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1 Introduction

The bootstrap program, which seeks to study quantum field theories by studying their

general consistency conditions, has shown to be remarkably powerful when applied to

conformal field theories (CFTs) [1, 2]. By analyzing the constraints of unitarity and crossing

symmetry, the modern bootstrap program has yielded new insights into the structure of

CFTs [3]. With the bootstrap, it is possible to rigorously study the space of CFTs with a

small number of relevant operators [4–8].
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Another prominent application of the bootstrap program is in the study of quantum

gravity. Through the holographic principle, one can unambiguously define a theory of

quantum gravity living in an asymptotically AdSd+1 spacetime in terms of a CFT living

on its boundary. Various observables in the gravity theory can be translated into observ-

ables of the boundary CFT, which can then be studied using symmetry and consistency

conditions of the CFT. The power of this approach is in its generality. One is not nec-

essarily constrained to a particular incarnation of quantum gravity or the usual limit of

large N or large gap. Instead, very general results can be obtained based on symmetries

and consistency conditions that apply to all gravity theories dual to boundary CFTs. For

example, the gravitational interaction between objects in AdS at superhorizon distances

has been shown to be attractive for a wide range of quantum gravitational theories [9–13].

In AdS3, this approach has also unveiled non-perturbative effects that are crucial in solving

the information loss problem of black holes that are difficult to resolve using traditional

methods [14–16].

In this work, we will use analytic bootstrap techniques to understand general con-

straints on large N CFTs and their AdS duals. It is conjectured that any large N CFT

with a parametrically large gap in its higher spin single-trace sector is well described by

a local bulk dual of Einstein gravity plus matter. This is an extremely non-trivial state-

ment from the CFT point of view, since it suggests that by taking N and ∆gap large, an

infinite amount of CFT data is uniquely fixed to be the value corresponding to Einstein

gravity in the bulk. The bootstrap approach is particularly suitable for investigating this

phenomenon and has already provided strong evidence for the conjecture. In the study

of external scalar operators, it has been shown that there is a one-to-one map between

homogeneous solutions to crossing and local, quartic interactions in AdS [17, 18]. Similar

counting also works for exchange Witten diagrams. For operators with spin, it has been

shown that the three-point function of stress tensors 〈TTT 〉 [19] is fixed to take the form

predicted by Einstein gravity.1 It has also been shown that higher derivative interactions

are suppressed by ∆gap, consistent with expectations from effective field theory [20] (see

also [21–25]).

We will study the universality of Einstein gravity, as well as regimes beyond it, by

solving the bootstrap equations in the Regge limit. In flat space scattering, the Regge limit

corresponds to taking |s| � |t|, with t held fixed. This limit is sensitive to the spectrum of

higher spin particles. Among the various states exchanged by the two scattering particles,

the dominant contribution to the amplitude comes from the tower of particles with the

lowest mass for each spin, or the leading Regge trajectory. In CFTs, there is an analogous

kinematic limit of four-point functions that is dual to two-to-two, high energy, fixed impact

parameter scattering in the AdS bulk [26–30]. In CFTs the leading Regge trajectory

corresponds to the tower of single-trace operators exchanged in the ψψ channel with the

lowest scaling dimension at each spin [31]. The Regge limit has also seen renewed attention

given its connection to chaos, and we will use the recently studied bound on chaos [32] to

constrain the space of large N CFTs in d > 2.

1The result in [19] is based on certain assumptions about the contributions of double-trace states in the

Regge limit. We will clarify the role of such contributions in the present work.
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Our key observables are the anomalous dimensions and OPE coefficients of the double-

trace operators [φψ]n,j ∼ φ∂µ1 . . . ∂µj∂2nψ with spin ` and dimension ∆φ + ∆ψ + 2n + j.

The anomalous dimensions are the first large N corrections to these canonical dimensions.

In the Regge limit, they correspond to the bulk phase shift of the scattering particles,

γn,j = − 1

π
δ(s, b), (1.1)

where the bulk center of mass energy
√
s and impact parameter b are controlled by n and

` as in (2.9). We compute γn,j by solving the bootstrap equations.

In the first part of this work, we will take s� ∆2
gap. In this regime we indeed recover

Einstein gravity. In particular, the anomalous dimensions we compute agree with the

phase shifts obtained from local bulk gravity [33]. For scalar 4-point functions, we argue

that these anomalous dimensions are negative using the chaos bound. We also sketch the

generalization of this argument to correlation functions containing currents. The resulting

condition implies that the 〈JJT 〉 three point function only contains the structure obtained

from Einstein-Maxwell theory in the bulk, up to small corrections.

In the second part of this work, we ramp up the scattering energy to probe beyond

the scale set by ∆gap. This is interesting both from the bulk and boundary point of view.

Large N CFTs with a parametrically large gap in the single-trace spectrum are expected

to be non-generic. This truncation occurs in planar, N = 4 SYM at strong coupling, but

the consequences of crossing symmetry remain elusive when we are away from this limit

and infinite towers of higher spin single-trace operators, organized into Regge trajectories,

contribute to the correlation function. In the dual AdS theory, we would like to understand

whether universality exists beyond the gravity limit. In particular, is string theory the

only possible UV completion of Einstein gravity? From the study of flat space scattering

amplitudes in weakly coupled theories, there is convincing evidence that the presence of

higher spin particles implies some general stringy properties [34, 35]. In this paper, we will

show that with mild assumptions on the Regge trajectory, string-like behavior does emerge

in the CFT. Understanding the properties of the leading Regge trajectory is also crucial

in resolving causality problems for weakly coupled theories of gravity [33].

In addition to computing the anomalous dimensions and OPE coefficients of the double-

trace operators [φψ]n,j , we also constrain their signs using unitarity of the boundary CFT,

both in the gravity regime and when there is an exchange of an entire Regge trajectory.

Previously, similar sign constraints were discovered in the study of the lightcone boot-

strap [9, 10] for external operators with spin [12, 13], where the exchange of the stress

tensor only leads to negative anomalous dimensions if the conformal collider bounds [36]

are satisfied. This negativity implies the attractiveness of bulk gravity at long distances.

Using CFT axioms, it is possible to prove the collider bounds [13, 37–39] and the aver-

aged null energy condition (ANEC) more broadly [40, 41]. We will see similar behavior

in the Regge limit. We prove the negativity of the anomalous dimensions in a wide range

of theories. This result is explicitly connected to the causality of the bulk gravitational

theory through (1.1). We also prove that corrections to the OPE coefficients of [φψ]n,j are

negative. This has a simple bulk interpretation in terms of AdS unitarity.

– 3 –
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Note added: after this work was completed, [42] and [43] appeared, which also consider

the Regge limit in CFTs and have some overlap with our work.

1.1 Summary of results

Our paper is organized as follows. In section 2 we will introduce some useful notation and

conventions for the study of large N CFTs. For simplicity we will present known results

for the four-point function of scalar operators 〈φψψφ〉 in the φφ→ ψψ Regge limit. With a

precise definition of the Regge limit as an analytic continuation of the Euclidean four-point

function, we will show that this limit naturally isolates operators with large spin.

In section 3 we will study the bootstrap equations in the Regge limit for CFTs where

the single-trace spectrum is bounded in spin. The main application will be for CFTs dual

to an AdS theory of gravity plus matter, but we will start more generally and consider the

exchange of an isolated, spin-j, single-trace operator O∆,j . We show how, with some simple

assumptions, solving the crossing equations when a single-trace operator is exchanged in

the φφ → O → ψψ channel naturally leads to the construction of AdS exchange Witten

diagrams. We then move on to consider the four-point function 〈JφφJ〉, where J is a

conserved current and φ is a scalar. We show the double-trace anomalous dimensions

agree exactly with the phase shifts calculated in AdS for the scattering of a gauge boson

through a shock wave [33]. Finally, we will use the chaos bound to show that the large n

and j anomalous dimensions must be negative, or that the dual AdS theory is causal.

The study of these classes of double-trace operators for external scalars has been

considered in the past for large N theories, using the lightcone bootstrap in [44, 45], for

the exchange of scalar single-trace operators in d = 2 using twist blocks in [46], and using

impact parameter partial waves inspired by AdS/CFT in [28–30]. For these theories we will

recover the results of [28–30] and provide new evidence that their impact parameter partial

waves correspond to conformal blocks in the appropriate limit. We give more details on

the connection between conformal blocks and the impact parameter waves in appendix C.

By working directly in the Regge limit we will also simplify the derivation of the large n

and j anomalous dimensions in comparison to the lightcone work.

In section 4 we will study the crossing symmetry equations when an entire Regge

trajectory with an infinite number of operators is exchanged in the φφ → ψψ channel.

We will use the work of [31] to write down the form of the full correlation function and

derive new results for the anomalous dimensions and corrections to the OPE coefficients.

We propose an addition to the holographic dictionary, where the anomalous dimensions

and correction to the OPE coefficients correspond to the real and imaginary part of the

bulk phase shift, respectively. Requiring that crossing symmetry is satisfied on the first

sheet will imply both new bounds on the t-channel OPE coefficients and the presence of an

infinite number of new single-trace operators at tree level. Finally, using the chaos bound

we will study constraints on the Regge intercept j(0) and the phase of the correlation

function in the Regge limit. This latter bound will imply that in theories like N = 4 SYM,

where 1 ≤ j(0) ≤ 2, both anomalous dimensions and corrections to OPE coefficients must

be negative. These bounds ensure the AdS dual is causal and obeys unitarity [47].

– 4 –
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2 Regge limit in large N CFTs

We start by considering the CFT four-point function of two pairs of identical scalars

G(z, z̄) = 〈φ(0)ψ(z, z̄)ψ(1)φ(∞)〉, (2.1)

where we have used conformal invariance to place the operators at the specified positions.

The restriction to scalars is primarily to simplify the presentation (everything discussed

in this section can be readily generalized to external spinning operators). Equating the s-

and t-channel conformal block decompositions of this function yields the crossing symme-

try equation:

((1− z)(1− z̄))−∆ψ(zz̄)
1
2

(∆φ+∆ψ)
∑
O

(
−1

2

)j
CφφOCψψOg

0,0
∆,j(1− z, 1− z̄)

=
∑
O′

(
−1

2

)j′
CφψO′CψφO′g

a,a
∆′,j′(z, z̄), (2.2)

where a = 1
2(∆ψ − ∆φ). Our conventions for the conformal blocks are described in ap-

pendix A. In the s-channel, or φψ → ψφ channel, it will be convenient to use the notation

PO ≡
(
−1

2

)j
CφψOCψφO =

(
1

2

)j
(CφψO)2, (2.3)

so PO is a manifestly positive quantity. It will also be useful to parametrize the cross

ratios as:

1− z̄ = ησ, 1− z = σ, (2.4)

with σ > 0 and 0 ≤ η ≤ 1.

Then the t-channel Euclidean OPE limit is defined by taking σ → 0 with η fixed. In

this limit each t-channel conformal block scales like

g0,0
∆,j(σ, η) ∼ σ∆η

∆−j
2 , (2.5)

and the correlation function is dominated by operators of low dimension. We can also

consider the lightcone limit by taking η → 0 with σ held fixed. In this limit operators of

low twist τ = ∆ − j dominate. In both regimes we stay on the first sheet of G(z, z̄) such

that both its s- and t-channel conformal block decompositions converge.

Unlike the above limits, the Regge limit is only defined on the second sheet. We will

take z around the origin, z → e−2πiz, and then take z, z̄ → 1 at a fixed rate, or σ → 0 for

fixed η. On the second sheet the t-channel OPE is no longer convergent, but the s- and

u-channel OPEs will remain convergent. Nevertheless, we can understand the physics of

the Regge limit by studying individual t-channel conformal blocks. The Regge limit of a

single t-channel conformal block is [30]:

g0,0,Regge
∆,j (σ, η) = (2πi)σ1−jη

1
2

(∆−j) Γ(∆+j−1)Γ(∆ + j)

Γ
(

∆+j
2

)4 2F1

(
d− 2

2
,∆−1,∆− d−2

2
, η

)
.

(2.6)
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We see that the σ → 0 behavior is now governed by operators with the largest spin. The

apparent singular behavior arises because each conformal block has a branch cut, starting

at z = 0 and extending to −∞, which we have crossed.

For CFTs in d > 2, operators of unbounded spin appear in every OPE and we need to

understand how to resum this expansion. This is tractable in large N theories, or theories

with a large central charge CT , assuming large N factorization. For such CFTs we can

organize the four-point function as follows:

〈φφψψ〉 = 〈φφ〉〈ψψ〉+
1

CT
〈φφψψ〉c +O

(
1

C2
T

)
, (2.7)

where we have suppressed higher order terms in 1/CT .

This scaling implies that at large CT the three-point functions behave like:

〈φψ[φψ]n,j〉 ∼ 1, 〈φφO〉 ∼ 〈φψO〉 ∼ O
(
1/
√
CT
)
, 〈ψψ[φφ]n,j〉 ∼ O(1/CT ), (2.8)

where [φψ]n,j ∼ φ∂µ1 . . . ∂µj∂2nψ − traces is a double-trace state and O is a single-trace

operator. All double-trace states composed of light operators, not necessarily scalars, are

required to exist to solve crossing symmetry at order (CT )0, i.e. to match the identity block.

We can now distinguish between two classes of large N CFTs. The first class occurs

when the sum over spin in the φφ→ ψψ channel effectively truncates at some jmax, while

the second class occurs when the sum over spins is unbounded. For theories in the former

class we can take the Regge limit block-by-block, while for theories in the latter class we

need to understand how to resum this expansion at order 1/CT .

Using AdS/CFT it is possible to construct effective CFTs [48] where the spin effectively

truncates at tree-level. A trivial example is when we have a QFT in the bulk consisting of

a single Z2 invariant scalar φ with a finite number of quartic interactions, i.e. φ4, (∂φ)4,

etc. The conformal block decomposition of quartic Witten diagrams is bounded in spin

in every channel, so there is no subtlety in going to the Regge limit. A more interesting

example will be CFTs dual to gravity plus matter, like N = 4 SYM at large N and with

the ‘t Hooft coupling λ→∞, which we will consider in the next section. In such theories

there is a known connection between the large n, j anomalous dimensions of double-trace

operators and the phase shift in AdS of a particle propagating through a shockwave [28–30].

The precise dictionary for 〈φψψφ〉, i.e. when φ creates a shock wave which ψ traverses, is

given by:

lim
n,j→∞, j

n
fixed

γn,j = − 1

π
δ(s, b), (2.9)

b = log

(
n+ j

n

)
, s = 4n(n+ j).

Here
√
s is the total energy of the two-particle state and b is the impact parameter variable.2

2In [33] they used an alternative AdS parametrization for the impact parameter variable, given by

ρ = j
n+j

.

– 6 –
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This truncation property is not generic and will not hold in N = 4 SYM at any finite λ.

To understand solutions to crossing symmetry when an infinite number of spins contribute

it will be convenient to use the techniques of conformal Regge theory (CRT), which we will

review in section 4.1. We will also propose an updated version of the above dictionary for

these kinds of theories.

3 Bootstrap in the gravity limit

In this section we will start by solving the bootstrap equation for CFTs with a large central

charge CT in the gravity limit. Our initial goal will be to find the anomalous dimensions

and OPE coefficients of double-trace operators in the Regge limit. Concretely, we will focus

on the regime CT � ∆gap � 1
σ � 1 and expand the bootstrap equation to order 1/CT .

At infinite CT , we will recover the OPE coefficients of the mean field theory. At tree level,

we will obtain anomalous dimensions, which exactly match the bulk phase shift computed

in [28]. We will also provide a CFT argument that these anomalous dimensions are negative.

When generalized to the correlator 〈JφφJ〉, this condition smoothly interpolates between

the conformal collider physics bound and CEMZ constraint for 〈JJT 〉 when we decrease

the bulk impact parameter.

3.1 Identity matching

First let us review the solution of the bootstrap equation at CT = ∞. This solution is

simply that of a generalized free theory. We will also take the opportunity to establish

some conventions.

For the four-point function of scalars 〈φ(0)ψ(z, z̄)ψ(1, 1)φ(∞)〉, we will solve the cross-

ing symmetry equation (2.2). When CT is infinite the l.h.s. of this sum consists only of the

contribution from the identity operator. The bootstrap equation becomes:

((1− z)(1− z̄))−∆ψ(zz̄)
1
2

(∆φ+∆ψ) =
∑
O′

PO′g
a,a
O′ (z, z̄). (3.1)

On the l.h.s. of this equation, there are power law divergences when z → 1 and z̄ → 1.

They appear because of the OPE singularity when ψ(z, z̄)→ ψ(1, 1). On the r.h.s. of this

equation, each conformal block only has log(1− z) and log(1− z̄) singularities. Therefore,

to reproduce the leading ψψ channel OPE, there must be an infinite number of operators

in the φψ channel, which correspond to the familiar double-trace operators [φψ]n,j .

It will be convenient to introduce the variables h and h̄, given by

h =
1

2
(∆ + j), h̄ =

1

2
(∆− j). (3.2)

In the ψψ → φφ OPE limit, the operators that dominate the sum in the φψ OPE are

double-trace operators with large spin and large twist. These operators satisfy

h ≈ j + n, h̄ ≈ n, (3.3)

– 7 –
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and, as we will see in more detail shortly, the sum is dominated by the regime

h ∼ h̄ ∼ 1√
σ
. (3.4)

So, by taking the limit σ → 0 with η finite, we are led to probe the regime h, h̄ � 1 with
h̄
h finite [28, 30]. In this regime, the φψ channel blocks simplify. For example, in 4d, the

blocks can be approximated by:3

g
(d=4),a,a

h,h̄
(z, z̄) ≈ 22(h+h̄−1)

√
hh̄

π

((1− z)(1− z̄))a

z − z̄

×K2a(2h
√

1− z)K2a(2h̄
√

1− z̄) + (z ↔ z̄). (3.5)

Furthermore, in the large h and h̄ limit the generalized free theory (or mean field theory)

OPE coefficients in general dimensions are given by [49]

PMFT
h,h̄ ≈

2d−2(h+h̄)+2π
(
h2 − h̄2

) d
2
−1
(
h−d+∆φ+∆ψ+ 1

2 h̄−d+∆φ+∆ψ+ 1
2

)
Γ(∆φ)Γ(∆ψ)Γ

(
−d

2 + ∆φ + 1
)

Γ
(
−d

2 + ∆ψ + 1
) , (3.6)

and we can approximate the φψ channel sum as an integral over h and h̄. With the

approximate conformal blocks above, the basic integral we need is then∫ ∞
0

dhhpK(2h
√

1− z) ∝ 1

(1− z)
1
2

(p+1)
. (3.7)

Applying these approximations to the r.h.s. of (3.1) and restricting to the wedge h ≥ h̄, we

can readily reproduce the large h, h̄ limit of the generalized free theory OPE coefficients,

given in (3.6), for d = 4. The precise integrals needed to do this matching are provided in

appendix B.

This procedure is similar to the lightcone bootstrap initiated in [9, 10], but here we

are just matching the standard ψψ → φφ OPE limit. The φψ channel sum must reproduce

the power law singularity in both 1− z and 1− z̄. So instead of a single sum over spin, or

h, we need two infinite sums over both h and h̄.

3.2 Single-trace matching

Our next step is to solve the bootstrap equation at leading order in 1/CT for the exchange

of an isolated single-trace operator in the t-channel. If we stay in the OPE limit, it is not

immediately straightforward how to match this exchange to an infinite sum in the s-channel.

In part this is because one must disentangle corrections to double-trace contributions from

other new operators that appear at order 1/CT . Instead, we will move to the Regge

limit, where we have analytically continued z → e−2πiz. This regime has the advantage

that single-trace contributions in the s-channel are suppressed relative to double-trace

contributions, allowing us to more cleanly match the bootstrap equations.

3More general cases are described in appendices A and C.
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The ψψ channel (t-channel) may contain various single-trace and double-trace opera-

tors at order 1/CT . In d = 4, the contribution of each operator as σ → 0 is

gRegge
∆,j (σ, η) = (2πi)σ1−j η

1
2

(∆−j)

1− η
Γ(∆ + j − 1)Γ(∆ + j)

Γ
(

∆+j
2

)4 . (3.8)

We will show soon that when constructing the minimal solution to crossing to reproduce

a single-trace contribution in the t-channel, we automatically produce double-trace contri-

butions in the t-channel as well. The full answer reproduces exactly the Regge limit of an

exchange Witten diagram. In appendix D, we study the full effect of these double-trace

states for a specific correlator.

Considering isolated single-trace exchange is also motivated by the gravity limit of

holographic theories where the spin of the single-trace spectrum is bounded. Then the

chaos bound [32] implies that j ≤ 2. Another possibility is having towers of operators with

unbounded spin that resums into a softer effective spin j(0) ≤ 2 in the Regge limit, which

will be considered in section 4.

Next, we consider expanding the four-point function in the φψ channel (s-channel).

Each conformal block on the first sheet has the following small z, z̄ expansion:

ga,bO′ (z, z̄) =
∑
n,m

ah,h̄z
1
2

(∆−j)+nz̄
1
2

(∆+j)+m + (z ↔ z̄), (3.9)

where n and m are integers, representing the sum over all descendants. Taking z → e−2πiz

to go to the second sheet, the block picks up a phase factor proportional to its twist:

ga,bO′ (z, z̄)→ e−iπ(∆′−j′)ga,bO′ (z, z̄). (3.10)

The most general bootstrap equation at leading order in 1/CT in the Regge limit is then:

e−iπ(∆φ+∆ψ)σ−2∆ψη−∆ψA(σ, η)

= e−iπ(∆φ+∆ψ)
∑
n,j

PMFT
h,h̄

[
γh,h̄

(
− iπ+

1

2
(∂h+∂h̄)

)
+δPh,h̄

]
ga,a
h,h̄

(1− σ, 1− ησ)

+
∑
O′

e−iπτO′PO′g
a,a
O′ (1− σ, 1− ησ), (3.11)

where A(σ, η) denotes the leading Regge contribution to the four-point function computed

in the ψψ → φφ channel. The first sum on the right hand side runs over the double-trace

states [φψ]n,j , where we consider 1/CT corrections to the dimensions and OPE coefficients,

denoted by γh,h̄ and δPh,h̄. The second sum runs over operators which first appear at order

1/CT . It is important to note that the double-trace operators always add in phase while

the new operators, labelled as O′, will generically not add in phase. Therefore, typically

their contributions are small in the Regge limit compared to the double-trace ones, and

going forward we will assume that there are no additional towers of operators that add

in phase.
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Thus, to match an isolated, single-trace operator in the ψψ → φφ channel, i.e. a

single Regge block (3.8), we only need to use the anomalous dimensions in (3.11). This is

because, for σ real, the Regge block is purely imaginary and only the anomalous dimensions

contribute to the imaginary part of the four-point function. In particular, the anomalous

dimensions that match a Regge block in d = 4 are:

γh,h̄ = −γ0CφφOCψψO(hh̄)j−1

(
h̄

h

)∆−1
h2

h2 − h̄2
, (3.12)

γ0 =
2
(

1
2

)j
Γ(∆φ − 1)Γ(∆φ)Γ(∆ψ − 1)Γ(∆ψ)Γ(∆ + j − 1)Γ(∆ + j)

Γ
(

∆+j
2

)4
Γ
(
−∆

2 + ∆φ + j
2

)
Γ
(

1
2(∆ + 2∆φ + j − 4)

)
Γ
(
−∆

2 + ∆ψ + j
2

)
Γ
(

1
2(∆ + 2∆ψ + j − 4)

) .
(3.13)

To derive this, we approximate the sum over j and n as integrals over h and h̄ and match

all terms of the form σ1−jη
1
2

(∆−j)+n, where n is an integer, after expanding at small σ

and η. Note that by selecting this power of η, we are effectively mapping out double-trace

contributions in the ψψ → φφ channel.4 As described in appendix B, this is done using

the following master integral:∫ ∞
0

dh̄

∫ ∞
h̄

dh 2−2(h+h̄)hc1 h̄c2ga,a
h,h̄

(1− σ, 1− ησ) ∼ σ
1
2

(−4a−c1−c2−5) η
1
4

(−4a−2c1−3)

1− η
+ . . . ,

(3.14)

where the ellipses denote terms with different powers of η which will correspond to double-

trace contributions in the t-channel.

The large h, h̄ behavior of the anomalous dimension γh,h̄ ∼ (hh̄)j−1 is controlled by

the spin j of the exchanged single-trace operators in the ψψ channel. Since the AdS-dual

bulk scattering energy is given by s = 4hh̄, this is the familiar Regge limit behavior. The

precise form of the anomalous dimensions also agrees with previous results in d = 4 for AdS

graviton exchange [28–30]. We can see this exact agreement by focusing on CFT stress

tensor exchange, ∆ = 4 and j = 2, and using the general relations:

G
(5)
N =

20π

CT
, CφφT = −

4∆φ

3
√
CT

. (3.15)

The anomalous dimensions matching d = 4 stress tensor exchange are then:

γh,h̄ = −
8G

(5)
N

π

h̄4

h2 − h̄2
= −160

CT

h̄4

h2 − h̄2
. (3.16)

Note that the external dimensions ∆φ,ψ drop out of this result. This is intuitive since bulk

gravity is sourced by the energy of the colliding particles and we are working in the regime

h, h̄� ∆φ,ψ, where this energy is dominated by its kinetic part, rather than the rest mass

4For isolated values of the external dimensions ∆ψ,φ, the double-trace states may also contribute to

η
1
2

(∆−j)+n type terms in the amplitude. Our selection procedure is unambiguous for generic scaling di-

mensions and we can obtain results for these special cases using continuity and the uniqueness of the

solution [17].
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of the particles. One can also repeat this exercise in d = 2 and see exact agreement. For a

discussion of how to do this matching in general dimensions see appendix C.

As emphasized above, we have been focusing on matching the single-trace operator

in the ψψ channel by looking at terms proportional to σ1−jη
1
2

(∆−j)+n, where n is a pos-

itive integer. However, if we plug our solution (3.12) into (3.11) (using the integrals in

appendix B), we also obtain terms of the form σ1−jη∆φ+p and σ1−jη∆ψ+q, for p and q pos-

itive integers. These are precisely the right powers to correspond to double-trace states,

[φφ]n,j and [ψψ]n,j respectively, appearing in the ψψ channel. These double-trace contribu-

tions correctly dress the single-trace conformal block so we obtain the Regge limit of a bulk

Witten diagram.5 We work out specific examples to demonstrate this fact in appendix D.

We will also derive this more elegantly in section 4.

Although we kept j general, in theories where the t-channel contains operators with

bounded spin at order 1/CT , all j ≥ 3 operators will be forbidden by the chaos bound. The

leading contribution to γh,h̄ then comes from the stress tensor Tµν , which is guaranteed

to appear by a conformal Ward identity, and possibly other spin-2 single-trace operators,

O∆,j=2. These operators have necessarily larger dimension ∆, so in the limit h̄� h these

operators will be suppressed like (h̄/h)∆. For generic values of h̄/h though they contribute

at the same order as the stress tensor.

3.3 Current-scalar correlators

We will now generalize our discussion to a correlation function of conserved currents Jµ

and scalars φ:

GJ(z, z̄, {εi}) = 〈ε1 · J(0)φ(z, z̄)φ(1)ε4 · J(∞)〉, (3.17)

with the current normalized as

〈Jµ(x)Jν(0)〉 = CJ
δµν − 2xµxν

x2

x2∆J
. (3.18)

In general dimensions the conservation condition implies ∆J = d− 1.

The two conformal block decompositions are:

Jφ-channel: GJ(z, z̄, {εi}) = (zz̄)−
1
2

(∆φ−∆J )

×
∑
O

(
−1

2

)j
CJφOCφJOg

a,a
p,O(z, z̄)Q(p)(z, z̄, {εi}) (3.19)

= GJ,[k](z, z̄, {εi}) +GJ,[k+1,1](z, z̄, {εi}),
JJ-channel: GJ(z, z̄, {εi}) = [(1− z)(1− z̄)]−∆φ

×
∑
O,b

(
1

2

)j
CbJJOCφφOg

0,0
O,b,p(1− z, 1− z̄)Q(p)(z, z̄, {εi}),

(3.20)

5When decomposing the full Witten diagram, we also have double-trace operators with spin ` < j. These

blocks are subleading in the Regge limit and do not affect our analysis. By working to higher order in the

Regge limit, such operators might become accessible.
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with a = −1
2(∆φ−∆J), and in the s-channel we have explicitly separated the sum over the

symmetric traceless tensors (labelled by [k]) and the mixed symmetry operators (labelled

by [k + 1, 1]). We will once again define:

PO =

(
−1

2

)j
CJφOCφJO =

(
1

2

)j
(CJφO)2 (3.21)

to simplify the notation. Schematically the double-trace operators in these representations

take the form

[Jφ][k],n ≈ Jµ1∂(µ2 . . . ∂µk)∂2nφ, [Jφ][k+1,1],n ≈ J [µ1∂(µ2]∂µ3 . . . ∂µk+2)∂2nφ. (3.22)

The label p indexes different linearly independent tensor structures and the label b in the

t-channel decomposition distinguishes the multiple possible three-point function structures

in 〈JJO〉. The three-point functions for 〈JφO〉 are unique once we impose conservation.

Moreover, in the t-channel only symmetric traceless operators of even spin can appear

because we are also considering the OPE of identical scalars.

Adopting the notation of [50], the tensor structures are given by:

Q(z, z̄, {εi}) = {m(14), k(123)k(413), k(123)k(423), k(134)k(413), k(134)k(413)}, (3.23)

m(ij) = εi · εj − 2
x2
ij
εi · xijεj · xij , k(ijk) =

x2
ijεi·xik−x2

ikεi·xij

(x2
ijx

2
ikx

2
jk)

1
2

. (3.24)

Conformal blocks for the [k] representations can be calculated using the differential operator

method of [51], while for the [k + 1, 1] blocks we will use the results of [50]. To simplify

the calculations, we perform the h and h̄ integrals first and then apply the differential

operations needed to obtain the spinning conformal blocks.

We proceed in a similar way as in the last section. We first solve the generalized free

theory bootstrap equations by matching the identity operator in the JJ → φφ channel with

double-trace operators in the Jφ channel. Solving this equation provides the generalized

free theory OPE coefficients of the double-trace operators in the large h and h̄ regime.

Unlike the scalar case, as far as we are aware these coefficients were not known before.

We find

PMFT
[k],h,h̄ = CJ

16π(h2 − h̄2)(hh̄)∆φ− 3
2

3Γ(∆φ − 1)Γ(∆φ)
, (3.25)

PMFT
[k+1,1],h,h̄ = CJ

512π(h2 − h̄2)(hh̄)∆φ− 1
2

3Γ(∆φ − 1)Γ(∆φ)
. (3.26)

At leading order, we again focus on the single-trace contributions in the JJ channel

and will consider stress tensor exchange in the JJ channel. The three-point function 〈JJT 〉
can be given the parametrization

〈JJT 〉 = 〈JJT 〉Maxwell + a2〈JJT 〉Weyl. (3.27)

The Maxwell structure is generated by a tree-level F 2 term in the bulk dual Lagrangian

while the Weyl structure is generated by a WµνδρFµνFδρ term, where W is the Weyl tensor.
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Figure 1. The bounds on the coefficient a2 of 〈JµJνTρσ〉 derived from the negativity of the

anomalous dimensions in the Regge limit γ
(T )

h,h̄
≤ 0 as a function of h̄/h.

Then a2 is a three-point function coefficient which will measure the deviation of the dual

theory from Einstein-Maxwell theory, at the level of the cubic couplings [36].

The stress tensor contribution is then matched by the anomalous dimensions of the

double-trace operators in the Jφ channel, which we find to be

γ
(T )

[k],h,h̄
= 40h̄4CφφT

2a2h
4 + 3(h2 − h̄2)2

CT∆φ(h2 − h̄2)3
, (3.28)

γ
(T )

[k+1,1],h,h̄
= 40h̄4CφφT

−a2h
4 + 3(h2 − h̄2)2

CT∆φ(h2 − h̄2)3
. (3.29)

If we require these anomalous dimensions to be negative for all values of h and h̄, we

obtain the bound

−3

2

(
h̄2/h2 − 1

)2 ≤ a2 ≤ 3
(
h̄2/h2 − 1

)2
. (3.30)

When h̄ � h we recover the conformal collider bounds, −3
2 ≤ a2 ≤ 3, while taking

h̄ → h we recover the CEMZ bound, a2 = 0 [33]. Using (2.9), the anomalous dimensions

match exactly the two possible time delays a gauge boson can experience when crossing a

gravitational shockwave [33].

It is interesting to ask how this bound is modified if other single-trace operators are

included. The contribution of operators O∆,j of dimension ∆O and spin j to the anomalous

dimensions γh,h̄ has the form:

γh,h̄ ∝ (hh̄)j−1(h̄/h)∆O−1(1 + . . .), (3.31)

so if the operators are very heavy, ∆O � 1, then their contribution becomes significant

when 1− h̄/h ∼ ∆−1
O . We must also assume j ≥ 2 so they are not sub-leading in the Regge

limit. Plugging this approximation into (3.30) yields

|a2| .
1

∆2
O
,

where O is the lightest operator with spin j ≥ 2 beyond the stress tensor.
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In general we will not be able to say that requiring negative anomalous dimensions

requires |a2| . 1
∆2
gap

, where ∆gap is the gap between the stress tensor and the lightest

operator with spin j ≥ 4. Other spin-2 single-trace operators may also contribute to

the anomalous dimensions and we would need to include their affect on the anomalous

dimensions. Therefore, the bound on a2 we derive will be sensitive to both the spin-2 and

higher spin sector of the theory.

3.4 Negativity of anomalous dimensions

In this section we will give an argument that the chaos bound implies that the anomalous

dimensions of double-trace operators of large spin and large twist are negative γh,h̄ ≤ 0.

For the time being we will assume that spin-2 operators dominate the t-channel Regge

limit, so that the dimension ∆gap at which higher spin single-trace operators appear is sent

to infinity. As in the previous section we will be in the regime CT � ∆gap � h ∼ h̄� 1.

We will first give an argument for a scalar four-point function. We then comment on

additional features when operators have spin. Let us return to the four-point function

G(z, z̄) = 〈ψφφψ〉. (3.32)

Reflection positivity guarantees that in the ψφ channel decomposition, the coefficients are

positive [9, 37]:

G(z, z̄) =
∑
h,h̄

ah,h̄z
hz̄h̄, ah,h̄ ≥ 0. (3.33)

The positivity ah,h̄ ≥ 0 implies that when we continue to the second sheet, z → ze−2πi, each

term will produce a phase and the sum is bounded in terms of the first sheet correlator.

Therefore, Ĝ(z, z̄) ≡ G(ze−2πi, z̄) is bounded in terms of G(z, z̄) and one can show Ĝ is

analytic in the complex σ plane, minus the point σ = 0 corresponding to a Euclidean OPE

singularity [37].

The spin-2 contribution on the l.h.s. leads to the following form of Ĝ in the Regge limit:

Ĝ(z, z̄)

〈φφ〉〈ψψ〉
= 1 + i

1

CT

f(η)

σ
, CT � ∆gap � σ−1 � 1. (3.34)

Then the chaos bound implies that f(η) > 0.6 In the ψφ channel decomposition, f(η) is

given by a sum over double-trace anomalous dimensions:

f(η) = −πσ
∑
h,h̄

PMFT
h,h̄ γh,h̄g

a,a

h,h̄
(1− σ, 1− ησ). (3.35)

At this point, we note that crossing symmetry already determines the h and h̄ dependence,

as seen in e.g. (3.12). The bound above then fixes the sign the anomalous dimensions to be

negative for all ∆gap � h & h̄ � 1. We sketch an alternative argument requiring partial

wave positivity in appendix E.

6The sign flip in comparison to [37] is because σthere = −σhere.
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One can try to make the same argument for four-point functions involving spinning

operators

G(j1,j2)(z, z̄, {εi}) = 〈ε1 · O1ε2 · O2ε3 · O2ε4 · O1〉. (3.36)

There are a few additional features. One is that we need to choose the external

polarizations in a reflection positive way, in the context of radial quantization. Denoting

εR = I·ε where I is the inversion tensor in the appropriate representation, we need ε4 = ε∗R1
and ε3 = ε∗R2 to have reflection positivity. We also need to restrict the decomposition (E.1)

further by projecting onto operators in a given Lorentz representation. For example, for

〈JφφJ〉 we need to separately project onto the families of double-trace operators in (3.22).

The resulting negativity properties needs to hold for each family. The argument for this

requires that each projected partial wave sum define an analytic function in an appropriate

region of the complex σ plane which is bounded along the real σ line in both the s-channel

regime σ > 0 and the u-channel regime σ < 0. While this can be explicitly checked in cases

where the double-trace operators dominate the sum, we have not yet understood a rigorous

argument establishing this property in the u-channel regime when |σ| . 1/CT .7 We hope

this can be done in future work, in particular by focusing on the double discontinuity of

the projected sum. Assuming this property holds, this result, together with the relation

between the phase shift of bulk scattering and the anomalous dimensions (2.9), would show

that in correlators with spinning operators, AdS causality is also a consequence of unitarity

of the boundary CFT.

Applying this bound for 〈JφφJ〉, assuming there are no single-trace spin-2 operators

besides the stress tensor when we take ∆gap → ∞, implies that we must have a2 = 0.

Given the close connection between anomalous dimensions and causality (2.9) [28, 33], we

expect that when this bound is applied for 〈TTTT 〉 one will recover the full CEMZ bound.

4 Beyond the gravity limit

As we probe bulk distances that are sufficiently small, or equivalently go to sufficiently high

energies, we have to consider the non-local nature of the underlying theory of quantum

gravity in AdS.

There are two sources of non-locality. One is quantum and the other one is classical.

If the energy of the collision s ∼ 1
σ ∼ CT , then the large N perturbative expansion is no

longer valid. Generically there could be events such as black hole creation that prevent

locality to hold at such small distances. Locality can also break down classically when

s ∼ 1
σ ∼ ∆gap. Then an infinite tower of higher spin states become important and one

needs to go beyond graviton exchange. In string theory this type of non-locality arises

from the extended nature of strings, but our CFT based discussion will be more general.

In this paper, we work to leading order in C−1
T , so we will not probe the quantum

break down of locality. However, by increasing the collision energy we are fully equipped

to understand the classical non-locality, if there is a scale separation for it to appear well

7We thank Sasha Zhiboedov and Tom Hartman for discussions on this issue.
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below the Planck scale. Therefore, we focus on CFTs with ∆gap � CT . In particular, we

will consider the effect of the entire leading Regge trajectory in the ψψ → φφ channel.

Then we will discuss various examples, such as when ∆gap is large but finite.

In the ψψ channel, we use the techniques of conformal Regge theory developed in [31]

to compute the contribution of a generic leading Regge trajectory. We then solve the

bootstrap equation and obtain anomalous dimensions and leading corrections to the OPE

coefficients. We apply the chaos bound to the four-point function in this regime and obtain

generic constraints on the Regge trajectory. In the ψφ channel, the chaos bound further

implies the negativity of anomalous dimensions and corrections to the OPE coefficients

when 1 ≤ j(0) ≤ 2, which implies AdS causality and unitarity.

In addition, we show that to complete these results into a physical solution of the

crossing equation, there must exist an infinite number of new single-trace operators in the

ψφ OPE. In a bulk string theory, these operators should correspond to massive string states

created in the high-energy collision of light states.

4.1 The leading Regge trajectory

In this section we will briefly review the results and notation of [31]. Our conventions

will differ slightly because we take z → ze−2πi. Assuming single Regge pole dominance,

they find that resuming the contribution of the leading Regge trajectory to the four-point

function gives

A(σ, η) ≈ 2πi

∫ ∞
−∞

dνα(ν)(σ
√
η)1−j(ν)Ωiν

(
−1

2
log(η)

)
. (4.1)

To unpack this formula we start with j(ν), an even function of ν, which is related to

the spectrum of the leading Regge trajectory by:

ν2 + (∆(j(ν))− d/2)2 = 0. (4.2)

In other words, the scaling dimension ∆ and the parameter ν are related by ∆ = d
2 + iν,

and ∆(j) gives the physical spectrum of the leading trajectory. So, physical dimensions

correspond to imaginary values of ν. We will assume j(ν) is regular around ν = 0. We

also assume the existence of the stress tensor, fixing j(±2i) = 2. As derived in [31], the

function α(ν) is determined by an analytic continuation of the OPE coefficients and the

function j(ν) via the relation

α(ν) =
πh−12j(ν)−1e

−iπj(ν)
2

sin(πj(ν)/2)
γ(ν)γ(−ν)

π

4ν
j′(ν)K∆(j(ν)),j(ν)Cφφj(ν)Cψψj(ν). (4.3)

When j(ν∗) = ` is an even integer, Cφφj(ν∗) = CφφO∆,`
for O∆,` on the leading Regge

trajectory. Since the resummation is done in terms of the Mellin amplitude partial waves,

we can think of this as a Regge resummation in terms of Witten diagrams, as opposed

to in terms of individual conformal blocks. In a purely CFT language, this means we are

doing a resummation in terms of solutions to crossing symmetry. This fact is encoded in

the function γ(ν):

γ(ν) = Γ

(
1

2
(2∆φ + j(ν) + iν − d

2
)

)
Γ

(
1

2
(2∆ψ + j(ν) + iν − d

2
)

)
. (4.4)
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If we set j(ν) = 2, i.e. if we want to consider a theory with no higher spin, single-trace

states, and close the ν contour in the upper half plane, then the poles of γ(ν) encode the

contributions of [φφ]n,j=2 and [ψψ]n,j=2, which appear in the direct channel decomposition

of a spin-2 Witten diagram.8 In general, the Regge limit of a spin-j Witten diagram deter-

mines the couplings 〈ψψ[φφ]n,j〉 and 〈φφ[ψψ]n,j〉 for the double-trace states with maximal

spin j in the direct channel.

Finally, the function Ωiν(ρ) is a harmonic function on Hd−1, or d − 1 dimensional

hyperbolic space. For d = 4 it is given by:

Ωiν(ρ) =
ν sin(ρν)

4π2 sinh(ρ)
. (4.5)

For the explicit form of K∆,J and Ωiν(ρ) in arbitrary dimensions see appendix A.

4.2 Crossing symmetry

In this section, we study the matching of the entire Regge trajectory in the crossed channel.

We compute the anomalous dimensions and corrections to the OPE coefficients in the ψφ

channel that match to the leading Regge trajectory in the ψψ channel. Rather than match

to (4.21) directly it is simpler to match to (4.1) under the ν integral. We assume we can

write γh,h̄ =
∫
dνγh,h̄(ν) and δPh,h̄ =

∫
dνδPh,h̄(ν).

To keep the presentation simpler we will assume σ is real when doing the matching.

Then matching the anomalous dimensions and corrections to the OPE coefficients corre-

sponds to matching the imaginary and real parts of the correlator, respectively. We find

the following equation for the γh,h̄:

Re(σ2η)−∆2σ1−j(ν) η
1−j(ν)/2

1− η
ν i2(ηiν/2 − η−iν/2)

2π2
α(ν) = −

∫
dhdh̄PMFT

h,h̄

1

2
γh,h̄(ν)gh,h̄(z, z̄),

(4.6)

where we replaced sin(ν log(1/
√
η)) = i

2(ηiν/2 − η−iν/2) and sinh(log(1/
√
η)) = 1−η

2
√
η . To

simplify the integrals we will use an ansatz that γh,h̄(ν) is symmetric in h and h̄. This

symmetry property of the integrand does not necessarily extend to the full integral, i.e.

γh,h̄, as we will demonstrate below. To see why this property is useful, one can note that in

d = 4 we have PMFT
h,h̄

= −PMFT
h̄,h

and ga,a
h,h̄

(z, z̄) = −ga,a
h̄,h

(z, z̄). Therefore if γh,h̄(ν) = γh̄,h(ν)

we can write, restoring the integration bounds,∫ ∞
0

dh

∫ h

0
dh̄PMFT

h,h̄

1

2
γh,h̄(ν)gh,h̄(z, z̄) =

∫ ∞
0

dh

∫ ∞
0

dh̄PMFT
h,h̄

1

4
γh,h̄(ν)ga,a

h,h̄
(z, z̄). (4.7)

With this assumption and the explicit form of the 4d blocks, the h and h̄ integrals

factorize, and we only need the following simple integral:∫ ∞
0

dh haKb(2h
√
z) =

1

4
z−

a
2
− 1

2 Γ

(
1

2
(a− b+ 1)

)
Γ

(
1

2
(a+ b+ 1)

)
. (4.8)

8When fixing j(ν) to be an integer one has to be careful cancelling zeros in α(ν).
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We can then use this integral to obtain

γh,h̄(ν) = −Re

(
να(ν)

π2

)
γ0

h2 − h̄2

[
i

2

(
ha
−
h̄a

+ − ha+
h̄a
−
)]
, (4.9)

with

a± = j(ν)± iν, (4.10)

γ0 =
Γ(∆1 − 1)Γ(∆1)Γ(∆2 − 1)Γ(∆2)

γ(ν)γ(−ν)
. (4.11)

Finally we obtain the anomalous dimensions

γh,h̄ = −2Γ(∆1 − 1)Γ(∆1)Γ(∆2 − 1)Γ(∆2)

×Re

∫
dν

α(ν)

γ(ν)γ(−ν)
(hh̄)j(ν)−1

(
νhh̄ sin(ν log(h/h̄))

2π2(h2 − h̄2)

)
= −2Γ(∆1 − 1)Γ(∆1)Γ(∆2 − 1)Γ(∆2)

×Re

∫
dν

α(ν)

γ(ν)γ(−ν)

(
hh̄
)j(ν)−1

Ωiν(log(h/h̄)). (4.12)

Up to an overall prefactor, this simply corresponds to taking the amplitude and making

the substitutions σ → 1/h̄2, η → h̄2/h2, and α(ν)→ α(ν)/(γ(ν)γ(−ν)).

Repeating the same procedure for δPh,h̄ we find

δPh,h̄ = −2πΓ(∆1 − 1)Γ(∆1)Γ(∆2 − 1)Γ(∆2)

× Im

∫
dν

α(ν)

γ(ν)γ(−ν)

(
1

hh̄

)1−j(ν)

Ωiν(log(h/h̄)). (4.13)

Note that the integrals in (4.12) and (4.13) do not receive contributions from double-trace

states in the ψψ channel. The double-trace poles in the γ(ν)γ(−ν) factor in α(ν), as given

in (4.3), are explicitly cancelled.

4.3 Examples

The gravity limit. We first check whether the general results above reproduce the

gravity limit. In 4d we have [31]:

α(ν) =
4π

N2

1

4 + ν2

Γ(∆1 + iν/2)Γ(∆1 − iν/2)Γ(∆2 + iν/2)Γ(∆2 − iν/2)

Γ(∆1)Γ(∆1 − 1)Γ(∆2)Γ(∆2 − 1)
. (4.14)

Plugging this into (4.12), we get:

γh,h̄ = − 8π

N2
(hh̄) Re

∫
dν

1

4 + ν2
Ωiν(log(h/h̄)). (4.15)

We are left with poles at ν = ±2i. The result is simply:

γh,h̄ = − 4

N2

h̄4

h2 − h̄2
(4.16)

which, after using the correspondence 40N2 = CT , is precisely what we expect for stress

tensor exchange.
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The non-local regime. We can push our analysis into the non-local regime by further

increasing the scattering energy. If the bulk dual is described by a string theory, then for

high-energy scattering we expect the string to spread a transverse distance given by

b2I =
1

∆2
gap

log s. (4.17)

Therefore, non-local effects should appear when the impact parameter b is smaller than bI .

In this section, we do not assume the bulk to be a string theory, but we will show that this

scale emerges naturally in CFTs with a large gap.

In the CFT kinematics, the energy squared s and the impact parameter b of the bulk

scattering are given by

s = 4hh̄ ∼ 1/σ, b = log
h

h̄
∼ −1

2
log η. (4.18)

In analogy with the bulk impact parameter variables, we introduce the variables ρ and ρI :

ρ = −1

2
log η, ρ2

I = − 1

∆2
gap

log σ. (4.19)

Generically, the dynamics could be complicated when ρ ∼ ρI . However, there exists a

regime where ρ � ρI such that a saddle point approximation will work to provide simple

results. In particular, to evaluate (4.1) and (4.12), we need the factor σ1−j(ν) to be steep

enough such that the integral is dominated by contributions around the maximum of j(ν).

In N = 4 SYM, at both weak and strong coupling, the maximum is at ν = 0 [31]. We

will assume this is true in the following analysis, but everything can be straightforwardly

generalized for a maximum located at a non-zero ν. The validity of this approximation

requires σ−1 to be large, but not too large to overwhelm the C−1
T suppression. In terms of

the CFT parameters this is the regime

CT �
1

σ
, j′′(0) log σ � 1. (4.20)

Applying a saddle point approximation to (4.1) then yields

A(σ, η) ≈ iα(0)√
2π

σ1−j(0) (
√
η)2−j(0) log η

(1− η)

1

(j′′(0) log σ)
3
2

(
1 +O

(
1

(− log σ)

))
. (4.21)

Note that this result is non-singular as η → 1, as opposed to the contribution from stress

tensor exchange alone. More importantly, due to the appearance of the log(σ) term and

the generically fractional value of j(0), we can no longer interpret this correlator as arising

from a finite number of single-trace exchanges.

We can make more progress by specializing to CFTs with a large gap in their single-

trace spectrum, ∆gap � 1. The existence of the stress tensor implies j(±2i) = 2 and the

existence of a large gap implies the leading ν2 term comes with a small coefficient. That

is, we should have

j(ν) = 2− (4 + ν2)

2∆2
gap

f(ν,∆gap), (4.22)
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where f(ν,∆gap) is some unknown function that is regular at ν = ±2i. Since j(ν) is finite

at ν = 0, f(ν,∆gap) cannot contain inverse powers of ν. Following [27, 31], at large ∆gap

we can write down a general form for f :

f(ν,∆gap) =

∞∑
n=0

fn(ν2)

∆2n
gap

, fn(ν2) =

n∑
k=0

cn,kν
2k. (4.23)

Assuming that the CFT is dual to a theory in AdS, consistency with the flat space results

of [34] says cn,n = 0 for n > 0. To see this, we take the flat space limit where ∆gap ∼ ν ∼ R,

where R is the radius of curvature, and take R → ∞. Then this is the only term with

equal powers of ν and ∆gap allowed if we require that the flat space Regge trajectory j(t)

is asymptotically linear at large t [27]. These conditions fix j(ν) to be the answer given in

N = 4 SYM, where

j(ν) = 2− (4 + ν2)

2
√
λ

+O(λ−1) (4.24)

and λ ∼ ∆4
gap.

It is natural to ask how we can see this from the bootstrap and conformal Regge theory.

We start by considering the smallest m such that cm,m 6= 0. Due to the definition of ∆gap

there must be at least one non-zero cm,m and in N = 4 SYM it is m = 0. Looking at (4.3),

there is one combination of functions which is sensitive to the decoupling of higher spin

states when we take ∆gap large. For a general m we find:

lim
∆gap→∞

j′(ν)

ν sinπj(ν)/2)
= − 4

π (ν2 + 4)
− 2m

πν2
. (4.25)

The other terms in (4.3) go to finite numbers when ∆gap → ∞, or j(ν) → 2. For

example, the OPE coefficients Cφφj(ν)|j(ν)=2 are fixed by the stress-tensor Ward identity.

It is important to note that the ν−2 in (4.25) does not actually lead to new poles in the ν

integral since Ωiν(ρ) ∼ ν2 at small ν. However, it will change the values of the residues for

the poles generated by the γ(ν)γ(−ν) term in (4.1) and therefore change the full correlator.

If we require that the pure gravity answer (4.14) is reproduced in the strong coupling limit,

we must have m = 0. Therefore at large ∆gap the form of j(ν,∆gap) found in N = 4 is

universal. This condition does not impose that cn,n = 0 for n > 0, which would require

considering the flat space limit in more detail or the asymptotic Regge limit [34].

The general trajectories with m 6= 0 however will not affect the calculations for the

cross channel data, (4.12) and (4.13). There the poles generated by γ(ν) are explicitly

cancelled and, as already mentioned, having m non-zero will not introduce any new poles.

It is important to note that those results for the crossed channel data were derived assuming

we are doing separate integrals over h and h̄, or that we are integrating over both n and

j. That is, the anomalous dimensions for n, j � 1 will be unchanged, although some low

spin anomalous dimensions may be affected.

In the following analysis, we will take f(0, 0) = 1 in (4.22) to reduce cluttering. It

can be easily restored in all our results if needed. Then for CFTs whose central charge is
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exponentially larger than the gap, logCT � ∆2
gap � 1, there exist a kinematic regime that

satisfies (4.20):

CT �
1

σ
,

| log(σ)|
∆2
gap

� 1. (4.26)

Note that the scale ρI(σ)2 = | log σ|
∆2
gap

emerges naturally in the second condition for the

saddle point approximation to hold. Taking into account the sin(νρ) factor in Ωiν(ρ), we

find the saddle points are located at:

ν± = ±
i∆2

gap log(η)

2 log(σ)
= ±2i

ρ

ρI(σ)2
. (4.27)

The phase of α(ν) is given by e−iπj(ν)/2, so its variation with ν is suppressed by ∆−2
gap

and we can ignore it at this order when finding the saddle.

In order to trust our approximation for j(ν) we require that |ν±| � ∆gap, or

| log(η)| � − log(σ)

∆gap
↔ ρ� 1

2
ρI(σ)2∆gap. (4.28)

We will assume ν± is close enough to the origin so that we can approximate α(ν±) ≈
α(0). We then find:

A(σ, ρ) =
iρ(σe−ρ)1−j(0)

√
2π sinh(ρ)

e
− ρ2

2ρI (σ)2 ∆3
gap

(− log(σ))
3
2

α(0). (4.29)

Shifting the location of the saddle gives rise to the extra e
−
(

ρ2

2ρI (σ)2

)
factor. This agrees

with the behavior expected from a string theory in the bulk [52, 53]. Note that the regime

of validity of (4.21) does not overlap with that of section 3.2, which is ρI � ρ. It also

demonstrates that the Regge amplitude is indeed regular when the impact parameter van-

ishes, ρ→ 0.

We can use (4.12) and (4.13) to derive the anomalous dimensions and corrections to

the OPE coefficients for the double-trace operators in the ψφ channel that match to (4.29)

under crossing. The result is:

γh,h̄ = Re
p(0)

γ(0)2

(
2∆3

gap

) log h
h̄(

2π log hh̄
) 3

2

(
hh̄
)2− 2√

λ

h2 − h̄2
e
−

∆2
gap(log h

h̄)
2

2 log hh̄ , (4.30)

δPh,h̄ = Im
p(0)

γ(0)2

(
2∆3

gap

) log h
h̄(

2π log hh̄
) 3

2

(
hh̄
)2− 2√

λ

h2 − h̄2
e
−

∆2
gap(log h

h̄)
2

2 log hh̄ , (4.31)

p(ν) = Γ(∆φ − 1)Γ(∆φ)Γ(∆ψ − 1)Γ(∆ψ)α(ν). (4.32)

In terms of the impact parameter variables s and b we see a similar dependence:

{γ, δP} ∝ s1−2/
√
λb

sinh(b) log(s)
3
2

e
− b2

2bI (s)2 {cos(πj(0)/2),− sin(πj(0)/2)}, (4.33)
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and the saddle point approximation is valid when bI � 1, b. Looking at (4.33), we see

that taking b → 0 does not lead to any new divergences. This is contrast to when the

stress-tensor is dominant, where there are additional singularities when b → 0, or h̄ → h,

see (3.16), (3.28), and (3.29).

4.4 Chaos bounds and eikonalization

To make a more direct connection to the chaos bound [32], it is convenient to make the

following change of variables

η = e−4πx, σ = −4ie2π(x−t). (4.34)

The region of parameter space relevant for the chaos bound is t � 1 and x fixed, with a

crossover region around the scrambling time t∗ = 1
2π log(N2). The analog of their function

f(x, t) in our case (with an abuse of notation) is:

f(x, t) = 1 +A(x, t). (4.35)

This function obeys all the assumptions of [32]. In particular, it is real when t is real and

for t > 0 we have:

1

1− f

∣∣∣∣dfdt
∣∣∣∣ ≤ 2π +O(e−4πt), |f(x, t)| ≤ 1. (4.36)

Applying this to (4.21) with t real, we obtain the following conditions:

j(0) ≤ 2 +
3

4πt
, arg(α(0)) =

−πj(0)

2
+ π. (4.37)

We see the bound on the Regge intercept is modified because the log(σ)−
3
2 in (4.21) slightly

softens the divergence when we take σ → 0, or t large. The modification is of order

log−1(N2) given the form of the scrambling time t∗.

Recalling the definition of α(ν) in (4.3) we note it already carries an explicit phase

dependence e
−iπj(0)

2 . Moreover, the assumption that there is a saddle at ν = 0 implies

j′′(0) < 0. To complete the phase dependence matching we must fix the sign of A, which

will ensure chaos decreases the value of an out-of-time correlator. This gives the final

constraint:

sin

(
πj(0)

2

)
C11j(0)C22j(0) ≥ 0. (4.38)

These bounds, which constrain how two scalars can couple to the leading Regge tra-

jectory, imply the following sign constraints:

sgn γh,h̄ = cos(πj(0)/2), sgn δPh,h̄ = − sin(πj(0)/2). (4.39)

For theories like N = 4 SYM the dominant saddle is at ν = 0 and we have 1 ≤
j(0, λ) ≤ 2, or δPh,h̄ ≤ 0 and γh,h̄ ≤ 0.
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We can ask how these constraints should be interpreted if we assume the four-point

functions eikonalize in the limit σ → 0 with σN2 fixed. The large h and h̄ anomalous

dimensions have a well known connection to eikonalization for graviton exchange when

∆gap =∞. Namely they correspond to the real part of the phase shift and requiring that

they are negative is equivalent to requiring AdS causality [28]. Eikonalization has also been

argued to occur in AdS for finite λ, or finite ∆gap, using Pomeron techniques [26, 52, 54],

in which case the phase shift e−2πiΓ will have both real and imaginary contributions. The

statement that δPh,h̄ < 0 then turns into Im(Γ) < 0, or that we have AdS unitarity [47].

From the CFT perspective, proving eikonalization at finite ∆gap remains an open

question. In particular there is the question: in what situations do the corrections to

the OPE coefficients eikonalize in a manner similar to the anomalous dimensions? Based

off known results in flat space and weakly curved AdS, we can expect that eikonalizing

the tree level results gives a good approximation for either very large impact scattering

b � bI , when graviton exchange is dominant, or when b < bI in which case long string

creation gives the largest contribution. In string theory there is also an intermediate regime,

bI < b < bD where diffractive scattering, or tidal excitations, gives the leading contribution

to the imaginary part of the phase shift and the phase shift becomes an operator mapping

initial states to final states [55, 56]. When b < bI this contribution is expected to be

suppressed by log(N2)−1, and when b� bI they will be suppressed by 1/
√
λ in comparison

to the elastic amplitude [53]. Therefore, they will give subleading effects for the regions

of parameter space we have considered. A fuller understanding of tidal excitations will

require going beyond tree level in the bulk dual.

4.5 New states

At this point, we can note that there is some tension between the result for δPh,h̄ in (4.13)

and what we expect from both the Euclidean t-channel OPE and the derivative relation

between OPE coefficients and anomalous dimensions. The derivative relation [17], which

has been proven for contact diagrams and holds approximately at large h and h̄ for exchange

Witten diagrams, states:

2PMFTδPh,h̄ = (∂h + ∂h̄)PMFT
h,h̄ γh,h̄. (4.40)

This result implies δPh,h̄ must grow slower in comparison to γh,h̄ by a factor of
√
hh̄. We

recall that this asymptotic relation was derived for exchange diagrams using the condition

that we do not generate non-OPE singularities on the Euclidean sheet. The crossing

equation on the first sheet is:

σ−2∆ψη−∆ψG(σ, η) =
∑
h,h̄

PMFT
h,h̄

[
γh,h̄

1

2
(∂h + ∂h̄) + δPh,h̄

]
ga,a
h,h̄

(1− σ, 1− ησ)

+
∑
O′

PO′g
a,a
O′ (1− σ, 1− ησ). (4.41)

Consider the contribution from the anomalous dimensions alone. For γh,h̄ ∼ (hh̄)j−1, after

approximating the sum as an integral, we produce a singularity on the first sheet that grows
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like σ−2∆φ+ 3
2
−j in the limit σ → 0. This is generically not consistent with the ψψ-channel

OPE, and when j ≥ 3
2 we generate a singularity that cannot be reproduced by the t-channel

OPE. If we consider stress tensor/graviton exchange in a theory with ∆gap = ∞, then

j = 2 and the second sum over single-trace operators O′ disappears. Then it is clear that

to cancel this unphysical singularity, δP must grow slower than hh̄. In particular, if (4.40)

holds then these two contributions combine to become a total derivative that vanishes after

the integration over h and h̄. In this limit, (4.13) gives δPh,h̄ = 0, or to be more precise,

δPh,H̄ must grow slower than hh̄, which is consistent with the derivative relation.

At large but finite ∆gap, (4.13) gives δPh,h̄ ∼ (hh̄)j(0)−1, so the corrected OPE co-

efficients produce a singularity of the form σ1−j(0). We cannot cancel this singularity in

the same way as before since both γh,h̄ and δP are now fixed to grow at the same rate.

Instead, this divergence must be cancelled by the sum over single-trace operators O′ in the

ψφ channel, or operators that first appear at order C−1
T . Requiring that this divergence

cancels yields

−
∑
h,h̄

PMFT
h,h̄ δPh,h̄gh,h̄(z, z̄) ≈

∑
O′

PO′gO′(z, z̄), (4.42)

where the “ ≈ ” is because we only require that the most singular terms in the limit

σ → 0 match.

Furthermore, since the theory is unitary we have PO′ ≥ 0. Reflection positivity also

guarantees that the s-channel blocks gh,h̄ and gO′ are positive, so crossing symmetry on

the first sheet gives another way to see why δPh,h̄ < 0. Unitarity here only requires

PMFT
h,h̄

(1 + δPh,h̄) ≥ 0, and, since δP is 1/N suppressed, it can in principle be positive or

negative. This formula also aligns with our expectations from AdS unitarity: when the

phase shift has an imaginary part at tree level, i.e. 1 ≤ j(0) < 2, the scattering is no longer

purely elastic and we can have absorption. The r.h.s. of (4.42) then plays the role of the

total cross section σtot in the optical theorem — it is a manifestly positive quantity which

gives a sign constraint on the imaginary part of the phase shift [52], or here δPh,h̄.

Finally, we note that since each s-channel block does not have the requisite power

law singularity when σ → 0, we need to assume that there are an infinite number of new

operators O′. It is also crucial to note that generically the new single-trace states O′ do not

add in phase, so their contribution is subleading on the second sheet. We currently cannot

constrain the spectrum and OPE coefficients of the new operators beyond what their sum

should be to cancel an unwanted singularity, although with additional assumptions it might

be possible to do so.

It may not be surprising that when the gap becomes finite in the ψψ-channel, an

infinite family of new single-trace operators also appears in the ψφ-channel. What crossing

symmetry tells us is that we cannot make ∆gap finite in one channel but effectively infinite

in the crossed channel. At large but finite ‘t Hooft coupling these new states correspond to

long string states created in the ψφ-channel. This aligns with expectations from flat space,

high-energy scattering: that when the impact parameter variable b < bI we can have the

production of states in the s-channel if the theory contains extended objects [33, 55, 56].
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5 Discussion

In this work we have studied the analytic bootstrap in the Regge limit, which is related to

high-energy, fixed impact parameter scattering in the AdS dual. We have re-derived results

for anomalous dimensions in theories with a parametrically large gap, obtained new results

for double-trace operators when the spin of the single-trace operators is unbounded, and

derived new constraints on both analytically continued t-channel OPE coefficients and s-

channel double-trace data using the chaos bound. These constraints imply that in the bulk

dual the exchange of the leading Regge trajectory leads to a universally attractive force

between two scalar particles and that the theory in AdS obeys bulk causality and unitarity.

In this work we have focused on correlation functions of four scalar operators and

two currents and two scalars 〈JφφJ〉. An important direction forward is a more thorough

analysis for external operators with spin. In particular, by studying 〈TTTT 〉 in theories

with a parametrically large gap it should be possible to derive the a = c constraint and see

how this bound is corrected as we start to include ∆−1
gap corrections. It would be interesting

to make a connection to [19]. In this work we were able to project out the contributions

from the t-channel double-trace contributions when calculating the s-channel anomalous

dimensions. It is also interesting to consider if there are alternative methods to project out

these operators at the level of the correlator.

Such an analysis is crucial in order to expand our understanding of the universality of

Einstein gravity, as well as finding the properties of the leading Regge trajectory are truly

universal. In this work we have also derived constraints on α(ν) and j(ν) around ν = 0 for

the leading Regge trajectory, which match expectations from AdS/CFT [26, 52]. It also

interesting to ask how much more can be derived about the spectrum of the leading Regge

trajectory. Can we derive constraints on their asymptotic behavior for large ν? In N = 4

SYM there is a qualitative change for the operators on the leading Regge trajectory O∆,j

from j �
√
λ, where ∆ ∼ λ

1
4
√
j, to j �

√
λ where ∆ − j ∼

√
λ log(j/

√
λ) [57]. It is an

open question if these results can also be derived using bootstrap techniques.

The bootstrap in the Regge limit also has a close connection to known results for

high-energy, fixed impact parameter scattering, both when the dual theory is pure gravity

and when it is a weakly coupled string theory. For both cases, we have provided additional

evidence that the anomalous dimensions of double-trace operators map onto the real part

of the phase shift. Furthermore, the general structure we observe, both here and in the

lightcone limit [12, 13], is that decomposing a correlation function in terms of the Lorentz

representations of the double-trace operators corresponds to diagonalizing the phase shift

matrix. When j(0) is no longer exactly 2 we see that crossing symmetry on the first sheet

implies the existence of an infinite number of new single-trace operators. This matches our

expectations from high-energy string scattering in flat space where in the corresponding

regime we have the production of string states in the s-channel [55, 56]. In order to complete

this dictionary we need to understand how to see tidal excitations of the string from the

bootstrap. This will require going beyond tree level and understanding how to derive

eikonalization from the CFT away from the pure gravity limit [52].

A surprising new result to come out of the bootstrap is a direct connection between

the results of the lightcone bootstrap and the spectrum of low central charge CFTs like the
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Ising model [58–60]. The success of this work can be explained by the recent proof of a CFT

version of the Froissart-Gribov formula which explains why operators with spin j ≥ 2 are

organized in analytic families [20]. This proof explicitly relied on the correlation function

having nice behavior in the Regge limit. It is of clear future interest and importance to

understand the interplay of analytic and numerical techniques and if the study of correlation

functions in the Regge limit can shed new light on the numerical bootstrap.
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A Conventions and definitions

The conformal blocks are given by:

g
(d=2),a,b

h,h̄
(z, z̄) = kh(z)kh̄(z̄) + (z ↔ z̄), (A.1)

g
(d=4),a,b

h,h̄
(z, z̄) =

zz̄

z − z̄
kh(z)kh̄−1(z̄) + (z ↔ z̄), (A.2)

kh(z) = zh 2F1(h+ a, h+ b, 2h, z). (A.3)

Some useful formulas for conformal Regge theory not given in the body of the paper are [31]:

K∆,J =
Γ(∆ + J)Γ(∆− h+ 1)(∆− 1)J

4J−1Γ(∆+J
2 )4Γ(2∆1−∆+J

2 )Γ(2∆2−∆+J
2 )Γ(2∆1+∆+J−d

2 )Γ(2∆2+∆+J−d
2 )

, (A.4)

Ωiν(ρ) =
ν sinh(πν)Γ(h− 1 + iν)Γ(h− 1− iν)2F1(h− 1 + iν, h− 1− iν, h− 1/2;− sinh2(ρ/2))

22h−1πh+1/2Γ(h− 1/2)
.

(A.5)

The approximations of the hypergeometrics needed for the Regge limit will be the

same those used in the lightcone limit, and we find that the 2d and 4d t-channel blocks can

be approximated by Bessel functions. For example, in d = 2 the block is approximated as

g
(d=2),a,b

h,h̄
(z, z̄) ≈

√
hh̄

π
22(h+h̄)Ka+b(2h

√
1− z)Ka+b(2h̄

√
1− z̄)((1− z)(1− z̄))

1
2

(a+b)

+ (z ↔ z̄), (A.6)

while in d = 4 we have

g
(d=4),a,b

h,h̄
(z, z̄) ≈

√
hh̄

π
22(h+h̄−1) 1

z − z̄
Ka+b(2h

√
1−z)Ka+b(2h̄

√
1−z̄)((1−z)(1−z̄))

1
2

(a+b)

+ (z ↔ z̄), (A.7)

with a = −1
2(∆1 −∆2) and b = 1

2(∆3 −∆4).
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It is possible to derive the approximate form of the crossed channel blocks in any even

dimension, since we know them in closed form and can apply the usual Bessel function

approximations to the hypergeometric functions. We do not have similar closed form ex-

pressions in odd dimensions, although see appendix C for a review of the impact parameter

blocks first presented in [28, 30].

The t-channel blocks in the Regge limit for general dimension and d = 4 are given by

gRegge
∆,j (σ, η) = 2πiσ1−jη

1
2

(∆−j) Γ(∆ + j − 1)Γ(∆ + j)

Γ
(

∆+j
2

)4 2F1

(
d− 2

2
,∆− 1,∆− d− 2

2
, η

)
,

(A.8)

and

gRegge,d=4
∆,2 (σ, η) =

2iπσ1−jη
∆−j

2 Γ(∆ + j − 1)Γ(∆ + j)

(1− η)Γ
(

∆+j
2

)4 . (A.9)

B Integrals of Bessel functions

The general integrals needed when solving the bootstrap equations are:

I1(a1, a2, b, z, z̄)

=

∫ ∞
0

dh̄

∫ ∞
h̄

dhha1 h̄a2Kb(2h
√
z̄)Kb(2h̄

√
z)

=
1

16
z̄−

a1
2
− 1

2 z−
a2
2
− 1

2

(
Γ

(
1

2
(a1 − b+ 1)

)
Γ

(
1

2
(a1 + b+ 1)

)
× Γ

(
1

2
(a2 − b+ 1)

)
Γ

(
1

2
(a2 + b+ 1)

)
− 1

a1 − b+ 1
2Γ(b)Γ

(
1

2
(a1 + a2 + 2)

)
γa1−b+1Γ

(
1

2
(a1 + a2 − 2b+ 2)

)
× 3F2

(
a1

2
+
a2

2
+ 1,

a1

2
+
a2

2
− b+ 1,

a1

2
− b

2
+

1

2
; 1− b, a1

2
− b

2
+

3

2
; γ2

)
− 1

a1 + b+ 1
2Γ(−b)Γ

(
1

2
(a1 + a2 + 2)

)
γa1+b+1Γ

(
1

2
(a1 + a2 + 2b+ 2)

)
× 3F2

(
a1

2
+
a2

2
+ 1,

a1

2
+
b

2
+

1

2
,
a1

2
+
a2

2
+ b+ 1;

a1

2
+
b

2
+

3

2
, b+ 1; γ2

))
, (B.1)

I2(a1, a2, b, z, z̄)

=

∫ ∞
0

dh̄

∫ ∞
h̄

dhha1 h̄a2Kb(2h
√
z)Kb(2h̄

√
z̄)

× 1

8
z−

1
2

(a1+1)z̄−
1
2

(a2+1)Γ

(
1

2
(a1 + a2 + 2)

)
×
(
γa2−b+1Γ(b)Γ( 1

2
(a1+a2−2b+2)) 3F2(a1

2
+
a2
2

+1,
a1
2

+
a2
2
−b+1,

a2
2
− b

2
+ 1

2
;1−b,a2

2
− b

2
+ 3

2
;γ2)

a2−b+1

+
γa2+b+1Γ(−b)Γ( 1

2
(a1+a2+2b+2)) 3F2(a1

2
+
a2
2

+1,
a2
2

+ b
2

+ 1
2
,
a1
2

+
a2
2

+b+1;
a2
2

+ b
2

+ 3
2
,b+1;γ2)

a2+b+1

)
,

(B.2)
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where γ =
√

z̄
z and γ < 1. There is an asymmetry between the two integrals since we have

0 < z̄ < z < 1 and h̄ ≤ h. The 3F2 terms in the above integrals will match double-trace

operators that appear in the direct channel decomposition of exchange Witten diagrams.

The simpler integral we need in matching just the single-trace exchange term is

given by:

I3(a, b, z) =

∫ ∞
0

dhhaKb(2h
√
z) =

1

4
z−

a
2
− 1

2 Γ

(
1

2
(a− b+ 1)

)
Γ

(
1

2
(a+ b+ 1)

)
. (B.3)

C Impact parameter formalism

C.1 Definitions

In this appendix we will review the impact parameter formalism of [27, 28, 30] and its con-

nection to the standard conformal blocks. The impact parameter blocks were conjectured

to give the contribution of the s-channel double trace operators to the four-point function

in the dual t-channel Regge limit. These blocks also make the connection to high-energy

AdS scattering manifest. In general dimensions it is known that these functions satisfy

the same quadratic Casimir equation as the conformal blocks and that in d = 2 they agree

with the conformal blocks in the appropriate limit, as given in (A.6). In this appendix

we will show that when matching the leading anomalous dimensions at order 1/N2, the

conformal and impact parameter blocks will always agree in d = 4 and will agree when

matching operators of integer twist in any dimension.

Our results for the impact parameter blocks will differ slightly because we consider

the ordering 〈φ1φ1φ2φ2〉 instead of 〈φ1φ2φ1φ2〉 and work with different conventions for

the cross ratios. We start by defining some conventions. We will work in Minkowski

space M with a mostly minus metric. The future Milne wedge M is given by x2 < 0 and

x0 > 0. The hyperbolic subspace Hd−1 of M is given by x2 = −1. The past Milne wedge

and corresponding hyperbolic subspace are denoted by −M and −Hd−1. Finally we will

parametrize the cross ratios as:

zz̄ = q2p2, z + z̄ = 2p · q, (C.1)

where p and q are points in −M . In [30], in analogy with flat space partial waves, they

introduced the impact parameter blocks for 〈φ1φ1φ2φ2〉:

IIdentity

h,h̄
=N∆1N∆2(−q2)∆1−∆2

×
∫
M

dx

|x|d−2∆1
4hh̄e−2q·x

×
∫
M
dy

1

|y|d−2∆2
e−2p·yδ(2y · x+ h2 + h̄2)δ(x2y2 − h2h̄2), (C.2)

N∆ =
2π1− d

2

Γ(∆)Γ(1 + ∆− d
2)
. (C.3)
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Using the integral

N∆

∫
M

dx

|x|d−2∆
e−2p·x =

1

|p|2∆
, (C.4)

where
∫
M dy =

∫∞
0 rd−1dr

∫
Hd−1

d̃y, one can show

∫ ∞
0

dh

∫ h

0
dh̄ IIdentity

h,h̄
= (zz̄)−∆2 (C.5)

as expected for identity matching.

It was shown in [30] that this function satisfies the quadratic Casimir differential equa-

tion in the s-channel Regge limit with h ∼ h̄ ∼ z−1/2 ∼ z̄−1/2:

DtIIdentity

h,h̄
= (h2 + h̄2)IIdentity

h,h̄
, (C.6)

Dt = z∂2
z + z̄∂2

z̄ + (a+ b+ 1)(∂z + ∂z̄) +
d− 2

z − z̄
(z∂z − z̄∂z̄), (C.7)

with a = −1
2(∆1 −∆2) and b = 1

2(∆3 −∆4).

However, (C.4) is not quite what we want since it corresponds to blocks for a specific

kind of correlator, i.e. when there are two pairs of identical scalars so there is an identity

contribution in one channel. Moreover, it corresponds to conformal blocks dressed by the

MFT OPE coefficients. To fix this we can divide (C.4) by the OPE coefficients in (3.6)

and note that the resulting equation is a function of ∆2−∆1 = a+ b alone. The t-channel

differential operator Dt is also only a function of a + b alone, so we can simply make the

replacement ∆2 −∆1 → a+ b everywhere to find:

It,(a,b)
h,h̄

= 22(h+h̄)2−dπ1−d(−q2)−a−b

×
∫
M

dx

|x|
1
2

+a+b

dy

|y|
1
2
−a−b

e−2q·x−2p·yδ(2y · x+ h2 + h̄2)

× δ(x2y2 − h2h̄2)
4hh̄

(h2 − h̄2)
d
2
−1
. (C.8)

We have used the delta functions to convert between the x, y basis and the h, h̄ basis,

choosing to leave some factors of the latter explicit for simplicity later. In practice we

will always look at the case a = b, but it is necessary to have the general formula when

constructing spinning conformal blocks.

C.2 d = 4

We will now show that when integrating the impact parameter and conformal blocks against

the function ∫
dν2−2(h+h̄)(hh̄)c(h2 − h̄2)d/2−1Ωiν

(
log

(
h

h̄

))
β(ν), (C.9)

we will get the same answer in both cases. The above ansatz is the most general one for

the MFT OPE coefficients multiplied by the anomalous dimensions.
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Before we start, we list some useful formulas:

1

(−2x · y)η
=

∫
dνV (ν, η)Ωiν(x, y), (C.10)

V (ν, η) =
π
d
2
−1

2

Γ(η−d/2+1+iν
2 )Γ(η−d/2+1−iν

2 )

Γ(η)
, x, y ∈ Hd−1∫

Hd−1

dw Ωiν(w,w′)Ωiν̄(w′, w′′) =
1

2
(δ(ν − ν̄) + δ(ν + ν̄))Ωiν(w,w′′). (C.11)

The integral representation of a power law (C.10) is one that will show up repeatedly later,

while (C.11) states the harmonic functions Ωiν(w,w′) are a complete basis of functions

on Hd−1. To be precise, Ωiν(w,w′) depends on the geodesic distance between w/|w| and

w′/|w′| on Hd−1.

We start by integrating (C.9) against the general impact parameter blocks

Iimpact = 2−dπ1−d|q|−2(a+b)

∫
M

dx

|x|1/2+a+b−c
dy

|y|1/2−a−b−c

∫
dνΩiν(x, y)β(ν)e−2q·x−2p·y.

(C.12)

We can plug in x = |x|x̃, y = |y|ỹ, p = −|p|p̃, and q = −|q|q̃, where all the vectors

with tildes are in Hd−1 and do the radial integrals to obtain:

Iimpact = 2−dπ1−d
∫
dν

∫
Hd−1

d̃xd̃y|p|−a−b−c−d+ 1
2 |q|−a−b−c−d+ 1

2 Γ

(
−a− b+ c+ d− 1

2

)
×Γ

(
a+b+c+d− 1

2

)
Ωiν(x̃, ỹ)

(−2p̃ · ỹ)a+b+c+d− 1
2 (−2q̃ · x̃)−a−b+c+d−

1
2

β(ν)e−2q·x−2p·y.

(C.13)

Finally we will use (C.10) twice and (C.11) to do the integrals over hyperbolic space and

use the resulting delta functions to do the ν integrals. The answer is, after reverting to the

cross ratios z and η = z̄/z,

Iimpact = 2−dπ1−dη
1
2

(−a−b−c−d+ 1
2

)z−a−b−c−d+ 1
2

×
∫
dνV (ν, e1)V (ν, e2)Γ(e1)Γ(e2)Ωiν

(
−1

2
log
(
η
))

β(ν). (C.14)

To compare with the 4d blocks we can either close the contour in ν and sum over all

the poles or do the comparison under the ν integral. We will take the latter approach. We

now need to evaluate the following integral:

I4d =

∫
dνdhdh̄ 2−2(h+h̄)(hh̄)c(h2 − h̄2)Ωiν

(
log(h/h̄)

)
β(ν)g4d

h,h̄(z, z̄)

=

∫
dνdhdh̄ iν(hh̄)c+3/2 1

16π3

1

z − z̄
Ka+b(2h

√
z̄)

×Ka+b(2h̄
√
h)(zz̄)−

1
2

(a+b)β(ν)

[(
h

h̄

)−iν
−
(
h

h̄

)iν ]
, (C.15)

where we used the symmetry of g4d
h,h̄

(z, z̄) in z and z̄ so we only need to write down one

product of Bessel functions.
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We then find:

I4d =

∫
dν

−1

256π3(z − z̄)
iν
(
ziν − z̄iν

)
Γ

(
1

2
(−a− b+ c− iν + 5/2)

)
× Γ

(
1

2
(a+ b+ c− iν + 5/2)

)
Γ

(
1

2
(−a− b+ c+ iν + 5/2)

)
× Γ

(
1

2
(a+ b+ c+ iν + 5/2)

)
(zz̄)

1
2

(−a−b−c−iν−5/2)β(ν)

=

∫
dν

1

64π
η

1
2

(−a−b−c−7/2)z−a−b−c−
7
2 Ωiν(1/

√
η)Γ

(
1

2
(−a− b+ c− iν + 5/2)

)
× Γ

(
1

2
(a+ b+ c− iν + 5/2)

)
Γ

(
1

2
(−a− b+ c+ iν + 5/2)

)
× Γ

(
1

2
(a+ b+ c+ iν + 5/2)

)
β(ν). (C.16)

This agrees exactly with the impact parameter calculation (C.14) after plugging in the

definition for V and setting d = 4.

C.3 General d

Now we will claim that the impact parameter formalism works in odd dimensions for general

blocks when we integrate the blocks against functions of the following form:

f(h, h̄, c, d,m) = 2−2(h+h̄)(hh̄)c(h2 − h̄2)d/2−1(h2 + h̄2)m, (C.17)

where c is an arbitrary number, and m is an integer. If this holds, this would prove

the impact parameter formulas yield the correct result in general dimensions when the

exchanged operator has an integer twist. The restriction to integer m arises due to the use

of the quadratic Casimir operator in the proof, which has eigenvalue h2 + h̄2.

Integrating (C.17) for m = 0 against (C.8) we obtain:

Iimpact|m=0 =

∫
dhdh̄f(h, h̄, c, d, 0)It,(a,b)

h,h̄

=
1

π
2−d−2Γ

(
1

2
(−a− b+ c+ 3/2)

)
Γ

(
1

2
(a+ b+ c+ 3/2)

)
× Γ

(
1

2
(−a− b+ c+ d− 1/2)

)
Γ

(
1

2
(a+ b+ c+ d− 1/2)

)
× (|p||q|)1/2−a−b−c−d. (C.18)

For odd dimensions we do not have a simple closed form for the conformal blocks, but

identity matching tells us that when doing the t-channel expansion for 〈φ1φ1φ2φ2〉 we have:∫
dhdh̄G

(d),a,a

h,h̄
(z, z̄)(hh̄)

1
2
−d+∆1+∆22−2(h+h̄)(h2 − h̄2)d/2−1

=
1

(zz̄)∆2
π−12−2−dΓ(∆1)Γ(1− d/2 + ∆1)Γ(∆2)Γ(1− d/2 + ∆2), (C.19)
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where all we have done is move the constant pieces of the MFT OPE coefficients to the

right hand side and used a = 1
2(∆2 −∆1). Now we can do the following trick: first change

variables from (∆1,∆2) to (a, c), with a given above and c = 1
2 −d+∆1 +∆2. Then we use

the fact that the t-channel conformal blocks in the s-channel Regge limit are a function of

a+b to make the replacement a→ 1
2(a+b) everywhere on the right hand side. This yields:∫

dhdh̄f(h, h̄, c, d, 0)G
(d),a,b

h,h̄
(z, z̄)

=
1

π
2−d−2Γ

(
1

4
(−2a− 2b+ 2c+ 3)

)
Γ

(
1

4
(2a+ 2b+ 2c+ 3)

)
× Γ

(
1

4
(−2a− 2b+ 2c+ 2d− 1)

)
Γ

(
1

4
(2a+ 2b+ 2c+ 2d− 1)

)
× (zz̄)

1
4

(−2a−2b−2c−2d+1). (C.20)

Finally we note that |p||q| =
√
zz̄, and this proves the equality for the integrated blocks

for m = 0.

Now we can consider m 6= 0. For m ≥ 0 and integer we can use the fact that both

the conformal and impact parameter blocks are eigenfunctions of the quadratic Casimir

with eigenvalues h2 + h̄2. By acting with the quadratic Casimir Dt
2 we can generate higher

powers of m. Since the two integrals match for the base case, m = 0, they hold for all

positive, integer m as well.

For m < 0 the only subtlety is if the integral

F (z, z̄, c, d,m) =

∫
dhdh̄(Ith,h̄(z, z̄)−Gh,h̄(z, z̄))f(h, h̄, c, d,m) (C.21)

lies in the kernel of Dt
2 and is equally as divergent as the integrated blocks. As a reminder,

this differential operator is given by:

Dt = z∂2 + z̄∂̄2 + (a+ b+ 1)(∂ + ∂̄) +
d− 2

z − z̄
(z∂ − ∂̄). (C.22)

As long as a+ b 6= −1 or 2(a+ b) 6= −1, such zero eigenfunctions must be subleading and

there will be no subtlety. So barring this complication, if F (z, z̄, c, d,m) 6= 0 for m ≤ 0 and

integral, then repeatedly acting with the quadratic casimir would imply F (z, z̄, c, d, 0) 6= 0,

which is a contradiction.

In summary we have shown the conformal and impact parameter blocks agree when in-

tegrated against (C.17) for m an arbitrary integer. The anomalous dimensions found in [28]

can be decomposed into such functions when the exchanged operator has integer twist, so

the standard conformal block decomposition will also give the same answer. Proving their

formulas for general dimensions and general twist remains an open question.

D Double-trace operators in an example

In this appendix we analyze a simple example in detail to illustrate the method in section 3.

We consider a 4d CFT and the four-point function 〈ψφφψ〉 of scalars. We will set the
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external dimensions to special values, in particular ∆ψ = 2 and ∆φ = 3
2 . This makes all

the calculations easy while still maintaining the general features described in section 3.

Consider the ψψ channel stress tensor block in the Regge limit:

A(σ, η) ⊃ CφφTCψψT gT = iπ
960

CT

η

σ

1

1− η
. (D.1)

There are also contributions from spin-2 [ψψ] and [φφ] double-trace operators that appear

at the same order in σ−1.

In the ψφ channel, A(σ, η) is reproduced by the sum over large spin, large twist double-

trace operators. We can approximate the OPE sum as an integral:

A(σ, η) = −16πiσ2η
3
2

1

1− η

∫ ∞
0

dh

∫ h

0
dh̄
(
e−2
√
σ(
√
ηh+h̄) − e−2

√
σ(h+

√
ηh̄)
) (
h2 − h̄2

)
γh,h̄,

(D.2)

where we have already plugged in the mean field theory OPE coefficients that are fixed by

identity matching:

PMFT → 2−2(h+h̄−1)+5(h2 − h̄2). (D.3)

We also used that the ψφ channel conformal blocks simplify to:

gd=4
h,h̄ = 4h+h̄−2 1

σ(1− η)

(
e−2
√
σ(
√
ηh+h̄) − e−2

√
σ(h+

√
ηh̄)
)
. (D.4)

We first concentrate on matching the stress tensor contribution using the methods of sec-

tion 3 to A(σ, η) and obtain a simple solution to this equation:9

γ
2, 3

2

h,h̄
= −160

CT

h̄4

h2 − h̄2
. (D.5)

We can plug this solution back into (D.2) to obtain the full amplitude:

A(σ, η) = iπ
960

CT

η

σ

1

(1 +
√
η)6

. (D.6)

Note that it is also regular when we send η → 1, which corresponds to a vanishing impact

parameter.10

We verify that the difference between (D.1) and (D.6) is exactly reproduced by the

appropriate ψψ → φφ channel double-trace operators that dress the stress tensor block

into a bulk Witten diagram. This implies that such double-trace contributions, being fixed

by the single-trace data, do not affect the anomalous dimensions even when the contribute

at the same order as the single-trace block in the Regge limit. To do this, we first recall

the form of α(ν) in the gravity limit (4.14):

α(ν) =
4π

N2

1

4 + ν2

Γ(∆1 + iν/2)Γ(∆1 − iν/2)Γ(∆2 + iν/2)Γ(∆2 − iν/2)

Γ(∆1)Γ(∆1 − 1)Γ(∆2)Γ(∆2 − 1)
. (D.7)

9The h2 − h̄2 factor cancels the one from (D.2). The total power of h and h̄ is fixed to reproduce the

σ−1 behavior in A(σ, η). The particular power h̄4h0 is fixed by the power η in (D.1).
10Recall that we are sending ∆gap →∞ first. In other words, we take 1� 1− η � 1

∆gap
� 1

CT
.
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This contains poles in ν that correpond to the stress tensor at iν = 2 as well as [ψψ] and

[φφ] spin-2 double trace operators at iν = 2∆1,2 + 2n. For our particular choice of external

dimensions, this function simplifies to

α(ν)|∆1=2, ∆2= 3
2

= iπ4 120

CT

ν
(
ν2 + 1

)
sinh(πν)

. (D.8)

We then evaluate (4.1), obtaining

A(σ, η) = iπ
960

CT

η

σ

1(
1 +
√
η
)6 . (D.9)

This indeed agrees with (D.6). In evaluating this integral, we used the harmonic functions

on hyperbolic space (4.5) as well as the integral

∫ ∞
−∞

dνν2(1 + ν2)
sin ρν

sinh ν
= 48

sinh6 ρ
2

sinh5 ρ
, (D.10)

in which ρ = −1
2 log η.

Alternatively, we can evaluate the integral (4.1) by summing over the residues. For

example, the contributions corresponding to the [ψψ] operators are

2πiR [α(ν)]iν=2∆1+2n =
320

πCT

2π2(−1)−nΓ (n+ 2∆1) Γ (−n−∆1 + ∆2) Γ (n+ ∆1 + ∆2)

n! (∆1 + n− 1) (∆1 + n+ 1)
.

(D.11)

On the other hand, the stress tensor pole yields

2πiR [α(ν)]iν=2 =
3

2
π2 320

CT
. (D.12)

We sum over these contributions to obtain A(σ, η):

A(σ, η) =
1

σ
√
η

∑
Im νi>0

2πiR
[
α(ν)Ωiν

(
− log η

2

)]
ν=νi

, (D.13)

where the poles are located at

{−iνi} = {2, 2∆1 + 2n, 2∆2 + 2n, n ≥ 0} . (D.14)

In the special case we considered, this sum can be done by Mathematica in closed form.

The result is

A(σ, η) = iπ
960

CT

η

σ

1(
1 +
√
η
)6 , (D.15)

which again agrees with (D.6).
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E Partial wave positivity

In this appendix, we present an alternative argument for the negativity of anomalous

dimensions that does not require an explicit specific solution of the bootstrap equations.

However, this argument requires that a specific type of s-channel partial wave sum defines

an analytic function in an upper half disk region of the complex σ plane. The idea is to

focus on a partial contribution to the four-point function corresponding to a narrow wedge

for h̄/h centered at the value r of small width δ:

Gr,δ(z, z̄) =
∑

r−δ≤h̄/h≤r+δ

POgO(z, z̄) = c(r, δ) +
i

σCT
fr,δ(η). (E.1)

Here we take r to lie within the unit interval, 0 < r < 1 and δ is an infinitesimal parame-

ter.11 The function c(r, δ) is some positive number which corresponds to the contribution

of the restricted s-channel sum to identity matching.

Each s-channel conformal block has the right positivity properties (3.33) necessary for

the chaos bound. Using the general correspondence (3.4), the σ−1 term from the spin-2

operators in the ψψ OPE implies that the anomalous dimensions in the ψφ channel grow

like hh̄. Therefore, we can write them in the following form:

γh,h̄ =
hh̄

CT
(β(h̄/h) +O(h−1)), CT � ∆gap � h ∼ h̄� 1. (E.2)

for some function β(h̄/h).

Finally, we will write down an integral expression for the C−1
T piece of (E.1) in the

Regge limit. Taking δ → 0 so h̄/h ≈ r and introducing the variable s = 4hh̄, we find:

lim
δ→0

1

2δ
fr,δ(z, z̄) = −πσβ(r)

r

∫ ∞
0

ds
s

32r
PMFT
h,rh gh,rh(z, z̄). (E.3)

The factor of hh̄ = s/4 from the anomalous dimensions leads to a σ−1 divergence which

cancels the explicit σ in (E.3). The integrand of (E.3) is explicitly positive: the conformal

blocks are positive since we are in a reflection positive configuration and the OPE coeffi-

cients squared are positive by unitarity. The sign of the function fr,δ(η) is thus determined

by the sign of β(r).

The chaos bound, assuming it can be applied to each restricted sum, then implies that

β(r) ≤ 0 for 0 < r < 1. Together with (E.2), we then get the negativity of anomalous

dimensions γh,h̄ ≤ 0 for h ∼ h̄ � 1. In order for this argument to work, it is important

that the projected sums (E.1) define an analytic function in an appropriate region of the

complex σ plane which is bounded by c(r, δ) along the real σ line in both the s-channel

regime σ > 0 and the u-channel regime σ < 0. While this can be explicitly checked in

cases where the double-trace operators dominate, we have not yet understood a rigorous

argument establishing this property in the u-channel regime when |σ| . 1/CT . We hope

this gap can be overcome in future work.

11We also restrict to j = h − h̄ > 2 so we can later ignore contributions of homogenous solutions (i.e.

contact diagrams in the bulk) to the anomalous dimensions of operators with spin ≤ 2.
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