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1 Introduction

Our theory of interest is Witten’s open bosonic string field theory [1]. In particular, we

focus on the research inspired by [2], where this theory was used to prove that the energy of

the tachyon vacuum is minus the energy of the D-25 brane. There has been a good deal of

progress made towards simplifying the original tachyon vacuum solution [3, 4]. This simple

solution is expressed in a language which makes use of an algebra of string fields called

the KBc algebra. Despite the advantages of this approach, there are various problems

that can arise when using the KBc algebra to construct solutions other than the tachyon

vacuum [5–8]. Our attitude in this work is that these problems arise because the KBc

algebra is not large enough to properly describe all solutions of open string field theory.

If one tries to construct an algebra of string fields in an arbitrary way, the star products

between the elements will be too difficult to manage. Therefore, in order to extend the

KBc algebra in a meaningful way, we must ask the question: under what conditions can

one straightforwardly construct an algebra of string fields with manageable star products?

In the rest of this section we introduce one such family of states with simple star product

structure.

Consider the operator modes φn corresponding to a primary conformal field φ(z) of

weight h. These modes may be written as

φn =

∮

dz

2πi
zn+h−1φ(z), (1.1)

where the contour of integration is along the complex unit circle unless otherwise specified.

If we make a conformal transformation z̃ = f(z), then the transformed modes φ̃n are given

by

φ̃n =

∮

dz

2πi

[

∂f(z)
]−h+1

[f(z)]n+h−1φ(z). (1.2)
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It is convenient to introduce ṽn(z) =
[

∂f(z)
]−h+1

[f(z)]n+h−1, so we have

φ̃n =

∮

dz

2πi
ṽn(z)φ(z). (1.3)

The modes φ̃n can be decomposed into their left and right components, respectively given

by

φ̃L
n =

∫

L

dz

2πi
ṽn(z)φ(z),

φ̃R
n =

∫

R

dz

2πi
ṽn(z)φ(z),

(1.4)

where L denotes integration along the Re(z) > 0 half of the complex unit circle and R

denotes integration along the Re(z) < 0 half of the complex unit circle.1 Therefore, the sum

of the left and right components corresponds to integration along the entire complex unit

circle, namely, φ̃L
n + φ̃R

n = φ̃n. The left and right components of operators are interesting

objects in string field theory because of their convenient properties with respect to the star

product. For any string fields A and B, we have

(φ̃L
nA) ⋆ B = φ̃L

n(A ⋆ B),

A ⋆ (φ̃R
nB) = (−1)|A||φ|φ̃R

n (A ⋆ B),
(1.5)

where in the last line |A| and |φ| refer to the ghost number of A and φ, respectively. We

now focus our attention to the left components φ̃L
n . Let us define the string fields

ΦL
n = φ̃L

n |I〉 , (1.6)

where |I〉 is the identity of the star product. Using (1.5), we can compute the star com-

mutator

[ΦL
m,ΦL

n ] = ΦL
m ⋆ ΦL

n − (−1)|Φ
L
m||ΦL

n |ΦL
n ⋆ ΦL

m

= φ̃L
m(|I〉 ⋆ φ̃L

n |I〉)− (−1)|Φ
L
m||ΦL

n |φ̃L
n(|I〉 ⋆ φ̃

L
m |I〉)

= (φ̃L
mφ̃L

n − (−1)|φ̃
L
m||φ̃L

n |φ̃L
n φ̃

L
m) |I〉

= [φ̃L
m, φ̃L

n ] |I〉 .

(1.7)

We note that in the above manipulation |ΦL
n | = |φ̃L

n |, since |I〉 has ghost number zero.

Also, it will be assumed throughout that commutators are graded by ghost number. The

result (1.7) shows us that if we create an algebra of string fields with elements ΦL
n , then

the star commutators can be entirely determined by evaluating the ordinary commutators

[φ̃L
m, φ̃L

n ]. We now provide an explanation of the conditions under which (1.7) can be written

in terms of a closed algebra of string fields.

1This convention for defining left and right components is consistent with [2, 4]. However, left and right

components are defined in the opposite way in [3]. The left-right decomposition of operators first appeared

in the work [9] and has been studied in many subsequent works. This splitting for the so called sliver

frame z̃ = arctan z has been of key importance for constructions of analytic solutions. More recently this

construction has been revisited in the works [10–12].
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Suppose that φ(z) belongs to a family of primary conformal fields indexed by a set J ,

φ(z) ∈ {φα(z)}α∈J , such that

[φm, φn] =
∑

α∈J

fα
mn φ

α
m+n, (1.8)

where the fα
mn are constants and the modes φα

n correspond to φα(z). An important obser-

vation of this work is that there sometimes exists a conformal frame z̃ in which φn and φ̃L
n

satisfy the same algebra, meaning that

[φ̃L
m, φ̃L

n ] =
∑

α∈J

fα
mn(φ̃

α
m+n)

L, (1.9)

where the constants fα
mn are the same in both cases.2 In this situation, it is straightforward

to see that

[ΦL
m,ΦL

n ] =
∑

α∈J

fα
mn(Φ

α
m+n)

L. (1.10)

We refer to the algebra generated by (1.10) as the string field representation of the al-

gebra (1.8) with structure constants fα
mn. This result answers the question posed at the

beginning of this discussion. In particular, the condition (1.9) allows one to straightfor-

wardly construct an algebra of string fields with manageable star products.3

The main observation of this work is that we have precisely the condition (1.9) for the

matter plus ghost Virasoro modes Ln and the conformal frame z̃ = 2
π
arctan z. The modes

Ln satisfy the zero central charge Virasoro algebra, which we now refer to simply as the

Virasoro algebra. If we let L̃n = Ln and define the string fields Ln = LL
n |I〉, then

[Lm,Ln] = (m− n)Lm+n. (1.11)

We call the algebra generated by (1.11) the string field representation of the Virasoro

algebra.

Naively, one would expect this discussion to be exactly the same for the right com-

ponents. It is true that the modes LR
n satisfy the Virasoro algebra, however, there is one

interesting subtlety. Define the string fields L∗
n = LR

n |I〉. Using the rule (1.5), we find

[L∗
m,L∗

n] = −(m− n)L∗
m+n. (1.12)

Recall that the BPZ dual of Ln is given by L∗
n = (−1)nL−n. Therefore, the BPZ dual alge-

bra is [L∗
m, L∗

n] = −(m− n)L∗
m+n. We see from this observation that the algebra generated

by (1.12) is actually the string field representation of the BPZ dual algebra.

This paper is outlined as follows. In section 2, we prove the claim that Ln together

with the conformal frame z̃ = 2
π
arctan z satisfy the condition (1.9). We also discuss com-

plications which arise if one considers correlation functions with operator insertions at the

2When the commutator [φ̃L
m, φ̃L

n ] is computed in an arbitrary conformal frame, it is common to encounter

anomalous terms proportional to φα(i) or its derivatives.
3Aside from the well known K and B string fields which form a trivial subalgebra of (1.10), Erler [17] has

noticed that a string field G = GL
−1/2 |I〉 in the context of superstring field theory obeys the relation G2 = K.
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open string midpoint. In section 3, we discuss various options for extending the KBc al-

gebra. In section 4, we use our results to find novel algebraic solutions of open string field

theory. We conclude with a brief summary of our results and comment on opportunities

for future exploration.

2 Left and right components of Ln

Since we already know that [Lm, Ln] = (m− n)Lm+n, the main goal of this section is to

show that [LL
m,LL

n ] = (m− n)LL
m+n. The first step towards showing these commutation

relations is to explicitly express the operator modes Ln as

Ln =

∮

dz̃

2πi
z̃n+1T̃ (z̃)

=

(

2

π

)n ∮ dz

2πi
(1 + z2)(arctan z)n+1T (z).

(2.1)

For the sake of brevity, we define

vn(z) =

(

2

π

)n

(1 + z2)(arctan z)n+1. (2.2)

An important property of the vector fields vn(z) is that

lim
z→±i

vn(z) = 0. (2.3)

A quick but a bit formal argument for [LL
m,LL

n ] = (m− n)LL
m+n is to rewrite

LL
n =

∮

dz

2πi
vn(z)θ(Re(z))T (z), (2.4)

where we have introduced the ‘holomorphic step function’

θ(Re(z)) =
1

2
+

1

π
(arctan z + arccot z) (2.5)

satisfying θ(Re(z)) = 1 for Re(z) > 0 and θ(Re(z)) = 0 for Re(z) < 0.

Let us define Lv =
∮

dz
2πiv(z)T (z). Formally, or under suitable conditions, for any

two such operators [Lv, Lw] = −L[v,w], where [v, w] = v∂w − w∂v denotes the Lie bracket.

Applying this formula for two vector fields of the form vn(z)θ(Re(z)) one quickly establishes

[LL
m,LL

n ] = (m− n)LL
m+n (2.6)

thanks to the identity

vn(w)∂vm(w)− vm(w)∂vn(w) = (m− n)vn+m(w) (2.7)

and the formal properties of the holomorphic step function θ(Re(z))2 = θ(Re(z)) and

∂zθ(Re(z)) = 0, where especially the latter one may seem dubious.
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Figure 1. Contour manipulation involved in proving (2.6). The blue z-contour is deformed from

CR
1+ε into CR

1−ε leaving behind small circle around the singularity at w, and integration along two

open vertical segments of length 2ε. The variable w is integrated along the unit red semicircle.

Because of central importance of the equation (2.6) to this work, let us present a more

rigorous derivation. To proceed we follow the standard contour argument with modifica-

tions due to the step functions which restrict both contours to semicircles as in figure 1.

By picking sufficiently small ε > 0, the commutator can be expressed as

[LL
m,LL

n ] =

(

∫

CR
1+ε

∫

CR
1

−

∫

CR
1−ε

∫

CR
1

)

dz

2πi

dw

2πi
vm(z)vn(w)T (z)T (w). (2.8)

In analogy to the standard argument we can deform the z-variable contour CR
1+ε into the

CR
1−ε contour so that they cancel each other. What remains is a sum of two terms I1 + I2

I1 =

∫

CR
1

dw

2πi
vn(w)

∮

Cw

dz

2πi
vm(z)T (z)T (w), (2.9)

I2 =

∫

CR
1

dw

2πi
vn(w)

(
∫ i+iε

i−iε

+

∫ −i+iε

−i−iε

)

dz

2πi
vm(z)T (z)T (w). (2.10)

The first term I1 is given by a small contour Cw around the point w. Only the singular

part of the zero-central-charge OPE

T (z)T (w) ∼
2T (w)

(z − w)2
+

∂T (w)

z − w
(2.11)

contributes. The resulting contribution takes the form

I1 =

∫

CR
1

dw

2πi
vn(w) [2∂vm(w)T (w) + vm(w)∂T (w)]

=

∫

CR
1

dw

2πi
[vn(w)∂vm(w)− vm(w)∂vn(w)]T (w)

+vn(i)vm(i)T (i) + vn(−i)vm(−i)T (−i), (2.12)

where in the second line we used integration by parts. The first term already accounts for

our desired commutation relation (2.6) thanks to (2.7). The last two terms are a contribu-

tion from the ends of the contour. They vanish since vn(±i) = 0, but this computation also

hints at possible problems. Inserting the term I1 inside a correlator with generic mid-point

insertions at ±i, the explicit appearance of T (±i) on the right hand side of (2.12) would

– 5 –
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lead to divergences and the final result would depend on the precise manner the various

limits are taken. In this work we allow the probing operator to approach the midpoint at

the very end, so that the midpoint contributions in (2.12) are effectively absent.

The second term I2 is naively not contributing either, since the integration region is

of vanishing size as ε is taken to zero. One must exercise a caution however, since the

integrand of the double integral (2.10) is divergent in the region z ∼ w ∼ ±i where its

leading singularity is given by

tu

(it− u)2
(log t)m+1(log u)n+1T (u). (2.13)

Here we parameterized z = ±i+ it and w = ±i+u. Standard power-counting argument —

assuming regular T (u) — shows however that the singularity is integrable, and hence the

contribution from a vanishing size region is indeed vanishing. The easiest way to see this is

by passing to radial coordinates in the t-u plane. On the other hand, had we evaluated I2
inside a correlator with midpoint insertions, we would have to replace T (u) by e.g. 1/u2 in

case of a primary field, and I2 would have been divergent, or at least prescription dependent.

Let us close this section by noting that similarly to (2.4), we have

LR
n =

∮

dz

2πi
vn(z)θ(Re(−z))T (z), (2.14)

where θ(Re(−z)) corresponds to integration along the Re(z) < 0 half of the complex unit

circle. We find the expected result

[LR
m,LR

n ] = (m− n)LR
m+n. (2.15)

One may also consider commutators involving both left and right components. Using a

similar analysis, we obtain4

[LL
m,LR

n ] = 0. (2.16)

3 Extensions of the KBc algebra

We first recall the most important results of sections 1 and 2. We have shown that the

strings fields Ln = LL
n |I〉 form a representation of the Virasoro algebra

[Lm,Ln] = (m− n)Lm+n. (3.1)

We have also seen that the string fields L∗
n = LR

n |I〉 form a representation of the BPZ dual

algebra

[L∗
m,L∗

n] = −(m− n)L∗
m+n. (3.2)

4This commutation relation has a controversial history. The result given here is consistent with [10],

but inconsistent with [11, 12]. The issue is that this commutation relation breaks down when one considers

correlation functions with operator insertions at the open string midpoint z = i. For the sake of the current

paper, we do not consider such situations. However, this issue is a current topic of interest and will be

addressed in [13].
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At this point we restrict our discussion for convenience to the Virasoro algebra rather than

its dual. However, similar remarks will hold if one wishes to formulate a theory using the

BPZ dual algebra.

The string fields of the KBc algebra are defined in our language as

K = LL
−1 |I〉 = L−1, B = b̃L−1 |I〉 , c = c̃

(

1

2

)

|I〉 , (3.3)

where as before the tilde refers to the operator expressed in the z̃ = 2
π
arctan z conformal

frame. Given our previous observations, it is clear that we may define an algebra of

anticommuting string fields analogous to B, given by

Bn = b̃Ln |I〉 , (3.4)

so that B = B−1. If we use the convention that all star commutators are graded by ghost

number, then the standard algebraic properties of KBc are

[L−1,B−1] = 0, QL−1 = 0,

[L−1, c] = ∂c, QB−1 = L−1, (3.5)

[B−1, c] = 1, Qc = cL−1c,

where ∂c = ∂̃c̃
(

1
2

)

|I〉.

We are now prepared to begin our discussion of extending the KBc algebra. The most

straightforward extension is to include all of the string fields Ln and Bn. This algebra

satisfies

[Lm,Bn] = (m− n)Bm+n, QLn = 0, (3.6)

[Bm, c] =

(

1

2

)m+1

, QBn = Ln.

The commutator [Ln, c] is a bit trickier to evaluate. We begin by computing

Ln ⋆ c = LL
nc,

c ⋆ Ln = −LR
n c+ c ⋆ (Ln |I〉),

[Ln, c] = Lnc− c ⋆ (Ln |I〉).

(3.7)

Using the rule (c̃
(

1
2

)

|I〉) ⋆ (Ln |I〉) = c̃
(

1
2

)

Ln |I〉, we see that

[Ln, c] =

[

Ln, c̃

(

1

2

)]

|I〉 . (3.8)

By computing the commutator (3.8), we find

[Ln, c] = [−(n+ 1)(2)−n + (2)−n−1∂̃]c̃

(

1

2

)

|I〉 (3.9)

and hence

Qc = (2)n+1cLnc. (3.10)

– 7 –
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Notice that by defining Cn = (2)n+1c, we have

QCn = CnLnCn,

[Bm,Cn] = (2)n−m.
(3.11)

The above relationships will be convenient when we use these results to write down solutions

of open string field theory.

Another possibility is to consider a finite extension of the KBc algebra. In fact, a

finite extension is often computationally easier to understand. The infinite extension was

introduced first in order to develop all of the techniques necessary to deal with extended

KBc algebras. The Virasoro algebra has two non-trivial finite subalgebras. The elements

L−1 and L0 form what is called aff(1), while L−1, L0, and L1 form the familiar SL(2, R)

algebra. By adding the B counterparts to either aff(1) or SL(2, R), one can create a finite

extension of the KBc algebra. However, it should be noted that one is not strictly limited

to these cases. For the generating string fields one could instead choose various linear

combinations of the elements in aff(1) or SL(2, R). In fact, one of the early motivations for

this work was the discovery of one of the aff(1) linear combinations. Consider the string field

L = L0 −
1

2
L−1. (3.12)

The string field L has the interesting property that

[L,K] = L−K = K,

[L,B] = L−B = B,

[L, c] = L−c = −c,

(3.13)

where L− = 1
2(L0 − L∗

0) is the familiar derivation of the star algebra. Therefore, adding L

to the KBc algebra is effectively turning an exterior derivative into an interior derivative.

The SL(2, R) extension also has a nice physical interpretation. It is well-known that

the string field K acts as a generator of translations when acting on the string field c, a fact

which is expressed by the commutation relation [K, c] = ∂c. It turns out that the SL(2, R)

extension effectively adds the generators of dilation and special conformal transformation

to the KBc algebra. To see this, let us use the convention that the generator Gn associated

with Ln is defined implicitly by [Ln, c] = iGnc. Then we see from (3.11) that

Gn = −i
[

− (n+ 1)z̃n + z̃n+1∂̃
]

, (3.14)

where we let z̃ → 1
2 . Notice that the generators G−1, G0, and G1 form a representation of

the holomorphic component of the global conformal algebra in two dimensions.

4 Application to algebraic solutions

The goal of this section is to show that we can use the extensions described in section 3

to construct new analytic solutions to the open string field theory equation of motion

QΨ+Ψ ⋆Ψ = 0. We begin by reviewing important techniques for constructing solutions

– 8 –
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with the KBc algebra. The modern method of constructing solutions is to start with the

pure gauge ansatz U = 1− FBcF , where F = F (K) is an appropriate function [14] of the

string field K. The corresponding solution Ψ is given by Ψ = UQU−1. In order to find

U−1, we compute

U−1 = 1 +
∞
∑

n=1

(FBcF )n−1FBcF

= 1 +
∞
∑

n=1

(F 2)n−1FBcF

= 1 +
1

1− F 2
FBcF.

(4.1)

This result for U−1 leads to the solution

Ψ = FcB
1

1− F 2
KcF, (4.2)

which is the familiar Okawa ansatz discovered in [3].

In the spirit of section 3, we first show how this solution nicely generalizes to the

infinite extension of KBc, which includes all of the string fields Ln, Bn, and Cn. We start

with the pure gauge ansatz

Un = F (Ln)BnCnF (Ln) (4.3)

for a fixed choice of n. The relationships (3.6) and (3.11) tell us that for each fixed value of

n, the Ln,Bn,Cn algebra behaves almost identically to the originalKBc algebra. Therefore,

we find that the pure gauge ansatz Un leads to the solution

Ψn = F (Ln)CnBn
1

1− F 2(Ln)
LnCnF (Ln). (4.4)

The computation and classification of all possible solutions using different representa-

tions of the KBc algebra is certainly a project in itself, and therefore we do not attempt

to perform such an analysis here.5 However, we conclude this work by drawing attention

to some interesting solutions that are of a different form than (4.4). These solutions are

perhaps best illustrated by focusing on an algebra similar to the one described in (3.13).

This algebra is defined by extending the KBc algebra with the two string fields

L = L0 −
1

2
L−1,

B′ = B0 −
1

2
B−1.

(4.5)

In addition to the usual KBc commutation relations, the KLBB′c algebra satisfies

[L,K] = K, [B′,K] = B, [L,B] = B,

[L,B′] = 0, [L, c] = −c, [B,B′] = 0, (4.6)

[B′, c] = 0, QB′ = L, QL = 0.

5It would be interesting for instance to compare this solution to the ones constructed in [10, 15].
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Analytic solutions with the KLBB′c algebra can involve functions of the type F =

F (K,L). It is important to note that this is a function of non-commuting variables. There-

fore, some operations on F (K,L) will depend on how the function is ordered. In effort to

state our results in the most convenient way, let us adopt the convention that we always

order F (K,L) with every K appearing to the left of every L. In particular, the functions

we will be interested in are those which can be written as

F (K,L) =

∫

dα

∫

dβ f(α, β) eαKeβL. (4.7)

First note that BLm = (L− 1)mB. Therefore, since B commutes with K, we have6

BF (K,L) = F (K,L− 1)B. (4.8)

It is similarly true that KF (K,L) = F (K,L− 1)K. Next we study the way B′ interacts

with F (K,L). Notice that since [[B′,K],K] = 0, we can use the formula

[B′,Kn] = nKn−1[B′,K] = nKn−1B. (4.9)

Recalling the form of our function (4.7) and the rule (4.8), we find that B′ satisfies the

commutation relation

[B′, F (K,L)] =
∂F (K,L− 1)

∂K
B. (4.10)

The above equation raises an additional concern. Even with our prescribed ordering of the

function F (K,L), there is still some confusion that may arise when taking the K derivative

of a product of functions. Consider two functions A(K,L) and B(K,L) of the type (4.7).

The correct product rule is

∂

∂K

[

A(K,L)B(K,L)
]

=
∂A(K,L)

∂K
B(K,L) +A(K,L+ 1)

∂B(K,L)

∂K
. (4.11)

The above equation is actually quite intuitively pleasing. Since passing K through A(K,L)

sends L → L− 1, it makes sense that passing ∂
∂K

through A(K,L) sends L → L+ 1.

Recall the pure gauge ansatz U = 1− FBcF . We obtain a new type of analytic solution

by changing F (K) → F (K,L). Using the relationship (4.8), we find

Ψ = F (K,L)cB
1

1− F 2(K,L)
KcF (K,L). (4.12)

Notice, that the noncommutativity of K and L requires positioning the K and B factors

appropriately on the two sides of the middle factor (1 − F 2(K,L))−1. We postpone the

detailed analysis of the physics of such solutions to a future work.

Notice that we also have the freedom to consider a more general U of the form

U = 1−
∑

i

FL
i BcFR

i , (4.13)

6We thank Ondra Huĺık for helping us to better understand manipulations involving the KLBB′c

algebra.
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where FL
i and FR

i are both functions of the string fields K and L. The inverse of this pure

gauge choice is given by

U−1 = 1 +
∞
∑

n=1

(

∑

i

FL
i BcFR

i

)n−1
∑

j

FL
j BcFR

j

= 1 +

∞
∑

n=1

(

∑

i

FL
i F

R
i

)n−1
∑

j

FL
j BcFR

j

= 1 +
1

1−
∑

i

FL
i F

R
i

∑

j

FL
j BcFR

j .

(4.14)

The solution Ψ = UQU−1 looks somewhat more complicated because the summation

prohibits some of our usual simplification tricks. However, it can still be written in the

reasonably convenient form7

Ψ = Q

(

∑

i

FL
i BcFR

i

)

+
∑

i

FL
i cBFR

i

1

1−
∑

j

FL
j F

R
j

∑

k

FL
k KcFR

k . (4.15)

This is a convenient form because the term Q(. . . ) will not contribute to a computation of

the energy.

By incorporating the new string field B′, we can consider a pure gauge ansatz

U = 1− F (K,L)B′cF (K,L). To efficiently compute U−1, recall (4.10) and notice that

(

B′cF 2(K,L)
)

B′ =

(

− c
∂

∂K

(

F 2(K,L− 1)
)

B

)

B′. (4.16)

Now we can compute

U−1 = 1 +

∞
∑

n=1

(F (K,L)B′cF (K,L))n

= 1 + F (K,L)
∞
∑

n=1

(

− c
∂

∂K

(

F 2(K,L− 1)
)

B

)n−1

B′cF (K,L)

= 1 + F (K,L)c
∞
∑

n=1

(

−
∂

∂K

(

F 2(K,L− 1)
)

)n−1

BB′cF (K,L)

= 1 + F (K,L)cB
1

1 + ∂
∂K

(F 2(K,L))
B′cF (K,L).

(4.17)

As usual, the corresponding solution is given by Ψ = UQU−1. When dealing with solutions

of the above type, one must be careful to use the rule (4.11) when computing the K

derivative of a product of functions.

One motivation for writing down these new solutions is in effort to construct solutions

describing multiple D-brane configurations. Such an attempt has already been made in [5],

but the solutions unfortunately failed some tests of regularity [6–8]. It is our hope that the

extended KBc framework can be used to write down regular multibrane solutions. Also, it

is apparent that some of these results can be extended to superstring field theory, following

the work of [17, 18].

7Similar solutions have been explored in [16].
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5 Conclusion

We have constructed an interesting new representation of the zero central charge Virasoro

algebra using string fields. We have used this construction to explore various extensions of

the KBc algebra, and find new analytic solutions of open string field theory. It should be

noted that many proposals have been made in the past which attempt to make use of left

and right components. Some of these proposals are [19–23]. However, our work comes from

a quite different perspective. We have been able to make insights not easily seen in previous

constructions. The observations of this work are rich with opportunities for future explo-

ration. Such exploration would include studying the surfaces generated by Ln, computing

the energy of the new solutions, and writing down a most general solution to the open string

field theory equation of motion. This might necessitate revisiting and generalizing previous

results, especially elucidating the role played by the so called hidden boundary [11, 12].
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