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1 Introduction

On large scales the universe is extremely well described by an early period of accelerated

expansion that evolved into an approximately flat Friedmann-Robertson-Walker cosmology

with a small, positive cosmological constant [1–12]. Despite the marvelous success of the

ΛCDM model in describing cosmological observations, the associated parameters and initial
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conditions cannot be explained solely within that model. The small vacuum energy density

and the early phase of accelerated expansion both appear rather unnatural. We have to

revert to a more fundamental description in order to evaluate how significant the fine-

tuning in the effective theory is. Constraints imposed by the underlying theory can lead to

parameters that would appear surprisingly tuned from a low energy perspective. A good

example of this mechanism might be the value of the cosmological constant. If we assume

a vast landscape of approximately stable and populated vacua, selection bias leads to an

unnaturally small observed vacuum energy density [13–17].

In this work we will discuss and employ further assumptions about the fundamental

theory. In order to go beyond static parameters and attempt to constrain cosmological

dynamics we consider the following two assumptions in turn:

1. Domain walls between stable de Sitter vacua trigger an instability towards non-

positive vacuum energy [18–23].

2. The semiclassical mini-superspace approximation applies to vacuum transition prob-

abilities [24–28].

The first assumption is motivated by generic instabilities of weakly coupled de Sitter

vacua. While flux compactifications exhibit a vacuum structure that may well be able to

accommodate a landscape solution to the cosmological constant problem, it is not obvious

how the landscape is populated. The low energy theory of flux compactifications contains

many zero-energy deformations, referred to as moduli, that need to be stabilized in order

to describe well behaved low energy physics. In particular, moduli controlling perturbative

expansions such as the string coupling or the compactification volume are famously difficult

to stabilize in a controlled regime. This observation is known as the Dine-Seiberg problem:

weakly coupled vacua are easily susceptible to a runaway instability towards strong or weak

coupling [18]. Stable and controlled vacua generically require an accidental cancelation of

multiple large terms in the perturbative expansion that renders the barrier towards runaway

relatively small. The large energy density within a domain wall between cosmological

vacua can spoil the delicate cancelation and destabilize the moduli. This represents an

obstacle to populating the landscape [21]. It is conceivable that vacuum transitions at very

low energies decouple from potentially unstable moduli, but at high energies the moduli

dynamics become increasingly relevant. The relevance of moduli stabilization for cosmology

is familiar from models of string inflation. In that context, couplings to moduli at best spoil

the flatness of an inflationary potential and at worst destabilize the entire configuration.

Either way, it is crucial to carefully account for the presence of moduli. Even though this

observation is well appreciated in inflationary model building, moduli stabilization is often

ignored when studying vacuum decay.

In this work we explore the consequences of moduli instabilities by assuming the ab-

sence of stable domain walls between de Sitter vacua in the landscape. Although this

means that any vacuum transition triggers an expanding true vacuum bubble containing

the runaway phase, regions of the new de Sitter vacuum are stable at late times if the

domain wall remains outside the Hubble horizon. The cosmology is at risk of extinction
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via domain wall collapse if the horizon expands and allows the runaway domain wall to

enter the Hubble sphere. We will find that a vacuum transition is protected against col-

lapse if sufficient inflationary expansion occurs such that all observable modes originating

from the end of inflation have overlapping past light cones. This finding coincides with the

observational constraint on inflation, but arises independently. In a universe that evolves

via inflation and radiation domination to a late time de Sitter phase the lower bound on

the number of efolds is set roughly by

Ne &
1

2
log

(
HInf

HLate

)
, (1.1)

where HInf and HLate are the inflationary and late time Hubble parameters, respectively.

For high scale inflation late time stability requires inflationary expansion by a factor of

roughly e65 and leads to a flat, isotropic universe. The lower bound on the required

expansion is independent of the bubble nucleation process and applies to Coleman-de Luccia

(CDL) transitions in theories with dynamical gravity [29].

The second assumption concerns the probability of quantum tunneling in a gravita-

tional theory. Even though our understanding of quantum gravity is tentative, it will be

instructive to consider its potential implications. We assume that the semiclassical mini-

superspace description is a good guide to compute transition probabilities in spherically

symmetric quantum gravity. We employ the canonical formalism to quantize the gravita-

tional theory of spatial geometries, see [24]. Following [25, 26], we use the WKB ansatz

for the tunneling wave function to approximate transition probabilities through classical

potential barriers. In the present work we treat the transition rate as an assumption, while

a thorough derivation is presented in [28]. The vacuum transition rate Γ within an initial

asymptotically flat spacetime is then maximized by the nucleation of a single small region

containing the highest inflationary scale,

Γ ∼ e−π/GH2
Inf . (1.2)

These transitions to high energy states are most likely to trigger moduli instabilities at the

domain walls, consistent with our first assumption.

We will not impose any further assumptions about quantum gravity that are some-

times implicit in the literature, such as conjecturing the absence of bubble nucleation

geometries that violate local energy conditions. Even though these configurations cannot

arise classically from non-singular initial conditions, quantum fields violate local energy

conditions [30, 31]. It may be interesting to assume the absence of such tunneling config-

urations, but this would constitute a third assumption, and given the lack of supporting

evidence we elect to avoid it here.

Predictions of physical observables are not possible purely within this simple frame-

work. A prediction would require a detailed understanding of the relevant landscape, vac-

uum transitions in quantum gravity, the probability measure in eternal inflation and the

cosmological dynamics before and after reheating. However, by combining some simple and

weak assumptions about fundamental physics we arrive at an educated guess concerning

the resulting cosmology: assuming a rich landscape of vacua, the absence of stable domain
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walls between de Sitter vacua and a vacuum transition rate described by the tunneling wave

function, we expect to find most observers in an isotropic, flat universe with small cosmo-

logical constant that experienced an extended period of high scale inflation. Note that all

stable vacua can have energy densities well below the scale of inflation. While our specu-

lations shall not be confused with predictions, an observation of signatures corresponding

to high scale inflation would be consistent with our assumptions.

The organization of this paper is as follows. In section 2 we review the Dine-Seiberg

problem of moduli stabilization and the consequences for domain wall stability. In sec-

tion 3 we review the gravitational theory of thin, spherically symmetric domain walls. We

discuss the classical dynamics and the semiclassical description of vacuum transitions in

the Hamiltonian framework. In section 4 we apply the theory of vacuum transitions to

the question at hand and demonstrate how gravity can stabilize an otherwise forbidden

transition. Finally, in section 5 we speculate about the cosmological implications for large

universes that are stable at late times. We conclude in section 6. Appendices A, B and C

provide details and further explanations that would have distracted from the main text.

2 Domain walls and moduli stabilization

It is instructive to recall some of the basic fields present in the low energy effective theory

corresponding to weakly coupled compactifications of string theory. String theory com-

pactified on a Ricci flat manifold without fluxes contains a potentially large number of

moduli that are massless at tree level. The existence of moduli is both good and bad

news: on the one hand, all fields need to be stabilized to describe a realistic cosmology.

Light moduli can mediate fifth forces, spoil the inflationary evolution and affect the sub-

sequent expansion of the universe. Even when stabilized at high energy, moduli remain of

crucial importance for some low energy phenomena. This is very apparent in models of

string inflation, where a coupling between the volume modulus and the inflaton candidate

typically generates a large slow roll parameter [32]. On the other hand, the existence of

hundreds of moduli can produce a complex landscape that accommodates the smallness of

the observed cosmological constant [33–35], and provides for a plethora of potential inflaton

candidates [36, 37]. It is therefore imperative to carefully consider the effects of moduli

stabilization when studying cosmological models within the string theory framework.

Some of the most delicate fields are moduli controlling perturbative expansions, such

as the inverse string coupling g−1s , or the volume modulus ρ. In order for computable,

leading order effects to accurately describe relevant physics, the effective potential van-

ishes in the weak coupling limit. The potential can approach zero from either side, which

induces a runaway instability towards weak or strong coupling. A stable, weakly coupled

vacuum can only arise when multiple terms in the perturbative expansion are competitive.

Unfortunately, this can signal a breakdown of the expansion unless one of the terms is

accidentally much larger than all consecutive terms. This phenomenon is known as the

Dine-Seiberg problem [18]: most vacua are expected in strongly coupled regions of mod-

uli space. Despite the challenges in constructing well controlled meta-stable vacua in flux

compactifications it is still worthwhile to investigate the cosmology of these models.
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Figure 1. Illustration of a potential landscape as a function of a field parametrizing stabilized vacua

and a modulus controlling the perturbative expansion. Moduli couplings classically destabilize a

domain wall interpolating between vacua of the landscape.

One immediate consequence of the Dine-Seiberg problem is that weakly coupled de

Sitter vacua — if they exist — have a relatively small barrier protecting them from a run-

away. This observation has severe consequences for transitions between metastable vacua.

Consider a landscape with distinct vacua that describe significantly different low energy

physics. All moduli are stabilized in each of the minima by some accidental cancelation,

but there is no reason to expect a stable domain wall that interpolates between any two

vacua: the contributions to the effective potential change significantly along the trajectory

in moduli space, exacerbating the Dine-Seiberg problem. Therefore, the presence of a do-

main wall between metastable vacua will generically de-stabilize some moduli, as illustrated

in figure 1. The instability towards a runaway phase leads to the collapse of the interior

de Sitter vacuum and naively poses an obstacle to populating the landscape [19–23].

2.1 Runaway domain walls

Consider two canonically normalized scalar fields φ and τ that are decoupled at low energies

and interact only via Planck suppressed operators. The field φ is a proxy for parametrizing a

landscape of vacua, while τ plays the roll of a modulus controlling perturbative expansions,

so limτ→∞ V = 0. We are interested in a thin domain wall that does not destabilize

the modulus. For simplicity, we consider a background configuration of φ containing a

planar domain wall of approximately constant energy density Vwall, and assume a vanishing

potential energy in each of the vacua. With only gravitational interactions between the

domain wall and the modulus, we expand the effective potential for the modulus within

the domain wall as

V (τ) ≈ Vwall +
m2
τ

2
τ2 +

Vwallτ

Mpl
. (2.1)

To estimate whether the modulus τ remains in its original vacuum, we denote the potential

barrier of its confining minimum by Vbarrier. Solving the Klein-Gordon equation for the

modulus we find that τ is pushed beyond its local minimum when the domain wall tension
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Figure 2. Illustration of the evolution of a domain wall between vacua A and B that is classically

unstable towards the runaway phase C. We neglect any gravitational effects.

in Planck units exceeds the barrier height,1

σ2

8M2
pl

& Vbarrier , (2.2)

where σ = aVwall is the domain wall tension, and a is its spatial thickness. For a domain

wall of a scalar field theory we can approximate the domain wall tension as σ ∼ √Vwall∆φ,

where ∆φ is roughly the canonical length of the trajectory interpolating between the two

vacua in field space.

If the vacuum energy differences between metastable minima are set by the typical

scale of the potential, Vwall, approximate stability requires a low vacuum decay rate,

log(Γ) ∼ −σ4/V 3
wall � −1. Combining this bound with (2.2) implies a sufficient condi-

tion for destabilizing the modulus, √
Vwall
M4

pl

&
Vbarrier
Vwall

. (2.3)

Therefore, if the height of the confining barrier Vbarrier is very small compared to the

effective potential Vwall away from the vacua, the modulus will be classically destabilized

by the presence of a domain wall. This is precisely the situation present in generic weakly

coupled vacua of string compactifications and we might not expect stable domain walls

interpolating between distinct de Sitter vacua.2 The nucleation of a true vacuum bubble

may trigger the runaway instability and could lead to a time-like singularity, as illustrated

in figure 2.

2.2 Moduli stabilization in IIB string theory

To see the Dine-Seiberg problem in action, we now briefly review moduli stabilization in

the particularly well studied context of IIB string theory compactified on a Calabi-Yau

orientifold [38–42]. At low energies this setup corresponds to a N = 1 supergravity theory

in four dimensions. The moduli include the complex structure moduli ξα, the axio-dilaton,

1A slightly different argument arriving at the same conclusion is presented in [21].
2There may be accidental cancelations or other effects that reduce the domain wall tension below the

naive expectation and leave the modulus stabilized at the domain wall.
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and the Kähler moduli T i. The resulting F-term potential is given by

VF = eK0
(
|F |2 − 3|W0|2

)
, (2.4)

where FI = DIW0, DI is the Kähler covariant derivative and the indices I run over all

moduli. The leading Kähler potential for the Kähler and complex structure moduli is

given by

K0 = −2 log(V)− log

(
−i
∫

Ω ∧ Ω̄

)
, (2.5)

where V is the compactification volume measured in string units and Ω is the holomor-

phic three-form. For the case of a single Kähler modulus the compactification volume is

given by V = (T + T̄ )3/2. The tree-level holomorphic superpotential W0 depends on the

choice of fluxes, but is independent of the Kähler moduli, so the potential is of the no-scale

form and the F-terms of the Kähler moduli do not enter the scalar potential. For typi-

cal compactification manifolds there are vastly more possible flux choices than there are

complex structure moduli, such that we expect a vast number of distinct flux vacua. This

is known as the flux landscape and can might be able to accommodate an exponentially

small vacuum energy density [33].

Both α′ and string loop corrections to the Kähler potential break the no-scale structure

of the potential. For example, the α′3 curvature correction arising via a four-loop correction

of the worldsheet σ-model leads to a contribution to the Kähler potential that scales with

the inverse of the compactification volume [43, 44] . Demanding weak coupling requires that

the compactification volume is large in string units, V � 1. Famously, the superpotential

receives no perturbative corrections, but non-perturbative effects on four cycles of the

internal manifold give rise to superpotential terms of the form

Wnp =
∑
i

Aie
−2πqijT j , (2.6)

where Ai ∼ M3
pl are one-loop determinants independent of the Kähler moduli, and the

entries of the matrix qij are rational. The terms that appear in (2.6) may depend on the

choice of fluxes. Again, the contributions are only small at large volumes, 2πqijT
j � 1. In

the same way that complex structure moduli gave rise to the flux landscape, the Kähler

moduli generically give rise to a vast axion landscape for each flux choice [35].

One way to arrive at well controlled vacua where all moduli are stabilized is the KKLT

scenario [38, 39]. The leading non-perturbative contributions to the superpotential are

accidentally competitive with the tree level flux superpotential W0. Let us consider a case

where the fluxes are fixed at a high energy scale such that at low energies a single Kähler

modulus T is the only remaining dynamical field. The scalar potential in this simple

case becomes

V =
πqAe−2πqρ

ρ2

[
W0 +Ae−2πqρ

(
1 +

2πqρ

3

)]
, (2.7)

where we defined T = ρ + iχ, and set the axion χ to its minimum. For typical values of

W0 the scalar potential has a minimum at small volume which is beyond the regime of

perturbative control. This is precisely the Dine-Seiberg problem at work. However, for
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accidentally small values of W0 the potential has a minimum at large volume with small,

negative vacuum energy

Vρ∗ ∼ −
q2A2

ρ∗
e−4πqρ∗ . (2.8)

We can see from the form of the potential (2.7) that a highly tuned cancelation of the tree-

level and non-perturbative terms in the superpotential was required for a stable vacuum

to arise at large volume. If we are interested in describing a realistic cosmology, we need

to find a stable vacuum with positive energy density. Ideally, one might hope to achieve

supersymmetry breaking in a way that is decoupled from the Kähler moduli stabilization.

However, any source of positive energy localized in four dimensions interacts at least with

the overall volume of the compactification. At large volume, this corresponds to a coupling

of the form

δV ∼ D

Vα , (2.9)

where D and α are both positive. This coupling can induce a decompactification insta-

bility when the source becomes large, so D/Vα is required to be extremely small. Under

these conditions we find a weakly coupled vacuum with positive energy density and sta-

ble moduli.3

Finally, we are in a position to evaluate the impact of domain walls on moduli stabi-

lization in the KKLT scenario [21]. Consider a landscape parametrized by a field φ, that

couples to the Kähler modulus ρ via its energy density,

V (ρ, φ) =
1

ρα
Vφ(φ) . (2.10)

With α = 3 this would correspond to the form of the F-term potential for the complex

structure moduli. Assuming that the modulus is at its stabilized value ρ∗, the barrier

protecting the vacuum from decompactfication is given roughly by Vρ∗ in (2.8). Canonically

normalizing the fields and using (2.2), we find the critical domain wall tension σ that would

de-stabilize the modulus,
σ

Mpl
&

qA√
ρ∗
e−2πqρ . (2.11)

Thus, unless the domain wall tension σ is exponentially small, the Kähler modulus will

generically be destabilized by a domain wall. In particular, for domain walls separating

vacua with different fluxes, the relevant scale for the domain wall tension is given by that

of a five-brane wrapping a three cycle and generically leads to moduli destabilization [21,

22, 45]. For an axion landscape the situation is more complicated [35]. While the scale

of the domain wall tension is set by non-perturbative effects, it is not clear that this will

help to maintain stabilized Kähler moduli, as in this scenario a large number of axions

is required in order to obtain a rich vacuum structure. The high dimensionality induces

additional instabilities so a more sophisticated analysis is required.

3The validity of de Sitter vacua in string theory has been critically examined in recent years, see [42] for

a review of the related subtleties.
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3 Thin wall vacuum transitions

In the previous section we discussed a generic runaway instability of domain walls interpo-

lating between de Sitter vacua. Naively, this represents an obstacle for vacuum transitions

with thin domain walls. However, it is interesting to ask if there exist stable transitions

between two de Sitter phases in the absence of any direct domain walls. Before considering

this specific problem, we now review the general theory of spatially isotropic thin wall

vacuum transitions in 3+1 dimensions. These vacuum transitions are not necessarily the

ones relevant in the context of string theory. Domain walls between stabilized vacua and

the runaway phase connect phases of different dimensionality. In the runaway phase the

four dimensional Newton constant approaches zero, and the validity of the effective field

theory terminates. Despite this observation, we will consider the four dimensional effective

theory as a proxy for the more complex problem of dynamical compactification. It would

be very interesting to study vacuum decay in the higher dimensional theory, but this is

beyond the scope of the present work.

Thin wall vacuum transitions in gravitational theories have been the subject of intense

investigation and most results presented in this section have previously appeared in the

literature. However, some of the results are not immediately intuitive, so in this section

we present a self-contained discussion of the leading semiclassical dynamics of thin domain

walls in the presence of gravity. Although most of our discussion readily applies to vacua

with negative energy density, we avoid an explicit review of the related subtleties and focus

mostly on de Sitter vacua.

3.1 The Hamiltonian description of domain walls

Let us review the Hamiltonian formulation of gravity with spherical symmetry, follow-

ing [46, 47] (see also [48–55] for related works). Consider N − 1 spherical domain walls

separating N patches of static Schwarzschild-(anti) de Sitter spaces labeled by the in-

dex α = 1 . . . N . The metric within each of the patches, defined by a radial coordinate

r̂α−1 < r < r̂α, is given in static coordinates T , R and Ω by4

ds2α = −Aα(R)dT 2 +A−1α (R)dR2 +R2dΩ2
2 , (3.1)

where dΩ2
2 is the metric on a unit two-sphere. While the spacetime is static within each

region, the domain walls are dynamic, so let us consider the most general spatially isotropic

metric in 3+1 dimensions,

ds2 = −N t2(t, r)dt2 + L2(t, r)[dr +N r(t, r)dt]2 +R2(t, r)dΩ2
2 . (3.2)

The lapse N t(t, r) and shift N r(t, r) are non-dynamical and set the gauge, while R(t, r)

corresponds to the radius of curvature of the two-sphere at coordinates t and r. From now

on we will mostly omit the explicit dependence on the coordinates to simplify the notation.

4We implicitly define r̂0 ≡ 0 and r̂N → ∞, such that r̂α is the coordinate of the outer boundary of

region α.
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Consider a scalar field theory coupled to gravity on a spacetime region M with time-like

boundary ∂M. The action is given by5

S =
M2

pl

2

∫
M
d4x
√
gR+M2

pl

∫
∂M

d3y
√
hK +

∫
M
d4x
√
gLm + Sb.t. , (3.3)

where hij and K are the induced metric and extrinsic curvature on ∂M, respectively, and

gµν is the four dimensional metric on M. The last contribution Sb.t. denotes boundary

terms that may be necessary in order for Hamilton’s equations to hold. For simplicity, we

will assume that any intrinsic dynamics of the matter Lagrangian occur over time scales

much shorter than any scale relevant for the dynamics of the spherically symmetric domain

walls, so we can approximate the matter Lagrangian Lm ≈ −ρ(r) away from domain walls.

We further assume that different phases are separated by a thin wall with surface energy

density σ and tension ξ. The domain wall separates two (approximate) vacua of a scalar

field theory, such that the surface tension equals the energy density of the domain wall.

The energy momentum tensor is then given by [56]

Tµν = −
N−1∑
α=1

σαh
µν
α δ(r − r̂α)−

N∑
α=1

gµνρα , (3.4)

where σα = ξα and r̂α are the is the surface tension and radial coordinate of the domain

wall separating regions α and α+ 1. We denote the metric at the shell by hµνα . The energy

density ρα is only non-vanishing within region α. We denote all quantities evaluated at a

domain wall with a hat and an index specifying the domain wall. To simplify the analysis,

we bring the action into first-order form. Deferring the derivation to appendix A, the

dynamical terms are given in terms of canonical variables as6 [47]

S =

∫
dtdr

(
πLL̇+ πRṘ−N tHt −N rHr

)
+
N−1∑
α=1

SShell, α , (3.5)

SShell, α =

∫
dt p̂α ˙̂rα +

∫
dR̂α

R̂αηπ
G

log

R̂′α,+ −
√
R̂′2α,+ − L̂2

αÂα+1

R̂′α,− −
√
R̂′2α,− − L̂2

αÂα

√
Âα

Âα+1

 ,

where ηπ = sgn(πL), and the second term in SShell, α arises due to a possible discontinuity

of R′ at the shells [46, 47, 53]. The Hamiltonian densities are given by

Ht =
GLπ2L
2R2

− G

R
πLπR +

(
2RR′

L

)′
− R′2

L − L
2G

+ 4πLR2ρ(r) +
N−1∑
α=1

δ(r − r̂α)

√
p̂2α
L2

+m2
α,

Hr = R′πR − Lπ′L −
N−1∑
α=1

δ(r − r̂α)p̂α , (3.6)

5In this work M−2
pl = 8πG is the reduced Planck mass.

6We denote partial derivatives with respect to r and t with primes and dots, respectively.
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and πL, πR and p̂ are momenta conjugate to the canonical variables L, R and r̂, while N r

and N t appear as non-dynamical Lagrange multipliers that impose the secondary Hamil-

tonian constraints. The conjugate momenta are related to the velocities by

πL =
N rR′ − Ṙ
GN t

R , πR =
(N rLR)′ − ∂t(LR)

GN t
, p̂α =

mαL̂
2
α(N̂ r

α + ˙̂rα)√
N̂ t2
α − L̂2

α( ˙̂rα + N̂ r
α)2

, (3.7)

where mα = 4πσαR̂
2
α. The action does not contain kinetic terms for the shift and lapse,

which implies the secondary constraints

Ht = Hr = 0 . (3.8)

By considering these constraints at the location of each of the shells, we obtain the required

2(N − 1) equations that determine the classical domain wall dynamics, in addition to the

2N constraints that determine the spatial geometry between domain walls. For constant

energy densities within the domains we can rewrite the constraint equations as

πL,α = ηπ
R

G

√
R′2

L2
−Aα , πR,α =

L

R′
π′L,α . (3.9)

After imposing the constraints (3.9) on the system, we find an explicit expression for the

full action,

S = SSpace +

N−1∑
α=1

SShell, α , (3.10)

where

SSpace =

N∑
α=1

∫ r̂α−ε

r̂α−1+ε
dr

Rηπ
G

(√
R′2 − L2Aα −R′arccosh

[
R′√
L2Aα

])
. (3.11)

Let us pause for a moment and consider a single domain of positive energy density

and vanishing mass parameter, so the metric is given by (3.1) with A = 1 − H2R2. We

pick coordinates where L = 1, N r = 0 and N t = 1. The constraint equation then has the

solution

R = H−1 sin(Hr) . (3.12)

As expected, this simply corresponds to a spatial slice of de Sitter space. The corresponding

three-geometry is illustrated in figure 3.

We now consider the junction conditions at the domain wall locations by integrating

the constraint equations across the defects and noting that both R and L are continuous

across the walls. We denote the derivatives just inside and outside the domain wall α by

R̂′α,± = R′|r=r̂α±ε. Using this notation we can integrate (3.8) in the vicinity of the shell

located at r̂α to find

π̂L,α,+ − π̂L,α,− = − p̂α
L̂α

, (3.13)

R̂′α,+ − R̂′α,− = − G

R̂α

√
p̂2α +m2

αL̂
2
α . (3.14)
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r

R(r)

Figure 3. Illustration of a spatial slice of de Sitter space. The quantity R is the physical radius of

curvature, while the coordinate r parametrizes the spatial slice.

In the rest frame of a domain wall the momentum of the wall vanishes, p̂α = 0, and we

find the simple junction conditions

R̂′α,± =
Aα(r̂α)−Aα+1(r̂α)

2κR̂α
L̂α ∓

1

2
κL̂αR̂α , (3.15)

π̂2L,α,− = π̂2L,α,+ =
(Aα(r̂α)−Aα+1(r̂α))2

4G2κ2α
− Aα(r̂α) +Aα+1(r̂α)

2G2
R̂2
α +

κ2αR̂
4
α

4G2
, (3.16)

where we introduced the rescaled domain wall tension κα = 4πσαG. These junction condi-

tions determine the dynamics of a given domain wall [57]. Evaluating an angular component

of the wall’s extrinsic curvature shows that the sign of R̂′ determines whether the domain

wall is curved towards what we called the interior, or the exterior [56],

K̂θθ,± ∝ R̂′± , (3.17)

so that sign will be important to develop a good intuition for the domain wall dynamics.

Remember that the definition of “interior” and “exterior” is quite arbitrary and we should

not be surprised to find both possible curvatures.

In the rest frame the coordinate t corresponds to the proper time of an observer and we

now pick the coordinate r such that L = 1. The constraint equation for πL gives a simple

relationship between the velocity Ṙ and the more abstract quantity R′ that determines the

extrinsic curvature,

R̂′2α,+ =
˙̂
R2
α +Aα+1(r̂α) , R̂′2α,− =

˙̂
R2
α +Aα(r̂α) . (3.18)

With (3.15) we see that
˙̂
R is continuous across the shell: it corresponds to the velocity of

the wall and should agree for observers traveling on either side, but close to the wall. We

can use (3.18) and the normalization of the four-velocity to find the static coordinate time

T of (3.1) in terms of the proper time t at the wall,

˙̂
Tα,− = ±

R̂′α,−
Aα(r̂α)

,
˙̂
Tα,+ = ±

R̂′α,+
Aα+1(r̂α)

, (3.19)

– 12 –



J
H
E
P
1
2
(
2
0
1
6
)
1
5
5

where the sign of
˙̂
T is set by convention. In the next subsection we will use the rela-

tions (3.18) and (3.19) to obtain the domain wall dynamics both in terms of static coordi-

nate time and proper time along a trajectory.

3.2 Classical domain wall dynamics

We now proceed to discuss the classical dynamics of a single domain wall in its rest frame.

The generalization to multiple domain walls is straightforward, but to obtain simple con-

straint equations a different gauge is needed for each wall. We consider spherical regions

of Schwarzschild-(anti) de Sitter spacetimes with energy density ρα = 3H2
αM

2
pl in region α.

The metric is given in (3.1) with

Aα(R) = 1−H2
αR

2 − 2GMα

R
. (3.20)

We can rewrite the constraint equations (3.15) and (3.18) to find the asymptotic mass

parameter in the exterior region,

Mα+1 =
H2
α−H2

α+1

2G
R̂3
α−

κ2α
2G

R̂3
α+mα sgn(R̂′α,−)

√
1−H2

αR̂
2
α−

2GMα

R̂α
+

˙̂
R2
α+Mα , (3.21)

where mα = 4πσR̂2
α. Each of these terms has a simple and intuitive interpretation. The

first term is the contribution due to the vacuum energy density, the second term constitutes

the gravitational surface-surface interaction term, and the third term is due to the energy

of the shell. As one would expect, the latter term always drives the domain wall towards

a smaller radius of curvature. Since the radius of curvature can either increase or decrease

with the radial coordinate r, the sign of this term depends on R′. To illustrate this feature,

we can integrate (3.15) and recover the spatial geometry at a classical turning point, where

πL = 0. The resulting spatial geometries are shown in figure 4 for physically identical

configurations but different signs of R′. The domain wall tension always seeks to decrease

the radius of curvature R. When the physical radius increases with the coordinate r, the

tension forces the domain wall to smaller values of r. In this case the contribution from the

domain wall tension to the asymptotic outside mass is positive. On the other hand, when

the radius of the three sphere decreases with r at the location of the wall, the situation

is reversed and the domain wall tension contributes with a negative sign to the outside

asymptotic mass. The quantity R′ at the domain wall is determined by (3.15) and can be

written as

R̂′α,± =
2G(Mα+1 −Mα) + R̂3

α

(
H2
α −H2

α+1 ∓ κ2α
)

2καR̂2
α

. (3.22)

The constraint equations determine the classical dynamics of domain walls separating static

spacetimes, so in the absence of collisions there are no dynamic interactions and it is

sufficient to consider the walls independently. In the following we therefore constrain the

discussion to a single domain wall separating two Schwarzschild-(anti) de Sitter spacetimes,

labeled by indices α = B ,A. This problem has been intensely studied in the literature,

so we only present some of the main results in this section and refer to the references for

details [56, 58].
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Figure 4. Spatial slices of two de Sitter phases joined by a domain wall. The interior and exterior

geometries are shown in light and dark lines, respectively. The left figure shows a bubble with a

true vacuum interior, while the right shows a bubble with a false vacuum interior. The geometries

are physically identical and related by a coordinate change.

To set the notation, we discuss the dynamics of a spherically symmetric domain wall

at a radial coordinate r̂ separating two static metrics of the form (3.1) where

AB = 1−H2
BR

2 − 2GMB
R

, for r < r̂ ,

AA = 1−H2
AR

2 − 2GMA
R

, for r > r̂ , (3.23)

and B andA denote the inside and outside regions, respectively. We can solve the constraint

equation (3.21) to find an expression that is quadratic in
˙̂
R2 and has the form of an energy

conservation equation. To simplify the expression we define a new radial coordinate z by

z3 ≡ H2
+

2G|MB −MA|
R̂3 , H4

+ =
(
κ2 +H2

B +H2
A
)2 − 4H2

BH
2
A . (3.24)

This leaves the constraint equation in a particularly simple form of an energy conservation

equation for a particle moving under the influence of an effective potential V (z),

4κ2

H4
+

(
∂z

∂t

)2

+ V (z) = E , V (z) = −
(
z2 +

γ

z
+

1

z4

)
, (3.25)

where the real, negative energy and the parameter γ are given by

|E|3/2 =
8κ3

2G|MA −MB|H4
+

, γ =
2 sgn(MB −MA)

H2
+

(
H2
B −H2

A +
MB +MA
MB −MA

κ2
)
. (3.26)

We illustrate the effective potential in figure 5. For fixed asymptotic masses the parameter

γ determines whether the gravitational interaction of the domain wall tension or the energy

density are dominant in the dynamics. If the mass parameter vanishes on either side of

wall, the small tension or weak gravity limit corresponds to γ ≈ −2. The dynamics within

the potential are determined by the constant of motion E. The effective potential has a

maximum at a finite coordinate zmax, where Vmax = V (zmax) ≤ 0, such that there exist

both bound and unbound solution when the masses are finite. When both asymptotic

masses vanish the only “bound” solutions are static configurations at R̂ = 0.
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Figure 5. Effective potential V (z) as a function of the rescaled radial coordinate z for varying

parameters −2 ≤ γ ≤ 2.

3.3 Dynamics of false vacuum bubbles

We now turn to the discussion of domain walls separating a spherical patch of de Sitter

space from a Schwarzschild spacetime. While the generalization to arbitrary masses and

energy density densities is conceptually straightforward, this particular special case will be

of most interest to our remaining discussion and is simple to illustrate.

In order to illustrate the causal structure of the trajectories we can change to new

coordinates U and V that are smooth everywhere, and implicitly denote Gibbons-Hawking

coordinates for the de Sitter region and Kruskal-Szekeres coordinates for the Schwarzschild

region. The coordinates are explicitly defined in appendix B. We illustrate both spacetimes

in figure 6. In these coordinates light travels along 45 degree angles, and the spacetimes

are divided into four regions by the Schwarzschild and de Sitter horizons at |U | = |V |. The

metrics in the new coordinates become

ds2KS =
32(GM)3

R
e−R/2GM (−dV + dU2) +R2dΩ2

2 , (3.27)

ds2GH =

(
1 +HR

H

)2

(−dV 2 + dU2) +R2dΩ2
2 . (3.28)

One convenient feature of Kruskal-Szekeres and Gibbons-Hawking coordinates is that

with (3.19) the change in polar angle along a given trajectory is directly proportional to

the change of the radius of curvature with r,

∂t arctan

(
V (t)

U(t)

)
∝ A∂tT ∝ ±R′(t) . (3.29)

We can chose a convenient convention for how R′ is related to the change in coordinate time

with proper time in (3.19) by picking opposite signs for the de Sitter and Schwarzschild

regions,

ṪdS = − R′

AdS(R)
, ṪS =

R′

AS(R)
. (3.30)

This coordinate definition implies that a light ray crossing a given time-like trajectory

appears as propagating in the same direction in either diagram. The opposite sign choice
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Figure 6. Spacetime diagrams of Kruskal-Szekeres coordinates for Schwarzschild (left) and

Gibbons-Hawking coordinates of de Sitter space (right). The solid gray lines illustrate constant

radius surfaces, while the dashed line illustrates the T = 0 surface. Static coordinate time T is

increasing upwards/downwards in regions I/III.

0 4321

−8

−6

−4

−2

0

z

V
(z)

0 4321

−8

−6

−4

−2

0

z

V
(z)

R′
+ > 0

R′
− > 0 R′

− < 0

R′
+ < 0

A
dS =

0

AS = 0

R′
+ > 0 R′

+ < 0

R′
− > 0

A
dS =

0

AS = 0

V V

Figure 7. Effective potential V (z) as a function of rescaled radial coordinate z, for κ < H (left)

and κ > H (right) for a de Sitter/Schwarzschild domain wall. The horizons are shown by dashed

and dotted lines in the diagram and the sign of the extrinsic curvature on both sides of the domain

walls is illustrated on the top.

stems from the fact that for the Schwarzschild diagram an increase in the coordinate

|U | (|V |) corresponds to an increase (decrease) in the radial coordinate R in region I/III

(II/IV), while the reverse is true for the de Sitter diagram. While this choice has no physical

consequences it allows for a simpler interpretation of the coordinate diagrams and we can

immediately determine the sign of the extrinsic curvature of the domain wall from the

coordinate diagram. For example, a trajectory where the domain wall curvature is positive

on both sides would appear in region I of the Schwarzschild diagram, with an increasing

polar angle, while it would appear in region III of the de Sitter diagram with a decreasing

polar angle.7 In both diagrams the trajectory moves upwards with increasing proper time.

7As we shall see, this kind of trajectory could correspond to an expanding true vacuum bubble.
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Type de Sitter Schwarzschild Conditions

Bound III IV - I - II E < VR̂′+=0 < Vmax

Bound III IV - III - II VR̂′+=0 < E < Vmax

Unbound III-II IV - III Vmax < E

Unbound IV - III - II III VR̂′−=0 < E < Vmax, κ < H

Unbound IV - I - II III E < VR̂′−=0 < Vmax

Table 1. Summary of all possible trajectories of a de Sitter/Schwarzschild domain wall. Depending

on the constant of motion E and the initial conditions the domain wall trajectories are bound, or

unbound, and pass through different regions of the conformal diagrams.

For the case of a de Sitter (inside)/Schwarzschild (outside) domain wall the new,

rescaled radial coordinate z simplifies and we have

z3 =
H2

+

2GMA
R̂3 , H2

+ =
4HB
2− γ , γ = 2

κ2 −H2
B

κ2 +H2
B
, E = − 4κ2

(2GMA)2/3H
8/3
+

. (3.31)

Here we see that γ ≈ −2 when the rescaled domain wall tension κ = 4πGσ is small

compared to the Hubble scale. There are two main quantities that we are interested in

when considering the domain wall dynamics: the change of the radius of curvature with

radial coordinate R̂′, and the location of horizons. We can express these quantities in terms

of the new radial coordinate z as

R̂′− =
2 + γz3

2
√
|E|z2

, R̂′+ =
1− z3√
|E|z2

, zAB=0 =

√
|E|

1− γ2/4 , zAA=0 =
2 + γ

|E| . (3.32)

We immediately see with (3.17) that the wall’s extrinsic curvature is positive for small radii.

When the domain wall tension is dominant (γ > 0), the extrinsic curvature on the de Sitter

interior is always positive. To illustrate the full dynamics we show the potential in figure 7.

From this figure we can determine all possible domain wall trajectories. There are bound

solutions and unbound solutions. The bound solutions emerge from vanishing size, and

collapse after bouncing off the potential. The unbound solutions recede from infinite size,

approach a finite radius and expand again. In [51] it was shown that the unbound solutions

are not buildable by classical dynamics: they always contain a singularity in their past.

However, it is possible that a non-singular, bound solution tunnels through the potential

barrier and emerges as an unbound solution. All possible classical domain wall trajectories

are summarized in table 1.

Note that low mass, unbound solutions have negative extrinsic curvature when they

come to rest and start expanding, i.e. the radius of curvature decreases as we pass from

the de Sitter to the Schwarzschild region. These solutions pass through region III of the

Schwarzschild diagram and region I of the de Sitter diagram. This means that the bubble

contains more than half of a spatial slice of de Sitter space when it comes to rest, so the

de Sitter region is causally protected from extinction. To an observer in the Schwarzschild
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Figure 8. Illustration of the unbound trajectory of a de Sitter/Schwarzschild domain wall that tra-

verses the regions IV-I-II in the de Sitter diagram and is contained in region III of the Schwarzschild

diagram. The spacetime diagram is not applicable in the faded region.

phase, who experiences a reversed definition of inside and outside, the situation would

appear reversed: both extrinsic curvatures are positive for them, i.e. the radius of curvature

increases as they approach the domain wall from their inside, which corresponds to the well

known CDL domain wall evolution. An example of an unbound trajectory, as seen both in

the Schwarzschild and de Sitter coordinates, is shown in figure 8.

The dynamics of a bubble containing a de Sitter phase inside a Schwarzschild region

are identical to the dynamics of a bubble of Schwarzschild phase inside a de Sitter region,

with the exception that the coordinate r, which determines the direction from inside to

outside, is redefined. This reflects the arbitrariness of our definition of what we called inside

(r < r̂) and outside (r > r̂), and is immediately clear when recalling the spatial geometry

of the two cases in figure 4. In particular, as we reverse the definition of inside and

outside all derivatives with respect to r change sign, such that with (3.30) the trajectories

will appear on opposite signs of the Kruskal-Szekeres coordinate diagram. Therefore, the

present discussion of a false vacuum bubble already captures the full dynamics of true

vacuum bubbles. In appendix B we provide a brief explicit discussion of the Schwarzschild

(inside) - de Sitter (outside) domain wall dynamics for reference.

3.4 Semiclassical transition probabilities

Studying dynamics revealed both bound and unbound trajectories that are separated by

a classical potential barrier. A classical solution cannot penetrate the effective potential,

but gets reflected at the turning point of the potential where πL = 0. A natural question

to ask is whether transmission through the barrier is possible in a quantum theory. This

question was first asked by Coleman and de Luccia for true vacuum bubbles [29], and by

Farhi and Guth for disconnected false vacuum bubbles [51, 52]. Recall that our definition of

the bubble interior is arbitrary for de Sitter vacua, so the classical dynamics are equivalent

for true and false vacuum bubbles. This invariance is manifest in the Hamiltonian formu-

lation which allows to approach the nucleation of true and false vacuum bubbles within
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a unified framework. We proceed to review the leading semiclassical evolution of domain

walls in the Hamiltonian framework to find explicit tunneling trajectories and transition

probabilities [46, 47, 53].

In order to employ Dirac quantization, we impose the constraints on the wave function

ψ, which yields the Wheeler-DeWitt equation [24]

πNt,Nrψ = Hr,tψ = 0 . (3.33)

The primary constraints demand that the wave function is independent of the gauge choices

N t and N r, and depends only on the spatial geometry. In order to avoid the ambiguities of

quantizing a gravitational theory we impose the classical equations of motion and expand

the wave function in the WKB approximation as

ψ = e−iS/~+O(~
0) , (3.34)

such that to leading order in ~ the exponential dependence of the wave function is related

to the classical action S. Remember that this prescription only holds for the leading

semiclassical approximation. In this work we restrict ourselves to the leading contribution,

and perturbations around the leading contribution to the path integral are prohibited. We

will mostly be interested in the transition rate from some initial state8 I to a final state

F . The transition probability, derived from the transmission coefficient, is given by

PI→F = e−ηπB = exp

(
−2i

∫ F
I
dS

)
. (3.35)

The sign ηπ in the exponent of what we will interpret as a probability is potentially am-

biguous. We proceed to define a tunneling exponent B with fixed sign and leave the yet

undetermined sign in the definition of the action S, see (3.5).

We should emphasize at this point that the initial state is not a pure de Sitter phase,

but corresponds to a classical turning point of a bound or unbound domain wall trajectory.

Only in the massless limit, where the turning point of the bound domain wall trajectory

corresponds to R̂ = 0, is the bound classical turning point an empty de Sitter space. In

order to interpret the tunneling probability P as a transition rate Γ, the bound turning

point of the trajectory should arise at some frequency. In the massless limit a de Sitter

phase constantly satisfies the required initial conditions, while the massive case may require

a thermal fluctuation. Note that even though the radius of curvature of the domain wall

vanishes at the bound turning point in the massless configuration, the curvature scalar

remains finite everywhere during the bubble nucleation process. In the vanishing mass limit

we can therefore use the transition probability (3.35) to estimate the leading exponential

dependence of the the vacuum transition rate, Γ ∼ P .

At first sight the situation is somewhat precarious: we obtained the transmission coef-

ficient for a massless energy eigenstate, which of course is time-independent. In quantum

mechanics, this dilemma is resolved by considering the non-perturbative contribution to

the energy due to all possible tunneling trajectories, which yields a small imaginary part

8Remember that in the framework of canonical quantization the states correspond to spatial geometries.
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for the energy of the metastable state. We defer a thorough derivation of the decay rate

to a subsequent publication [28], and merely present a heuristic argument in this work.

In particular, the sign of the action along the relevant tunneling trajectory in (3.35), ηπ,

is yet undetermined, and potentially ambiguous. In principle, the sign is determined by

the WKB matching conditions, but since we dropped all time-dependence it is not obvious

whether a given mode is ingoing or outgoing. The sign is known in the G → 0 limit,

where ηπ = +1 [29]. In the presence of causally disconnected regions this limiting case may

not be instructive, and there have been multiple proposals for fixing the sign in various

contexts, [25, 26, 59, 60]. Naively we might expect that the decay rate is small whenever

the action of a classically forbidden trajectory becomes large, which fixes the sign to be

ηπ = sgn(B) and coincides with the tunneling wave function proposal by Vilenkin [25, 26].

A careful derivation of this result is presented in [28].

We consider transitions between a bound and an unbound turning point of a classical

trajectory, where the spatial geometry satisfies R′2/L2 = A(R). At these points the domain

wall radius of curvature is labeled by R̂1,2, where R̂1 < R̂2, and we label the initial and

final states by I and F . We call the horizons of the exterior spacetime Rh
A 1 < Rh

A 2, where

AA(Rh
A 1) = AA(Rh

A 2) = 0, and similarly for the interior region B. The contribution to the

action from the spacetime regions between domain walls is given by (3.11). At a classical

turning point we have R′2 = L2Aα, so the action simply becomes9

iSSpace =
ηππ

G

∫
dR RΘ[−R′] , (3.36)

where Θ is the Heaviside step function. Care has to be taken in picking the limits for

the integral (3.36) as the integration proceeds along a path of increasing r. Using the

Schwarzschild-(anti) de Sitter metric, and remembering that R′ is negative between the

outer and inner horizons Rh
2 and Rh

1 we can immediately evaluate the integral for the

spatial contribution to the action away from the wall and find

iSSpace,R̂ =
ηππ

2G

[
Θ(−R̂′−)(R̂2 −Rh 2

B2) + Θ(−R̂′+)(Rh 2
A1 − R̂2)

+NA(Rh 2
A1 −Rh 2

A2) +NB(Rh 2
B1 −Rh 2

B2)
]
, (3.37)

where the integers NA/B count the number of spacetime regions in phase A or B that are

disconnected from the domain wall, and vanishes for anti de Sitter spaces. This notation

is illustrated by a specific example in figure 9.

To obtain the contribution to the action from non-trivial variations at the shells we

evaluate the integral in (3.5) between the two classical turning points R̂1 and R̂2. While

this is a hard integral in general, we can compute it analytically for the special case of

vanishing asymptotic masses. Dropping the subscript of R̂2, and noting that R̂1 = 0, we

9The alert reader shall not be confused by signs when comparing to the literature: it is important to

use consistent sign conventions. In this work we use the convention arccosh(−1) ≡ iπ, and arccos(−1) ≡ π,

while in parts of [47] the sign convention appears to differ.
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Figure 9. Left: radius of curvature over the coordinate parametrizing a spatial geometry r for

multiple Schwarzschild-de Sitter spaces. In this example we have NB = 2 disconnected regions in

phase B, and NA = 1 disconnected region in phase A. Right: the corresponding spatial geometry.

find the action contribution at the shell location

iSShell =


ηππ

2κ(H2
A−H

2
B)+κ

2R̂(H2
B+H

2
A)+R̂(H2

B−H
2
A)

2

8GH2
BH

2
Aκ

, R̂′− < 0 , R̂′+ < 0 ,

ηππ
(H2
A−H

2
B)

2R̂+4κH2
AH

2
BR̂

2+κ(κR̂−2)(H2
A+H

2
B)

8GH2
BH

2
Aκ

, R̂′− > 0 , R̂′+ < 0 ,

ηππ
2κ(H2

B−H
2
A)+κ2R̂(H2

B+H
2
A)+R̂(H2

B−H
2
A)

2

8GH2
BH

2
Aκ

, R̂′− > 0 , R̂′+ > 0 ,

(3.38)

where the turning point corresponding to an unbound domain wall trajectory occurs at a

radius of curvature

R̂2 =
4κ2(

H2
A −H2

B
)2

+ 2κ2
(
H2
A +H2

B
)

+ κ4
. (3.39)

As expected, the contribution to the action due to the shell is invariant under the exchange

of insides and outside, which reverses the roles of A and B, and switches the sign of R̂′.

Finally, we are in a position to evaluate the probability for vacuum transitions. We

add the contributions from the spatial, and shell parts of the action to find the exponent

in (3.35) that determines the leading contribution to the tunneling rate,

ηπB = 2i(SSpace,F + SShell,BA − SSpace, I) . (3.40)

With (3.37) and (3.38) we then obtain the transition rate Γ ∼ e−|B|, where

|B|=π

∣∣∣∣R̂ (H2
A−H2

B)2+(H2
A+H2

B)κ2

4κGH2
AH

2
B

+
NA, I−NA,F+

sgn(R̂′+)

2

GH2
A

+
NB, I−NB,F− 1

2

GH2
B

∣∣∣∣ , (3.41)

and we used ηπ = sgn(B) as prescribed by the matching conditions for the WKB tunneling

wave function. The exponent (3.41) is an important and beautiful result, so let us pause

to appreciate some of its features. The first term in the tunneling exponent B scales with

the domain wall tension, while the latter two terms depend only on the Hubble scales in

each of the phases. We wrote the tunneling rate such that the statistical nature of de Sitter
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space is manifest: the last two terms are proportional to the de Sitter entropy AdS/(4G),

where AdS = 4πH−2 is the horizon area.

Let us first recover the scenario considered by Coleman and de Luccia, where there

exist no disconnected spacetimes10

NA, I −NA,F +
sgn(R̂′+)

2
=

1

2
, NB, I −NB,F −

1

2
= −1

2
. (3.42)

The transition rate (3.41) is then identical to the generalization of the CDL result to

arbitrary extrinsic domain wall curvatures [61]. In appendix C we rewrite the transition

rate slightly to make this equivalence manifest. To gain some intuition for the probability

of these transitions, consider the nucleation rate of bubbles occupied by phase B in a de

Sitter vacuum A, and compare this rate to that for the process where A and B are reversed.

In the absence of wormholes, where (3.42) holds, this replacement always maintains the

sign of B, so the contribution to the decay rate at the wall cancels and we find [62]

Γ|A→B
Γ|B→A

= eSB−SA , (3.43)

where SA/B = π/GH2
A/B is the entropy of a de Sitter space occupied by either phase. This

means that semiclassical vacuum transitions appear to satisfy the principle of detailed

balance in the absence of causally disconnected regions.11 Remember that the replacement

A ↔ B does not correspond to an exchange of initial and final states, but the nucleation of a

true vacuum bubble and the nucleation of a false vacuum bubble, respectively. Exchanging

the initial and final spatial geometry I ↔ F does not affect the transition probability

when ηπ = sgn(B) in (3.35). This is what one expects in quantum mechanical tunneling

process through a wide potential barrier in the WKB approximation because we consider

the probability for a single incident wave packet to be transmitted through the barrier.

Let us now consider the nucleation of a false vacuum bubble in more detail. In the

CDL scenario, where wormhole formation is prohibited, the transition rate approaches zero

as the outside energy density ρA decreases. We can easily understand this by noting that

the extrinsic curvature on the outside of the shell is negative, so the majority of the initial

spacetime disappears during the transition. The change in the action increases with the

inverse Hubble scale and diverges as ρA → 0, prohibiting the transition entirely. This

corresponds to the well known result that Minkowski space cannot transition to a higher

energy density. However, we can imagine a transition that does not terminate the initial

spacetime. Instead, consider a transition that maintains the entire initial region, nucleating

a causally disconnected phase that contains the new vacuum. In this case the change in the

total horizon area is independent of the initial Hubble scale. The spatial geometry of this

transition is illustrated in the lower part of figure 10. This case corresponds to the massless

10Some care has to be taken in determining the integers N in this case. For example in the case of a true

vacuum bubble where R′+ > 0 we have NA, I = NA,F = 1 because the tunneling trajectory does not cross

any horizon. In contrast, for a false vacuum bubble where R′+ < 0 we have NA, I = 1 and NA,F = 0 because

the false vacuum bubble nucleates beyond the horizon of region A. In both cases NB, I = NB,F = 0. These

observations follow immediately from (3.36).
11Globally this is more complicated as the number of disconnected regions is measure dependent.
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Figure 10. Illustration of continuous tunneling trajectories for the Coleman-de Luccia nucleation

of a true vacuum bubble (upper row) and the Farhi-Guth-Guven nucleation of a false vacuum bubble

(lower row).

limit of the Farhi-Guth-Guven (FGG) process [52], for which we have NB ,I = NB ,F = 0,

NA ,I = NA ,F = 1. Here the sign of B becomes negative, so the tunneling wave function

proposal indicates that ηπ = −1. As expected, the transition rate remains finite in the

limit of vanishing initial energy density

lim
HA→0

B = − π
G

H2
B + 2κ2

(H2
B + κ2)2

. (3.44)

The limit of vanishing domain wall tension corresponds to a nucleation rate that is sup-

pressed by the horizon area of the new de Sitter space, Γ ∼ e−π/GH2
B .

3.5 An explicit tunneling trajectory

To gain some more intuition for the evolution of the spatial geometry during the vacuum

transition process we now solve for an explicit, continuous tunneling trajectory that in-

terpolates between the bound and unbound classical turning points R̂1 and R̂2. Again,

we consider a single thin domain wall that connects two distinct Schwarzschild-de Sitter

phases B (interior) and A (exterior). The transition is parametrized by the domain wall

radius of curvature, R̂ ∈ [R̂1, R̂2] and we denote the momentum evaluated at the domain

wall with a hat, π̂L ≡ πL(R̂).

To obtain an explicit solution we demand L = 1 and take the following ansatz for the

momentum along the tunneling trajectory

πL(R) = π̂Lf(R) , f(R) =
(R2 −Rh 2

1 )(R2 −Rh 2
2 )

(Rh 2
1 − R̂2)(Rh 2

2 − R̂2)

(
R̂

R

)2±2

, (3.45)
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where the positive sign in the exponent applies in the outer region A, and the negative sign

applies in the inner region B. The horizons of each spacetime are labeled as Rh
1 < Rh

2 . The

ansatz (3.45) is chosen such that the constraint equations (3.9) and (3.15) are satisfied: the

momentum vanishes at the horizons and takes on the correct value at the domain wall. We

can now solve the constraint equation (3.9) to obtain the three geometry specified by R(r),

R′2|A/B = L2AA/B(R) +G2L2π̂2Lf
2(R)|A/B . (3.46)

The differential equation (3.46) and the boundary conditions at the horizons fix the spatial

geometry for any domain wall position R̂ along the tunneling trajectory. The boundary

conditions at horizons are necessary to specify whether the spatial geometry ends or con-

tinues behind the horizon, and if there are any domain walls in that patch.

Figure 10 shows two specific trajectories for the quantum nucleation of true and false

vacuum bubbles. During the nucleation of a true vacuum bubble the wall’s extrinsic cur-

vature does not switch sign,12 so the domain wall does not have to cross any horizons.

Therefore, a tunneling trajectory parametrized by a monotonously increasing radius of

curvature is continuous if the bubble nucleates within a causally connected region. This

simply corresponds to the CDL transition. On the other hand, during the nucleation of a

false vacuum bubble the wall’s exterior extrinsic curvature does switch sign, which indicates

that the wall crosses at least one horizon. The continuous trajectory corresponding to a

monotonously increasing radius of curvature at the domain wall yields the formation of a

false vacuum bubble through the Schwarzschild horizon. For the nucleation process shown

in the lower panel of figure 10 the Schwarzschild horizon is crossed between the second and

third steps. This simply corresponds to the FGG transition. The CDL transition would

correspond to false vacuum nucleation through the Hubble horizon, and is not continuously

parametrized by a monotonously increasing radius of curvature. Both the CDL and FGG

processes of false vacuum nucleation are allowed at the semiclassical level, but correspond

to different final geometries and have different transition rates.

4 Gravitational effects on viable vacua

In the previous section we carefully reviewed thin wall vacuum transitions and we are

finally in a position to address the question relevant to the landscape population: how are

weakly coupled vacua populated in the presence of runaways? As discussed in section 2,

there generically do not exist stable, thin domain walls separating vacua in the landscape.

Instead, all domain walls connect to a runaway phase. In this hostile phase the simple four

dimensional effective theory breaks down as the spacetime decompactifies, so we ought

to revert to the higher dimensional theory to model this transition. To avoid having to

face this much more difficult problem, in this work we model the runaway phase as a

12Some care has to be taken in evaluating the extrinsic curvature. Figure 16 might naively appear to

imply that the extrinsic curvature does switch sign for the nucleation of a true vacuum bubble. However,

that figure displays the case 0 = MA < MB, while the formation of a true vacuum bubble in the absence of

any mass parameter corresponds to the opposite limit, MB < MA → 0. In this limit (3.22) then yields the

expected result of same sign extrinsic curvatures for the bound and unbound turning points.
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stable vacuum with vanishing energy density. It is conceivable that close to the domain

wall the runaway instability is merely triggered, but the four dimensional description still

provides a good approximation to local physics. In this section we address the question of

whether and how stable vacuum transitions between de Sitter vacua A and B can occur

if all domain walls connect to a runaway phase C. This question was first discussed by

Brown and Dahlen in [23]. They argued that even in the absence of a tunneling instanton

any de Sitter vacuum transition will eventually occur due to the finite dimensionality of

the Hilbert space. Even though our approach substantially differs from that work and we

do not explicitly invoke the thermodynamic properties of de Sitter space, our results are

compatible with and extend the results of [23].

In order for a transition to persist at late times a horizon has to be crossed by the

domain wall during the bubble nucleation process. Either the cosmological horizon of

the original de Sitter phase or a wormhole horizon is traversed, which corresponds to the

CDL or the FGG transition, respectively [29, 52, 58]. In this work we do not impose any

constraints beyond obeying the Hamiltonian constraint equations, so we allow for both

transitions. In the limit of a small initial vacuum energy density the FGG process is vastly

more likely to occur because it preserves the initial spacetime, so we focus our discussion

on that solution. However, remember that the cosmological evolution after the transition

is identical in both cases, so any constraints on the cosmology of the new phase apply

regardless of which mechanism populates the vacua.

To summarize, in our model of the landscape A/B domain walls are prohibited, so any

A → B transition between de Sitter vacua contains a double bubble with B/C and C/A
domain walls, where C is an asymptotically flat region. We will consider the dynamics of

these configurations and present the geometry and rate of a nucleation process that results

in a stable vacuum transition between A and B.

4.1 The trouble with the bubble

As a warmup exercise, let us first consider a vacuum transition from A to B in the absence

of dynamical gravity, G→ 0. In this limit we can write the metric (3.1) simply as

ds2 = −dT 2 + dR2 +R2dΩ2
2 , (4.1)

or equivalently L = 1 and R = r. The spatial configuration before and after the vacuum

transition is shown in figure 11. Initially the entire space is occupied by vacuum A. Because

of the absence of domain walls between A and B, after the tunneling event there exists

a region of phase C in between A and B. We take the initial and final states to be in a

pure vacuum configuration, such that the asymptotic masses vanish, MA = MB = 0, while

the intermediate phase C may experience a non-vanishing mass parameter. The vacuum

energy densities of A and B are positive, but vanishes in C. The constraint equation for

the inner wall with radius of curvature R̂i is given in (3.21), which in the limit G→ 0 gives

MC =
4π

3
ρBR̂

i 3 + 4πσiR̂
i 2

√
1 +

˙̂
Ri 2 . (4.2)
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Figure 11. The spatial geometry of the formation of a double bubble in the absence of gravity.

For an initially static configuration we immediately find the equation of motion for the

inner domain wall

¨̂
Ri = −

(
ρB
σi

√
1 +

˙̂
Ri 2 + 2

(1 +
˙̂
Ri 2)

R̂i

)
< 0 , (4.3)

inevitably leading to a collapse of the region in vacuum B. As anticipated, in the absence

of horizons there does not exist a vacuum transition that would create a persistent region

occupied by the new phase B.

4.2 No trouble with the double bubble

Let us now turn to the transition between vacua A and B in the presence of gravity,

but again in the absence of direct domain walls: only C/A and B/C domain walls exist.

Gravity has a dramatic impact on the possible transition. In contrast to the situation

without gravity, the initial and final spatial geometries are no longer fixed: depending on

the energy densities, mass parameters, domain wall tensions and boundary conditions the

spatial geometry changes. Two possible geometries after the transition are illustrated in

figure 12. In the presence of gravity the radius of curvature of the inner shell can exceed the

radius of the outer domain wall, while in the absence of gravity the corresponding instanton

does not exist.13 We are interested in transitions for which at least the inner (B/C) domain

wall grows without bound, leaving a part of the spacetime in vacuum B. For simplicity

we pick coordinates such that the transition occurs at t = 0 where L(t = 0, r) = 1. The

domain wall dynamics can be read off from figure 7. Note that the extrinsic curvature of

the inner shell is negative in the exterior region, such that phase C contains a Schwarzschild

horizon for any unbound solution. There are two qualitatively different unbound solutions.

When the domain wall tension in Planck units dominates over the energy density in the

interior, i.e. ρB < 3σ2BC/4M
2
pl, there always exist unbound solutions where the extrinsic

curvature changes sign across the shell. These domain walls expand due to their repulsive

gravitational self-interaction and inflation inside phase B can be negligible. On the other

hand, when the domain wall tension is small compared to the energy density, the unbound

domain walls have a negative extrinsic curvature on both sides of the domain wall. This

is the familiar situation of a true vacuum bubble that has nucleated behind a wormhole

horizon. In this case the domain wall expands due to the different energy density across

the shell, and the gravitational self-interaction of the shell is negligible. Despite expanding

without bound, the runaway phase C will never occupy all of the new de Sitter region

because of the cosmological horizon in vacuum B. We can obtain the geometry along a

13This disappearance of the instanton without gravity was discussed in [63], but in the presence of gravity

some of the instantons reappear.
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Figure 12. Two possible spatial configurations of a double bubble that leads to an unbound

trajectory of the B/C domain wall with small (left) and large (right) tension.

Figure 13. A continuous tunneling trajectory for the formation of a double bubble in the presence

of gravity. The regions occupied by phases A, B and C are illustrated with dark blue, light blue

and dashed gray lines, respectively.

tunneling trajectory by solving the constraint equation and junction conditions for the

double bubble, as in section 3.5. The continuous tunneling solution is shown in figure 13.

To give a concrete example in which we can easily understand both the initial geometry

after tunneling and the subsequent classical dynamics, we consider solutions of vanishing

mass parameter in each of the three regions. The junction conditions (3.22) at the domain

walls become

˙̂
Ri 2 =

(κ2BC +H2
B)2

4κ2BC
R̂i 2 − 1 , R̂i ′

− =
κ2BC −H2

B
2κBC

R̂i , R̂i ′
+ < 0 , (4.4)

˙̂
Ro 2 =

(κ2CA +H2
A)2

4κ2CA
R̂o 2 − 1 , R̂o ′

− > 0 , R̂o ′
+ =

H2
A − κ2CA
2κCA

R̂o . (4.5)

These are just the equations governing two expanding true vacuum bubbles, so none of the

walls collapse into a singularity. For the inner domain wall we have the solution

R̂i =
2κBC

κ2BC +H2
B

cosh

(
κ2BC +H2

B
2κBC

t

)
. (4.6)

Note that after the tunneling event the spacetime in which the inner domain wall evolves

is causally disconnected from original spacetime and the dynamics of the exterior domain

wall are irrelevant. We show the classical domain wall evolution in each of the three regions
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Figure 14. Illustration of the trajectories of a double bubble connecting de Sitter (B),

Schwarzschild (C), and de Sitter (A) patches. The bubble is nucleated at time T = 0. Phase

B contains a closed FRW cosmology, while C contains open FRW cosmologies on both sides of a

wormhole [29, 52, 64].

in figure 14. The region in phase C contains two copies of open universes on opposite sides

of a wormhole, while the region occupied by vacuum B contains a closed universe.

We now evaluate the tunneling rate to form a double bubble configuration from an

initial de Sitter space occupied by vacuum A. For simplicity we will only discuss the

case valid in the limit of weak gravity, where κCA < HA, so the outside domain wall has

positive extrinsic curvature, R̂o′± > 0. Again, the tunneling exponent is defined in (3.35).

The spatial contribution to the tunneling exponent is given with (3.36) as

2i(SSpace,F − SSpace, I) =

{
−ηππ

G H−2B , for R̂i ′
± < 0

−ηππ
G R̂i 2 , for R̂i ′

± > 0
. (4.7)

The contributions from the shell are given in (3.38), and we find the total tunneling expo-

nent

ηπB = |2i(SShell, CA + SShell,BC + SSpace,F − SSpace, I)|

=
π

G

∣∣∣∣∣ κ4CA

H2
A
(
H2
A + κ2CA

)2 − H2
B + 2κ2BC(

H2
B + κ2BC

)2
∣∣∣∣∣ . (4.8)

The corresponding transition rate Γ ∼ e−|B| has a number of interesting properties. Let us

begin with the limiting case of weak gravity, or small tension, where κ is small compared to

the Hubble scales involved. The tunneling rate is simply suppressed by the horizon area of

the newly created de Sitter phase, |B| = π/GH2
B. Furthermore, the tunneling rate decreases

as the Hubble scale of the initial vacuum A decreases. This feature is similar to the familiar

nucleation of a true vacuum bubble: as the vacuum energy densities on both sides of the

shell become equal the radius of the initial bubble increases without bound. Finally, there

are two competing terms in the tunneling rate. When the two terms are competitive the

tunneling rate becomes surprisingly large, i.e. Γ ∼ 1. In the limit of a small outside domain
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wall tension, κCA � HA the transition appears to be unsuppressed when

H3
A ∼

{
κ2CAκBC/

√
2 , κBC � HB ,

κ2CAHB , κBC � HB .
(4.9)

In either case the energy scale of the new phase is larger than the scales involved in the

original vacuum and tunneling towards high energy configurations is favored. Naively,

one might be concerned about unsuppressed transition rates, but we should remember

that there may not be any metastable vacua at arbitrarily high energy that could be

populated. Instead, the tunneling exponent (4.8) implies that transitions among the highest

(approximately) stable vacua are exponentially preferred. In this work we merely present

one particularly simple thin wall process to illustrate the mechanism that gives rise to a

stable configuration at late time, but other thick-wall transitions are possible.

The particular final geometry considered above is the leading transition channel for

the population of a false vacuum with a high Hubble scale and a small outer domain wall

tension. There are many other possible final states. For example, we could consider the

nucleation of not just one, but k disconnected de Sitter phases in vacuum B. For small

domain wall tensions the nucleation rate is roughly given by

Γ ∼ e−πk/GH2
B , (4.10)

which greatly suppresses the nucleation of disconnected universes. For example, in the case

of a metastable vacuum with almost Planckian energy density ρB ∼ 0.1×M4
pl the vacuum

nucleation rate is roughly Γ ∼ e−2000×k. Note that this result is crucially dependent

on the sign choice we made for ηπ. Abandoning the tunneling wave function and choosing

ηπ = +1 instead would have given a divergent rate as the number of disconnected universes

grows [47].

4.3 Wormholes in quantum gravity

Wormholes have been the focus of intense research for many decades [65–81], and yet their

role in nature is far from clear. We saw in the previous subsection that in the absence of

stable domain walls between cosmological vacua bubble nucleation occurs across an event

horizon that stabilizes the transition. An example of such a transition is the FGG process,

which nucleates a wormhole geometry. Much effort has been spent on studying whether

such an event is admissible in quantum gravity, but no definite conclusion has been reached.

Rather than providing a comprehensive literature review, we refer the interested reader to

a number of relevant works on the subject, see [58, 64, 82–89].

In discussions that employ a semiclassical approximation such that ambiguities about

the quantization of gravity are irrelevant all classical solutions to the Hamilton-Jacobi are

treated on equal footing. Much care has to be taken when attempting to constrain or

disregard some of the classical solutions based on presumed knowledge about quantum

gravity. The Einstein-Hilbert action is well understood, while the full quantum mechanical

description of wormholes remains elusive. Vague arguments and beliefs about how quantum

gravity ought to behave may be misleading.
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5 Inflation in the landscape

In the previous section we discussed a tunneling geometry that facilitates vacuum tran-

sitions between two de Sitter vacua in the absence of a direct domain wall. While we

illustrated one particular trajectory that induces stable transitions, there may be many

other ways to populate the landscape, such as dynamical and thick-wall solutions that

are beyond the reach of our analysis. However, regardless of the precise geometry after

the transition, the new phase is causally protected from domain wall collapse only if the

runaway phase remains outside the Hubble horizon. We now consider the implications for

the cosmological evolution in the new vacuum. This discussion is independent of the ex-

plicit tunneling trajectory and applies for general transitions with thin domain walls. The

basic idea is simple: the new phase is causally protected from collapse of the shell due to

the cosmological horizon, but if the evolution allows the domain wall to enter the Hubble

sphere of a late time observer the new universe is at risk of extinction. In an evolving

cosmology this means that the initial inflationary phase should last long enough to remove

the domain wall from the late time horizon.

5.1 Inflation expels runaways

We now turn to the cosmology after the tunneling event. To be specific, we discuss an FRW

cosmology that undergoes a finite period of inflation, followed by radiation domination, and

finally settles into energy domination at late times. Shortly after the tunneling event the

relevant spacetime is divided into two regions: the new phase in vacuum B is described by a

closed FRW universe and is separated from the runaway phase C by an expanding domain

wall. The region occupied by the runaway phase with vanishing energy density is described

by an open FRW cosmology with a (very small) black hole. We are most curious about

the cosmology of the newly created universe in vacuum B. So far we only considered a

stationary, energy dominated interior with a constant equation of state w = p/ρ = −1. We

now relax this condition, and consider an evolution that maintains the initial inflationary

Hubble scale HInf only for a finite amount of expansion and is followed by reheating,

radiation domination and finally a classical evolution towards a (potentially much lower)

late time Hubble scale HLate. Given sufficient expansion to overcome the initial curvature

domination, we can approximate the metric by a flat FRW cosmology. The causal structure

is most obvious when expressing the metric in terms of conformal time τ , such that the

metric takes the form

+ ds2 = a2
(
−dτ2 + dR2 +R2dΩ2

2

)
. (5.1)

During inflation and late time energy domination the comoving Hubble sphere shrinks

with conformal time, (aH)−1Inf ≈ −τ + const, while during radiation domination the horizon

expands and allows modes to enter, (aH)−1Rad ≈ τ + const. After the nucleation event the

domain wall separating the new cosmology from the runaway phase initially accelerates

outwards along an approximately null trajectory in a causally disconnected region of de

Sitter space. For domain wall tensions that are small compared to the inflationary Hubble

scale we have R′− < 0, so the domain wall is hidden outside the Hubble horizon as in the left

part of figure 12. At the end of inflation the equation of state changes. The precise evolution
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Figure 15. Conformal time and comoving distance for a universe undergoing inflation, radiation

domination and a late phase of energy domination [42]. During inflation a runaway domain wall

expands in a causally disconnected region. After reheating, the domain wall might collapse and

re-enter the horizon unless all observable past light-cones were in causal contact.

of the bubble will depend on the dynamics during reheating and radiation domination, but

it is possible that after inflation the energy density B is small compared to the tension κ, so

the spatial geometry corresponds to the right part of figure 12. This scenario appears likely

if we demand a vacuum energy density small enough to allow for galaxy formation. In this

case R′− > 0 and the domain wall is at risk of re-collapsing and terminating newly created

universe. However, if the late time cosmology is dominated by a positive energy density, it

is possible that even a collapsing domain domain wall never re-enters the horizon. This will

be the case if the bubble radius exceeds the late time Hubble scale. The sufficient condition

for the existence of a region of spacetime to survive indefinitely can be seen in figure 15,

which shows the evolution of comoving distance with conformal time. The condition for the

domain wall to remain out of causal contact with a late time is precisely the requirement

that all null geodesics originating from the time of reheating have overlapping past light

cones, and is slightly stronger than the requirement of super-horizon correlations in the

CMB. We find a rough lower bound for the required number of efolds as

Ne &
1

2
log

(
HInf

HLate

)
, (5.2)

which corresponds to about 65 efolds of expansion, depending on the scale of inflation.14

This amount of inflation leaves the universe in a surprisingly flat and isotropic state.

Even though inflation clearly can exile a collapsing domain wall from the late time

cosmology and save the universe from its demise, it is not obvious that this is a necessary

condition. Remember that when the domain wall tension is large, or gravity sufficiently

strong, the self interaction bubble wall is repulsive and leads to an expanding domain

wall in an empty universe. There may be concerns associated with strong gravitational

14We thank Matthew Kleban for discussion on this point.
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interactions15 [81, 90–98]. If the transitions corresponding to strong gravity are indeed

prohibited, the only way to remove the domain wall from a late time cosmology is via a

period of inflation.

The domain wall dynamics after reheating will depend on the details of the cosmological

evolution, so even though this may not seem likely, there could be some non-trivial evolution

that halts domain wall collapse within the cosmological horizon. A detailed study of the

cosmological evolution after reheating is beyond the scope of this work [99].

5.2 Cosmology in the landscape

Finally, we are in a position to speculate about the cosmological evolution in a landscape

when both our assumptions about fundamental physics are met: there exist no direct

domain walls between de Sitter vacua, and the tunneling wave function provides a good

approximation to vacuum transition rates.

Let us consider an initial state with an asymptotically flat background geometry in

a phase C. This may be a stable ground state of the four dimensional effective theory

or the decompactified runaway phase. Gravitational effects stabilize the nucleation of a

false vacuum bubble containing the de Sitter vacuum A, separated by a single domain

wall from the initial phase C. This bubble nucleates across a wormhole horizon as in the

FGG process, and the nucleation rate is given by (3.41). In the limit of weak gravity the

transition rate is suppressed by the horizon area of the new phase, so transitions to high

energy vacua are exponentially favored,16

Γ ∼ e−π/GH2
Inf . (5.3)

The tunneling process gives rise to a closed FRW cosmology in vacuum A that is

causally disconnected from most of the original spacetime. The runaway phase C remains

mostly undisturbed.

Depending on the cosmological evolution in the new phase A, the bubble may collapse,

drive eternal inflation, or result in a viable late time cosmology. Because of the absence

of direct domain walls to other de Sitter vacua with lower energy density, any vacuum

transition inside the de Sitter phase A will trigger an expanding true vacuum bubble

containing the runaway phase C. However, the nucleation of a double bubble can induce

a vacuum transition to a different de Sitter vacuum B. The rate for this process to occur

is given in (4.8). Again, tunneling towards high energy states are favored. If the energy

density of the domain wall is set approximately by the same scale as the initial vacuum

energy density inside the cosmology, the domain wall tension in Planck units is negligible

and the domain wall is only guaranteed to expand if an extended period of inflation takes

place in the new vacuum B. Again, there are two interesting scenarios: either the new phase

is classically stable and leads to more eternal inflation, or the equation of state changes

15It may be a curious coincidence that in a simple axion model the low-tension constraint κ < H typically

coincides with a naive formulation of the weak gravity conjecture f . Mpl, where f is the axion decay

constant and we assumed a large instanton action, S > 1.
16Relaxing our assumption of employing the tunneling wave function and picking ηπ = +1 instead would

give a divergent nucleation rate in the semiclassical approximation. We do not discuss this case further.
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and relaxes to a lower Hubble scale HLate that allows for galaxy formation. The latter

case is safe from domain wall collapse if all observable modes from the time of reheating

have overlapping past light-cones. This requirement translates to a minimum amount of

inflationary expansion set by (5.2), and is sufficient to create a surprisingly flat and isotropic

universe for late time observers to occupy.

6 Conclusions

We considered thin wall vacuum transitions in the absence of domain walls interpolating

between metastable de Sitter vacua, allowing only for domain walls between the de Sitter

regions and a runaway phase with vanishing vacuum energy density. This setup is motivated

by the Dine-Seiberg problem in weakly coupled compactifications of string theory. Despite

the instability of domain walls, there exist vacuum transitions between de Sitter vacua and

the landscape is populated by quantum tunneling. In the weak gravity limit the leading

transitions are mediated via a double bubble configuration that contains a wormhole and

is illustrated in figure 12. For low domain wall tensions the nucleation rate is suppressed

by the de Sitter horizon area of the nucleated phase, favoring transitions towards high

Hubble scales. These transitions can be interpreted as small, local fluctuations to low

entropy states that are subsequently frozen by the formation of a Hubble horizon. The

new cosmology is protected from domain wall collapse as long as the shell does not enter

the horizon of an observer, which imposes a severe constraint on the cosmological evolution.

The domain wall can re-enter the horizon unless a sufficient amount of expansion has taken

place to permanently exile the shell from a late time horizon H−1Late. Demanding that the

cosmological phase is causally protected from a possible re-collapse of the domain wall gives

a lower bound on the number of efolds of inflation,

Ne &
1

2
log

(
HInf

HLate

)
. (6.1)

This lower bound on the inflationary expansion guarantees overlapping past light cones for

all observable modes and results in an isotropic and flat universe.

In this work we employed two well motivated assumptions about fundamental physics

and arrived at surprisingly strong implications for the cosmological evolution in a land-

scape. We saw that generic instabilities of weakly coupled string theory vacua require an

extended period of cosmic inflation to stabilize vacuum decay, and that the tunneling wave

function approach to transition rates exponentially favors high inflationary scales. Both

of these effects provide potentially much stronger selection effects than some of the previ-

ously assumed measures in theory space, such as a polynomial suppression in the number

of efolds that stems from the requirement of small slow roll parameters in a random poten-

tial. Therefore, a detailed understanding of moduli stabilization and vacuum transitions

in theories of quantum gravity are important to further our understanding, and ultimately

make predictions, of inflationary parameters in the landscape.

Our results point towards framework to pursue the generation of inflationary initial

conditions in flux compactifications and its explicit realization in a well controlled com-

pactification of string theory is an important problem for the future.
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A First-order action of domain walls

The results in this work are derived from the first-order action of a spherically symmetric

gravitational configuration. Even though the relevant action has appeared several times in

the literature, a number of signs are inconsistent in some of the references. Since our work

crucially relies on the accuracy of the relative signs in the action, we now fill in some of

the details omitted in the main text. We will mostly follow the references [46, 47, 53].

The dynamical terms in the action (3.3) can be written in terms of the variables

appearing in the metric (3.2) as17 [47]

SGravity =
1

2G

∫
drdt

(
2

N t
(N rLR)′(Ṙ−N rR′)− 2

N t
∂t(LR)(Ṙ−N rR′)

+
2

L
(N tR)′R′ +

N t

L
(L2 −R′2) +

L

N t
(Ṙ−N rR′)2

)
, (A.1)

which can be written in terms of canonical variables as

SGravity =

∫
drdt

(
πLL̇+ πRṘ−N tHGravity

t −N rHGravity
r

)
, (A.2)

where

πL =
N rR′ − Ṙ
GN t

R , πR =
(N rLR)′ − ∂t(LR)

GN t
, , (A.3)

and the Hamiltonian density is given by

HGravity
t =

GLπ2L
2R2

− G

R
πLπR +

1

2G

[(
2RR′

L

)′
− R′2

L
− L

]
,

HGravity
r = R′πR − Lπ′L . (A.4)

We can also solve for the velocities Ṙ and L̇,

Ṙ = −GN
tπL
R

+N rR′ , L̇ = −GN
tπR
R

+
GLN tπL

R2
+ (N rL)′ . (A.5)

It remains to write the matter contributions in terms of canonical variables. For simplicity

we consider a matter energy momentum tensor that originates from a static scalar field

17Again, partial derivatives with respect to r and t are denoted by primes and dots, respectively.
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theory with thin domain walls, such that the domain wall tension equals the domain wall

energy density. We then have the matter action∫
dx4
√
gLm = −4π

∫
dtdr
√
gR2

(
ρ(r) +

N∑
α=1

σαδ(r − r̂α)

)
(A.6)

= −4π

∫
dtdrLN tR2ρ(r)− 4π

∫ N−1∑
α=1

σαR̂
2
√
−ĝµνdxµdxν

= −
∫
dtdr N tHρt +

N−1∑
α=1

∫
dt p̂α ˙̂rα −

∫
dtdr (N tHShell

t,α +N rHShell
r,α ) ,

and we defined

mα = 4πσαR̂
2
α , p̂α =

mαL̂
2
α(N̂ r

α + ˙̂rα)√
N̂ t2
α − L̂2

α( ˙̂rα + N̂ r
α)2

(A.7)

HShell
t,α = δ(r − r̂α)

√
p̂2α
L2

+m2
α , HShell

r,α = −δ(r − r̂α)p̂α , Hρt = 4πLR2ρ(r) .

Let’s also define a matter Hamiltonian density that includes the contribution from a vacuum

energy density and the domain wall tension,

HMatter
t = Hρt +

N−1∑
α=1

HShell
t,α , HMatter

r =

N−1∑
α=1

HShell
r,α . (A.8)

Combing the above expressions, we can write the action as

S =

N−1∑
α=1

∫
dt p̂α ˙̂rα +

∫
dtdr

(
πLL̇+ πRṘ−N tHt −N rHr

)
, (A.9)

where the total Hamiltonian density is given by

Ht,r = HGravity
t,r +HMatter

t,r . (A.10)

The Hamiltonian densities in full are given by

Ht =
GLπ2L
2R2

− G

R
πLπR +

(
2RR′

L

)′
− R′2

L − L
2G

+ 4πLR2ρ(r) +
N−1∑
α=1

δ(r − r̂α)

√
p̂2α
L2

+m2
α,

Hr = R′πR − Lπ′L −
N−1∑
α=1

δ(r − r̂α)p̂α . (A.11)

Note that the action (A.9) contains second derivatives. Restricting to asymptotically flat

solutions, where limr→∞N
t = 1 and limr→∞N

r = 0, the second derivative terms are

precisely canceled by including a non-dynamical term −
∫
dtMADM [50, 53]. In the present

case we only consider solutions with constant asymptotic mass and therefore the ADM

term is irrelevant.
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Finally, we turn to the question relevant for quantum tunneling, where we need to

evaluate the action for an arbitrary shell trajectory. This shell trajectory will parametrize

the tunneling event. The variation of the action is given by

dS =

N−1∑
α=1

p̂αδr̂α +

∫
dr (πLδL+ πRδR) . (A.12)

To integrate this expression we keep δR = δr̂α = δL̂α = 0 and vary L away from the shells

to satisfy the constraints. This gives the following contribution to the action [47],

SSpace =
N∑
α=1

∫ r̂α−ε

r̂α−1+ε
dr

∫ L

πL=0
(δLπL + δRπR)

=
N∑
α=1

(∫ r̂α−ε

r̂α−1+ε
dr

∫ L

πL=0
δL

Rηπ
G

√
R′2

L2
−Aα

)

=

N∑
α=1

∫ r̂α−ε

r̂α−1+ε
dr

Rηπ
G

(√
R′2 − L2Aα −R′ log

[
R′ −

√
R′2 − L2Aα

L
√
Aα

])
. (A.13)

Note that R′ is discontinuous at the location of the shells. Considering an arbitrary varia-

tion of R, the action receives an additional contribution at the location of shells,

δSShell, α = δR̂′

(
∂S

∂R′

∣∣∣∣
r=r̂α−ε

− ∂S

∂R′

∣∣∣∣
r=r̂α+ε

)
. (A.14)

We need to subtract derivatives with respect to R′ at the location of the shell to ensure

that the full action satisfies δS/δR = πR and δS/δL = πL. This gives

SShell, α =

∫
dt p̂α ˙̂rα − R̂′

(
∂S

∂R′

∣∣∣∣
r=r̂α−ε

− ∂S

∂R′

∣∣∣∣
r=r̂α+ε

)
(A.15)

=

∫
dt p̂α ˙̂rα +

∫
dR̂α

R̂αηπ
G

log

R̂′α,+ −
√
R̂′2α,+ − L̂2

αÂα+1

R̂′α,− −
√
R̂′2α,− − L̂2

αÂα

√
Âα

Âα+1

 ,

where Âα+1 ≡ Âα+1(r̂α) and the argument of Âα+1 is implicit. Collecting all the terms

then gives the full action quoted in (3.5) in the main text,

S = SSpace +
N−1∑
α=1

SShell, α . (A.16)

A.1 The junction conditions

The action does not contain a kinetic term for the shift and lapse functions, we therefore

have the Hamiltonian constraints

Ht = Hr = 0 . (A.17)
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We obtain the required 2(N − 1) constraint equations that fix the classical dynamics of

the system by considering a linear combination of these constraints at the location at each

shell. Following [47, 53], consider the following constraint

0 =
R′

L
Ht +

πL
RL
Hr = −M ′ +

N−1∑
α=1

R̂′α

L̂α
HShell
t,α +

N−1∑
α=1

Gπ̂L,α

R̂αL̂α
HShell
r,α , (A.18)

where

M =
Gπ2L
2R

+
R

2G

(
1− R′2

L2

)
− 4π

∫
dR R2ρ(r) . (A.19)

In a static spacetime, M can be interpreted as the asymptotic mass parameter. For con-

stant energy densities within the domains α, we can evaluate the derivative M ′ and find

the momentum

π2L,α =
R2

G2

(
R′2

L2
− 1 +R2H2

α +
2GMα

R

)
=
R2

G2

(
R′2

L2
−Aα

)
, (A.20)

or

πL,α = ηπ
R

G

√
R′2

L2
−Aα , πR,α =

L

R′
π′L,α , (A.21)

where ηπ = ±1, we defined the Hubble constants H2
α = 8πGρα/3 and

Aα = 1−R2H2
α −

2GMα

R
. (A.22)

We now find the 2(N − 1) matching conditions by integrating the Hamiltonian con-

straints (A.11) over the shell located at r̂α,

p̂α = −
∫ r̂α+ε

r̂α−ε
dr Lπ′L + · · · = −L̂α(π̂L,α,+ − π̂L,α,−) , (A.23)

− G

R̂α

√
p̂2α +m2

αL̂
2
α =

L̂α

R̂α

∫ r̂α+ε

r̂α−ε
dr

(
RR′

L

)′
+ · · · = R̂′α,+ − R̂′α,− , (A.24)

where the dots represent terms continuous in r that do not contribute to the integral and

quantities evaluated on the inside/outside of the shell are denoted by a hat and the index

+/−, respectively. These are precisely the Israel junction conditions (3.13) [57].

B Classical domain wall dynamics

In this appendix we provide some supplemental material on the definition of Gibbons-

Hawking and Kruskal-Szekeres coordinates and the constraint equations governing the

dynamics of bubble with a Schwarzschild interior and a de Sitter exterior, a true

vacuum bubble.
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B.1 Gibbons-Hawking and Kruskal-Szekeres coordinates

In order to illustrate the dynamics of domain walls that cross horizons we require coordi-

nates that are smooth everywhere. Following [56], we introduce Kruskal-Szekeres (KS) co-

ordinates (VKS, UKS, θKS, φKS) in domains with Schwarzschild metric and Gibbons-Hawking

(GH) coordinates (VGH, UGH, θGH, φGH) in domains with de Sitter metric. In the following

we drop the subscripts GH and KS since the distinction will be obvious from the context.

The KS and GH coordinates are defined piecewise in four regions that, taken together, cover

all of de Sitter and Schwarzschild space, respectively. These regions are defined as follows,

I : U > 0 , |V | < |U | , II : V > 0 , |U | < |V | ,
III : U < 0 , |V | < |U | , VI : V < 0 , |U | < |V | . (B.1)

The coordinates for Schwarzschild regions are defined as

U I
KS =

√
r

2GM
− 1er/4GM cosh

(
t

4GM

)
, V I

KS =

√
r

2GM
− 1er/4GM sinh

(
t

4GM

)
,

U II
KS =

√
1− r

2GM
er/4GM sinh

(
t

4GM

)
, V II

KS =

√
1− r

2GM
er/4GM cosh

(
t

4GM

)
,

U III
KS = −

√
r

2GM
− 1er/4GM cosh

(
t

4GM

)
, V III

KS = −
√

r

2GM
− 1er/4GM sinh

(
t

4GM

)
,

U IV
KS = −

√
1− r

2GM
er/4GM sinh

(
t

4GM

)
, V IV

KS = −
√

1− r

2GM
er/4GM cosh

(
t

4GM

)
.

The Schwarzschild metric in Kruskal-Szekeres coordinates is given by

ds2 =
32(GM)3

r
e−r/2GM (−dV + dU2) + r2dΩ2

2 , (B.2)

and r is defined by

U2 − V 2 =
( r

2GM
− 1
)
er/2GM . (B.3)

Similarly, we have for the Gibbons-Hawking coordinates

U I
GH =

√
1−Hr
1 +Hr

cosh (Ht) , V I
GH =

√
1−Hr
1 +Hr

sinh (Ht) ,

U II
GH =

√
Hr − 1

1 +Hr
sinh (Ht) , V II

GH =

√
Hr − 1

1 +Hr
cosh (Ht) ,

U III
GH = −

√
1−Hr
1 +Hr

cosh (Ht) , V III
GH = −

√
1−Hr
1 +Hr

sinh (Ht) ,

U IV
GH = −

√
Hr − 1

1 +Hr
sinh (Ht) , V IV

GH = −
√
Hr − 1

1 +Hr
cosh (Ht) .

The de Sitter metric becomes

ds2 =

(
1 +Hr

H

)2

(−dV 2 + dU2) + r2dΩ2
2 , (B.4)

where r is given by

U2 − V 2 =
1−Hr
1 +Hr

. (B.5)

The coordinate systems for both spacetimes are illustrated in figure 6.

– 38 –



J
H
E
P
1
2
(
2
0
1
6
)
1
5
5

B.2 Schwarzschild/de Sitter domain wall dynamcis

In this subsection we give the equations governing the dynamics of a spherical patch of

Schwarzschild space that is separated by a thin wall from a de Sitter phase. While the

dynamics are identical to the dynamics of a bubble of de Sitter phase within a Schwarzschild

background, discussed in section 3.3 (by exchanging the definition of inside and outside),

we provide the dynamics for the reverse situation for quick reference.

For the case of a Schwarzschild/de Sitter domain wall the rescaled radial coordinate z

is again given by (3.31),

z =
H2

+

2GMA
R̂3 , H2

+ =
4H

2− γ , γ = 2
κ2 −H2

κ2 +H2
, E = − 4κ2

(2GMS)2/3H
8/3
+

, (B.6)

but now the metric is given by (3.1) with

AB = 1− 2GM

R
, for r < r̂ ,

AA = 1−H2R2 , for r > r̂ . (B.7)

Remember that γ ≈ −2 when the domain wall tension in Planck units is small compared

to the Hubble scale,
σ2

M2
pl

� 4

3
ρ . (B.8)

We can write R̂′, and the position of the horizons in terms of the new radial coordinate

z as

R̂′− =
z3 − 1√
|E|z2

, R̂′+ = − 2 + γz3

2
√
|E|z2

, zAdS=0 =
2 + γ

|E| , zAS=0 =

√
|E|

1− γ2/4 . (B.9)

As expected, these expressions are identical to (3.32) with the replacement of indices − →
+ and coordinates r → const. − r. The full dynamics can be read off from the effective

potential in figure 16. The effective potential has a maximum at

z3max =
γ

4
+

√
2 +

(γ
4

)2
, V (zmax) = −3

2

γ
√

2 +
(γ
4

)2
+ γ2

4 + 2(√
2 +

(γ
4

)2
+ γ

4

)4/3
. (B.10)

An example of an unbound trajectory, as seen both in the Schwarzschild and de Sitter co-

ordinates, is shown in figure 17. All possible bound and unbound solutions are summarized

in table 2.

C Alternate expression for the tunneling rate

Coleman and de Luccia computed the vacuum decay rate in the leading semiclassical

approximation and including gravity in [29]. However, their result for the tunneling rate,

(3.12, 3.13) in [29] only applies for domain wall extrinsic curvatures that do not change sign
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0

z

V
(z)

R′
+ > 0

R′
− > 0R′

− < 0

R′
+ < 0

A
dS =

0

AS = 0

R′
+ < 0

R′
− > 0R′

− < 0

A
dS =

0

AS = 0

V V

Figure 16. Effective potential V (z) as a function of rescaled radial coordinate z, for κ < H (left)

and κ > H (right) for a Schwarzschild/de Sitter domain wall. The situation is equivalent to figure 7

after a coordinate change that reverses the inside and outside regions.

R
=
0

T = 0

R
=
0

R
=
0

3

2

1

0

−3 −2 −1 210

−1

−2

3

2

1

0

−3 −2 −1 210

−1

−2

R
=
0

Figure 17. Illustration of the unbound trajectory of a Schwarzschild/de Sitter domain wall that tra-

verses the regions IV-III-II in the de Sitter diagram and is contained in region I of the Schwarzschild

diagram. The spacetime diagram is not applicable in the faded region.

Type de Sitter Schwarzschild Conditions

Bound I IV - III - II E < VR̂′+=0 < Vmax

Bound I IV - I - II VR̂′+=0 < E < Vmax

Unbound I - II IV - I Vmax < E

Unbound IV - I - II I VR̂′−=0 < E < Vmax, κ < H

Unbound IV - III - II I E < VR̂′−=0 < Vmax

Table 2. Summary of all possible trajectories of a Schwarzschild/de Sitter domain wall. We show

the regions of the corresponding conformal diagrams that are traversed by the trajectories.
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across the wall and transitions that do not contain any causally disconnected spacetimes.

Their result was rewritten by Parke in a more compact form [61, 100].

We derived the transition probability using a Hamiltonian framework and obtained the

tunneling exponent (3.41). Our result is valid for arbitrary domain wall curvatures, but

we wrote the expression in a more compact form. We now express the tunneling exponent

in a way that closely resembles (3.13) of [29],

B =
3

16G2

(
sgn(R̂′−)

[
1− 8

3πGρBR̂
2
]3/2
− 1

ρB
−

sgn(R̂′+)
[
1− 8

3πGρAR̂
2
]3/2
− 1

ρA

)

+ 2π2R̂3σ +
3

8G2

(
NB, I −NB,F

ρB
+
NA, I −NA,F −Θ(−R̂′+)

ρA

)
, (C.1)

where R̂ is given in (3.39) and the junction conditions (3.15) set the sign of the extrinsic

curvature,

sgn(R̂′±) = sgn(ρA − ρB ∓ 6πGσ2) . (C.2)

In the absence of disconnected spacetimes the last term in (C.1) vanishes. For positive

domain wall curvatures (C.1) agrees with the result obtained by Coleman and de Luccia.

In the limit of vanishing energy density inside the bubble, we find with (3.41) for arbitrary

domain wall curvatures

B =
27π2σ4

2ρA(ρA + 6πGσ2)2
=

B0

[1 + (R̂0/2Λ)2]2
, (C.3)

where B0 = 27π2σ4/(2ρ3A), R̂0 = 3σ/ρA, and Λ = (8πGρA/3)−1/2. The result (C.3) is

identical to (3.16) — but at large tensions disagrees with (3.13) — of [29]. Curiously,

Coleman and de Luccia found with their (3.16) the correct answer for the both the large

and small tension regimes, although they considered only the latter scenario and then made

a sign “error”. Similarly, the result given in [61] is identical to our general results (3.41)

and (C.1) even though their calculation, again, only applies in the small tension regime.
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