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Abstract: In the Littlest Higgs model with T -parity (LHT), the T -odd heavy photon

(AH) is weakly interacting and can play the role of dark matter. We investigate the lower

limit on the mass of AH dark matter under the constraints from Higgs data, EWPOs,

Rb, Planck 2015 dark matter relic abundance, PandaX-II/LUX 2016 direct detections and

LHC-8 TeV monojet results. We find that (1) Higgs data, EWPOs and Rb can exclude

the mass of AH up to 99 GeV. To produce the correct dark matter relic abundance,

AH has to co-annihilate with T -odd quarks (qH) or leptons (`H); (2) the LUX (PandaX-

II) 2016 data can further exclude mAH
< 380(270) GeV for `H -AH co-annihilation and

mAH
< 350(240) GeV for qH −AH co-annihilation; (3) LHC-8 TeV monojet result can give

a strong lower limit, mAH
> 540 GeV, for qH -AH co-annihilation; (4) future XENON1T

(2017) experiment can fully cover the parameter space of `H -AH co-annihilation and will

push the lower limit of mAH
up to about 640 GeV for qH -AH co-annihilation.
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1 Introduction

The discovery of 125 GeV Higgs boson [1, 2] is a great step towards elucidating the elec-

troweak symmetry breaking mechanism. However, without protection by a symmetry, the

Standard Model (SM) Higgs boson mass should be quadratically sensitive to the cutoff scale

Λ (usually refers to Planck scale ∼ 1019 GeV) via radiative corrections, which renders the

theory with mh � Λ rather unnatural. Besides, the SM cannot explain other convincing

observations, such as the dark matter abundance in the Universe. In fact, the electroweak

naturalness problem and dark matter are widely considered as major motivations for new

physics beyond the SM.

Among various extensions of the SM, the Littlest Higgs model with T -parity (LHT) [3–

5] is one of the most promising candidates. It can not only successfully solve the electroweak

naturalness problem but also provide a viable dark matter candidate. On the theoretical

side, the LHT model is based on a non-linear σ model describing an SU(5)/SO(5) sym-

metry breaking, which extends the Littlest Higgs model [6–8] by introducing the discrete

symmetry T -parity. All of the global symmetries that protect the Higgs mass are explicitly

broken. The Higgs boson is realized as a pseudo-Nambu-Goldstone boson of the broken

global symmetry. With the collective symmetry breaking mechanism, all quadratically di-

vergent contributions to the Higgs mass only first appear at two-loop level, and thus are

sufficiently small. On the phenomenological side, the introduction of T -parity in the LHT

model can relax the electroweak precision observables (EWPOs) bound on the breaking

scale f by preventing the tree-level contributions from the heavy gauge bosons [9–15] and

lead to an abundant phenomenology at the LHC [16–37]. Besides, the T -parity guarantees

that the lightest T -odd particle (LTP) is stable so that it can naturally serve as the dark
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matter candidate if it is charge-neutral and colorless. One of such candidates is T -odd

partner of the hypercharge gauge boson AH .1

The phenomenology of heavy photon dark matter has been studied in [40–42]. In

general, there are two ways to achieve the correct dark matter relic abundance. One

is that two AH dark matter annihilate into SM particles, which is mainly through the s-

channel via exchanging the Higgs boson. However, due to the constraints of Higgs data and

EWPOs, the mass of heavy photon is heavier than mh/2 [43–47]. Thus, without resonant

enhancement, the pair annihilation cross section of AH is usually too small to satisfy the

observed dark matter relic density. The other is that the AH dark matter co-annihilates

with other T -odd particles, such as mirror quarks qH or leptons `H . The co-annihilation

of dark matter in simplified models has been studied in [48].

In this work, we will investigate the lower bound on the mass of AH dark matter co-

annihilations in the LHT model. We will consider various relevant constraints, including

Higgs data, EWPOs, Rb, Planck dark matter relic abundance, PandaX-II/LUX-2016 results

and LHC-8 TeV monojet result. This paper is organized as follows. In section 2, we give

a brief description of the heavy photon dark matter and T -odd fermion sector of the LHT

model. In section 3, we examine various constraints on AH dark matter. Finally, we draw

our conclusions in section 4.

2 Littlest Higgs model with T -parity

2.1 Heavy photon

The LHT model is a realization of non-linear σ model, which is based on the coset space

SU(5)/SO(5). The global symmetry SU(5) is spontaneously broken into SO(5) at TeV

scale by the vacuum expectation value (VEV) of the Σ field,

Σ0 = 〈Σ〉

02×2 0 12×2

0 1 0

12×2 0 02×2

 . (2.1)

In the meantime, the VEV Σ0 breaks the gauged subgroup [SU1(2)× U1(1)] × [SU2(2)×
U2(1)] of SU(5) down to the diagonal SM electroweak gauge group SUL(2) × UY (1). In

the end, there are 4 new heavy gauge bosons W±H , ZH , AH , whose masses are given at

O(v2/f2) by

MWH
= MZH

= gf

(
1− v2

8f2

)
, MAH

=
g′f√

5

(
1− 5v2

8f2

)
(2.2)

where g and g′ are the SM SUL(2) and UY (1) gauge couplings, respectively. In order to

match the SM prediction for the gauge boson masses, the VEV v needs to be redefined via

the functional form

v =
f√
2

arccos

(
1−

v2
SM

f2

)
' vSM

(
1 +

1

12

v2
SM

f2

)
, (2.3)

1Besides AH , T -odd partner of neutrino νH can be a dark matter candidate as well. However, the direct

detection experiments have excluded this possibility because the cross section of elastic scattering between

νH and nucleus is about 4 ∼ 5 order of magnitude larger than the current experimental bound [39].
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where vSM = 246 GeV. The heavy photon AH is typically the lightest T -odd state and

thus can be a possible candidate for dark matter. The only direct coupling of a pair of AH
to the SM sector is via the Higgs boson, resulting in weak-strength cross sections for AH
scattering into SM states.

2.2 T -odd fermions

Two fermion SU(2) doublets q1 and q2 are introduced in the LHT model, where qi (i = 1, 2)

is transformed as a doublet under SU(2)i, and T -parity interchanges these two doublets.

The T -even combination of these two doublets is considered as the SM SU(2) doublet,

while the T -odd combination has to gain a TeV scale mass. The fermion SU(2) doublets q1

and q2 are embedded into incomplete SU(5) multiplets Ψ1 and Ψ2 as Ψ1 = (q1, 0, 02)T and

Ψ2 = (02, 0, q2)T , in which 02 = (0, 0)T . Besides, in order to generate masses to the heavy

fermions, a SO(5) multiplet Ψc = (qc, χc, q̃c)
T is introduced as well. The transformation

of Ψc under the SU(5) is non-linear: Ψc → UΨc, where U is the unbroken SO(5) rotation

and is a non-linear representation of the SU(5). Then, the T -invariant Lagrangian for the

mass terms of the T -odd fermions can be written as follows:

Lκ = −κf(Ψ̄2ξΨc + Ψ̄1Σ0Ωξ†ΩΨc) + h.c. (2.4)

Here Ω = diag(1, 1,−1, 1, 1). It should be noted that the non-linear field ξ contains the

Higgs field, which can generate the masses of the T -odd quarks up to O(v2/f2) as,

mdiH
=
√

2κdif, muiH
=
√

2κuif

(
1− v2

8f2

)
(2.5)

where κqi(q = u, d) are the diagonalized Yukawa couplings of the T -odd quarks. Similarly,

the masses of the T -odd leptons are given by,

m`iH
=
√

2κ`if, mνiH
=
√

2κνif

(
1− v2

8f2

)
(2.6)

where κ`i and κνi are the diagonalized Yukawa couplings of T -odd leptons and neutrinos,

respectively. From eqs. (2.2), (2.5), (2.6), we note that only if κqi,`i,νi & 0.11, the heavy

photon AH can become the LTP for a given value of f . For simplicity, we assume the

universal Yukawa couplings κ`i = κνi = κ` and κui = κdi = κq, and require the Yukawa

couplings κ`,q > 0.11.

3 Constraints on heavy photon AH dark matter

3.1 Higgs data, EWPO and Rb

In the LHT model, the nature of composite Higgs leads to the deviation of the Higgs gauge

couplings from the SM values at the order of v2/f2. Moreover, mixing of the SM top with

the T -even top partner (T+) induces shifts in the Higgs couplings to gluons and photons.
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Here we list the relevant tree-level Higgs couplings for our fitting,

hW+W− :
2m2

W

v

(
1− 1

6

v2

f2

)
gµν , hZZ :

2m2
Z

v

(
1− 1

6

v2

f2

)
gµν ,

htt̄ : −mt

v

[
1 +

v2

f2

(
−2

3
+

R2

(1 +R2)2

)]
, hT+T̄− :

mT

v

R2

(1 +R2)2

v2

f2
, (3.1)

where R is the mixing angle between the top quark and T+ quark. The loop-induced

couplings hgg and hγγ are given in [18]. Besides, there are two possible ways to construct

T -invariant Lagrangians of the Yukawa interactions of the charged leptons and down-type

quarks. Up to O
(
v4

SM/f
4
)
, the ratios of the down-type quark Yukawa couplings ghdd̄ with

respect to the SM prediction are given by [18],

ghd̄d
gSM
hd̄d

= 1− 1

4

v2
SM

f2
+

7

32

v4
SM

f4
Case A

ghd̄d
gSM
hd̄d

= 1− 5

4

v2
SM

f2
− 17

32

v4
SM

f4
Case B. (3.2)

In our following fitting, we will confront the above modified Higgs couplings hV V , hff̄ ,

hgg and hγγ with the Higgs data for both cases.

In the LHT model, the electroweak precision observables S and T are changed by the

modified Higgs gauge couplings hV V [15]. Furthermore, the top partner can correct the

propagators of the electroweak gauge bosons at one-loop level. The UV operators can also

contribute to the S and T parameters [49]. We take the couplings of the UV operators as

unity [43]. Besides, the new mirror fermions and new gauge bosons can contribute to the

Zbb̄ coupling at one-loop level [51–53]. We will include the EWPOs and Rb constraints in

our study.

On the other hand, the current LHC direct searches for the multi-jet with the transverse

missing energy can also produce the bounds on the parameter space of the LHT model.

However, they are not strong enough to push the exclusion limits much beyond the indirect

constraints [43]. In particular, the ATLAS and CMS collaborations performed the searches

for the vector-like top partner in different final states bW , tZ and th. During the LHC Run-

1, they excluded the masses of the top partners up to about 700 GeV [54–56]. However,

those bounds depend on the assumptions of the group representations of top partners and

their decay channels. In addition to the conventional decay channels (bW , tZ and th), the

T -even top partner T+ can decay to T−AH , which can weaken the current LHC bounds

on top partner in the LHT model [36]. So in our scan, we consider the indirect constraints

including Higgs data, EWPOs and Rb.

We scan over the free parameters κ, f and R within the following ranges,

500 GeV < f < 5000 GeV, 0.11 < κ < 0.2, 0.1 < R < 3.3. (3.3)

where we assume κ` = κq = κ. In order to escape LHC limits from the multijet with 6ET ,

we require κ 6 0.2 to forbidden T -odd fermions decay to the heavy gauge bosons ZH and

WH . Besides, we decouple the T -odd top quark t− by setting mt− = 3 TeV in order to

– 4 –



J
H
E
P
1
2
(
2
0
1
6
)
1
5
2

Figure 1. Excluded regions (left each contour) in the plane of κ versus f for Case A and Case B,

where the parameter R is marginalized over.

avoid the bound of LHC searches for long-lived charged particles. We adopt our previous

scan method [45, 46] by constructing the likelihood L ≡exp[−
∑
χ2
i ] for each point, where

index i denotes the following constraint:

(1) The electroweak precision observables: S, T and U [15]. We use the experimental

values of S, T and U from ref. [50].

(2) Rb [52]. We use the final combined result Rb = 0.21629± 0.00066 [50] from the LEP

and SLD measurements.

(3) Higgs data. We check the LHT Higgs couplings by using HiggsSignals-1.4.0 [57, 58],

which includes the available Higgs data sets from the ATLAS, CMS, CDF and D0

collaborations. The mass-centered χ2 method is chosen in our study.

On the other hand, since the SM flavor symmetry is broken by the extension of the top

quark sector, the mixing between top partner and down-type quark can induce flavor

changing neutral current processes at one-loop level [59–62]. We checked our samples and

found that the constraints from Bs → µ+µ− [63, 64] can be easily satisfied within the

current uncertainty.

In figure 1, we show the excluded regions (left each contour) in the plane of κ versus

f for Case A and Case B by fitting Higgs data, EWPOs and Rb. The parameter R is

marginalized over. From the figure 1, it can be seen that the lower bound on the symmetry

breaking scale f is almost independent of κ and has reached about 675 (550) GeV at 2σ

level in Case A (B), which corresponds to mAH
= 99(76) GeV. Since the reduced bottom

Yukawa coupling in Case B is smaller than that in Case A (cf. eq. (3.2)), the non-fermionic
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Figure 2. The scatter plot on the planes of mAH
versus m`H ,qH (left panel) and σSI

p versus mAH

(right panel). All samples satisfy the Planck dark matter relic abundance within 3σ range. For

`H −AH (qH −AH) co-annihilation, κq (κ`) is fixed at 3.

decays of the Higgs boson can be enhanced in Case B, which is more consistent with the

current ATLAS-8 TeV Higgs data. So the lower bound on f in Case B is weaker than that

in Case A. To conservatively examine dark matter and LHC experiment constraints on

heavy photon AH , we will focus on Case A in the following.

3.2 Planck relic abundance and PandaX-II/LUX 2016 direct detections

In the LHT, AH pair mainly annihilates through a Higgs boson in s-channel to a pair of

fermions, W/Z bosons and Higgs bosons, whose contributions to the relic density depend

on the mass of AH . When mAH
is heavier than mh/2, the Higgs resonance effect in AH

pair annihilation will become small and the AHAH annihilation cross section will be too

small to give the right relic abundance. We use the MicrOMEGAs4.2.5 [65] to calculate

the relic density Ωh2 and the spin-independent scattering cross section between DM and

nucleon σSI
p .

In the left panel of figure 2, we show the scatter plot on the plane of mAH
versus

m`H ,qH . We require samples to satisfy the Planck dark matter relic abundance within 3σ

range. We can see that the constraint of the relic density requires AH co-annihilate with

T -odd fermions, which is typically given by,

∆m`H

mAH

=
m`H −mAH

mAH

. 0.1 (3.4)

∆mqH

mAH

=
mqH −mAH

mAH

. 0.2 (3.5)
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In the calculation of co-annihilation, the effective dark matter annihilation cross sec-

tion σeff(AH) includes the contributions from AH pair annihilation, AH and `H/qH co-

annihilation and `H/qH pair annihilation [66]. For the colored co-annihilation partner qH ,

the contribution of qH pair annihilation is large because of the strong coupling. While

for the non-colored co-annihilation partner `H , three contributions are comparable. So

the annihilation cross section of AH − `H is smaller than that of AH − qH for the given

mass splitting [48]. To obtain the correct relic density, the mass splitting between AH
and co-annihilation partner in AH − `H co-annihilation has to be smaller than that in

AH−`q co-annihilation (cf. eq. (3.5)). When AH becomes heavy, the effective cross section

σeff(AH) decreases so that the dark matter relic density will be overproduced in the uni-

verse. This leads to the upper bounds on the masses of dark matter and its co-annihilation

partners. Due to the small co-annihilation cross section, the resulting viable region of pa-

rameter space for the dark matter relic density only extends to about 400 GeV in AH − `H
co-annihilation.

In the right panel of figure 2, we show the scatter plot on the plane of σSI
p versus mAH

.

There are three processes contributing to the cross-section of AH scattering off nucleon:

Higgs-boson-exchanged t-channel, T -odd-quark-exchanged t-channel and s-channel [40].

For `H−AH co-annihilation, the dominant contribution to σSI
p is the Higgs-boson-exchanged

t-channel since the T -odd quarks are decoupled. The mass of AH can be excluded up to

about 380 (270) GeV by the LUX (PandaX-II) 2016 data [67, 68]. While for qH − AH
co-annihilation, mAH

< 350(240) GeV is excluded by the LUX (PandaX-II) 2016 data.

This is because that the cancellation between T -odd quark and the top quark loops in hgg

coupling reduces the contribution of Higgs-boson-exchanged t-channel to cross section σSI
p .

Besides, the amplitudes of T -odd-quark-exchanged t-channel and s-channel interference

destructively in our parameter space. The expected XENON1T (2017) experiment [69]

will allow it to cover `H − AH co-annihilation region and push the lower limit of mAH
up

to 640 GeV.

3.3 ATLAS-8TeV monojet limit

In co-annihilations, the decay products of light T -odd lepton or quark are usually very

soft. One way of probing such a compressed region is to use the ISR/FSI jet to boost

the soft objects, which produces the monojet(-like) events at the LHC [70–72]. Since the

T -odd leptons are produced via the electroweak interaction, the cross section of the heavy

lepton pair production are much smaller than that of the heavy quark pair production at

the LHC. We checked and found that the ATLAS monojet data can not give an exclusion

limit on the `H −AH co-annihilation scenario. So we only present the results for qH −AH
co-annihilation in our work.

We recast the ATLAS-8 TeV monojet bound [73] by using CheckMATE-1.2.1 [74, 75].

In our scenario, the monojet events arise from the processes:

pp→ jqHAH , jqH q̄H (3.6)

We generate the parton level signal events by using MadGraph5 aMC@NLO [76]. Then,

the parton level events are showered and hadronized by PYTHIA [77]. The fast detector
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Figure 3. Same as figure 2, but for ATLAS-8 TeV monojet constraint on qH -AH co-annihilation.

simulation are performed with the tuned Delphes [78]. The jet is clustered by FastJet [79]

with the anti-kt algorithm [80]. We normalize the cross section of qH q̄H and qHAH pro-

ductions to their NLO value by including a K-factor 1.5 [81]. Finally, we define the ratio

r = max(NS,i/S
95%
obs,i) to estimate the exclusion limit. Here NS,i is the event number of

signal for i-th signal region and S95%
obs,i is the corresponding observed 95% C.L. upper limit.

The max is over all signal regions in the analysis. We conclude that a point is excluded at

95% C.L. if r > 1. In figure 3, we show the monojet constraints on the parameter space of

qH −AH co-annihilation. We can see that the monojet limit can exclude the scale f up to

3.4 TeV, which corresponds to mAH
> 540 GeV. For a given f , the monojet has a better

sensitivity in the region with small Yukawa coupling κq.

4 Conclusions

In this work, we investigate the lower limit on the mass of AH dark matter by using the

constraints from Higgs data, EWPOs, Rb, Planck dark matter relic abundance, LUX direct

detection and LHC-8 TeV monojet results. We find that the mass of AH has been excluded

up to 99 GeV by Higgs data, EWPOs and Rb. Therefore, AH needs to co-annihilate with T -

odd quarks (qH) or leptons (`H) to give the correct dark matter relic abundance. Further,

with the very recent LUX (PandaX-II) 2016 data, the lower limit of mAH
can be pushed

up to about 380 (270) GeV and 350 (240) GeV for `H -AH and qH − AH co-annihilations,

respectively. Also, we find that ATLAS 8 TeV monojet result can give a stringent lower

limit, mAH
> 540 GeV, for qH -AH co-annihilation, while can not produce the limit on mAH

for lH − AH co-annihilation. In future XENON1T (2017) experiment, parameter space of

`H -AH co-annihilation can be fully covered and the lower limit of mAH
will be pushed up

to about 640 GeV for qH -AH co-annihilation.
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