The explicit base divisors and complete

matter spectra are summarized in appendix D.

5.3 Phenomenological aspects

For completeness we now briefly recall some phenomenologically attractive features of the

6d supergravity models discussed above and discuss some connections to 4d F-theory mod-

els.

The magnetic flux in the additional U(1) gauge group leads to a positive energy density

and breaks supersymmetry. However, the positive D-term potential with runaway behavior

induced by the flux can be combined with a nonperturbative superpotential at the orbifold

fixed points leading to metastable de Sitter vacua [86, 87]. In these models electroweak sym-

metry breaking still remains to be investigated, and one may worry that extreme fine-tuning
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will be necessary to obtain a Fermi scale far below the GUT scale. On the other hand, in

an Abelian toy model it was recently shown that for flux compactifications a cancellation of

quadratic divergences can be achieved at one-loop level if the whole Kaluza-Klein tower of

Landau levels is taken into account [88, 89]. One can expect that similar cancellations will

also occur for quantum corrections in the Higgs sector. Furthermore, flux compactifications

can lead to a characteristic flavor structure of quark and lepton mass matrices. Due to the

generation of Yukawa couplings at orbifold fixed points one starts from mass matrices of

rank one, which can be increased by mixings with additional vector-like matter [90].

The flavor structure of fermion mass matrices has been extensively studied in 4d F-

theory models. In the singular limit Yukawa couplings arise at codimension-three sin-

gularities and therefore their flavor structure is a matrix of rank one [91, 92]. This is an

interesting starting point to obtain hierarchical quark and lepton mass matrices. Necessary

modifications can be realized by an appropriate choice of magnetic fluxes [91] and by tak-

ing subleading corrections due to finite-size effects of the wavefunctions into account [92].

Interesting mass matrices are also obtained by analyzing the dependence of the zero mode

wavefunctions on complex structure moduli [93]. Heavy messenger states can generate mass

matrices of Frogatt-Nielsen type [94]. Taking these ingredients into account, quark and

lepton mass matrices can be successfully accounted for by particular local SU(5) F-theory

GUTs [95] as well as various global SU(5) F-theory GUTs [19]. Furthermore, also low mass

vector-like matter can be incorporated, with interesting signatures at the LHC [96].

6 Summary and outlook

In this paper we have classified 6d F-theory vacua with gauge group SO(10) and additional

Mordell-Weil U(1) and discrete gauge factors, based on toric geometry. To each of the 16

polygons serving as a toric ambient space of a torus, we have added all possible SO(10)

tops. This gave us 36 polytopes from which we constructed K3 manifolds with gauge

group SO(10). By tuning the parameters of an analog construction that gives rise to

CY threefolds, we identified the allowed matter representations and their loci. For these

threefolds we computed, solely from geometry, the multiplicities for all SO(10) charged

and uncharged multiplets and confirmed, base-independently, cancellation of all gauge and

gravitational anomalies.

The various steps of our analysis were explained in detail for a particular example, the

fiber F3. Fibering a torus with Mordell-Weil group of rank one over a P1, one obtains a K3

manifold that can be tuned to have an SO(10) singularity. We resolved this singularity by

adding an SO(10) top, (F3, top 1). This yields five additional P1s for the five SO(10) roots

with an intersection pattern corresponding to the extended Dynkin diagram of SO(10).

Particular emphasis has been put on the matter splits. At the matter loci some SO(10) P1s

split into chains of several new P1s. From these splits and their common P1s one obtains

the extended Dynkin diagrams of the enhanced symmetries SO(12) or E6. Further tuning

leads to codimension-three singularities where Yukawa couplings occur. At these loci the

SO(10) P1s split further, leading to the extended Dynkin diagram of E7 as well as other

non-ADE intersection patterns.
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After specifying a complex two-dimensional base, matter multiplicities can be evalu-

ated explicitly. This is rather straightforward for SO(10) matter but much more involved for

charged and neutral SO(10) singlets. Unhiggsing the considered model to another theory

with two U(1) factors, corresponding to the fiber (F5, top 2), the resultant equations could

be solved and the singlet multiplicities were evaluated base-independently. Moreover, we

obtained general expressions for the Euler numbers in terms of the base divisor classes. This

allowed us to determine the multiplicities of uncharged singlets and to verify the cancella-

tion of all anomalies base-independently. This procedure has been applied for all 36 models.

Our analysis led to several intriguing insights concerning 6d F-theory vacua. First, su-

perconformal points appear rather frequently as non-flat fiber points in codimension two in

the base. This is not unexpected for large gauge groups such as SO(10). These points can be

removed by adding exceptional divisors in the base, leading to new tensor multiplets, corre-

sponding to the tensor branch of the superconformal point. This interpretation is supported

by an analysis of full anomaly cancellation which we confirmed in a base-independent way.

Moreover, we discussed the contribution of superconformal points to non-toric Kähler

deformations in the smooth fibration, which have to be taken into account when deter-

mining the neutral singlets. Thus, we provide a full description of global 6d theories with

superconformal points coupled to SO(10) and Abelian discrete and continuous gauge factors

for the first time.

We also demonstrated that to a large extent the various SO(10) models are related by

several transitions. First, we relate various SO(10) tops via the Higgs mechanism realized

as conifold transitions in the generic fiber. We then considered tensionless string transitions

which are the result of adding an additional vertex to the SO(10) top , such that one of the

original vertices becomes contained in the interior of a face. In these transitions we match

the change of the full matter spectrum base-independently and confirm the appearance of

non-toric Kähler deformations that are supported by SCPs.

Our work has been motivated by 6d supergravity models with gauge group

SO(10)×U(1) which, after orbifold compactifications with flux, can yield viable exten-

sions of the Standard Model with high-scale supersymmetry. It appears that the model

originally considered belongs to the ‘toric swampland’. However, we could identify vari-

ants which are phenomenologically promising. These models contain several charged and

uncharged 16-plets and 10-plets together with a large number of charged and uncharged

SO(10) singlets. To explore these models further requires progress on several conceptually

important questions: the compactification of F-theory on orbifolds, possibly along the lines

of [97], the incorporation of Wilson line symmetry breaking and the consistency of F-theory

vacua with a high scale of flux-induced supersymmetry breaking.
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A More details on the construction of 6d vacua

For a polytope ∆ with vertices vi, the vertices mi of the dual polytope ∆∗ are the solutions

of the inequalities

〈mi, vj〉 ≥ −1 ∀ i, j . (A.1)

The polynomial defining the CY twofold reads27

p∆ =
∑

mi∈∆∗

ai
∏
vj∈∆

x
〈mi,vj〉+1
j =

∑
mi∈∆∗

ai

 ∏
vs∈F3

x〈mi,vs〉+1
s

 ∏
vt∈∆,vt 6∈F3

x
〈mi,vt〉+1
t

 .

Its partially factorized form is preserved once a bottom is added to the top,

p∆ =
∑

mi∈∆∗

ai

 ∏
vj∈F3

x
〈mi,vj〉+1
j

 ∏
vj∈♦,vj 6∈F3

x
〈mi,vj〉+1
j

 ∏
vj∈base

x
〈mi,vj〉+1
j

 . (A.2)

It is a polynomial in the homogeneous coordinates xi of the ambient space with non-negative

exponents. The ambient space contains a Calabi-Yau manifold which is cut out by

Y∆ = {p∆ = 0} . (A.3)

In section 2.1 we start from the polygon F3 = dP1 with coordinates and vertices given

in table 1. The dual polygon has 9 vertices,

m1 = (1, 0) , m2 = (0, 1) , m3 = (1, 1) , m4 = (1,−1) , m5 = (0, 0) ,

m6 = (−1, 0) , m7 = (−1,−1) , m8 = (−2,−1) , m9 = (0,−1) .
(A.4)

Using eq. (A.2), without top and bottom, these vertices determine the polynomial (2.1)

from which one obtains a torus with a non-trivial Mordell-Weil group, giving rise to a U(1)

gauge group.

An important piece of data of a polytope, or rather its fan is its associated Stanley-

Reisner ideal, which is a set of monomials. Each monomial contains homogeneous coor-

dinates whose corresponding rays do not form a cone. The construction of the ambient

space is such that these monomials cannot vanish, which is important in the calculation of

intersection numbers. For the polygon F3 one has

SRI : {uv,we1} . (A.5)

If a linear combination of divisors Dxi in an ambient space is a principal divisor, i.e.

D =
∑
i

ciDxi 〈c, vj〉 = 0 , ∀vj ∈ ∆ , (A.6)

27In section 4 this equation is obtained from the polynomial of a non-compact CY two-fold using Batyrev’s

construction [69] around equations (4.8)–(4.10).
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the divisor is called linear dependent, D ∼ 0. Such linear combinations of divisors do not

affect intersection numbers and can therefore be conveniently added.

Extending the ambient space from dP1 to a fibration of dP1 over P1 one obtains the CY

two-fold Ŷ2, i.e. a K3. The homogeneous coordinates and vertices of a corresponding three-

dimensional polytope are given in table 2. The dual polytope now contains the following

28 vertices,

m1 =(1,0,0), m2 =(0,1,0), m3 =(1,1,0), m4 =(1,−1,0),

m5 =(0,0,0), m6 =(−1,0,0), m7 =(−1,−1,0), m8 =(−2,−1,0),

m9 =(0,−1,0), m10 =(0,1,1), m14 =(0,0,1), m15 =(−1,0,1),

m16 =(−1,−1,1), m17 =(−2,−1,1), m18 =(0,−1,1), m21 =(−1,0,2),

m23 =(−1,−1,2), m24 =(−2,−1,3), m25 =(1,0,−1), m26 =(0,1,−1),

m27 =(1,1,−1), m28 =(1,−1,−1), m29 =(0,0,−1), m30 =(−1,0,−1),

m31 =(−1,−1,−1), m32 =(−2,−1,−1), m33 =(0,−1,−1), m34 =(−2,−1,2).

(A.7)

They determine the polynomial pŶ2 from which one obtains a K3 manifold. Since all these

vertices have to be orthogonal to the vertices of the polytope associated with the coordinates

u, v, w and e1, the various terms of the polynomial factorize into the monomials of u, v, w

and e1, already present in eq. (2.1), with sections si, i = 1 . . . 9, which depend on the base

coordinates z0 and z1 as follows:

s1 = a4z0 + a28z1 , s2 = a18z
2
0 + a9z0z1 + a33z

2
1 ,

s3 = a23z
3
0 + a16z

2
0z1 + a7z0z

2
1 + a31z

3
1 ,

s4 = a24z
4
0 + a34z

3
0z1 + a17z

2
0z

2
1 + a8z0z

3
1 + a32z

4
1 ,

s5 = a1z0 + a25z1 , s6 = a14z
2
0 + a5z0z1 + a29z

2
1 ,

s7 = a21z
3
0 + a15z

2
0z1 + a6z0z

2
1 + a30z

3
1 , s8 = a3z0 + a27z1 ,

s9 = a10z
2
0 + a2z0z1 + a26z

2
1 .

(A.8)

For generic coefficients Ŷ2 is a smooth K3 manifold. However, for a specific tuning of

coefficients,

a28 = a9 = a33 = a7 = a31 = a32 = a8 = a17 = a29 = a30 = 0 , (A.9)

one obtains a certain factorization of the sections, si = zni
0 di, with powers ni given in

eq. (2.9) and coefficients

d1 = a4 , d2 = a18 ,

d3 = a23z0 + a16z1 , d4 = a24z0 + a34z1 ,

d5 = a1z0 + a25z1 , d6 = a14z0 + a5z1 ,

d7 = a21z
2
0 + a15z0z1 + a6z

2
1 , d8 = a3z0 + a27z1 ,

d9 = a10z
2
0 + a2z0z1 + a26z

2
1 .

(A.10)
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After tuning 10 coefficients to zero, the reduced dual polytope has 18 vertices. A particular

triangulation leads to the Stanley-Reissner ideal

SRI : {uv,we1, z0z1} . (A.11)

As shown in section 2.2, the K3 manifold obtained from the reduced polytope has an

SO(10) singularity. The choice of the particular tuning (A.9) can be understood from the

construction of a smooth K3 with an SO(10) top.

The reduced polytope with 18 vertices is the dual of a polytope with an SO(10) top.

The vertices are listed in table 4. In figure 13 the vertices of the same top together with

an enlarged basis F0 = P1 × P1 are given. The dual polytope now contains 62 vertices,

m1 =(0,1,0,0), m2 =(0,0,0,0), m3 =(−1,0,0,0), m4 =(0,1,1,0),

m5 =(0,0,1,0), m6 =(−1,0,1,0), m7 =(−1,−1,1,0), m8 =(0,−1,1,0),

m9 =(−1,0,2,0), m10 =(−1,−1,2,0), m11 =(−2,−1,3,0), m12 =(0,1,−1,0),

m43 =(−2,−1,2,0), m13 =(1,0,0,1), m14 =(0,1,0,1), m15 =(1,1,0,1),

m16 =(1,−1,0,1), m17 =(0,0,0,1), m18 =(−1,0,0,1), m19 =(0,1,1,1),

m62 =(0,0,1,1), m20 =(−1,0,1,1), m21 =(−1,−1,1,1), m22 =(0,−1,1,1),

m23 =(−1,0,2,1), m24 =(−1,−1,2,1), m25 =(−2,−1,2,1), m26 =(−2,−1,3,1),

m27 =(1,0,−1,1), m28 =(0,1,−1,1), m29 =(1,1,−1,1), m30 =(0,1,0,−1),

m31 =(0,0,0,−1), m32 =(−1,0,0,−1), m33 =(0,1,1,−1), m34 =(0,0,1,−1),

m35 =(−1,0,1,−1), m36 =(−1,−1,1,−1), m37 =(0,−1,1,−1), m38 =(−1,0,2,−1),

m39 =(−1,−1,2,−1), m40 =(−2,−1,2,−1), m41 =(−2,−1,3,−1), m42 =(0,1,−1,−1),

m44 =(−2,−1,2,−2), m45 =(−2,−1,2,−3), m46 =(−2,−1,2,−4), m47 =(−2,−1,2,−5),

m48 =(−2,−1,3,−2), m49 =(−2,−1,3,−3), m50 =(−2,−1,3,−4), m51 =(−2,−1,2,−5),

m52 =(−1,0,1,−2), m53 =(−1,0,1,−3), m54 =(−1,−1,1,−2), m55 =(−1,−1,1,−3),

m56 =(−1,0,2,−2), m57 =(−1,0,2,−3), m58 =(−1,−1,2,−2), m59 =(−1,−1,2,−3),

m60 =(−1,0,0,−2), m61 =(−1,0,0,−3). (A.12)

The polynomial pY3 is again of the form (2.1). The sections si factorize into powers of z0,

f2, . . ., f4 given in eq. (2.19), and coefficients di which are functions of z = z0f2g
2
1g

2
2f3f4,

z1, z2 and z3,

d1 = a16 ,

d2 = a22z
2
2 + a8z2z3 + a37z

2
3 ,

d3 = z(a24z
4
2 + a10z

3
2z3 + a39z

2
2z

2
3 + a58z2z

3
3 + a59z

4
3)

+ z1(a21z
4
2 + a7z

3
2z3 + a36z

2
2z

2
3 + a54z2z

3
3 + a59z

4
3) ,

d4 = z(a26z
6
2 + a11z

5
2z3 + a41z

4
2z

2
3 + a48z

3
2z

3
3 + a49z

2
2z

4
3 + a50z2z

5
3 + a51z

6
3)

+ z1(a25z
6
2 + a43z

5
2z3 + a40z

4
2z

2
3 + a44z

3
2z

3
3 + a45z

2
2z

4
3 + a46z2z

5
3 + a47z

6
3) ,

d5 = a13z + a27z1 , (A.13)
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d6 = z(a62z
2
2 + a5z2z3 + a34z

2
3) + z1(a17z

2
2 + a2z2z3 + a31z

2
3) ,

d7 = z2(a23z
4
2 + a9z

3
2z3 + a38z

2
2z

2
3 + a56z2z

3
3 + a57z

4
3)

+ zz1(a20z
4
2 + a6z

3
2z3 + a35z

2
2z

2
3 + a52z2z

3
3 + a53z

4
3)

+ z2
1(a18z

4
2 + a3z

3
2z3 + a32z

2
2z

2
3 + a60z2z

3
3 + a61z

4
3) ,

d8 = a15z + a29z1 ,

d9 = z2(a19z
2
2 + a4z2z3 + a30z

2
3) + ωz1(a14z

2
2 + a1z2z3 + a30z

2
3)

+ z2
1(a28z

2
2 + a12z2z3 + a42z

2
3) .

For fixed z2 and z3 the coefficients are identical to the expressions given in (A.10), with z0

replaced by z.

The calculation of intersection numbers is based on a triangulation which corresponds

to a Stanley-Reissner ideal (calculated with SAGE),

SRI : {uv,we1, ug1, ug2, uf3, vf2, vg1, vg2, vf4, wz0, wf2, wg1, e1f2, e1g1, e1g2,

e1f3, e1f4, z0g2, z0f4, f2g2, f2f3, f3f4, z0z1, f2z1, g1z1, g2z1, f3z1, f4z1} . (A.14)

Note that the polytope given in figure 13 admits 81 triangulations.

B Elliptic curves, divisor classes and Weierstrass form

In most cases of our analysis, the elliptic curves are obtained from the cubic polyno-

mial (4.14). However, for the fibers F2 and F4 of the genus-one curves are given by bi-

quadratic and quartic polynomials, respectively,

pF2 = (b1y
2 + b2sy + b3s

2)x2 + (b5y
2 + b6sy + b7s

2)xt+ (b8y
2 + b9sy + b10s

2)t2 , (B.1)

pF4 = c1e
2
1X

4 + c2e
2
1X

3Y + c3e
2
1X

2Y 2 + c4e
2
1XY

3 + c5e
2
1Y

4 + c6e1X
2Z . (B.2)

For a given top, the dependence of the sections on the GUT divisor factorizes in a charac-

teristic way and, following the procedure described in section 4.1, one obtains for the divisor

classes of the sections [bi] and [ci] the dependence on the base divisor classes as follows

section divisor class

[b1] 3[K−1
B ]− S7 − S9 − niZ

[b2] 2[K−1
B ]− S9 − niZ

[b3] [K−1
B ] + S7 − S9 − niZ

[b5] 2[K−1
B ]− S7 − niZ

[b6] [K−1
B ]− niZ

[b7] S7 − niZ
[b8] [K−1

B ] + S9 − S7 − niZ
[b9] S9 − niZ
[b10] S9 + S7 − [K−1

B ]− niZ

section divisor class

[c1] 3[K−1
B ]− S7 − S9 − niZ

[c2] 2[K−1
B ]− S9 − niZ

[c3] [K−1
B ] + S7 − S9 − niZ

[c4] 2S7 − S9 − niZ
[c5] −[K−1

B ] + 3S7 − S9 − niZ
[c6] 2[K−1

B ]− S7 − niZ
[c7] [K−1

B ]− niZ
[c8] S7 − niZ
[c9] [K−1

B ]− S7 + S9 − niZ

(B.3)
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The orders ni of the factorization are a characteristic feature of the chosen top. They are

listed for each model in appendix C.

In order to obtain the matter spectrum, i.e. representations and loci, it is best to

map the genus-one curves into the short Weierstrass form. This is achieved by using the

expressions for the functions f and g listed below [65]. Fiber F1, cubic polynomial (4.14):

f =
1

48
[−(s2

6 − 4(s5s7 + s3s8 + s2s9))2 + 24(−s6(s10s2s3 − 9s1s10s4 + s4s5s8 (B.4)

+ s2s7s8 + s3s5s9 + s1s7s9) + 2(s10s
2
3s5 + s1s

2
7s8 + s2s3s8s9 + s1s3s

2
9

+ s7(s10s
2
2 − 3s1s10s3 + s3s5s8 + s2s5s9) + s4(−3s10s2s5 + s2s

2
8 + (s2

5 − 3s1s8)s9)))] ,

g =
1

864
[(s2

6 − 4(s5s7 + s3s8 + s2s9))3 − 36(s2
6 − 4(s5s7 + s3s8 + s2s9)) (B.5)

× (−s6(s10s2s3 − 9s1s10s4 + s4s5s8 + s2s7s8 + s3s5s9 + s1s7s9)

+ 2(s10s
2
3s5 + s1s

2
7s8 + s2s3s8s9 + s1s3s

2
9 + s7(s10s

2
2 − 3s1s10s3 + s3s5s8 + s2s5s9)

+ s4(−3s10s2s5 + s2s
2
8 + (s2

5 − 3s1s8)s9))) + 216((s10s2s3 − 9s1s10s4 + s4s5s8

+ s2s7s8 + s3s5s9 + s1s7s9)2 + 4(−s1s
2
10s

3
3 − s2

1s10s
3
7 − s2

4(27s2
1s

2
10 + s10s

3
5

+ s1(−9s10s5s8 + s3
8)) + s10s

2
3(−s2s5 + s1s6)s9 − s1s

2
3s8s

2
9

− s2
7(s10(s2

2s5 − 2s1s3s5 − s1s2s6) + s1s8(s3s8 + s2s9))

− s3s7(s10(−s2s5s6 + s1s
2
6 + s2

2s8 + s3(s2
5 − 2s1s8) + s1s2s9)

+ s9(s2s5s8 − s1s6s8 + s1s5s9)) + s4(−s2
10(s3

2 − 9s1s2s3)

+ s10(s6(−s2s5s6 + s1s
2
6 + s2

2s8) + s3(s2
5s6 − s2s5s8 − 3s1s6s8))

+ (s10(2s2
2s5 + 3s1s3s5 − 3s1s2s6) + s8(−s3s

2
5 + s2s5s6 − s1s

2
6 − s2

2s8 + 2s1s3s8))s9

+ (−s2s
2
5 + s1s5s6 + 2s1s2s8)s2

9 − s2
1s

3
9 + s7(s10(2s2s

2
5 − 3s1s5s6 + 3s1s2s8 + 9s2

1s9)

− s8(s2s5s8 − s1s6s8 + s1s5s9)))))] .

Fiber F2, biquadratic polynomial (B.1):

f =
1

48
[−(−4b1b10 + b26 − 4(b5b7 + b3b8 + b2b9))2 + 24(−b6(b10b2b5 + b2b7b8 (B.6)

+ b3b5b9 + b1b7b9) + 2(b10(b1b5b7 + b22b8 + b3(b25 − 4b1b8) + b1b2b9)

+ b7(b1b7b8 + b2b5b9) + b3(b5b7b8 + b2b8b9 + b1b
2
9)))] ,

g =
1

864
[(−4b1b10 + b26 − 4(b5b7 + b3b8 + b2b9))3 − 36(−4b1b10 + b26 − 4(b5b7 (B.7)

+ b3b8 + b2b9))(−b6(b10b2b5 + b2b7b8 + b3b5b9 + b1b7b9) + 2(b10(b1b5b7 + b22b8

+ b3(b25 − 4b1b8) + b1b2b9) + b7(b1b7b8 + b2b5b9) + b3(b5b7b8 + b2b8b9 + b1b
2
9)))

+ 216((b10b2b5 + b2b7b8 + b3b5b9 + b1b7b9)2 − 4(b2b3b5b7b8b9

+ b21b10(−4b10b3b8 + b27b8 + b3b
2
9) + b10(b23b

2
5b8 + b22b5b7b8 + b2b3(−b5b6b8 + b2b

2
8

+ b25b9)) + b1(b210(b3b
2
5 + b22b8) + b2b

2
7b8b9 + b23b8b

2
9 + b3b7(b7b

2
8 − b6b8b9 + b5b

2
9)

+ b10(−4b23b
2
8 + b3b6(b6b8 − b5b9) + b2b7(−b6b8 + b5b9)))))] .
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Fiber F4, quartic polynomial (B.2):

f =
1

48
[−24c9(−2c5c

2
6 + c4c6c7 − 2c3c6c8 + c2c7c8 − 2c1c

2
8 − 2c2c4c9 + 8c1c5c9) (B.8)

− (c2
7 − 4(c6c8 + c3c9))2] ,

g =
1

864
[36c9(−2c5c

2
6 + c4c6c7 − 2c3c6c8 + c2c7c8 − 2c1c

2
8 − 2c2c4c9 + 8c1c5c9) (B.9)

× (c2
7 − 4(c6c8 + c3c9))

+ (c2
7 − 4(c6c8 + c3c9))3 + 216c2

9[4c2c5c6c7 − 4c1c5c
2
7 + c2

2c
2
8 + c4(−2c2c6c8 + 4c1c7c8)

− 4c2
2c5c9 + c2

4(c2
6 − 4c1c9)− 4c3(c5c

2
6 + c1c

2
8 − 4c1c5c9)]] .

C Classification of toric SO(10) F-theory models

In this appendix we classify all toric SO(10) models arising as a single hypersurface in toric

ambient spaces. The description of the models is organized as follows.

First, we specify the vertices of the polygons defining the ambient space of the genus-

one fibers. The respective gauge groups after inclusion of the SO(10) top are given for

the different polygons. A ‘gauge group∗’ denotes a non trivial global embedding of the

discrete symmetries with respect to the Z4 center of Spin(10), see section 4.2. After that

we list the different SO(10) tops with their defining vertices and the individual factorization

properties of the sections si, bi, and ci with respect to z0, respectively. In the subsequent

table we classify all matter fields, their representation with respect to the complete gauge

group, and their base-independent multiplicity in terms of the base divisor classes K−1
B ,

S7, S9, and Z. Matter fields whose representation is marked by ∗ correspond to half-

hypermultiplets. SCPs and their loci are also included. Moreover, the loci of the non-

trivial SO(10) matter representations are given (for the loci of the SO(10) singlets we

refer to [49] and the explanations given in section 4.2). We conclude the analysis by the

base-independent expression for the Euler number as well as the anomaly coefficients in

terms of their base divisor classes whose derivation is described in section 4.2 and 4.3.

The anomaly coefficients for models with SCPs are obtained for the resolved geometry

after base blow-up, and the modified divisor classes are marked by a hat. For singular

models with transitions to theories without SCPs we further list the difference in matter

representations accounting for the degrees of freedom contained in the additional tensor

multiplets after the base blow-up (see section 4.7).

C.1 Polygon F1

vertices: u : (1, 1, 0) , v : (0,−1, 0) , w : (−1, 0, 0)

gauge group∗: SO(10)× Z3
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Top 1.

vertices: z0 : (0, 0, 1) , f1 : (0, 1, 1) , f2 : (1, 1, 1) , f3 : (1, 0, 1)

g1 : (0, 1, 2) , g2 : (1, 1, 2)

factorization: s1 = d1 , s2 = d2z0 , s3 = d3z0 , s4 = d4z
2
0 , s5 = d5 , s6 = d6z0 ,

s7 = d7z0 , s8 = d8z0 , s9 = d9z0 , s10 = d10z
2
0

locus representation multiplicity

z0 = d5 = 0 16−3/2 (2K−1
B − S7)Z

z0 = d9 = 0 100 (S9 −Z)Z
z0 = d3d5 − d1d7 = 0 101 (3K−1

B − S9 −Z)Z
z0 = d7 = 0 16−1/2 (S7 −Z)Z

11 18(K−1
B )2 − 3S27 − 3S29 + 8Z2 + S9Z

+K−1
B (3S7 + 3S9 − 30Z) + S7(3S9 + 2Z)

10 17 + 11(K−1
B )2 + 3S27 − 3S7S9 + 3S29

−2S7Z − S9Z + 8Z2 − 3K−1
B (S7 + S9 + 4Z)

(C.1)

Euler number: χ = −24(K−1
B )2 + 6K−1

B S7 − 6S27 + 6K−1
B S9 + 6S7S9 − 6S29 + 24K−1

B Z
+ 4S7Z + 2S9Z − 16Z2

anomaly coefficients: a ∼ K−1
B , b ∼ −Z

Top 2.

vertices: z0 : (0, 0, 1) , f1 : (0, 1, 1) , f2 : (1, 1, 1) , f3 : , (1, 0, 1) , f4 : (−1, 1, 1)

g1 : (0, 1, 2) , g2 : (1, 1, 2)

factorization: s1 = d1 , s2 = d2z0 , s3 = d3z
2
0 , s4 = d4z

3
0 , s5 = d5 , s6 = d6z0 ,

s7 = d7z0 , s8 = d8z0 , s9 = d9z0 , s10 = d10z
2
0

locus representation multiplicity

z0 = d5 = 0 16−3/2 (2K−1
B − S7)Z

z0 = d9 = 0 100 (S9 −Z)Z
z0 = d1 = 0 101 (3K−1

B − S7 − S9)Z
z0 = d7 = 0 SCP (S7 −Z)Z

11 18(K−1
B )2 − 3S27 − 3S29 + 9Z2 + S9Z

+K−1
B (3S7 + 3S9 − 30Z) + S7(3S9 + Z)

10 17 + 11(K−1
B )2 + 3S27 − 3S7S9 + 3S29

−4S7Z − S9Z + 10Z2 − 3K−1
B (S7 + S9 + 4Z)

(C.2)

Euler number: χ = −24(K−1
B )2 + 6K−1

B S7 − 6S27 + 6K−1
B S9 + 6S7S9 − 6S29 + 24K−1

B Z
+ 10S7Z + 2S9Z − 22Z2

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ

relation to (F1, top 1): 16−1/2 ⊕ 101 ⊕ 11 ,⊕10 ⊕ 10
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Top 3.

vertices: z0 : (0, 0, 1) , f1 : (0, 1, 1) , f2 : (1, 1, 1) , f3 : , (1, 0, 1) , f4 : (2, 1, 1)

g1 : (1, 1, 2) , g2 : (2, 1, 2)

factorization: s1 = d1 , s2 = d2 , s3 = d3z0 , s4 = d4z
2
0 , s5 = d5 , s6 = d6z0 ,

s7 = d7z0 , s8 = d8z0 , s9 = d9z
2
0 , s10 = d10z

3
0

locus representation multiplicity

z0 = d5 = 0 162 (2K−1
B − S7)Z

z0 = d8 = 0 101 (K−1
B − S7 + S9 −Z)Z

z0 = d2 = 0 100 (2K−1
B − S9)Z

z0 = d7 = 0 SCP (S7 −Z)Z
11 18(K−1

B )2 − 3S27 − 3S29 + 9Z2 + 4S9Z
+K−1

B (3S7 + 3S9 − 31Z) + S7(3S9 − 2Z)

10 17 + 11(K−1
B )2 + 3S27 + 3S29 − 4S9Z + 10Z2

−S7(3S9 + Z)−K−1
B (3S7 + 3S9 + 11Z)

(C.3)

Euler number: χ = −24(K−1
B )2 + 6K−1

B S7 − 6S27 + 6K−1
B S9 + 6S7S9 − 6S29 + 22K−1

B Z
+ 4S7Z + 8S9Z − 22Z2

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ

C.2 Polygon F2

vertices: t : (1, 0, 0) , x : (−1, 0, 0) , s : (0,−1, 0) , y : (0, 1, 0)

gauge group∗: SO(10)×U(1)× Z2

Top 1.

vertices: z0 : (0, 0, 1) , f1 : (0, 1, 1) , f2 : (1, 0, 1) , f3 : (1, 1, 1) ,

g1 : (0, 1, 2) , g2 : (1, 1, 2)

factorization: b1 = d1z0 , b2 = d2z0 , b3 = d3z
2
0 , b5 = d5 , b6 = d6z0 ,

b7 = d7z0 , b8 = d8 , b9 = d9z0 , b10 = d10z0

locus representation multiplicity

z0 = d5 = 0 161/4,1 (2K−1
B − S7)Z

z0 = d2 = 0 101/2,1 (2K−1
B − S9 −Z)Z

z0 = d10d5 − d8d7 = 0 101/2,0 (K−1
B + S9 −Z)Z

z0 = d7 = 0 161/4,0 (S7 −Z)Z
11,0 6(K−1

B )2 − 2S27 + 2S29 + 3Z2 + S9Z
+K−1

B (4S7 − 4S9 − 12Z) + 2S7Z
11,1 6(K−1

B )2 + 2S27 − 2S29 + 3Z2 − S9Z
+K−1

B (−4S7 + 4S9 − 5Z)− 2S7Z
10,1 6(K−1

B )2 − 2S27 − 2S29 + 3Z2 − S9Z
+K−1

B (4S7 + 4S9 − 13Z) + 2S7Z
10,0 18 + 11(K−1

B )2 + 2S27 + 2S29 + 7Z2 + S9Z
−4K−1

B (S7 + S9 + 3Z)− 2S7Z

(C.4)
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Euler number: χ = −24(K−1
B )2 + 8K−1

B S7 − 4S27 + 8K−1
B S9 − 4S29 + 24K−1

B Z
+ 4S7Z − 2S9Z − 14Z2

anomaly coefficients: a ∼ K−1
B , b ∼ −Z , b11 ∼ −

(
2K−1

B − 5

4
Z
)

Top 2.

vertices: z0 : (0, 0, 1) , f1 : (0, 1, 1) , f2 : (1, 0, 1) , f3 : (1, 1, 1) , f4 : (−1, 1, 1) ,

g1 : (0, 1, 2) , g2 : (1, 1, 2)

factorization: b1 = d1z0 , b2 = d2z0 , b3 = d3z
2
0 , b5 = d5 , b6 = d6z0 ,

b7 = d7z0 , b8 = d8 , b9 = d9z0 , b10 = d10z
2
0

locus representation multiplicity

z0 = d5 = 0 161/4,1 (2K−1
B − S7)Z

z0 = d2 = 0 101/2,1 (2K−1
B − S9 −Z)Z

z0 = d8 = 0 101/2,0 (K−1
B − S7 + S9)Z

z0 = d7 = 0 SCP (S7 −Z)Z
11,0 6(K−1

B )2 − 2S27 + 2S29 + 3Z2 + S9Z
+K−1

B (4S7 − 4S9 − 12Z) + 2S7Z
11,1 6(K−1

B )2 + 2S27 − 2S29 + 4Z2 − S9Z
+K−1

B (−4S7 + 4S9 − 5Z)− 3S7Z
10,1 6(K−1

B )2 − 2S27 − 2S29 + 4Z2 − S9Z
+K−1

B (4S7 + 4S9 − 13Z) + S7Z
10,0 18 + 11(K−1

B )2 + 2S27 + 2S29 + 8Z2 + S9Z
−4K−1

B (S7 + S9 + 3Z)− 3S7Z

(C.5)

Euler number: χ = −24(K−1
B )2 + 8K−1

B S7 − 4S27 + 8K−1
B S9 − 4S29 + 24K−1

B Z
+ 8S7Z − 2S9Z − 18Z2

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂11 ∼ −

(
2K−1

B̂
− 5

4
Ẑ
)

relation to (F2, top 1): 161/4,0 ⊕ 101/2,0 ⊕ 11,1 ⊕ 10,1 ⊕ 10,0

Top 3.

vertices: z0 : (0, 0, 1) , f1 : (0, 1, 1) , f2 : (1, 0, 1) , f3 : (1,−1, 1) , f4 : (2,−1, 1) ,

g1 : (1, 0, 2) , g2 : (2,−1, 2)

factorization: b1 = d1z
3
0 , b2 = d2z

2
0 , b3 = d3z0 , b5 = d5z0 , b6 = d6z0 ,

b7 = d7z0 , b8 = d8 , b9 = d9 , b10 = d10
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locus representation multiplicity

z0 = d8 = 0 161/2,1/2 (K−1
B − S7 + S9)Z

z0 = d5 = 0 100,0 (2K−1
B − S7 −Z)Z

z0 = d9 = 0 100,1 S9Z
z0 = d3 = 0 SCP (K−1

B + S7 − S9 −Z)Z
11,0 6(K−1

B )2 − 2S27 + 2S29 + 4Z2 + 4S9Z
+K−1

B (4S7 − 4S9 − 10Z)− 2S7Z
11,1 6(K−1

B )2 + 2S27 − 2S29 + 2Z2 − 2S9Z
+K−1

B (−4S7 + 4S9 − 6Z)

10,1 6(K−1
B )2 − 2S27 − 2S29 + 4Z2 − 2S9Z

+K−1
B (4S7 + 4S9 − 10Z)− 2S7Z

10,0 18 + 11(K−1
B )2 + 2S27 + 2S29 + 9Z2 + 3S9Z

−K−1
B (4S7 + 4S9 + 19Z) + S7Z

(C.6)

Euler number: χ = −24(K−1
B )2 + 8K−1

B S7 − 4S27 + 8K−1
B S9 − 4S29 + 40K−1

B Z
− 8S9Z − 20Z2

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂11 ∼ −(2K−1

B̂
− Ẑ)

C.3 Polygon F3

vertices: w : (0, 1, 0) , u : (1,−1, 0) , e1 : (0,−1, 0) , v : (−1, 0, 0)

gauge group: SO(10)×U(1)

Top 1.

vertices: z0 : (0, 0, 1) , f2 : (1, 0, 1) , f3 : (0, 1, 1) , f4 : (1, 1, 1) ,

g1 : (1, 1, 2) , g2 : (1, 2, 2)

factorization: s1 = d1z0 , s2 = d2z
2
0 , s3 = d3z

2
0 , s4 = d4z

3
0 , s5 = d5 ,

s6 = d6z0 , s7 = d7z0 , s8 = d8 , s9 = d9

locus representation multiplicity

z0 = d5 = 0 163/4 (2K−1
B − S7)Z

z0 = d9 = 0 103/2 S9Z
z0 = d3d5 − d1d7 = 0 10−1/2 (3K−1

B − S9 − 2Z)Z
z0 = d7 = 0 16−1/4 (S7 −Z)Z

13 (K−1
B − S7 + S9)S9

12 6(K−1
B )2 + S27 +K−1

B (−5S7 + 4S9 − 2Z)

+S7(2S9 + Z)− S9(2S9 + 5Z)

11 12(K−1
B )2 − 4S27 − S29 + 6Z2

+K−1
B (8S7 − S9 − 25Z) + S7(S9 + 4Z)

10 18 + 11(K−1
B )2 + 3S27 + 2S29 + 10Z2 + 5S9Z

−K−1
B (3S7 + 4S9 + 15Z)− 5S7Z − 2S7S9

(C.7)

Euler number: χ = −24(K−1
B )2 + 8K−1

B S9 − 4S29 + 6K−1
B S7 + 4S7S9 − 6S27 + 30K−1

B Z
− 10S9Z + 10S7Z − 20Z2

anomaly coefficients: a ∼ K−1
B , b ∼ −Z , b11 ∼ −

(
6K−1

B − 2S7 + 4S9 −
5

4
Z
)
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Top 2.

vertices: z0 : (0, 0, 1) , f1 : (1, 0, 1) , f2 : (1, 1, 1) , f3 : (0, 1, 1) , f4 : (1, 2, 1) ,

g1 : (1, 1, 2) , g2 : (1, 2, 2)

factorization: s1 = d1z0 , s2 = d2z
2
0 , s3 = d3z

3
0 , s4 = d4z

4
0 , s5 = d5 ,

s6 = d6z0 , s7 = d7z0 , s8 = d8 , s9 = d9

locus representation multiplicity

z0 = d5 = 0 163/4 (2K−1
B − S7)Z

z0 = d9 = 0 103/2 S9Z
z0 = d1 = 0 10−1/2 (3K−1

B − S7 − S9 −Z)Z
z0 = d7 = 0 SCP (S7 −Z)Z

13 (K−1
B − S7 + S9)S9

12 6(K−1
B )2 + S27 +K−1

B (−5S7 + 4S9 − 2Z)

+S7(2S9 + Z)− S9(2S9 + 5Z)

11 12(K−1
B )2 − 4S27 − S29 + 7Z2

+K−1
B (8S7 − S9 − 25Z) + S7(S9 + 3Z)

10 18 + 11(K−1
B )2 + 3S27 + 2S29 + 12Z2 + 5S9Z

−K−1
B (3S7 + 4S9 + 15Z)− 7S7Z − 2S7S9

(C.8)

Euler number: χ = −24(K−1
B )2 + 8K−1

B S9 − 4S29 + 6K−1
B S7 + 4S7S9 − 6S27 + 30K−1

B Z
− 10S9Z + 16S7Z − 26Z2

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂11 ∼ −

(
6K−1

B̂
− 2Ŝ7 + 4Ŝ9 −

5

4
Ẑ
)

relation to (F3, top 1): 16−1/4 ⊕ 10−1/2 ⊕ 11 ⊕ 10 ⊕ 10

Top 3.

vertices: z0 : (0, 0, 1) , f1 : (1, 0, 1) , f2 : (1, 1, 1) , f3 : (0, 1, 1) , f4 : (0, 2, 1) ,

g1 : (1, 1, 2) , g2 : (1, 2, 2)

factorization: s1 = d1z
2
0 , s2 = d2z

2
0 , s3 = d3z

2
0 , s4 = d4z

3
0 , s5 = d5 ,

s6 = d6z0 , s7 = d7z0 , s8 = d8 , s9 = d9

locus representation multiplicity

z0 = d9 = 0 103/2 S9Z
z0 = d3 = 0 10−1/2 (K−1

B + S7 − S9 − 2Z)Z
z0 = d7 = 0 16−1/4 (S7 −Z)Z
z0 = d5 = 0 SCP (2K−1

B − S7)Z
13 (K−1

B − S7 + S9)S9
12 6(K−1

B )2 + S27 +K−1
B (−5S7 + 4S9 − 4Z)

+2S7(S9 + Z)− S9(2S9 + 5Z)

11 12(K−1
B )2 − 4S27 − S29 + 6Z2

+K−1
B (8S7 − S9 − 27Z) + S7(S9 + 5Z)

10 18 + 11(K−1
B )2 + 3S27 + 2S29 + 10Z2 + 5S9Z

−K−1
B (3S7 + 4S9 + 17Z)− 4S7Z − 2S7S9

(C.9)
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Euler number: χ = −24(K−1
B )2 + 8K−1

B S9 − 4S29 + 6K−1
B S7 + 4S7S9 − 6S27 + 38K−1

B Z
− 10S9Z + 6S7Z − 20Z2

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂11 ∼ −

(
6K−1

B̂
− 2Ŝ7 + 4Ŝ9 −

5

4
Ẑ
)

relation (F3, top 1): 163/4 ⊕ 10−1/2 ⊕ 12 ⊕ 11 ⊕ 10

Top 4.

vertices: z0 : (0, 0, 1) , f1 : (1, 0, 1) , f2 : (1, 1, 1) , f3 : (0, 1, 1) ,

g1 : (0, 1, 2) , g2 : (1, 1, 2)

factorization: s1 = d1z0 , s2 = d2z0 , s3 = d3z
2
0 , s4 = d4z

3
0 , s5 = d5z0 ,

s6 = d6z0 , s7 = d7z0 , s8 = d8 , s9 = d9

locus representation multiplicity

z0 = d2 = 0 160 (2K−1
B − S9 −Z)Z

z0 = d7 = 0 100 (S7 −Z)Z
z0 = d2d8 − d1d9 = 0 101 (3K−1

B − S7 −Z)Z
z0 = d9 = 0 16−1 S9Z

13 (K−1
B − S7 + S9)S9

12 6(K−1
B )2 + S27 − 2S29 + Z2 − 4S9Z

+K−1
B (−5S7 + 4S9 − 5Z) + 2S7(S9 + Z)

11 12(K−1
B )2 − 4S27 − S29 + 6Z2

+K−1
B (8S7 − S9 − 22Z) + S7(S9 + 2Z)

10 18 + 11(K−1
B )2 + 3S27 + 2S29 + 9Z2 + 4S9Z

−K−1
B (3S7 + 4S9 + 15Z)− 4S7Z − 2S7S9

(C.10)

Euler number: χ = −24(K−1
B )2 + 8K−1

B S9 − 4S29 + 6K−1
B S7 + 4S7S9 − 6S27 + 30K−1

B Z
− 8S9Z + 8S7Z − 18Z2

anomaly coefficients: a ∼ K−1
B , b ∼ −Z , b11 ∼ −(6K−1

B − 2S7 + 4S9 − 2Z)

Top 5.

vertices: z0 : (0, 0, 1) , f1 : (1, 0, 1) , f2 : (1, 1, 1) , f3 : (0, 1, 1) , f4 : (−1, 1, 1) ,

g1 : (0, 1, 2) , g2 : (1, 1, 2)

factorization: s1 = d1z
2
0 , s2 = d2z0 , s3 = d3z

2
0 , s4 = d4z

3
0 , s5 = d5z0 ,

s6 = d6z0 , s7 = d7z0 , s8 = d8 , s9 = d9

locus representation multiplicity

z0 = d7 = 0 100 (S7 −Z)Z
z0 = d8 = 0 101 (K−1

B − S7 + S9)Z
z0 = d9 = 0 16−1 S9Z
z0 = d2 = 0 SCP (2K−1

B − S9 −Z)Z
13 (K−1

B − S7 + S9)S9
12 6(K−1

B )2 + S27 − 2S29 + Z2 − 4S9Z
+K−1

B (−5S7 + 4S9 − 5Z) + 2S7(S9 + Z)

11 12(K−1
B )2 − 4S27 − S29 + 8Z2 + S7S9

+K−1
B (8S7 − S9 − 26Z) + 2(S7 + S9)Z

10 18 + 11(K−1
B )2 + 3S27 + 2S29 + 10Z2 + 5S9Z

−K−1
B (3S7 + 4S9 + 17Z)− 4S7Z − 2S7S9

(C.11)
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Euler number: χ = −24(K−1
B )2 + 8K−1

B S9 − 4S29 + 6K−1
B S7 + 4S7S9 − 6S27 + 38K−1

B Z
− 12S9Z + 8S7Z − 22Z2

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂11 ∼ −(6K−1

B̂
− 2Ŝ7 + 4Ŝ9 − 2Ẑ)

relation to (F4, top 4): 160 ⊕ 101 ⊕ 11 ⊕ 11 ⊕ 10

Top 6.

vertices: z0 : (0, 0, 1) , f1 : (1, 0, 1) , f2 : (2, 0, 1) , f3 : (1, 1, 1) , f4 : (0, 1, 1) ,

g1 : (1, 1, 2) , g2 : (2, 1, 2)

factorization: s1 = d1z0 , s2 = d2z0 , s3 = d3z
2
0 , s4 = d4z

4
0 , s5 = d5 ,

s6 = d6z0 , s7 = d7z
2
0 , s8 = d8 , s9 = d9

locus representation multiplicity

z0 = d2 = 0 161/2 (2K−1
B − S9 −Z)Z

z0 = d3 = 0 100 (K−1
B + S7 − S9 − 2Z)Z

z0 = d5 = 0 101 (2K−1
B − S7)Z

z0 = d9 = 0 SCP S9Z
13 (K−1

B − S7 + S9)S9
12 6(K−1

B )2 + S27 − 2S29 − 6S9Z
+K−1

B (−5S7 + 4S9 − 2Z) + S7(2S9 + Z)

11 12(K−1
B )2 − 4S27 − S29 + 4Z2 − 2S9Z

+K−1
B (8S7 − S9 − 26Z) + S7(S9 + 6Z)

10 18 + 11(K−1
B )2 + 3S27 + 2S29 + 12Z2 + 5S9Z

−K−1
B (3S7 + 4S9 + 14Z)− 7S7Z − 2S7S9

(C.12)

Euler number: χ = −24(K−1
B )2 + 8K−1

B S9 − 4S29 + 6K−1
B S7 + 4S7S9 − 6S27 + 28K−1

B Z
− 8S9Z + 14S7Z − 24Z2

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂11 ∼ −(6K−1

B̂
− 2Ŝ7 + 4Ŝ9 − Ẑ)

Top 7.

vertices: z0 : (0, 0, 1) , f1 : (1, 0, 1) , f2 : (2, 0, 1) , f3 : (1, 1, 1) , f4 : (2, 1, 1) ,

g1 : (2, 1, 2) , g2 : (3, 1, 2)

factorization: s1 = d1 , s2 = d2z0 , s3 = d3z
3
0 , s4 = d4z

5
0 , s5 = d5 ,

s6 = d6z0 , s7 = d7z
2
0 , s8 = d8 , s9 = d9

locus representation multiplicity

z0 = d2 = 0 160 (2K−1
B − S9 −Z)Z

z0 = d7 = 0 100 (S7 − 2Z)Z
z0 = d1 = 0 101 (3K−1

B − S7 − S9)Z
z0 = d9 = 0 SCP S9Z

13 (K−1
B − S7 + S9)S9

12 6(K−1
B )2 + S27 − 2S29 − 6S9Z

+K−1
B (−5S7 + 4S9) + 2S7S9

11 12(K−1
B )2 − 4S27 − S29 − 2S9Z

+K−1
B (8S7 − S9 − 30Z) + S7S9 + 10S7Z

10 18 + 11(K−1
B )2 + 3S27 + 2S29 + 16Z2 + 5S9Z

−K−1
B (3S7 + 4S9 + 12Z)− 10S7Z − 2S7S9

(C.13)
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Euler number: χ = −24(K−1
B )2 + 8K−1

B S9 − 4S29 + 6K−1
B S7 + 4S7S9 − 6S27 + 24K−1

B Z
− 8S9Z + 20S7Z − 32Z2

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂11 ∼ −(6K−1

B̂
− 2Ŝ7 + 4Ŝ9)

C.4 Polygon F4

vertices: Y : (−1,−1, 0) , X : (−1, 1, 0) , Z : (1, 0, 0) , e1 : (−1, 0, 0)

gauge group∗: SO(10)× SU(2)× Z2

Top 1.

vertices: z0 : (0, 0, 1) , f1 : (0,−2, 1) , f2 : (0,−1, 1) , f3 : (1,−1, 1) , f4 : (1, 0, 1) ,

g1 : (1,−2, 2) , g2 : (1,−1, 2)

factorization: c1 = d1z
4
0 , c2 = d2z

2
0 , c3 = d3z0 , c4 = d4z0 , c5 = d5z0 , c6 = d6z

2
0 ,

c7 = d7z0 , c8 = d8 , c9 = d9

locus representation multiplicity

z0 = d8 = 0 (10,1)1 S7Z
z0 = d2 = 0 (10,1)0 (2K−1

B − S9 − 2Z)Z
z0 = d3 = 0 (16,1)1/2 (K−1

B + S7 − S9 −Z)Z
z0 = d9 = 0 SCP (K−1

B − S7 + S9)Z
(1,3)0 1− 1

2 (K−1
B − S7 + S9)(S7 − S9)

(1,2)1/2 (K−1
B − S7 + S9)(6K−1

B + 2S7 − 2S9 − 6Z)

(1,1)1 6(K−1
B )2 − 3S27 + S29 + 4Z2 + 4S9Z

+K−1
B (13S7 − 5S9 − 10Z)− 2S7(S9 + 5Z)

(1,1)0 18 + 11(K−1
B )2 + 6S27 + 2S29 + 5S9Z + 12Z2

+S7(−4S9 + Z)−K−1
B (4S7 + 4S9 + 23Z)

(C.14)

Euler number: χ = −24(K−1
B )2 + 8K−1

B S7 − 12S27 + 8K−1
B S9 + 8S7S9 − 4S29 + 48K−1

B Z
− 4S7Z − 8S9Z − 24Z2

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂SU(2) ∼ −(K−1

B̂
− Ŝ7 + Ŝ9)

Top 2.

vertices: z0 : (0, 0, 1) , f1 : (0, 1, 1) , f2 : (1, 0, 1) , f3 : (1, 1, 1) ,

g1 : (1, 1, 2) , g2 : (2, 1, 2)

factorization: c1 = d1z0 , c2 = d2z0 , c3 = d3z
2
0 , c4 = d4z

2
0 , c5 = d5z

3
0 , c6 = d6 ,

c7 = d7z0 , c8 = d8z0 , c9 = d9
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locus representation multiplicity

z0 = d6 = 0 (16,1)−1/4 (2K−1
B − S7)Z

z0 = d9 = 0 (10,2)∗1 (K−1
B − S7 + S9)Z

z0 = d4d6 − d2d8 = 0 (10,1)1/2 (2K−1
B + S7 − S9 − 2Z)Z

z0 = d8 = 0 (16,1)3/4 (S7 −Z)Z
(1,3)0 1− 1

2 (K−1
B − S7 + S9)(S7 − S9)

(1,2)1/2 (K−1
B − S7 + S9)(6K−1

B + 2S7 − 2S9 − 5Z)

(1,1)1 6(K−1
B )2 − 3S27 + S29 + 6Z2 + 5S9Z

+K−1
B (13S7 − 5S9 − 20Z)− S7Z − 2S7S9

(1,1)0 18 + 11(K−1
B )2 + 6S27 + 2S29 + 10Z2 + 5S9Z

−4K−1
B (S7 + S9 + 3Z)− 9S7Z − 4S7S9

(C.15)

Euler number: χ = −24(K−1
B )2 + 8K−1

B S7 − 12S27 + 8K−1
B S9 + 8S7S9 − 4S29 + 24K−1

B Z
+ 18S7Z − 10S9Z − 20Z2

anomaly coefficients: a ∼ K−1
B , b ∼ −Z , bSU(2) ∼ −(K−1

B − S7 + S9)

Top 3.

vertices: z0 : (0, 0, 1) , f1 : (0, 1, 1) , f2 : (1, 0, 1) , f3 : (1, 1, 1) , f4 : (2, 0, 1) ,

g1 : (1, 1, 2) , g2 : (2, 1, 2)

factorization: c1 = d1z
2
0 , c2 = d2z

2
0 , c3 = d3z

2
0 , c4 = d4z

2
0 , c5 = d5z

3
0 , c6 = d6 ,

c7 = d7z0 , c8 = d8z0 , c9 = d9

locus representation multiplicity

z0 = d8 = 0 (16,1)3/4 (S7 −Z)Z
z0 = d4 = 0 (10,1)1/2 (2S7 − S9 − 2Z)Z
z0 = d9 = 0 (10,2)∗1 (K−1

B − S7 + S9)Z
z0 = d6 = 0 SCP (2K−1

B − S7)Z
(1,3)0 1− 1

2 (K−1
B − S7 + S9)(S7 − S9)

(1,2)1/2 (K−1
B − S7 + S9)(6K−1

B + 2S7 − 2S9 − 5Z)

(1,1)1 6(K−1
B )2 − 3S27 + S29 + 6Z2 + 5S9Z

+K−1
B (13S7 − 5S9 − 22Z)− 2S7S9

(1,1)0 18 + 11(K−1
B )2 + 6S27 + 2S29 + 10Z2 + 5S9Z

−4K−1
B (S7 + S9 + 4Z)− 7S7Z − 4S7S9

(C.16)

Euler number: χ = −24(K−1
B )2 + 8K−1

B S7 − 12S27 + 8K−1
B S9 + 8S7S9 − 4S29 + 36K−1

B Z
+ 12S7Z − 10S9Z − 20Z2

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂SU(2) ∼ −(K−1

B̂
− Ŝ7 + Ŝ9)

relation to (F4, top 2): (16,1)−1/4 ⊕ (10,1)1/2 ⊕ (1,1)1 ⊕ (1,1)0 ⊕ (1,1)0

C.5 Polygon F5

vertices: w : (1, 0, 0) , v : (0,−1, 0) , u : (−1, 1, 0) ,

e1 : (−1, 0, 0) , e2 : (0, 1, 0)

gauge group: SO(10)×U(1)
2
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Top 1.

vertices: z0 : (0, 0, 1) , f1 : (0, 1, 1) , f2 : (−1, 1, 1) , f3 : (1, 0, 1) , f4 : (1, 1, 1) ,

g1 : (0, 1, 2) , g2 : (1, 1, 2)

factorization: s1 = d1z0 , s2 = d2z0 , s3 = d3z
2
0 , s5 = d5 , s6 = d6z0 , s7 = d7z0 ,

s8 = d8 , s9 = d9z0

locus representation multiplicity

z0 = d5 = 0 161/4,0 (2K−1
B − S7)Z

z0 = d2 = 0 101/2,0 (2K−1
B − S9 −Z)Z

z0 = d8 = 0 101/2,1 (K−1
B − S7 + S9)Z

z0 = d7 = 0 SCP (S7 −Z)Z
11,−1 (K−1

B + S7 − S9 − 2Z)(S7 −Z)

11,2 (K−1
B − S7 + S9)(S9 −Z)

10,2 (S9 −Z)(S7 −Z)

1−1,−1 6(K−1
B )2 + S27 − 2S29 + 2Z2 − 2S9Z

+K−1
B (−5S7 + 4S9 − 4Z) + S7S9

11,0 6(K−1
B )2 − 2S27 + S29 + 3Z2 + 2S9Z

+K−1
B (4S7 − 5S9 − 11Z) + S7(S9 + Z)

10,1 6(K−1
B )2 − 2S27 − 2S29 + 4Z2 − S9Z

+K−1
B (4S7 + 4S9 − 13Z) + S7Z

10,0 19 + 11(K−1
B )2 + 2S27 + 2S29 + 2S9Z + 7Z2

−S7(S9 + 2Z)− 4K−1
B (S7 + S9 + 3Z)

(C.17)

Euler number: χ = −24(K−1
B )2 − 4S27 − 4S29 − 16Z2 − 4S9Z

+ 8K−1
B (S7 + S9 + 4Z) + 2S7S9 + 6S7Z

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂11 ∼ −

(
2K−1

B̂
− 5

4
Ẑ
)
,

b̂12 ∼ −(K−1

B̂
− Ŝ7 + Ŝ9) , b̂22 ∼ −(2K−1

B̂
+ 2Ŝ9 − 2Ẑ)

Top 2.

vertices: z0 : (0, 0, 1) , f1 : (0, 1, 1) , f2 : (1, 0, 1) , f3 : (1, 1, 1) ,

g1 : (1, 1, 2) , g2 : (2, 1, 2)

factorization: s1 = d1z0 , s2 = d2z
2
0 , s3 = d3z

2
0 , s5 = d5 , s6 = d6z0 , s7 = d7z0 ,

s8 = d8 , s9 = d9
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locus representation multiplicity

z0 = d5 = 0 16−1/4,−1/2 (2K−1
B − S7)Z

z0 = d9 = 0 101/2,1 S9Z
z0 = d3d5 − d1d7 = 0 10−1/2,0 (3K−1

B − S9 − 2Z)Z
z0 = d7 = 0 16−1/4,1/2 (S7 −Z)Z

11,−1 (K−1
B + S7 − S9 − 2Z)(S7 −Z)

11,2 (K−1
B − S7 + S9)S9

10,2 S9(S7 −Z)

1−1,−1 6(K−1
B )2 + S27 +K−1

B (−5S7 + 4S9 − 2Z)

+S7(S9 + Z)− 2S9(S9 + 2Z)

11,0 6(K−1
B )2 − 2S27 + S29 + 4Z2 + 3S9Z

+K−1
B (4S7 − 5S9 − 14Z) + S7(S9 + 2Z)

10,1 6(K−1
B )2 − 2S27 − 2S29 + 2Z2 + 2S7Z

+K−1
B (4S7 + 4S9 − 11Z)− 3S9Z

10,0 19 + 11(K−1
B )2 + 2S27 + 2S29 + 4S9Z + 8Z2

−S7(S9 + 2Z)− 2K−1
B (2S7 + 2S9 + 7Z)

(C.18)

Euler number: χ = −24(K−1
B )2 − 4S27 − 4S29 − 16Z2 − 8S9Z

+ 4K−1
B (2S7 + 2S9 + 7Z) + 2S7S9 + 4S7Z

anomaly coefficients: a ∼ K−1
B , b ∼ −Z , b11 ∼ −

(
2K−1

B − 5

4
Z
)
,

b12 ∼ −
(
K−1

B − S7 + S9 +
1

2
Z
)
, b22 ∼ −(2K−1

B + 2S9 −Z)

Top 3.

vertices: z0 : (0, 0, 1) , f1 : (0, 1, 1) , f2 : (1, 0, 1) , f3 : (1, 1, 1) , f4 : (2, 0, 1) ,

g1 : (1, 1, 2) , g2 : (2, 1, 2)

factorization: s1 = d1z
2
0 , s2 = d2z

2
0 , s3 = d3z

2
0 , s5 = d5 , s6 = d6z0 , s7 = d7z0 ,

s8 = d8 , s9 = d9

locus representation multiplicity

z0 = d9 = 0 101/2,1 S9Z
z0 = d3 = 0 10−1/2,0 (K−1

B + S7 − S9 − 2Z)Z
z0 = d7 = 0 16−1/4,1/2 (S7 −Z)Z
z0 = d5 = 0 SCP (2K−1

B − S7)Z
11,−1 (K−1

B + S7 − S9 − 2Z)(S7 −Z)

11,2 (K−1
B − S7 + S9)S9

10,2 S9(S7 −Z)

1−1,−1 6(K−1
B )2 + S27 +K−1

B (−5S7 + 4S9 − 4Z)

+S7(S9 + 2Z)− 2S9(S9 + 2Z)

11,0 6(K−1
B )2 − 2S27 + S29 + 4Z2 + 3S9Z

+K−1
B (4S7 − 5S9 − 14Z) + S7(S9 + 2Z)

10,1 6(K−1
B )2 − 2S27 − 2S29 + 2Z2 − 3S9Z

+K−1
B (4S7 + 4S9 − 13Z) + 3S7Z

10,0 19 + 11(K−1
B )2 + 2S27 + 2S29 + 8Z2 + 4S9Z

−S7(S9 + Z)− 4K−1
B (S7 + S9 + 4Z)

(C.19)
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Euler number: χ = −24(K−1
B )2 − 4S27 − 4S29 − 16Z2 − 8S9Z

+ 4K−1
B (2S7 + 2S9 + 9Z) + 2S7S9

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂11 ∼ −

(
2K−1

B̂
− 5

4
Ẑ
)
,

b̂12 ∼ −
(
K−1

B̂
− Ŝ7 + Ŝ9 +

1

2
Ẑ
)
, b̂22 ∼ −(2K−1

B̂
+ 2Ŝ9 − Ẑ)

relation to (F5, top 2): 16−1/4,−1/2 ⊕ 101/2,0 ⊕ 1−1,−1 ⊕ 10,1 ⊕ 10,0

Top 4.

vertices: z0 : (0, 0, 1) , f1 : (0, 1, 1) , f2 : (1, 1, 1) , f3 : (1, 0, 1) , f4 : (2, 1, 1) ,

g1 : (1, 1, 2) , g2 : (2, 1, 2)

factorization: s1 = d1z0 , s2 = d2z
2
0 , s3 = d3z

3
0 , s5 = d5 , s6 = d6z0 , s7 = d7z0 ,

s8 = d8 , s9 = d9

locus representation multiplicity

z0 = d5 = 0 16−1/4,−1/2 (2K−1
B − S7)Z

z0 = d9 = 0 10−1/2,−1 S9Z
z0 = d1 = 0 101/2,0 (3K−1

B − S7 − S9 −Z)Z
z0 = d7 = 0 SCP (S7 −Z)Z

11,−1 (K−1
B + S7 − S9 − 3Z)(S7 −Z)

11,2 (K−1
B − S7 + S9)S9

10,2 S9(S7 −Z)

1−1,−1 6(K−1
B )2 + S27 +K−1

B (−5S7 + 4S9 − 2Z)

+S7(S9 + Z)− 2S9(S9 + 2Z)

11,0 6(K−1
B )2 − 2S27 + S29 + 4Z2 + 3S9Z

+K−1
B (4S7 − 5S9 − 14Z) + S7(S9 + 2Z)

10,1 6(K−1
B )2 − 2S27 − 2S29 + 3Z2 − 3S9Z

+K−1
B (4S7 + 4S9 − 11Z) + S7Z

10,0 19 + 11(K−1
B )2 + 2S27 + 2S29 + 4S9Z + 9Z2

−S7(S9 + 3Z)− 2K−1
B (2S7 + 2S9 + 7Z)

(C.20)

Euler number: χ = −24(K−1
B )2 + 8K−1

B S7 − 4S27 + 8K−1
B S9 + 2S7S9 − 4S29 + 28K−1

B Z
+ 8S7Z − 8S9Z − 20Z2

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂11 ∼ −

(
2K−1

B̂
− 5

4
Ẑ
)
,

b̂12 ∼ −
(
K−1

B̂
− Ŝ7 + Ŝ9 +

1

2
Ẑ
)
, b̂22 ∼ −(2K−1

B̂
+ 2Ŝ9 − Ẑ)

relation to (F5, top 2): 16−1/4,1/2 ⊕ 101/2,0 ⊕ 11,−1 ⊕ 10,1 ⊕ 10,0

Top 5.

vertices: z0 : (0, 0, 1) , f1 : (0, 1, 1) , f2 : (1,−1, 1) , f3 : (1, 0, 1) , f4 : (2,−1, 1) ,

g1 : (1, 0, 2) , g2 : (2,−1, 2)

factorization: s1 = d1z
3
0 , s2 = d2z

2
0 , s3 = d3z0 , s5 = d5z0 , s6 = d6z0 , s7 = d7z0 ,

s8 = d8 , s9 = d9
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locus representation multiplicity

z0 = d5 = 0 100,0 (2K−1
B − S7 −Z)Z

z0 = d9 = 0 100,1 S9Z
z0 = d8 = 0 16−1/2,−1/2 (K−1

B − S7 + S9)Z
z0 = d3 = 0 SCP (K−1

B + S7 − S9 −Z)Z
11,−1 (K−1

B + S7 − S9 −Z)(S7 −Z)

11,2 (K−1
B − S7 + S9)S9

10,2 (S7 −Z)S9
1−1,−1 6(K−1

B )2 + S27 − 2S29 + Z2 − 3S9Z
+K−1

B (−5S7 + 4S9 − 5Z) + S7(S9 + 2Z)

11,0 6(K−1
B )2 − 2S27 +K−1

B (4S7 − 5S9 − 10Z)

+S7(S9 − 2Z) + (S9 + 2Z)2

10,1 6(K−1
B )2 − 2S27 − 2S29 + 4Z2 − 2S9Z

+K−1
B (4S7 + 4S9 − 10Z)− 2S7Z

10,0 19 + 11(K−1
B )2 + 2S27 + 2S29 + 4S9Z + 9Z2

+S7(−S9 + Z)−K−1
B (4S7 + 4S9 + 19Z)

(C.21)

Euler number: χ = −24(K−1
B )2 + 8K−1

B S7 − 4S27 + 8K−1
B S9 + 2S7S9 − 4S29

+ 40K−1
B Z − 10S9Z − 20Z2

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂11 ∼ −(2K−1

B̂
− Ẑ) ,

b̂12 ∼ −(K−1

B̂
− Ŝ7 + Ŝ9) , b̂22 ∼ −(2K−1

B̂
+ 2Ŝ9 − Ẑ)

C.6 Polygon F6

vertices: w : (0, 1, 0) , v : (1,−1, 0) , u : (−1, 0, 0) ,

e1 : (0,−1, 0) , e2 : (−1,−1, 0)

gauge group: SO(10)× SU(2)×U(1)

Top 1.

vertices: z0 : (0, 0, 1) , f1 : (0, 1, 1) , f2 : (1, 0, 1) , f3 : (1, 1, 1) , f4 : (2, 0, 1) ,

g1 : (1, 1, 2) , g2 : (2, 1, 2)

factorization: s1 = d1z
4
0 , s2 = d2z

2
0 , s3 = d3z0 , s4 = d4z0 , s5 = d5z

2
0 ,

s6 = d6z0 , s7 = d7 , s8 = d8

locus representation multiplicity

z0 = d3 = 0 (16,1)−1/2 (K−1
B + S7 − S9 −Z)Z

z0 = d2 = 0 (10,1)0 (2K−1
B − S9 − 2Z)Z

z0 = d7 = 0 (10,1)1 S7Z
z0 = d8 = 0 SCP (K−1

B − S7 + S9)Z
(1,3)0 1− 1

2 (S7 − S9)(K−1
B − S7 + S9)

(1,2)3/2 (K−1
B − S7 + S9)S7

(1,2)1/2 (K−1
B − S7 + S9)(6K−1

B + S7 − 2S9 − 6Z)

(1,1)2 (2S7 − S9 −Z)S7
(1,1)1 6(K−1

B )2 − 3S27 +K−1
B (13S7 − 5S9 − 10Z)

−(2S9 + 10Z)S7 + (S9 + 2Z)2

(1,1)0 19 + 11(K−1
B )2 + 4S27 − 3S7S9 + 2S29 + 2S7Z

+5S9Z + 12Z2 −K−1
B (4S7 + 4S9 + 23Z)

(C.22)
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Euler number: χ = −24(K−1
B )2 + 8K−1

B S7 − 8S27 + 8K−1
B S9 + 6S7S9 − 4S29 + 48K−1

B Z
− 6S7Z − 8S9Z − 24Z2

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂SU(2) ∼ −(K−1

B̂
− Ŝ7 + Ŝ9)

b̂11 ∼ −
(

3

2
K−1

B̂
+

5

2
Ŝ7 −

1

2
Ŝ9 − Ẑ

)

Top 2.

vertices: z0 : (0, 0, 1) , f1 : (1, 0, 1) , f2 : (1, 1, 1) , f3 : (2, 0, 1) , f4 : (2, 1, 1) ,

g1 : (2, 1, 2) , g2 : (3, 1, 2)

factorization: s1 = d1z
5
0 , s2 = d2z

3
0 , s3 = d3z0 , s4 = d4 , s5 = d5z

2
0 ,

s6 = d6z0 , s7 = d7 , s8 = d8

locus representation multiplicity

z0 = d3 = 0 (16,1)0 (K−1
B + S7 − S9 −Z)Z

z0 = d4 = 0 (10,1)1 (2S7 − S9)Z
z0 = d5 = 0 (10,1)0 (2K−1

B − S7 − 2Z)Z
z0 = d8 = 0 SCP (K−1

B − S7 + S9)Z
(1,3)0 1− 1

2 (S7 − S9)(K−1
B − S7 + S9)

(1,2)3/2 (K−1
B − S7 + S9)S7

(1,2)1/2 (K−1
B − S7 + S9)(6K−1

B + S7 − 2S9 − 6Z)

(1,1)2 (2S7 − S9)S7
(1,1)1 6(K−1

B )2 − 3S27 + S29 + 4S9Z
+K−1

B (13S7 − 5S9 − 6Z)− (2S9 + 14Z)S7
(1,1)0 19 + 11(K−1

B )2 + 4S27 − 3S7S9 + 2S29 + 5S7Z
+5S9Z + 16Z2 −K−1

B (4S7 + 4S9 + 27Z)

(C.23)

Euler number: χ = −24(K−1
B )2 + 8K−1

B S7 − 8S27 + 8K−1
B S9 + 6S7S9 − 4S29

+ 56K−1
B Z − 12S7Z − 8S9Z − 32Z2

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Z , b̂SU(2) ∼ −(K−1

B̂
− Ŝ7 + Ŝ9) ,

b̂11 ∼ −
(

3

2
K−1

B̂
+

5

2
Ŝ7 −

1

2
Ŝ9
)

Top 3.

vertices: z0 : (0, 0, 1) , f1 : (0, 1, 1) , f2 : (1, 0, 1) , f3 : (1, 1, 1) ,

g1 : (1, 1, 2) , g2 : (1, 2, 2)

factorization: s1 = d1z
3
0 , s2 = d2z

2
0 , s3 = d3z

2
0 , s4 = d4z0 , s5 = d5z0 ,

s6 = d6z0 , s7 = d7 , s8 = d8
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locus representation multiplicity

z0 = d7 = 0 (16,1)−3/4 S7Z
z0 = d8 = 0 (10,2)∗0 (K−1

B − S7 + S9)Z
z0 = d4d5 − d2d7 = 0 (10,1)1/2 (2K−1

B + S7 − S9 − 2Z)Z
z0 = d5 = 0 (16,1)1/4 (2K−1

B − S7 −Z)Z
(1,3)0 1− 1

2 (S7 − S9)(K−1
B − S7 + S9)

(1,2)−3/2 (K−1
B − S7 + S9)S7

(1,2)1/2 (K−1
B − S7 + S9)(6K−1

B + S7 − 2S9 − 5Z)

(1,1)2 (2S7 − S9 −Z)S7
(1,1)1 6(K−1

B )2 − 3S27 + S29 + 6Z2 + 5S9Z
+K−1

B (13S7 − 5S9 − 12Z)− (2S9 + 9Z)S7
(1,1)0 19 + 11(K−1

B )2 + 4S27 − 3S7S9 + 2S29
+5S9Z + 10Z2 − 4K−1

B (S7 + S9 + 5Z)

(C.24)

Euler number: χ = −24(K−1
B )2 + 8K−1

B S7 − 8S27 + 8K−1
B S9 + 6S7S9 − 4S29

+ 40K−1
B Z − 10S9Z − 20Z2

anomaly coefficients: a ∼ K−1
B , b ∼ −Z , bSU(2) ∼ −(K−1

B − S7 + S9) ,

b11 ∼ −
(

3

2
K−1

B +
5

2
S7 −

1

2
S9 −

5

4
Z
)

Top 4.

vertices: z0 : (0, 0, 1) , f1 : (0, 1, 1) , f2 : (1, 0, 1) , f3 : (1, 1, 1) , f4 : (1, 2, 1) ,

g1 : (1, 1, 2) , g2 : (1, 2, 2)

factorization: s1 = d1z
4
0 , s2 = d2z

3
0 , s3 = d3z

2
0 , s4 = d4z0 , s5 = d5z0 ,

s6 = d6z0 , s7 = d7 , s8 = d8

locus representation multiplicity

z0 = d7 = 0 (16,1)−3/4 S7Z
z0 = d8 = 0 (10,2)∗0 (K−1

B − S7 + S9)Z
z0 = d4 = 0 (10,1)1/2 (2S7 − S9 −Z)Z
z0 = d5 = 0 SCP (2K−1

B − S7 −Z)Z
(1,3)0 1− 1

2 (S7 − S9)(K−1
B − S7 + S9)

(1,2)−3/2 (K−1
B − S7 + S9)S7

(1,2)1/2 (K−1
B − S7 + S9)(6K−1

B + S7 − 2S9 − 5Z)

(1,1)2 (2S7 − S9 −Z)S7
(1,1)1 6(K−1

B )2 − 3S27 + S29 + 7Z2 + 5S9Z
+K−1

B (13S7 − 5S9 − 14Z)− (2S9 + 8Z)S7
(1,1)0 19 + 11(K−1

B )2 + 4S27 − 3S7S9 + 2S29 + 2S7Z
+5S9Z + 12Z2 − 4K−1

B (S7 + S9 + 6Z)

(C.25)

Euler number: χ = −24(K−1
B )2 + 8K−1

B S7 − 8S27 + 8K−1
B S9 + 6S7S9 − 4S29 + 52K−1

B Z
− 6S7Z − 10S9Z − 26Z2

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂SU(2) ∼ −(K−1

B̂
− Ŝ7 + Ŝ9) ,

b̂11 ∼ −
(

3

2
K−1

B̂
+

5

2
Ŝ7 −

1

2
Ŝ9 −

5

4
Ẑ
)

relation to (F6, top 3): (16,1)1/4 ⊕ (10,1)1/2 ⊕ (1,1)1 ⊕ (1,1)0 ⊕ (1,1)0
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Top 5.

vertices: z0 : (0, 0, 1) , f1 : (0, 1, 1) , f2 : (0, 2, 1) , f3 : (1, 0, 1) , f4 : (1, 1, 1)

g1 : (1, 1, 2) , g2 : (1, 2, 2)

factorization: s1 = d1z
3
0 , s2 = d2z

2
0 , s3 = d3z

2
0 , s4 = d4z

2
0 , s5 = d5z0 ,

s6 = d6z0 , s7 = d7 , s8 = d8

locus representation multiplicity

z0 = d5 = 0 (16,1)1/4 (2K−1
B − S7 −Z)Z

z0 = d2 = 0 (10,1)1/2 (2K−1
B − S9 − 2Z)Z

z0 = d8 = 0 (10,2)∗0 (K−1
B − S7 + S9)Z

z0 = d7 = 0 SCP S7Z
(1,3)0 1− 1

2 (S7 − S9)(K−1
B − S7 + S9)

(1,2)−3/2 (K−1
B − S7 + S9)S7

(1,2)1/2 (K−1
B − S7 + S9)(6K−1

B + S7 − 2S9 − 5Z)

(1,1)2 (2S7 − S9 − 2Z)S7
(1,1)1 6(K−1

B )2 − 3S27 + S29 + 6Z2 + 5S9Z
+K−1

B (13S7 − 5S9 − 12Z)− (2S9 + 10Z)S7
(1,1)0 19 + 11(K−1

B )2 + 4S27 + 2S29 + 10Z2 + 5S9Z
−4K−1

B (S7 + S9 + 5Z)− S7Z − 3S7S9

(C.26)

Euler number: χ = −24(K−1
B )2 + 8K−1

B S7 − 8S27 + 8K−1
B S9 + 6S7S9 − 4S29 + 40K−1

B Z
+ 4S7Z − 10S9Z − 20Z2

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂SU(2) ∼ −(K−1

B̂
− Ŝ7 + Ŝ9) ,

b̂11 ∼ −
(

3

2
K−1

B̂
+

5

2
Ŝ7 −

1

2
Ŝ9 −

5

4
Ẑ
)

relation to (F6, top 3): (16,1)−3/4 ⊕ (10,1)1/2 ⊕ (1,1)2 ⊕ (1,1)1 ⊕ (1,1)0

C.7 Polygon F7

vertices: u : (1, 1, 0) , w : (0,−1, 0) , v : (−1, 0, 0)

e1 : (0, 1, 0) , e2 : (−1,−1, 0) , e3 : (1, 0, 0)

gauge group: SO(10)×U(1)
3

Top 1.

vertices: z0 : (0, 0, 1) , f1 : (1, 0, 1) , f2 : (1, 1, 1) , f3 : (2, 1, 1) , f4 : (0, 1, 1) ,

g1 : (1, 1, 2) , g2 : (2, 1, 2)

factorization: s2 = d2 , s3 = d3z0 , s5 = d5 , s6 = d6z0 , s7 = d7z0 ,

s8 = d8z0 , s9 = d9z
2
0
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locus representation multiplicity

z0 = d5 = 0 16−1/4,1/4,0 (2K−1
B − S7)Z

z0 = d8 = 0 101/2,1/2,1 (K−1
B − S7 + S9 −Z)Z

z0 = d2 = 0 10−1/2,−1/2,0 (2K−1
B − S9)Z

z0 = d7 = 0 SCP (S7 −Z)Z
11,1,0 (2K−1

B − S9)(K−1
B + S7 − S9 −Z)

10,−1,0 (2K−1
B − S7)(2K−1

B − S9)

12,1,1 (K−1
B + S7 − S9 −Z)(S7 −Z)

10,1,1 (K−1
B − S7 + S9 −Z)(2K−1

B − S7)

12,1,2 (S9 − 2Z)(S7 −Z)

11,1,2 (K−1
B − S7 + S9 −Z)(S9 − 2Z)

11,0,0 4(K−1
B )2 − 2S27 + 2Z2 − S9Z

+K−1
B (2S7 − 2S9 − 4Z) + 2S7S9

10,0,1 4(K−1
B )2 − 2S29 + 2Z2 + 2S9Z

+K−1
B (−2S7 + 2S9 − 6Z) + 2S7(S9 −Z)

11,0,1 2(K−1
B )2 +K−1

B (2S7 + 2S9 − 7Z)

+S7(−2S9 + Z) + (S9 + Z)Z
11,1,1 4(K−1

B )2 − 2S27 − 2S29 + 2Z2 + 2S9Z
+K−1

B (2S7 + 2S9 − 10Z) + 2S7S9
10,0,0 20 + 7(K−1

B )2 + 2S27 + 2S29 − 2S9Z + 7Z2

−S7(2S9 + Z)− 2K−1
B (S7 + S9 + 4Z)

(C.27)

Euler number: χ = −16(K−1
B )2 + 4K−1

B S7 − 4S27 + 4K−1
B S9 + 4S7S9 − 4S29

+ 16K−1
B Z + 4S7Z + 4S9Z − 16Z2

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂11 ∼ −

(
2K−1

B̂
+ 2Ŝ7 −

13

4
Ẑ
)
,

b̂12 ∼ −
(
K−1

B̂
+ Ŝ7 −

7

4
Ẑ
)
, b̂13 ∼ −(K−1

B̂
+ Ŝ7 + Ŝ9 − 3Ẑ) ,

b̂22 ∼ −
(

2K−1

B̂
− 5

4
Ẑ
)
, b̂23 ∼ −(K−1

B̂
+ Ŝ9 − 2Ẑ) ,

b̂33 ∼ −(2K−1

B̂
+ 2Ŝ9 − 4Ẑ)

C.8 Polygon F8

vertices: u : (0,−1, 0) , v : (−1, 1, 0) , w : (1, 0, 0) , e1 : (−1, 0, 0)

e2 : (−1,−1, 0) , e3 : (1,−1, 0)

gauge group: SO(10)× SU(2)
2 ×U(1)

Top 1.

vertices: z0 : (0, 0, 1) , f1 : (1, 0, 1) , f2 : (0, 1, 1) , f3 : (1, 1, 1) , f4 : (2, 0, 1)

g1 : (1, 1, 2) , g2 : (2, 1, 2)

factorization: s1 = d1z
3
0 , s2 = d2z

2
0 , s3 = d3z

2
0 , s5 = d5z0 , s6 = d6z0 ,

s7 = d7 , s8 = d8
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locus representation multiplicity

z0 = d5 = 0 (16,1,1)1/4 (2K−1
B − S7 −Z)Z

z0 = d2 = 0 (10,1,1)1/2 (2K−1
B − S9 − 2Z)Z

z0 = d8 = 0 (10,1,2)∗0 (K−1
B − S7 + S9)Z

z0 = d7 = 0 SCP S7Z
(1,3,1)0 1− 1

2 (K−1
B − S7)S7

(1,1,3)0 1 + 1
2 (K−1

B − S7 + S9)(S9 − S7)

(1,2,2)1/2 (K−1
B − S7 + S9)S7

(1,2,1)1 (K−1
B + S7 − S9 − 2Z)S7

(1,1,2)1/2 (K−1
B − S7 + S9)(6K−1

B − 2S9 − 5Z)

(1,2,1)0 (5K−1
B − S7 − S9 − 4Z)S7

(1,1,1)1 6(K−1
B )2 − S27 + S29 + 6Z2 + 5S9Z

+K−1
B (3S7 − 5S9 − 12Z)− 2S7Z

(1,1,1)0 20 + 11(K−1
B )2 + 3S27 + 2S29 + 5S9Z + 10Z2

+S7(−2S9 + Z)−K−1
B (5S7 + 4(S9 + 5Z))

(C.28)

Euler number: χ = −24(K−1
B )2 + 10K−1

B S7 − 6S27 + 8K−1
B S9 + 4S7S9 − 4S29

+ 40K−1
B Z − 10S9Z − 20Z2

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂SU(2)1

∼ −Ŝ7 ,

b̂SU(2)2
∼ −(K−1

B̂
− Ŝ7 + Ŝ9) , b̂11 ∼ −

(
3

2
K−1

B̂
+

1

2
Ŝ7 −

1

2
Ŝ9 −

5

4
Ẑ
)

Top 2.

vertices: z0 : (0, 0, 1) , f1 : (1, 0, 1) , f2 : (0, 1, 1) , f3 : (1, 1, 1) , f4 : (0, 2, 1)

g1 : (1, 1, 2) , g2 : (1, 2, 2)

factorization: s1 = d1z
4
0 , s2 = d2z

2
0 , s3 = d3z0 , s5 = d5z

2
0 , s6 = d6z0 ,

s7 = d7 , s8 = d8

locus representation multiplicity

z0 = d3 = 0 (16,1,1)−1/2 (K−1
B + S7 − S9 −Z)Z

z0 = d2 = 0 (10,1,1)0 (2K−1
B − S9 − 2Z)Z

z0 = d7 = 0 (10,2,1)∗0 S7Z
z0 = d8 = 0 SCP (K−1

B − S7 + S9)Z
(1,3,1)0 1− 1

2 (K−1
B − S7)S7

(1,1,3)0 1 + 1
2 (K−1

B − S7 + S9)(S9 − S7)

(1,2,2)1/2 (K−1
B − S7 + S9)S7

(1,2,1)1 (K−1
B + S7 − S9 −Z)S7

(1,1,2)1/2 (K−1
B − S7 + S9)(6K−1

B − 2S9 − 6Z)

(1,2,1)0 (5K−1
B − S7 − S9 − 4Z)S7

(1,1,1)1 6(K−1
B )2 − S27 + S29 + 4Z2 + 4S9Z

+K−1
B (3S7 − 5S9 − 10Z)− 2S7Z

(1,1,1)0 20 + 11(K−1
B )2 + 3S27 − 2S7S9 + 2S29 + 3S7Z

+5S9Z + 12Z2 −K−1
B (5S7 + 4S9 + 23Z)

(C.29)
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Euler number: χ = −24(K−1
B )2 + 10K−1

B S7 − 6S27 + 8K−1
B S9 + 4S7S9 − 4S29 + 48K−1

B Z
− 8S7Z − 8S9Z − 24Z2

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂SU(2)1

∼ −Ŝ7 ,

b̂SU(2)2
∼ −(K−1

B̂
− Ŝ7 + Ŝ9) , b̂11 ∼ −

(
3

2
K−1

B̂
+

1

2
Ŝ7 −

1

2
Ŝ9 − Ẑ

)

C.9 Polygon F9

vertices: u : (−1, 1, 0) , w : (1, 0, 0) , v : (0,−1, 0)

e1 : (0, 1, 0) , e2 : (−1, 0, 0) , e3 : (−1,−1, 0)

gauge group: SO(10)× SU(2)×U(1)
2

Top 1.

vertices: z0 : (0, 0, 1) , f1 : (0, 1, 1) , f2 : (1, 0, 1) , f3 : (1, 1, 1)

g1 : (1, 1, 2) , g2 : (2, 1, 2)

factorization: s1 = d1z0 , s2 = d2z
2
0 , s3 = d3z

2
0 , s5 = d5 , s6 = d6z0

s7 = d7z0 , s9 = d9

locus representation multiplicity

z0 = d5 = 0 (16,1)1/4,1/2 (2K−1
B − S7)Z

z0 = d7 = 0 (16,1)−3/4,−1/2 (S7 −Z)Z
z0 = d9 = 0 (10,2)∗0,0 S9Z

z0 = d3d5 − d1d7 = 0 (10,1)1/2,0 (3K−1
B − S9 − 2Z)Z

(1,3)0,0 1− 1
2 (K−1

B − S9)S9
(1,2)3/2,1 (S7 −Z)S9

(1,2)−1/2,−1 (2K−1
B − S7)S9

(1,2)−1/2,0 (6K−1
B − 2S9 − 4Z)S9

(1,1)2,1 (K−1
B + S7 − S9 − 2Z)(S7 −Z)

(1,1)0,1 (3K−1
B − S7 − S9 −Z)(2K−1

B − S7)

(1,1)1,0 6(K−1
B )2 − 2S27 +K−1

B (4S7 − 5S9 − 14Z)

+2S7Z + (S9 + 2Z)2

(1,1)1,1 6(K−1
B )2 − 2S27 +K−1

B (4S7 − 2S9 − 11Z)

+2S7Z + (S9 + 2Z)Z
(1,1)0,0 20 + 11(K−1

B )2 − 2K−1
B (2S7 + 3S9 + 7Z)

+2(S27 + S29 − S7Z + 2S9Z + 4Z2)

(C.30)

Euler number: χ = −24(K−1
B )2 + 8K−1

B S7 − 4S27 + 12K−1
B S9 − 4S29 + 28K−1

B Z
+ 4S7Z − 8S9Z − 16Z2

anomaly coefficients: a ∼ K−1
B , b ∼ −Z , bSU(2) ∼ −S9 , b22 ∼ −(2K−1

B −Z) ,

b12 ∼ −
(
K−1

B + S7 −
3

2
Z
)
, b11 ∼ −

(
2K−1

B + 2S7 −
1

2
S9 −

13

4
Z
)
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Top 2.

vertices: z0 : (0, 0, 1) , f1 : (0, 1, 1) , f2 : (1, 0, 1) , f3 : (1, 1, 1) , f4 : (2, 0, 1) ,

g1 : (1, 1, 2) , g2 : (2, 1, 2)

factorization: s1 = d1z
2
0 , s2 = d2z

2
0 , s3 = d3z

2
0 , s5 = d5 , s6 = d6z0

s7 = d7z0 , s9 = d9

locus representation multiplicity

z0 = d7 = 0 (16,1)−3/4,−1/2 (S7 −Z)Z
z0 = d9 = 0 (10,2)∗0,0 S9Z
z0 = d3 = 0 (10,1)1/2,0 (K−1

B + S7 − S9 − 2Z)Z
z0 = d5 = 0 SCP (2K−1

B − S7)Z
(1,3)0,0 1− 1

2 (K−1
B − S9)S9

(1,2)3/2,1 (S7 −Z)S9
(1,2)−1/2,−1 (2K−1

B − S7)S9
(1,2)−1/2,0 (6K−1

B − 2S9 − 4Z)S9
(1,1)2,1 (K−1

B + S7 − S9 − 2Z)(S7 −Z)

(1,1)0,1 (3K−1
B − S7 − S9 − 2Z)(2K−1

B − S7)

(1,1)1,0 6(K−1
B )2 − 2S27 +K−1

B (4S7 − 5S9 − 14Z)

+2S7Z + (S9 + 2Z)2

(1,1)1,1 6(K−1
B )2 − 2S27 +K−1

B (4S7 − 2S9 − 13Z)

+3S7Z + (S9 + 2Z)Z
(1,1)0,0 20 + 11(K−1

B )2 + 2S27 + 2S29 − S7Z
+4S9Z + 8Z2 − 2K−1

B (2S7 + 3S9 + 8Z)

(C.31)

Euler number: χ = −24(K−1
B )2 + 8K−1

B S7 − 4S27 + 12K−1
B S9 − 4S29

+ 36K−1
B Z − 8S9Z − 16Z2

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂SU(2) ∼ −Ŝ9 , b̂22 ∼ −(2K−1

B̂
− Ẑ) ,

b̂12 ∼ −
(
K−1

B̂
+ Ŝ7 −

3

2
Ẑ
)
, b̂11 ∼ −

(
2K−1

B̂
+ 2Ŝ7 −

1

2
Ŝ9 −

13

4
Ẑ
)

relation to (F9, top 1): (16,1)1/4,1/2 ⊕ (10,1)1/2,0 ⊕ (1,1)0,1 ⊕ (1,1)1,1 ⊕ (1,1)0,0

Top 3.

vertices: z0 : (0, 0, 1) , f1 : (0, 1, 1) , f2 : (0, 2, 1) , f3 : (1, 0, 1) , f4 : (1, 1, 1)

g1 : (1, 1, 2) , g2 : (1, 2, 2)

factorization: s1 = d1z0 , s2 = d2z0 , s3 = d3z
2
0 , s5 = d5 , s6 = d6z0 ,

s7 = d7z
2
0 , s9 = d9
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locus representation multiplicity

z0 = d2 = 0 (16,1)0,−1/4 (2K−1
B − S9 −Z)Z

z0 = d3 = 0 (10,1)1,1/2 (K−1
B + S7 − S9 − 2Z)Z

z0 = d5 = 0 (10,1)0,1/2 (2K−1
B − S7)Z

z0 = d9 = 0 SCP S9Z
(1,3)0,0 1− 1

2 (K−1
B − S9)S9

(1,2)3/2,1 (S7 − 2Z)S9
(1,2)−1/2,−1 (2K−1

B − S7)S9
(1,2)−1/2,0 (6K−1

B − 2S9 − 4Z)S9
(1,1)2,1 (K−1

B + S7 − S9 − 2Z)(S7 − 2Z)

(1,1)0,1 (2K−1
B − S7)(3K−1

B − S7 − S9 −Z)

(1,1)1,0 6(K−1
B )2 − 2S27 + S29 +K−1

B (4S7 − 5S9 − 13Z)

+3S7Z + 3S9Z + 2Z2

(1,1)1,1 6(K−1
B )2 − 2S27 +K−1

B (4S7 − 2S9 − 13Z)

+3S7Z + (S9 + 2Z)Z
(1,1)0,0 20 + 11(K−1

B )2 + 2S27 + 2S29 − 3S7Z
+3S9Z + 8Z2 − 2K−1

B (2S7 + 3S9 + 6Z)

(C.32)

Euler number: χ = −24(K−1
B )2 + 8K−1

B S7 − 4S27 + 12K−1
B S9 − 4S29 + 24K−1

B Z
+ 6S7Z − 4S9Z − 16Z2

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂SU(2) ∼ −Ŝ9 , b̂22 ∼ −

(
2K−1

B̂
− 5

4
Ẑ
)
,

b̂12 ∼ −(K−1

B̂
+ Ŝ7 − 2Ẑ) , b̂11 ∼ −

(
2K−1

B̂
+ 2Ŝ7 −

1

2
Ŝ9 − 4Ẑ

)

C.10 Polygon F10

vertices: u : (−1,−1, 0) , v : (0, 1, 0) , w : (1, 0, 0) ,

e1 : (−1, 0, 0) , e2 : (−2,−1, 0) , e3 : (−3,−2, 0)

gauge group: SO(10)× SU(3)× SU(2)

Top 1.

vertices: z0 : (0, 0, 1) , f1 : (1, 1, 1) , f2 : (2, 2, 1) , f3 : (2, 1, 1) , f4 : (3, 2, 1) ,

g1 : (3, 2, 2) , g2 : (4, 3, 2)

factorization: s1 = d1z
5
0 s2 = d2z

3
0 , s3 = d3z0 , s4 = d4 , s5 = d5z

2
0 ,

s6 = d6z0 , s8 = d8
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locus representation multiplicity

z0 = d5 = 0 (10,1,1) (2K−1
B − S7 − 2Z)Z

z0 = d3 = 0 (16,1,1) (K−1
B + S7 − S9 −Z)Z

z0 = d4 = 0 (10,1,2)∗ (2S7 − S9)Z
z0 = d8 = 0 SCP (K−1

B − S7 + S9)Z
(1,8,1) 1− 1

2 (S7 − S9)(K−1
B − S7 + S9)

(1,1,3) 1− 1
2 (K−1

B − 2S7 + S9)(2S7 − S9)

(1,3,2) (2S7 − S9)(K−1
B − S7 + S9)

(1,3,1) (K−1
B − S7 + S9)(6K−1

B − S7 − S9 − 6Z)

(1,1,2) (2S7 − S9)(5K−1
B − S7 − S9 − 5Z)

(1,1,1) 20 + 11(K−1
B )2 + 6S27 − 6S7S9 + 3S29 + 5S7Z

+5S9Z + 16Z2 − 3K−1
B (2S7 + S9 + 9Z)

(C.33)

Euler number: χ = −24(K−1
B )2 − 12S27 − 6S29 − 32Z2 − 12S7Z − 8S9Z

+K−1
B (12S7 + 6S9 + 56Z) + 12S7S9

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂SU(3) ∼ −(K−1

B̂
− Ŝ7 + Ŝ9) ,

b̂SU(2) ∼ −(2Ŝ7 − Ŝ9)

C.11 Polygon F11

vertices: u : (−1,−1, 0) , v : (1, 0, 0) , w : (0, 1, 0) ,

e1 : (−1, 0, 0) , e2 : (0,−1, 0) , e3 : (1,−1, 0) , e4 : (−2,−1, 0)

gauge group: SO(10)× SU(3)× SU(2)×U(1)

Top 1.

vertices: z0 : (0, 0, 1) , f1 : (1, 0, 1) , f2 : (1, 1, 1) , f3 : (2, 0, 1) , f4 : (2, 1, 1)

g1 : (2, 1, 2) , g2 : (3, 1, 2)

factorization: s1 = d1z
3
0 , s2 = d2z0 , s3 = d3 , s5 = d5z

2
0 , s6 = d6z0 , s9 = d9

locus representation multiplicity

z0 = d5 = 0 (10,1,1)−1/2 (2K−1
B − S7 − 2Z)Z

z0 = d2 = 0 (16,1,1)1/4 (2K−1
B − S9 −Z)Z

z0 = d3 = 0 (10,1,2)∗0 (K−1
B + S7 − S9)Z

z0 = d9 = 0 SCP S9Z
(1,8,1)0 1− 1

2 (K−1
B − S9)S9

(1,1,3)0 1− 1
2 (S9 − S7)(K−1

B + S7 − S9)

(1,3,2)−1/6 (K−1
B + S7 − S9)S9

(1,3,1)−2/3 (2K−1
B − S7 − 2Z)S9

(1,3,1)1/3 (5K−1
B − S7 − S9 − 4Z)S9

(1,1,2)1/2 (K−1
B + S7 − S9)(6K−1

B − 2S7 − S9 − 5Z)

(1,1,1)−1 (3K−1
B − S7 − S9 − 3Z)(2K−1

B − S7 − 2Z)

(1,1,1)0 21 + 11(K−1
B )2 + 2S27 − S7S9 + 3S29 + 5S7Z

+3S9Z + 10Z2 −K−1
B (4S7 + 7S9 + 20Z)

(C.34)

– 90 –



J
H
E
P
1
2
(
2
0
1
7
)
0
3
5

Euler number: χ = −24(K−1
B )2 − 4S27 − 6S29 − 20Z2 − 4S9Z − 10S7Z

+K−1
B (8S7 + 14S9 + 40Z) + 2S7S9

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂SU(2) ∼ −(K−1

B̂
+ Ŝ7 − Ŝ9) ,

b̂SU(3) ∼ −Ŝ9 , b̂11 ∼ −
(

3

2
K−1

B̂
− 1

2
Ŝ7 −

1

6
Ŝ9 −

5

4
Ẑ
)

C.12 Polygon F12

vertices: u : (1,−1, 0) , v : (0, 1, 0) , w : (−1, 0, 0) , e1 : (0,−1, 0)

e2 : (1, 0, 0) , e3 : (1, 1, 0) , e4 : (−1,−1, 0)

gauge group: SO(10)× SU(2)
2 ×U(1)

2

Top 1.

vertices: z0 : (0, 0, 1) , f1 : (1, 0, 1) , f2 : (1, 1, 1) , f3 : (2, 0, 1) , f4 : (2, 1, 1)

g1 : (2, 1, 2) , g2 : (3, 1, 2)

factorization: s1 = d1 , s2 = d2 , s5 = d5z0 , s6 = d6z0 , s7 = d7 , s9 = d9z
2
0

locus representation multiplicity

z0 = d5 = 0 (16,1,1)−1/2,−1/4 (2K−1
B − S7 −Z)Z

z0 = d1 = 0 (10,1,1)0,1/2 (3K−1
B − S7 − S9)Z

z0 = d9 = 0 (10,1,2)∗0 (S9 − 2Z)Z
z0 = d7 = 0 SCP S7Z

(1,3,1)0 1− 1
2 (K−1

B − S7)S7
(1,1,3)0 1− 1

2 (K−1
B − S9 + 2Z)(S9 − 2Z)

(1,2,2)1/2,1/2 (S9 − 2Z)S7
(1,1,2)−1,−1/2 (2K−1

B − S7 −Z)(S9 − 2Z)

(1,2,1)−1/2,−1 (2K−1
B − S9)S7

(1,1,2)0,−1/2 (6K−1
B − S7 − 2S9)(S9 − 2Z)

(1,2,1)−1/2,0 (6K−1
B − 2S7 − S9 − 2Z)S7

(1,1,1)1,0 (3K−1
B − S7 − S9)(2K−1

B − S7 −Z)

(1,1,1)0,1 (2K−1
B − S9)(3K−1

B − S7 − S9)

(1,1,1)1,1 6(K−1
B )2 +K−1

B (−2S7 − 2S9 − 3Z)

+S9Z + S7(S9 −Z)

(1,1,1)0,0 21 + 11(K−1
B )2 + 2S27 + 2S29 − 4S9Z

+8Z2 + S7(S9 + Z)− 6K−1
B (S7 + S9 + Z)

(C.35)

Euler number: χ = −24(K−1
B )2 + 12K−1

B S7 − 4S27 + 12K−1
B S9 − 2S7S9 − 4S29

+ 12K−1
B Z + 8S9Z − 16Z2

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂SU(2)1

∼ −Ŝ7 , b̂SU(2)2
∼ −(Ŝ9 − 2Ẑ) ,

b̂11 ∼ −
(

2K−1

B̂
− 1

2
Ŝ7 − Ẑ

)
, b̂12 ∼ −

(
K−1

B̂
− 1

2
Ẑ
)
,

b̂22 ∼ −
(

2K−1

B̂
− 1

2
Ŝ9 −

1

4
Ẑ
)
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C.13 Polygon F14

vertices: u : (1,−1, 0) , v : (0, 1, 0) , w : (−1, 0, 0) , e1 : (0,−1, 0) ,

e2 : (1, 0, 0) , e3 : (1, 1, 0) , e4 : (−1,−1, 0) , e5 : (−2,−1, 0)

gauge group: SO(10)× SU(3)× SU(2)
2 ×U(1)

Top 1.

vertices: z0 : (0, 0, 1) , f1 : (1, 0, 1) , f2 : (1, 1, 1) , f3 : (2, 0, 1) , f4 : (2, 1, 1)

g1 : (2, 1, 2) , g2 : (3, 1, 2)

factorization: s1 = d1 , s5 = d5z0 , s6 = d6z0 , s7 = d7 , s9 = d9z
2
0

locus representation multiplicity

z0 = d1 = 0 (10,1,2,1)∗0 (3K−1
B − S7 − S9)Z

z0 = d9 = 0 (10,1,1,2)∗0 (S9 − 2Z)Z
z0 = d5 = 0 (16,1,1,1)1/4 (2K−1

B − S7 −Z)Z
z0 = d7 = 0 SCP S7Z

(1,8,1,1)0 1− 1
2 (K−1

B − S7)S7
(1,1,3,1)0 1 + 1

2 (2K−1
B − S7 − S9)(3K−1

B − S7 − S9)

(1,1,1,3)0 1− 1
2 (K−1

B − S9 + 2Z)(S9 − 2Z)

(1,1,2,1)1/2 (3K−1
B − S7 − S9)(2K−1

B − S7 −Z)

(1,3,1,1)−1/3 (3K−1
B − S7 − 2Z)S7

(1,1,1,2)1/2 (2K−1
B − S7 −Z)(S9 − 2Z)

(1,3,2,1)1/6 (3K−1
B − S7 − S9)S7

(1,1,2,2)0 (3K−1
B − S7 − S9)(S9 − 2Z)

(1,3,1,2)1/6 (S9 − 2Z)S7
(1,1,1,1)0 22 + 11(K−1

B )2 + 3S27 + 2S7S9 + 2S29 + S7Z
−4S9Z + 8Z2 − 3K−1

B (3S7 + 2(S9 + Z))

(C.36)

Euler number: χ = −24(K−1
B )2 − 6S27 − 4S29 − 16Z2 + 8S9Z − 4S7S9

+K−1
B (18S7 + 12S9 + 12Z)

anomaly coefficients∗: â ∼ K−1

B̂
, b̂ ∼ −Ẑ , b̂SU(3) ∼ −Ŝ7 , b̂SU(2) ∼ −(Ŝ9 − 2Ẑ) ,

b̂SU(2) ∼ −(3K−1

B̂
− Ŝ7 − Ŝ9) , b̂11 ∼ −

(
1

2
K−1

B̂
− 1

6
Ŝ7 −

1

4
Ẑ
)

D Phenomenologically viable models

In this appendix we summarize the matter spectra of the phenomenologically viable models

discussed in section 5.2. The criteria are that the 6d theory has a Lagrangian description

and gauge group SO(10)×U(1) implying the presence of a single tensor multiplet, i.e. the

base is Fn with n ≤ 2 and the fiber is embedded in F3 with top 4. Moreover, for the

Higgs sector we demand at least two uncharged 10-plets as well as at least two uncharged

16-plets for the breaking of the U(1)B−L symmetry.

Two scenarios are possible according to the analysis in section 5.1. First, the parti-

cle spectrum contains three minimally charged 16-plets that lead to three generations of
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fermion zero modes in the background of a single flux quantum. We find eight possible

realizations, whose base dependence and complete matter spectrum is given in (D.1). Sec-

ond, the 6d theory includes a single charged 16-plet and the generations are due to three

flux quanta. For this we find 25 possibilities given in (D.2).

coefficients mutliplicities

n aZ bZ a7 b7 a9 b9

1 1 0 2 1 1 2

0 1 1 2 3 1 2

1 1 0 3 1 1 2

0 1 1 3 3 1 2

1 1 0 3 1 2 1

1 1 0 3 2 2 1

0 1 1 3 2 2 1

0 1 1 3 3 2 1

16−1 160 101 100 13 12 11 10

3 2 5 2 5 28 69 38

3 3 5 3 3 20 59 32

3 2 4 3 2 28 70 40

3 3 4 4 1 22 55 36

3 2 4 3 5 28 67 40

3 2 3 4 3 30 63 44

3 3 5 3 3 20 59 32

3 3 4 4 1 22 55 36

(D.1)

coefficients multiplicities

n aZ bZ a7 b7 a9 b9

0 0 1 2 2 1 0

0 0 1 2 2 1 1

0 0 1 2 3 1 1

0 0 1 2 3 1 2

0 0 1 3 2 1 0

0 0 1 3 2 1 1

0 0 1 3 3 1 1

0 0 1 3 3 1 2

1 1 0 2 1 0 1

0 1 0 2 2 0 1

1 1 0 2 2 0 1

0 1 0 2 3 0 1

0 1 1 2 2 0 1

0 1 1 2 3 0 1

1 1 0 2 1 1 0

0 1 0 2 2 1 1

0 1 0 2 3 1 1

0 1 1 2 2 1 0

1 1 0 3 0 1 0

1 1 0 3 1 1 0

0 1 0 3 2 1 1

0 1 0 3 3 1 1

0 1 1 3 2 1 0

0 1 0 3 2 2 1

0 1 0 3 3 2 1

16−1 160 101 100 13 12 11 10

1 3 4 2 0 18 88 60

1 3 4 2 2 26 86 52

1 3 4 2 1 22 87 56

1 3 4 2 3 30 85 48

1 3 3 3 0 14 90 62

1 3 3 3 1 24 89 52

1 3 3 3 0 22 82 62

1 3 3 3 1 32 81 52

1 4 5 2 0 16 74 50

1 3 4 2 0 18 88 60

1 4 4 3 0 12 76 52

1 3 3 3 0 14 90 62

1 5 6 2 0 14 60 40

1 5 5 3 0 10 62 42

1 4 5 2 1 20 73 46

1 3 4 2 2 26 86 52

1 3 3 3 1 24 89 52

1 5 6 2 0 14 60 40

1 4 5 2 1 16 77 46

1 4 4 3 0 16 72 52

1 3 4 2 1 22 87 56

1 3 3 3 0 22 82 62

1 5 5 3 0 10 62 42

1 3 4 2 3 30 85 48

1 3 3 3 1 32 81 52
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