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1 Introduction

String theory provides a powerful framework for exploring quantum field theories. It leads

to the discovery of quantum field theories in spacetime dimensions higher than 4. Important

examples are six-dimensional maximally superconformal field theories, called (2, 0) theories,

which come with the ADE classification [1]. The (2, 0) theories of AD-types describe the

low energy dynamics of M5-branes [2]. It is very difficult to study these systems, due to

the lack of their microscopic definitions.

Compactifying these 6d theories on a circle, one finds 5d maximal super Yang-Mills

theories at low energy. Although these Yang-Mills theories are non-renormalizable, it

has been suggested that they contain useful information about the 6d UV theories [3, 4].

Instanton solitons of 5d gauge theories play an essential role in understanding the 6d

physics. They are non-perturbative solitons carrying the topological U(1) charges which

are interpreted as the Kaluza-Klein momenta along the circle.

In this work, we study these 5d N = 2 gauge theories preserving 16 supercharges,

obtained from circle compactifications of 6d (2, 0) SCFTs. A remarkable point is that

even if one begins with 5d SYMs which do not recognize the 6d circle, the six-dimensional

physics is recovered by incorporating non-perturbative instantons [3–9]. At least for AD-

types, this claim is inspired by the duality relation between type IIA and M-theory. The

Yang-Mills coupling constant g2
5 is proportional to the radius of M-theory circle RM via

the IIA string coupling constant. D0-branes bound to D4-branes are realized as instantons

in 5d gauge theories, whose mass is inversely proportional to RM, i.e.,

4π2

g2
5

∼ 1

RM
. (1.1)
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This means that 5d SYM instantons carry Kaluza-Klein momenta along the M-theory

circle. Including them, D4-branes are uplifted to circle compactified M5-branes described

by 6d (2, 0) SCFT.

We study the instanton partition functions for 5d N = 1∗ gauge theories on Omega-

deformed R4 × S1. The N = 1∗ theory is deformed from the maximal SYM by adding an

N = 1 hypermultiplet mass m. We consider the Coulomb branch where the gauge sym-

metry is completely broken to its Abelian subgroup. The instanton partition function was

first studied in [10, 11] to understand Seiberg-Witten solutions of 4d N = 2 gauge theories.

Generalization to all classical gauge groups and inclusion of various hypermultiplets were

considered in [12, 13]. Throughout this work, we regard this observable as the Witten

index of 5d SYM wrapped on the temporal circle S1 of radius β
2π .

The 5d SU(N) partition function was computed in [10, 11] via supersymmetric localiza-

tion, being further interpreted as the Kaluza-Klein index of SU(N)-type (2, 0) theory [5].

Besides instantons, the Nekrasov partition function also gets contribution from charged

W-bosons which constitute 1
4 -BPS bound states with instantons. W-bosons are uplifted

to self-dual strings of (2, 0) theories. They are electric and magnetic sources of tensor

multiplets existing in 6d SCFTs. They are tensionless at the conformal fixed point. They

obtain non-zero tension T ∝ 〈Φ〉 in the tensor branch, where tensor multiplet scalars Φ

obtain non-zero VEVs 〈Φ〉 6= 0 [1, 2, 14, 15]. The SU(N) instanton partition function

played important roles in the recent studies on (2, 0) theory of AN−1-type [5–9].

In this work, we extend the analyses made for the SU(N) instanton partition functions

to those of other classical gauge groups: SO(2N + 1), Sp(N), SO(2N). The SO(2N) gauge

theories are circle reductions of (2, 0) theories of DN -type. The SO(2N + 1) and Sp(N)

gauge theories are obtained from circle compactified (2, 0) theories of AD-type with outer

automorphism twists [16, 17]. We use these instanton partition functions to study the

following subjects of the (2, 0) theories.

We first use the instanton partition functions to explore S-dualities of maximal super

Yang-Mills theories. S-duality asserts that a pair of 4d N = 4 gauge theories are equal,

where their gauge groups G and G∨ are Langlands dual [18–21]. The W-bosons and

monopoles in one theory correspond to the monopoles and W-bosons in the other theory,

if their gauge couplings τ4 = θ4
2π + 4πi

g24
and τ∨4 =

θ∨4
2π + 4πi

g∨24
are related as τ∨4 ∼ − 1

τ4
[18–21].

It identifies a weakly-coupled theory and a strongly-coupled theory. Regarding 4d N = 4

SYMs as (2, 0) theories wrapped on tori, whose complex structures are translated to gauge

couplings, S-duality is realized as exchanging two sides of the torus. Our instanton partition

functions are 6d observables. Since they depend only on complex structures τ of the tori,

they are also expected to respect the geometric S-dualities. In particular, for non-simply-

laced gauge theories, S-duals of the instanton partition functions are expected to be those

for 5d SYMs on S1 with twisted boundary conditions [17]. The instanton partition functions

depend on various chemical potentials. Keeping all of these chemical potentials, their S-

dualities are hard to explore. However, the instanton partition functions simplify after

taking special limits of the chemical potentials. In section 4.2, we discuss the S-dualities

of the instanton partition functions in these limits.
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As a byproduct, we study the S-dualities of type IIA orientifold backgrounds compact-

ified on S1 which uplift to M-theory on T 2. This is because one can study the D0-brane

partition functions in various O4-plane backgrounds using the same techniques. Remark-

ably, one can perform the exact S-duality transformations on these partition functions with

all chemical potentials turned on. See section 3 for the details.

The instanton partition functions are also useful as building blocks for curved space

partition functions. We compute the 5-sphere partition functions that were studied in [6,

7, 22, 23]. They are related to the partition functions of (2, 0) theories on S5 × S1, which

are called the (2, 0) superconformal indices [24]. For example, [6, 7] obtained the (2, 0)

superconformal index for SU(N)-type theory which agrees with the vacuum character of

WAN−1
algebra. It leads to the conjecture that there is an underlying W algebra structure

in 6d (2, 0) SCFTs of A-type. This has been explicitly conjectured and further tested

using 3-point functions in [25]. We compute the S5 partition functions for SO(2N) gauge

theories, and show that they take the form of the vacuum character of WDN algebra.1

The outline of this paper is as follows: in section 2, we review the ADHM quantum

mechanics of D0-D4-O4 systems and compute their Witten indices. In section 3, we study

the S-dualities of pure orientifold systems compactified on a circle. In section 4, we study

S-dualities of the instanton partition functions in special limits. We also compute the (2, 0)

superconformal indices from the S5 partition functions, displaying the 6d operator spectra.

Our results extend the W algebra conjecture to SO(2N) theories and also propose the new

indices for (2, 0) theories with outer automorphism twists. Concluding remarks are given

in section 5.

2 Instantons in 5d maximal SYM

We consider 5d maximal SYM on R1,4 having a classical gauge group G with rank N . It has

SO(1, 4) Lorentz symmetry and SO(5)R R-symmetry. We study the Coulomb branch where

the vector multiplet scalars φI acquire non-zero VEVs αI , breaking the gauge symmetry

G into the Abelian subgroup U(1)N ⊂ G. The maximal SUSY algebra is given by

{QiM , Q
j
N} = Pµ(ΓµC)MNω

ij + i
4π2k

g2
5

CMNω
ij + iTr (αI ·Π)CMN (ΓIω)ij (2.1)

where M,N = 1, 2, 3, 4 are SO(1, 4) spinor indices, i, j = 1, 2, 3, 4 are SO(5)R spinor indices,

I is the SO(5)R vector index, CMN is the charge conjugation matrix, ωij is the SO(5)R '
Sp(2)R symplectic form, Π denote U(1)N gauge symmetry generators. Supercharges are

subject to the symplectic-Majorana condition. The U(1) instanton charge k is defined as

k =
1

8π2

∫
R4

Tr (F ∧ F ) ∈ Z. (2.2)

which is integer-valued. We write Yang-Mills kinetic term as 1
4g25

∫
Tr (FµνFµν), setting the

unit instanton mass to be 4π2/g2
5.

1The correct SO(2N) index was first reported in [7], which takes the form of WDN vacuum character.

However, the derivation of the instanton part of the partition function was wrong in [7], which we correct

in this paper.
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The maximal SYM contains an N = 2 vector multiplet whose N = 1 decomposition

gives a vector multiplet plus an adjoint hypermultiplet. We look at the N = 1 Coulomb

branch where only the N = 1 vector multiplet scalar has a non-zero VEV α. This set-up

has SO(4)1 little group of 5d massive particles and SO(4)2 ⊂ SO(5)R R-symmetry. We

further decompose it into SU(2)1L × SU(2)1R ⊂ SO(4)1 and SU(2)2L × SU(2)2R ⊂ SO(4)2.

We denote 16 generators of maximal SUSY by QAα , Q
A
α̇ , Q

a
α, Q

a
α̇, where α, α̇, a, A are doublet

indices for SU(2)1L, SU(2)1R, SU(2)2L, SU(2)2R.

There are two types of massive 1
2 -BPS particles in the Coulomb phase: W-bosons and

instantons. W-bosons are electrically charged objects under U(1)N ⊂ G, which we choose

to satisfy Tr(α · Π) > 0 and preserve QAα̇ and Qaα. Instantons are solitonic particles that

carry the topological U(1) charge defined in (2.2), which we choose to satisfy the self-duality

condition Fmn = 1
2εmnpqFpq and preserve QAα̇ and Qaα̇. Notice that our choice restricts the

instanton charge k to be a positive integer. These BPS particles may form 1
4 -BPS bound

states, whose masses are given by

M =
4π2k

g2
5

+ Tr (α ·Π). (2.3)

In this section, we study the instanton partition functions which count these BPS bound

states of instantons and W-bosons in 5d maximal super Yang-Mills theories.

2.1 N = (4, 4) ADHM quantum mechanics

The moduli space approximation is a technique to describe the low energy dynamics of

solitons [26]. Being applied to 5d SYM instantons, it gives a SUSY quantum mechanics for

instanton zero modes. When the 5d gauge group is classical, the zero modes are described

as the ADHM data satisfying the ADHM constraint equation [27]. The instanton quantum

mechanics is a non-linear sigma model whose target space is the instanton moduli space.

However, one cannot expect the instanton quantum mechanics to be a UV complete

description for instanton solitons since the instanton moduli space suffers from the small

instanton singularity where the instanton size shrinks to zero. It is generally very demand-

ing task to find a UV completion of the instanton quantum mechanics. In certain type of

theories, string theory supplies the UV completions from D-brane realizations of 5d SYM

instantons. We call them the ADHM quantum mechanics.

5d maximal SYM with a classical gauge group G is engineered from D4-branes possibly

on top of an O4-plane. Its instantons are realized as D0-branes stuck on D4-branes. The

worldvolume theory of D0-branes is the ADHM quantum mechanics that we study. It

is a gauge theory whose gauge group Ĝ is determined from G. It has SO(4)1 × SO(5)R
symmetries inherited from underlying 5d theories. It preserves N = (4, 4) supersymmetry2

generated by QAα̇ and Qaα̇. Its field contents are induced from massless modes of open

21d N = (4, 4) SUSY should be understood as the circle reduction of 2d (4, 4) SUSY with SO(4)×SO(4)

R-symmetry.
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strings ending on D0-branes. Here we list them as (4, 4) SUSY multiplets.

(A0, ϕ, ϕaA |λAα̇ , λaα̇) Vector multiplet in adj (Ĝ)

(aαα̇ |λAα , λaα) Hypermultiplet in R (Ĝ)

(qα̇ |ψA, ψa) Hypermultiplet in bif (Ĝ×G)

(2.4)

Here bif(Ĝ×G) denotes the bifundamental representation of Ĝ×G. Type of the O4-plane

determines the 5d group G, the 1d group Ĝ, and the representation R as follows [28].

Type of O4 5d gauge group G 1d gauge group Ĝ Representation R of Ĝ

—– U(N) U(k) adjoint

O4− O(2N) Sp(k) antisymmetric

O40 O(2N + 1) Sp(k) antisymmetric

O4+ Sp(N)θ=0 O(k)θ=0 symmetric

Õ4
+

Sp(N)θ=π O(k)θ=π symmetric

(2.5)

k denotes the instanton number. The action of the U(k) ADHM quantum mechanics is

given in [5]. Generalization to other gauge groups is straightforward.

The ADHM quantum mechanics include more fields than the instanton quantum me-

chanics, which are massless only at the small instanton singularity. The vector multiplet

scalars ϕ, ϕaA are such extra fields, which open up a new branch of the moduli space

touching the instanton moduli space exactly at the small instanton singularity. We call

it the Coulomb branch of the ADHM quantum mechanics. This UV-completion of the

instanton moduli space allows D0-branes to move away from D4-branes. One can regard

D0-branes as 5d SYM instantons only in the Higgs branch of the quantum mechanics,

which is spanned by the ADHM data aαα̇, qα̇ subject to the ADHM constraint equation.

We want to use the ADHM quantum mechanics for counting 5d SYM states involving

instantons. However, the Coulomb branch may give extra contributions to the Witten

indices which are irrelevant to the 5d SYM partition functions. See section 3 for related

discussions.

2.2 Witten index

In this section, we compute the index of the ADHM quantum mechanics defined as

Ik = Trk

[
(−1)F e−β{Q,Q

†} t2(J1R+J2R)u2J1Lv2J2L

N∏
a=1

w2Πa
a

]
. (2.6)

It counts BPS states annihilated by Q ≡ QA=1
α̇=1̇

and Q† ≡ QA=2
α̇=2̇

. J1L, J1R, J2L, J2R are

the Cartan generators for the SU(2)1L, SU(2)1R, SU(2)2L, SU(2)2R global symmetries. Πa

denote the Cartan generators of the 5d gauge group G. Various fugacities are conjugate to

the Cartans of global symmetries commuting with Q, Q†. Besides Πa’s, J1R+J2R, J1L, J2L

are all commuting combinations. We often express the fugacities using chemical potentials

as follows:

t = e−ε+ , u = e−ε− , v = e−m, wi = e−αi . (2.7)

– 5 –
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The chemical potentials deform the underlying 5d gauge theory. ε1 = ε++ε−
2 and

ε2 = ε+−ε−
2 put the 5d gauge theory on Omega-deformed background. m becomes the

mass of the N = 1 adjoint hypermultiplet, yielding the mass-deformed N = 1∗ SYM. α

is a complexified background Wilson line of the 5d gauge group G, breaking it into the

Abelian subgroup. We set α to be3

U(N) 3 e−α = diag(e−α1 , · · · , e−αN ) −→ α = (+α1, · · · ,+αN ) (2.8)

SO(2N) 3 e−α = diag(e−σ2α1 , · · · , e−σ2αN ) −→ α = (±α1, · · · ,±αN )

SO(2N + 1) 3 e−α = diag(e−σ2α1 , · · · , e−σ2αN ,+1) −→ α = (±α1, · · · ,±αN , 0)

Sp(N) 3 e−α = diag(e−σ3α1 , · · · , e−σ3αN ) −→ α = (±α1, · · · ,±αN ).

Such deformations regulate the 5d gauge theory at long distances, defining the instanton

partition function with IR regulators [10]. They give mass to the scalars ϕaA, aαα̇, qα̇
in the ADHM quantum mechanics, making the BPS spectrum to be gapped. However,

there still remains a flat direction in the moduli space. As the vector multiplet scalar ϕ

is not charged under any global symmetries, chemical potentials cannot give it a mass.

If an Fayet-Iliopoulos deformation is available, i.e., if Ĝ contains an overall U(1) factor,

ϕ acquires mass. In general, we encounter a continuous BPS spectrum that makes the

index (2.6) hard to compute.

Nevertheless we can obtain the instanton partition function from the indices (2.6) of

the quantum mechanics. The flat direction spanned by ϕ belongs to the Coulomb branch

that decouples from the Higgs branch in IR [29, 30]. Index contributions of the decoupled

Coulomb branch can be identified and removed from the multi-particle indices, which are

factorized as [31]

ZADHM = 1 +

∞∑
k=1

qk Ik = Zinst · Zextra, (2.9)

where q ≡ e−4π2β/g25 denotes the instanton number fugacity. The instanton partition func-

tion Zinst comes from the Higgs branch contributions which do not involve any subtleties

from the Coulomb branch continuum.

We now turn to the path integral localization of the index (2.6), following [31, 32]. The

path integral measure is given by the Euclidean action of the ADHM quantum mechanics.

The temporal direction is compactified as the circle with circumference β, used in (2.6).

Once we take the weak coupling limit g1 → 0, where g1 denotes the coupling constant of

the quantum mechanics, the path integrals are reduced to Gaussian integrals around zero

modes. The most important zero modes are holonomies of the gauge field A0 along the

temporal circle and the vector multiplet scalar ϕ. They are combined into dimensionless,

complexified holonomies φ = iβA0 + βϕ. A0 is subject to a large gauge transformation

on the temporal circle, making the imaginary parts of φ eigenvalues to be periodic. The

3For G = O(n), there are two disconnected Wilson line components, i.e., e−α+ ∈ O(n)+ and e−α− ∈
O(n)−. We choose the SO(2N) = O(2N)+ and SO(2N + 1) = O(2N + 1)+ backgrounds connected to the

identity elements.

– 6 –
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complexified Wilson lines eφ ∈ Ĝ are gauge invariant. We label φ as follows [13, 33]:

U(`) 3 eφ = diag(eφ1 , · · · , eφ`) −→ φ = (+φ1, · · · ,+φ`) (2.10)

O(2`)+ 3 eφ = diag(eσ2φ1 , · · · , eσ2φ`) −→ φ = (±φ1, · · · ,±φ`)
O(2`)− 3 eφ = diag(eσ2φ1 , · · · , eσ2φ`−1 , σ3) −→ φ = (±φ1, · · · ,±φ`−1, 0, iπ)

O(2`+ 1)+ 3 eφ = diag(eσ2φ1 , · · · , eσ2φ` ,+1) −→ φ = (±φ1, · · · ,±φ`, 0)

O(2`+ 1)− 3 eφ = diag(eσ2φ1 , · · · , eσ2φ` ,−1) −→ φ = (±φ1, · · · ,±φ`, iπ)

Sp(`) 3 eφ = diag(eσ3φ1 , · · · , eσ3φ`) −→ φ = (±φ1, · · · ,±φ`)

There are also other zero modes coming from the gaugino and the auxiliary scalar field

D [31, 32].

We perform the Gaussian integrals over massive fluctuations, fixing the zero modes

for a while. Integration gives the 1-loop determinants I1-loop which are products of the

following factors [13].

Ivector =
∏

ρ̂∈ root (Ĝ)

(
2 sinh ρ̂(φ)

2

)
·

∏
ρ̂∈adj (Ĝ)

(
2 sinh ρ̂(φ)+2ε+

2

2 sinh ρ̂(φ)−ε+±m
2

)
·
r∏
i=1

dφi (2.11)

IRhyper =
∏

ρ̂∈R (Ĝ)

(
2 sinh ρ̂(φ)+m±ε−

2

2 sinh ρ̂(φ)+ε+±ε−
2

)
(2.12)

Ibifhyper =



∏
ρ̂∈ fnd (Ĝ)

∏
ρ∈ fnd (G)

(
2 sinh ±(ρ̂(φ)−ρ(α))+m

2

2 sinh ±(ρ̂(φ)−ρ(α))+ε+
2

)
for G = U(N) and Ĝ = U(k)

∏
ρ̂∈ fnd (Ĝ)

∏
ρ∈ fnd (G)

(
2 sinh ρ̂(φ)−ρ(α)+m

2

2 sinh ρ̂(φ)−ρ(α)+ε+
2

)
for all other cases

(2.13)

We use the ± notation: 2 sinh (a± b) ≡ 2 sinh (a+ b) · 2 sinh (a− b). r is the number of

continuous parameters in the φ holonomies. One-loop determinants for fields in certain

representations of Ĝ and G involve the parameters ρ̂(φ) and ρ(α). We refer to [13] for the

parameters in all rank-1 and rank-2 representations of classical groups. For example, the

parameters for the U(k) representations are

fund : ρ̂(φ) = (+φi)1≤i≤k

adj : ρ̂(φ) = (+φi − φj)1≤i,j≤k (2.14)

symm : ρ̂(φ) = (+φi + φj)1≤i≤j≤k

anti : ρ̂(φ) = (+φi + φj)1≤i<j≤k

The root is defined such that the coupled parameters ρ̂(φ) are

ρ̂(φ) =

{
(+φi − φj)1≤i 6=j≤k for Ĝ = U(k)

ρ̂(φ) of adj for all other cases
(2.15)

– 7 –
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Note that 1-loop determinants of real scalars and fermions involve square roots of sinh

factors. A pair of such factors are always arranged as
√

sinh z+a
2 sinh −z−a2 ∼ sinh ( z+a2 ),

following [31]. This is why the first line of (2.13) has twice of sinh factors than the second

line of (2.13).

The next step is to integrate over the zero modes. Carefully treating the zero modes

of the gaugino and the auxiliary scalar, the integral becomes a contour integral over the

space of φ holonomies, i.e., r copies of a cylinder [31, 32]. The integrand I1-loop develops

various poles, some being inside a finite region and the others being at infinities. We need a

proper choice of contour to complete the integral.4 For r = 1, the index contribution of the

residues R±∞ at infinities appears as the sum R+∞+R−∞ with a coefficient depending on

a Fayet-Iliopoulos parameter ζ [31, 32]. We expect the same for r > 1. One can show that

the residue sums R+∞+R−∞, for the N = (4, 4) ADHM quantum mechanics, are zero for

all cylinders. So the index is independent of ζ. It receives the contributions only from the

residues inside the finite region, chosen by the Jeffrey-Kirwan residue operation [31, 32, 35].

For non-degenerate poles, where r distinct sinh factors in the denominator of I1-loop become

zero, the Jeffrey-Kirwan residue can be expressed as

JK-Resφ∗(Q∗, η)
dφ1 ∧ · · · ∧ dφr

Qj1(φ−φ∗) · · ·Qjr(φ−φ∗)

=

{
| det(Qj1 , · · · , Qjr)|−1 if η ∈ Cone(Qj1 , · · · , Qjr)
0 otherwise

. (2.16)

It is a linear functional which refers to a pole location φ∗ and an auxiliary vector η in an

r-dimensional charge space. Q∗ = (Q1, · · · , Qr) is a set of r charge vectors, associated to

the sinh factors in the denominator being zero at φ∗. The vector η has to be generic for

JK-Resφ∗(Q∗, η) to be well-defined. We refer to [32] for treatment of degenerate poles.

We recall that Ĝ = O(k) allows the two disconnected Wilson lines in O(k)+ and

O(k)−. In general, if Ĝ is disconnected, there can exist multiple, disconnected Wilson

line backgrounds of Ĝ. The Witten index includes a sum over distinct holonomy sectors

such that

Ik =
∑
a

1

|Wa|

∮
I

(a)
1-loop =

∑
a

1

|Wa|
∑
φ∗

JK-Resφ∗(Q∗, η) I
(a)
1-loop, (2.17)

where a labels the disconnected holonomy sectors, |Wa| and I
(a)
1-loop are the Weyl group

order and the 1-loop determinant in a given holonomy sector a. φ∗ runs over all existing

poles in the integrands. The Weyl group orders |Wa| that preserve the holonomies given

in (2.10) are

|W |U(`) = `!, |W+|O(2`) = 2`−1`!, |W−|O(2`) = 2`−1(`− 1)!, (2.18)

|W+|O(2`+1) = 2``!, |W−|O(2`+1) = 2``!, |W |Sp(`) = `!.

4For N = 1∗ SU(N) theories, Nekrasov guessed the correct contour prescription [10]. More complicated

contour prescriptions for other gauge groups are given in [34]. These are compatible with the rules that we

explain.
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Note that 5d Sp(N) SYMs have two discrete choices of θ angles 0, π related to π4(Sp(N)) =

Z2 [36]. The 5d θ parameters induce the 1d discrete θ parameters related to π0(O(k)) = Z2,

which are the Wilson lines along the temporal circle. The sums over holonomy sectors

in (2.17) are given as [37]

Ik =


1
2(I+

k + I−k ) for + 1 ∈ π0(O(k))

(−1)k

2 (I+
k − I

−
k ) for − 1 ∈ π0(O(k)).

(2.19)

3 Orientifolds from M-theory

The multi-particle index ZADHM of the ADHM quantum mechanics is computable using

the formula (2.17). ZADHM captures BPS states of D0-branes, some of which are decoupled

states from 5d SYM. The multi-particle index ZADHM is factorized into two parts [31]:

ZADHM = 1 +

∞∑
k=1

qk Ik = Zinst · Zextra.

Zinst is the instanton partition function. Zextra is the index for the extra states. To obtain

the instanton partition function, we need to identify and remove Zextra from ZADHM. In

this section, we determine Zextra for various D0-D4-O4 systems on a case-by-case basis.

We already discussed that the extra contribution comes from the Coulomb branch,

which is parametrized by ϕ and ϕaA. At a generic point of the Coulomb branch, these

scalar fields acquire non-zero values which represent D0-branes’ transverse positions to D4-

branes. We expect to determine Zextra by analyzing BPS states of D0-branes far away from

D4-branes. For this purpose, we separately compute the multi-particle indices of D0-branes

in the pure orientifold backgrounds without any dynamical D4-branes.

The pure orientifold backgrounds are obtained by formally taking N = 0 in the ADHM

quantum mechanics.5 The extra indices Zextra are included in the N = 0 indices which can

be written in a simple way using the plethystic exponential

PE[f(q, t, u, v, wa)] ≡ exp

[ ∞∑
n=1

1

n
f(qn, tn, un, vn, wna )

]
. (3.1)

PE[f ] is the multi-particle index of a single-particle index f [38]. The N = 0 indices are

5The case with an O(2N)− Wilson line background is an exception. A full D4-brane cannot be detached

from the O4− plane, so taking N = 0 does not yield the pure orientifold background. See (3.19) for the

O(2)− partition function.
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given by

Z
U(0)
ADHM = 1 (3.2)

Z
SO(0)
ADHM = PE

[
t2(v + v−1 − u− u−1)(t+ t−1)

2(1− tu)(1− tu−1)(1 + tv)(1 + tv−1)

q

1− q

]
(3.3)

Z
SO(1)
ADHM = PE

[
t2(v + v−1 − u− u−1)(t+ t−1)

2(1− tu)(1− tu−1)(1 + tv)(1 + tv−1)

−q
1− (−q)

]
(3.4)

Z
Sp(0)θ=0

ADHM = PE

[
t2(v + v−1 − u− u−1)(t+ t−1)

2(1− tu±)(1 + tv±)

q2

1− q2
+
t(v + v−1 − u− u−1)

(1− tu)(1− tu−1)

q

1− q2

]
(3.5)

Z
Sp(0)θ=π
ADHM = PE

[
t2(v + v−1 − u− u−1)(t+ t−1)

2(1− tu±)(1 + tv±)

−q2

1− (−q2)
+
t(v + v−1 − u− u−1)

(1− tu)(1− tu−1)

q2

1− q4

]
(3.6)

where we use the ± notation: (1− xy±) ≡ (1− xy)(1− xy−1). Their q-dependences were

checked up to q3-order in (3.3) and (3.4) (for SO-type) and q7-order in (3.5) and (3.6) (for

Sp-type). (3.2) can be checked in all q-orders.

The subtlety arising here is that there exists a flat direction, spanned by ϕ, even after

turning on all chemical potentials. This damages the robustness of the Witten index, which

is the critical assumption for localizing the path integrals. The Witten index is defined in

the regime g2
1β

3 � 1, while the index formula (2.17) is derived in the regime g2
1β

3 � 1.

If there were no flat direction, such deformation would not change the index. However,

the ADHM quantum mechanics has the flat direction developed by ϕ, so that the N = 0

indices exhibit fractional coefficients 1
2 ’s in (3.3)–(3.6), as discussed in [39–41]. Due to the

decoupling of the Higgs and Coulomb branch at low energy [29, 30], we still expect that

the continuum from ϕ spoils Zextra, not Zinst.

In order to identify the extra indices Zextra from the N = 0 indices, we study the origins

of D0-brane bound states in the N = 0 indices from M-theory perspectives. It also tells

us interesting information on the orientifold backgrounds in string theory. While SO(9) is

the little group for 10d massive particles, we only try to understand the SO(8) ⊂ SO(9)

spin contents of D0-branes, setting aside 1
2 ’s in (3.3)–(3.6), where the fugacities t, u, v are

conjugate to the SO(8) spins.

First of all, we remark on the geometric interpretations of the instanton number fu-

gacities q. They are defined as q ≡ e−S0 using the unit instanton action S0 = 4π2β
g25

. Since

D0-branes carry the Kaluza-Klein momenta along the M-circle, their masses are related

to the inverse of the M-circle radius. The O(k) theories describe the dynamics of k ‘half’

D0-branes, while the U(k) and Sp(k) theories describe the dynamics of k ‘full’ D0-branes.

This observation implies that the relations (1.1) between the 5d gauge couplings and the

M-circle radii should be precisely stated as

4π2

g2
5

=
1

2RM
for Ĝ = O(k)

4π2

g2
5

=
1

RM
otherwise. (3.7)
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Accordingly, the instanton number fugacities

q ≡ exp (−4π2β
g25

) =

exp
(
− β

2RM

)
≡ eπiτ Ĝ = O(k)

exp
(
− β
RM

)
≡ e2πiτ otherwise

(3.8)

are interpreted as the M-circle momentum fugacities with a half-integer unit (for Ĝ = O(k))

and with integer units (for all other cases). In all cases, M-theory wraps the torus T 2. It

is made of the M-circle and the temporal circle, whose radii are RM and β
2π respectively.

Its complex structure τ is given by τ ≡ i β/2πRM
. Note that S-dualities of IIA backgrounds,

often called the “9-11 flip” [42], correspond to exchanging the two sides of the torus T 2,

i.e., τ −→ − 1
τ .

Now we analyze (3.3)–(3.6) from M-theory perspectives, apart from the 1
2 factors.

Pure D0. We consider M-theory on R1,9 × S1 and its massless particles with non-zero

momentum P11 along the M-circle, satisfying |P0| = |P11| > 0 and Pi=1,··· ,9 = 0. The

11d SUSY algebra is written as {Q,Q†} ∼ (−1 ± Γ0Γ11)|P 0|. The 11d gravity multiplet

preserves half of the 32 supercharges, whose component fields are the metric g
(11)
µν , the

3-form tensor Cµνρ, and the gravitino ψµ. They sit in irreducible representations of the

SO(9) little group, i.e., 44, 84, and 128. We define the index fbulk to be the trace

Tr
[
(−1)F e−β{Q,Q

†} qk t2(J1R+J2R)u2J1Lv2J2L
]

(3.9)

over the Kaluza-Klein fields of 11d supergravity on R1,9 × S1. k is the integer-valued

momentum number along the M-circle, such that |P0| = |P11| = k/RM > 0. Taking

into account all Kaluza-Klein modes along the M-circle, the index fbulk takes the form of

fbulk = f0 · q
1−q . To compute f0, we combine the index of particles’ translational zero modes

on the R8 (that SO(8) acts on)

1

((tu)1/2−(tu)−1/2)2((tu−1)1/2−(tu−1)−1/2)2((tv)1/2−(tv)−1/2)2((tv−1)1/2−(tv−1)−1/2)2
,

(3.10)

and the sum of SO(8) characters X0 for the following irreducible representations:

44⊕ 84⊕ 128→ (1⊕ 8v ⊕ 35v)⊕ (28⊕ 56v)⊕ (8s ⊕ 8c ⊕ 56s ⊕ 56c) (3.11)

= (1⊕ 28⊕ 35v)⊕ (8v ⊕ 56v)⊕ (8s ⊕ 56s)⊕ (8c ⊕ 56c)

= (8v ⊗ 8v)⊕ (8s ⊗ 8c)⊕ (8v ⊗ 8c)⊕ (8s ⊗ 8v).

Taking (−1)F into account, X0 is given by

X0 = (χ(8v)− χ(8s)) · (χ(8v)− χ(8c)) (3.12)

where χ(R) denotes a character for an irreducible representation R. Using the fugacities

t, u, v introduced in (2.6), the SO(8) characters χ(8v), χ(8s), and χ(8c) are expressed as
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follows:

8v = (2,2,1,1)⊕ (1,1,2,2) −→ χ(8v) = (t+ t−1)
(
(u+ u−1) + (v + v−1)

)
8s = (2,1,2,1)⊕ (1,2,1,2) −→ χ(8s) = (t+ t−1)2 + (u+ u−1)(v + v−1) (3.13)

8c = (2,1,1,2)⊕ (1,2,2,1) −→ χ(8c) = (t+ t−1)
(
(u+ u−1) + (v + v−1)

)
.

χ(8v) = χ(8c) gives X0 = f0 = 0. It explains why Z
U(0)
ADHM = 1, implying Z

U(N)
extra = 1 at the

same time.

D0-O4−. The O4− background uplifts to M-theory on R1,4 × R5/Z2 × S1 [43]. The Z2

action inverts the coordinates (x5, · · · , x9) → (−x5, · · · ,−x9) and flips the sign of the 3-

form tensor C3 → −C3. One can divide the Z2 action into two operations: (1) the rotation

of x5,6 and x7,8 planes by +π and −π, (2) the x9 → −x9 parity along with the sign flip

of the 3-form tensor C3 → −C3. Regarding the index computation, the first operation P4

causes the shift of chemical potential m → m + iπ conjugate to 2J2L ≡ J3 − J4, where

J3 and J4 are the rotation generators for x5,6 and x7,8 planes. The second operation P1

provides the grading of all SO(8) representations in (3.11). The grading rules are stated as

follows. When P1 acts,

• Each vector index referring the x9 direction yields the negative sign (−1).

• Each spinor index undergoes the multiplication by Γ9 where Γµ denotes the 11d

gamma matrix.

• The 3-form tensor C3 goes through the extra sign flip C3 → −C3.

We require 8s to be even and 8c to be odd under the multiplication by Γ9, such that the

supercharges Q and Q† in 8s which used to define the index (2.6) are invariant. 56c and

56s are parts of 8v ⊗ 8s and 8v ⊗ 8c, inheriting the parities of 8s and 8c.

One can decompose the 11d metric g
(11)
µν (44) into g

(11)
ij (35v), g

(11)
9i (8v), g

(11)
99 (1), the

3-form tensor Cµνρ (84) into Cijk (56v) and C9ij (28), the spin-3
2 gravitino ψµ into ψi

(56s⊕56c) and ψ9 (8s⊕8c). All parity-odd fields are listed as follows: g
(11)
9i (8v), Cijk (56v),

1+Γ9

2 ·ψ9 (8s),
1−Γ9

2 ·ψi (56s). We define the index fbulk as the trace over the Kaluza-Klein

fields of 11d supergravity on R1,4 × R5/Z2 × S1 with insertion of the projection operator
1+P4·P1

2 . Again taking into account all Kaluza-Klein modes along the M-circle, the index

fbulk takes the form of 1
2(f0 · q

1−q + f ′0 ·
q

1−q ) where f0 · q
1−q is the index defined in (3.9).

The trace with the parity operator P4 · P1

Tr
[
(−1)F P4 · P1 e

−β{Q,Q†} qk t2(J1R+J2R)u2J1Lv2J2L
]

(3.14)

gives f ′0 ·
q

1−q . f ′0 is the product of (3.10) and the sum of SO(8) characters

X1 = +{χ(1)− χ(8v) + χ(35v) + χ(28)− χ(56v)} − {χ(8c) + χ(56c)− χ(56s)− χ(8s)}
= χ(8v)

2 − χ(8s)χ(8c)− χ(8v)χ(8s) + χ(8c)χ(8v) = (χ(8v) + χ(8s)) · (χ(8v)− χ(8c))
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where P4 replaces v ≡ e−m by −v = e−m−iπ in (3.10) and X1. After all, the index fbulk

becomes

fbulk =
t2(v + v−1 − u− u−1)(t+ t−1)

(1− tu)(1− tu−1)(1 + tv)(1 + tv−1)

q

1− q
. (3.15)

It shows Z
SO(0)
ADHM = PE [1

2 fbulk] in (3.3) counts the 11d supergravity fields on R1,4×R5/Z2×
S1, up to the 1

2 factor, which do not belong to the 5d SYM Hilbert space. We conclude

that Z
SO(2N)
extra = Z

SO(0)
ADHM.

D0-O40. The O40 background uplifts to M-theory on R1,4 × (R5 × S1)/Z2, whose Z2

action is the combination of P4, P1, and the M-circle shift x11 → x11 + πRM by the half-

period [43]. In addition to the P4 and P1 actions described above, the M-circle shift induces

the phase factor eiπ = −1 to a single D0-brane wavefunction exp (ix11/RM ). It causes the

sign change of the momentum fugacity q → −q. The index fbulk over the Kaluza-Klein

fields of 11d supergravity on R1,4 × (R5 × S1)/Z2 becomes

fbulk =
t2(v + v−1 − u− u−1)(t+ t−1)

(1− tu)(1− tu−1)(1 + tv)(1 + tv−1)

−q
1− (−q)

, (3.16)

whose multi-particle spectrum agrees with Z
SO(1)
ADHM in (3.4) up to the 1

2 factor. This again

explains that Z
SO(1)
ADHM comes from the 11d supergravity, implying that Z

SO(2N+1)
extra = Z

SO(1)
ADHM.

D0-O4+. The O4+ background uplifts to M-theory on R1,4 × R5/Z2 × S1 with the full

M5-brane frozen at the Z2 fixed plane [43]. q is the fugacity for half-integral momenta

along the M-circle. The first term of Z
Sp(0)θ=0

ADHM in (3.5) comes from the 11d bulk gravity,

using the same argument used for the O4− background. Here we take into account that

q2 is the fugacity for integral momenta in the bulk. We identify this as the extra states’

index Z
Sp(N)θ=0
extra , such that

Z
Sp(N)θ=0
extra = PE

[
t2(v + v−1 − u− u−1)(t+ t−1)

2(1− tu±)(1 + tv±)

q2

1− q2

]
. (3.17)

The second term in (3.5) comes from the full M5-brane frozen at the Z2 fixed plane,

which hosts the SO(2)-type (2, 0) theory on T 2 with the Z2 outer automorphism twist [17].

Beginning from the Abelian (2, 0) theory on S1, whose index is given by

PE

[
t(v + v−1 − u− u−1)

(1− tu)(1− tu−1)

q2

1− q2

]
with q = eπiτ , (3.18)

the result in (3.5) shows that all states with integral momenta are eliminated by the Z2

projection, while the twisted states having half-integral momenta are newly introduced.

The perturbative degrees for 5d Abelian SYM are projected out, yielding the pure orien-

tifold background. Our result is consistent with [44] which shows a half D0-brane can bind

to an O4+ plane while a full D0-brane do not.

Applying the S-duality of M-theory on T 2, which swaps the temporal circle and the M-

circle, the O4+ background is mapped to the full D4-brane frozen at the O4− plane [43]. In
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the S-dualized background, the O(2)− Wilson line σ3 = diag (+1,−1) along the temporal

circle prevents the D4-brane from moving away from the orientifold [45]. We shall verify

the S-duality relation between two orientifold backgrounds using the multi-particle indices

of the relevant ADHM quantum mechanices. First, we compute the 5d O(2) instanton

partition function in the Wilson line background σ3 = diag (+1,−1) ∈ O(2)−. It can be

done by replacing the continuous holonomies ±α1 of G = SO(2) by the discrete holonomies

0 and iπ of O(2)− in the 1-loop determinants I1-loop. Such replacement means the full D4-

brane cannot move from the O4− plane. Following the computation in section 2.2, the

index ZO(2)− is expressed using the plethystic exponential as follows:

ZO(2)− = PE

[
− t(v + v−1 − u− u−1)

(1− tu)(1− tu−1)

q

1− q2

− t2(v + v−1 − u− u−1)(v + v−1 − t− t−1)

(1− tu)(1− tu−1)(1 + tu)(1 + tu−1)

q2

1− q2

− t2(u+ u−1 − v − v−1)(t+ t−1)

2(1− tu)(1− tu−1)(1 + tv)(1 + tv−1)

q

1− q

]
(3.19)

whose q-dependence was checked up to q3-order. The last term comes from the 11d bulk

gravity. The remaining two terms are expected to be S-dual to the second term of Z
Sp(0)θ=0

ADHM .

We observe that the second term of Z
Sp(0)θ=0

ADHM can be written as

PE

[
t(v + v−1 − u− u−1)

(1− tu)(1− tu−1)

q

1− q2

]
=
Z( τ2 , ε+, ε−,m)

Z(τ, ε+, ε−,m)
with q = eπiτ (3.20)

where

Z(τ, ε+, ε−,m) ≡ PE

[
t(v + v−1 − u− u−1)

(1− tu)(1− tu−1)

(
q2

1− q2
+

1

2

)]
with q = eπiτ . (3.21)

The S-duality transformation of this function has been studied in [9], since Z is the partition

function of a single M5-brane on Omega-deformed R4 × T 2. Let us apply the S-duality

transformation that exchanges the two sides of the T 2, i.e., τ → − 1
τ , and transforms the

chemical potentials such that ε+ → ε+
τ , ε− → ε−

τ , and m → m
τ . The S-dual partition

function Z(− 1
τ ,

ε+
τ ,

ε−
τ ,

m
τ ) is related to the original one in the following simple manner [9],

Z(τ, ε+, ε−,m) = exp
(

2πi (m2−ε2−)(m2−ε2+)

24τ (ε++ε−)(ε+−ε−)

)
Z(− 1

τ ,
ε+
τ ,

ε−
τ ,

m
τ ), (3.22)

in a particular parameter regime. See [9] for the details. Z(τ, ε+, ε−,m) is essentially
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invariant under S-duality, up to a simple overall factor [9]. Accordingly, (3.20) becomes

Z(2τ, 2ε+, 2ε−, 2m)

Z(τ, ε+, ε−,m)
= PE

[
t2(v2 + v−2 − u2 − u−2)

(1− t2u±2)

(
q2

1− q2
+

1

2

)
− t(v + v−1 − u− u−1)

(1− tu±)

(
q

1− q
+

1

2

)]
= PE

[
− t(v + v−1 − u− u−1)

(1− tu)(1− tu−1)

q

1− q2

− t2(v + v−1 − u− u−1)(v + v−1 − t− t−1)

(1− tu)(1− tu−1)(1 + tu)(1 + tu−1)

q2

1− q2

]
× PE

[
− t2(v + v−1 − u− u−1)(v + v−1 − t− t−1)

2(1− tu)(1− tu−1)(1 + tu)(1 + tu−1)

]
(3.23)

under the S-duality transformation. The second line equals the first line of ZO(2)− in (3.19).

Apart from the τ independent factor on the third line of (3.23), one finds that Z
Sp(0)θ=0

ADHM is

dual to ZO(2)− . This analysis confirms the S-duality relation studied in [45] between the

O4+ plane and the O4− plane with the frozen D4-brane.

D0-Õ4
+
. The Õ4

+
background uplifts to M-theory on R1,4× (R5×S1)/Z2 with a stuck

M5-brane at the origin of R5 [43]. The Z2 action consists of the R5 parity and the M-

circle shift x11 → x11 + πRM by the half-period. The M-circle shift induces the phase

factor eiπ/2 = i to a half D0-brane wavefunction exp (ix11/2RM ), causing the half-integral

momentum fugacity q to undergo the phase rotation q → iq. Repeating the same argument

used for the O40 background, we understand the first term of Z
Sp(0)θ=π
ADHM as coming from the

11d bulk gravity. It implies that Z
Sp(N)θ=π
extra should be identified as

Z
Sp(N)θ=π
extra = PE

[
t2(v + v−1 − u− u−1)(t+ t−1)

2(1− tu±)(1 + tv±)

−q2

1− (−q2)

]
. (3.24)

The second term of Z
Sp(0)θ=π
ADHM in (3.6) is similar to that of Z

Sp(0)θ=0

ADHM in (3.5). Both are

obtained from single M5-branes stuck at the Z2 fixed point of R5. The difference is

that the M5-brane wrapping the freely-acting Z2 orbifold sees the halved M-circle ra-

dius. It effectively doubles the complex structure τ of the T 2, explaining the difference

between (3.20) and

PE

[
t(v + v−1 − u− u−1)

(1− tu)(1− tu−1)

q2

1− q4

]
with q = eπiτ . (3.25)

Similar to the O4+ case, the Z2 projection kills all integral-momentum states in the Abelian

(2, 0) theory on S1. What contribute to (3.25) are the twisted states, having half-integral

momenta along the M-theory circle. The Z2 projection eliminates the perturbative degrees

of 5d Abelian SYM, leaving the pure orientifold background. Its S-dual configuration in

M-theory has been suggested in [43, 45]. It would be interesting to see the S-duality of the

two backgrounds explicitly.

We remark that the multi-particle indices (3.3)–(3.6) of the ADHM quantum mechanics

for various D0-O4 systems capture the non-perturbative (curvature)2 terms of orientifold
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backgrounds. Recall that the genus expansion of the topological string amplitude F takes

the form of [46–48]

F ≡ logZADHM =

∞∑
n,g≥0

(ε1 + ε2)2n(ε1ε2)g−1F (n,g). (3.26)

Turning off ε+, the remaining Omega-deformation parameter ε− denotes the self-dual part

of the graviphoton field strength on R4. The amplitude gives the (curvature)2 correction

to M-theory on CY3 × S1 [47]. Considering the case with m = ε+ = 0, the genus-1 terms

at n = 0 are given from (3.3)–(3.6) as follows.

Z
SO(0)
ADHM → −

1

4
log (η(τ)) , Z

SO(1)
ADHM → −

1

4
log

(
η(2τ)2

η(τ)

)
(3.27)

Z
Sp(0)θ=0

ADHM → −1

4
log (η(τ))−log

(
η(τ/2)

η(τ)

)
Z

Sp(0)θ=π
ADHM → −1

4
log

(
η(2τ)2

η(τ)

)
−log

(
η(τ)

η(2τ)

)
.

After performing the S-duality transformation τ → − 1
τ , they agree with the (curvature)2

terms in the O4-plane actions, computed from graviton scattering amplitudes with non-

perturbative effects [49], up to an overall factor − 1
4π that we have not precisely traced.

4 6d SCFTs from 5d SYM instantons

In this section, we study the BPS spectra of 6d (2, 0) theories using the instanton par-

tition functions. String theory predicts that 5d maximal SYM, supplemented by the

non-perturbative instanton effect, has a UV fixed point which corresponds to 6d (2, 0)

SCFT [3, 4]. The instanton partition function Zinst would capture the BPS spectrum of

6d (2, 0) SCFT wrapped on R4 × T 2, where instantons play the role of Kaluza-Klein mo-

menta along the M-circle. For example, the interpretation of the SU(N) instanton partition

function as the tensor branch index of 6d SU(N)-type (2, 0) SCFT was justified in [5, 8].

We want to extend some aspects of the above analysis to other gauge groups: SO(2N),

SO(2N + 1), and Sp(N).

In section 4.1, we make some consistency checks of the instanton partition functions

for lower rank gauge groups. This is because the SU(N), SO(2N + 1), Sp(N), SO(2N) Lie

algebras sometimes coincide at low ranks. We confirm that apparently different ADHM

approaches yield the same prepotentials. In section 4.2, we obtain the closed form ex-

pressions for the instanton partition functions in special limits, and study the S-duality

relations of them. In section 4.3, we study the 6d superconformal indices using the results

of section 4.2.

4.1 Consistency checks

Let us compare the instanton partition functions with coincident gauge groups, which

belong to different ABCD-types of Lie algebras. For instance, the classical actions of the

maximal super Yang-Mills theories with SU(2) and SO(3) gauge groups are identical, both

in 4d and 5d. In 4d, this means that the two quantum theories are completely the same. So
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the physical QFT observables that one can extract out of the instanton partition functions

should be the same, although the two ADHM descriptions look different. However, in 5d,

having identical classical actions do not necessarily imply that the two instanton calculus

are the same, because different ADHM quantum mechanics for 5d solitons may provide

different UV completions of non-renormalizable 5d Yang-Mills theories.

The requirement that SU(2) and SO(3) partition functions should yield identical 4d

observables imposes non-trivial constraints on the two partition functions, which we shall

check in this section. One important 4d observable is the prepotential, whose second

derivative with the Coulomb VEVs α gives the Coulomb branch effective action. Thus, the

Coulomb VEV dependent parts of the SU(2) and SO(3) partition functions should be the

same. We check in the 5d partition functions that the Coulomb VEV dependent parts are

indeed identical to each other, even before taking the 4d limits, which confirms that the two

partition functions satisfy the 4d constraint. However, Coulomb VEV independent parts

do not have to agree with each other, and we find that they indeed disagree for SU(2) and

SO(3). We make similar consistency checks for gauge theories with low ranks, whenever

we have more than one ADHM descriptions: SO(2) vs U(1), SO(4) vs SU(2)2, SO(6) vs

SU(4), SU(2) vs SO(3) vs Sp(1), SO(5) vs Sp(2).

However, in 5d, even Coulomb VEV independent terms are physically meaningful, as

the partition function itself is a Witten index. They are simply counting electrically neutral

BPS states. Different ADHM descriptions may provide different UV completions of the

two 5d gauge theories which are identical at the classical level. Such phenomena happen

when the 5d gauge groups belong to the B or C classes, which uplift to different 6d theories

on a circle with outer automorphism twists. It also affects the 5-sphere partition functions

that we study in section 4.3, which we interpret as 6d superconformal indices with outer

automorphism twists. SO(2) vs U(1), SO(4) vs SU(2)2, SO(6) vs SU(4) theories, which

formally belong to the AD classes, are expected to have identical UV uplifts. In these

cases, we expect that both the charged and neutral sectors are the same.

We start by commenting on our parameterizations of the SU(N) chemical potentials.

The SU(N) instanton partition functions can be obtained from the U(N) instanton par-

tition functions by imposing the traceless conditions on the chemical potentials. Among

the U(N) holonomies α1, · · · , αN , we turn off the overall U(1) holonomy
∑N

i=1 αi = 0 and

replace all αi by the SU(N) holonomies α′i defined by α′i ≡ αi+1−αi. The final expressions

depend on α′1, · · · , α′N−1.

SO(2) vs U(1). The instanton partition functions for Abelian theories are, checked up

to q3 order,

Z
SO(2)
inst = Z

U(1)
inst = PE

[
t(v + v−1 − u− u−1)

(1− tu)(1− tu−1)

q

1− q

]
. (4.1)

They are independent of the gauge holonomies, since the Abelian theories do not involve

electrically charged particles. They agree with the 6d index on R4 × T 2 for a free (2, 0)

tensor multiplet [5].
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SO(4) vs SU(2)2. The SO(4) and SU(2)2 instanton partition functions satisfy the fol-

lowing relation

Z
SO(4)
inst (w1, w2, q) = Z

SU(2)
inst (w′1 = w1w2, q) · ZSU(2)

inst (w′1 = w−1
1 w2, q). (4.2)

which was checked by taking the series expansion in w1,2, up to w3
1 w

3
2 q

2 order.

The SO(4) instanton partition function depends on the SO(4) holonomies α1 and α2,

which are distances of two D4-branes from the orientifold. There are two kinds of charged

W-bosons in the SO(4) gauge theory, induced from open strings whose lengths are |α1±α2|.
The relation (4.2) shows that each type of W-bosons is that of the SU(2) gauge theory.

SO(6) vs SU(4). The SO(6) and SU(4) instanton partition functions satisfy the follow-

ing relation

Z
SO(6)
inst (w1, w2, w3, q) = Z

SU(4)
inst (w′1 = w1w2, w

′
2 = w−1

1 w2, w
′
3 = w−1

2 w3, q) (4.3)

which was checked by taking the series expansion in w1,2,3, up to w1
1 w

1
2 w

1
3 q

2 order.

The SO(6) gauge holonomies α1,2,3, measuring the distances of three D4-branes from

the orientifold, appear in the SO(6) instanton partition function. There are three types of

charged W-bosons in the SO(6) gauge theory, induced from open strings whose lengths are

|α1 ± α2| and |α2 − α3|. They correspond to three kinds of SU(4) W-bosons, according to

the relation (4.3).

SU(2) vs SO(3) vs Sp(1)|θ=0. The instanton partition functions for these theories are

written as

Z
SU(2)
inst = PE

[
fSU(2)(w, q) +

t(v + v−1 − u− u−1)

(1− tu)(1− tu−1)

q

1− q

]
with w = e−α

′
1 (4.4)

Z
SO(3)
inst = PE

[
fSO(3)(w, q) +

t(v + v−1 − u− u−1)

(1− tu)(1− tu−1)

q

1− q

]
with w = e−α1 (4.5)

Z
Sp(1)
inst = PE

[
fSp(1)(w, q) +

t(v + v−1 − u− u−1)

(1− tu)(1− tu−1)

q

1− q

]
with w = e−2α1 (4.6)

where α′1 = α1 − α2. We divide the instanton partition functions into two parts: the

first term f is dependent on the Coulomb VEVs. The second term is independent of the

Coulomb VEVs.

We find that the 4d QFT constraint is satisfied, fSU(2)(w, q) = fSO(3)(w,
√
q) =

fSp(1)(w, q), checked up to q2w3 order. However, the Coulomb VEV independent term

of the SO(3) theory disagrees with those of the SU(2) and Sp(1) theories, using the same

identification of q’s. It implies that these gauge theories do not have the same UV comple-

tion. The Sp(1) gauge theory with θ = π should satisfy the same constraint, which can be

straightforwardly checked but we have not checked.

The four 5d theories with SU(2), SO(3), Sp(1)θ=0, Sp(1)θ=π uplift to 6d (2, 0) the-

ories of A1-type, A1-type with Z2 outer automorphism twist, D2-type with Z2 outer au-

tomorphism twist, and A2-type with Z2 outer automorphism twist, respectively [17]. We

expect the differences in the Coulomb VEV independent parts to reflect such distinct UV

completions.
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SO(5) vs Sp(2)|θ=0. The instanton partition functions for SO(5) and Sp(2) gauge the-

ories are

Z
SO(5)
inst = PE

[
fSO(5)(ŵ1,2, q) +

2t(v + v−1 − u− u−1)

(1− tu)(1− tu−1)

q

1− q

]
with ŵ1 = e−α1 , ŵ2 = e−(α2−α1) (4.7)

Z
Sp(2)
inst = PE

[
fSp(2)(ŵ1,2, q) +

t(v + v−1 − u− u−1)

(1− tu)(1− tu−1)

(
q

1− q
+

q2

1− q2

)]
with ŵ1 = e−2α1 , ŵ2 = e−(α2−α1). (4.8)

Again we divide the instanton partition functions into the indices from Coulomb VEV

dependent sectors and independent sectors. The Coulomb VEV dependent parts satisfy

the 4d QFT constraint fSO(5)(ŵ1, ŵ2, q) = fSp(2)(ŵ2, ŵ1, q) after exchanging ŵ1 ↔ ŵ2.

However, the neutral parts do not agree with each other, implying that the two theories

uplift to the different 6d quantum field theories. We have not considered the Sp(2) partition

function with θ = π, but the same analysis can be made.

The three 5d theories with SO(5), Sp(2)θ=0, Sp(2)θ=π uplift to 6d theories of A3-

type with Z2 outer automorphism twist, D3-type with Z2 outer automorphism twist, and

A4-type with Z2 outer automorphism twist, respectively.

4.2 Index on R4 × T 2 and S-duality

Now we study if the instanton partition functions respect S-dualities of 4d N = 4 gauge

theories, and their 6d uplifts on tori. S-duality identifies certain pairs of 4d N = 4 gauge

theories, such as [18–21]

U(N) ←→ U(N) with nG = 1

SO(2N) ←→ SO(2N) with nG = 1 (4.9)

SO(2N + 1) ←→ Sp(N) with nG = 2,

if their gauge couplings τ4 = θ4
2π + 4πi

g24
and τ∨4 =

θ∨4
2π + 4πi

g∨24
are related as τ∨4 = − 1

nGτ4
. Recall

that 4d N = 4 SYMs are obtained from (2, 0) theories on tori, whose complex structures

τ ≡ iβ/2πRM
are translated to gauge couplings τ4 [1]. The precise relations between complex

structures τ and gauge couplings τ4 are given in [50]. From this viewpoint, S-dualities

merely exchange two sides of the tori.

Our instanton partition functions are six-dimensional observables. However, they de-

pend only on the complex structures τ of the tori, and not on their volumes. So these

partition functions are expected to respect the geometric S-dualities in certain forms. For

instance, the S-duality transformation of the partition function for the Abelian (2, 0) the-

ory has been studied in [9], as we reviewed in section 3. Even in such simple theory, the

transformation of the 6d partition function is fairly non-trivial. For general non-Abelian

theories, we do not know the S-duality transformations of the partition functions, keeping

all the chemical potentials. However, the partition functions may simplify after taking
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special limits of the chemical potentials, so that we can explicitly see the S-duality of the

partition functions.

We are interested in two different limits of the partition functions, which are closely

related to each other. One is to take all the fugacities wi for the U(1)N electric charges to

be zero. In this limit, the partition function acquires contributions only from the neutral

states. Another limit we are interested in is m = ε+. This limit also makes the contributions

from charged sectors automatically vanish. It is because W-bosons always carry a factor

of 2 sinh m±ε+
2 in their indices, coming from the supersymmetries broken by these BPS

states [5]. Since this factor vanishes at m = ε+, the index acquires contributions only from

neutral instantons unbound to W-bosons. The 6d partition functions in both limits can be

easily dualized to test the S-dualities suggested in the literatures.

We first consider the limit wi → 0. For various gauge groups, we observe that the

instanton partition functions in electrically neutral sectors are given as

Z
SO(2N)
inst |wi=0 = PE

[
N t(v + v−1 − u− u−1)

(1− tu)(1− tu−1)

q

1− q

]
checked for N ≤ 6, up to q3 order

Z
SO(2N+1)
inst |wi=0 = PE

[
N t(v + v−1 − u− u−1)

(1− tu)(1− tu−1)

q

1− q

]
checked for N ≤ 6, up to q2 order

Z
Sp(N)|θ=0

inst |wi=0 = PE

[
t(v + v−1 − u− u−1)

(1− tu)(1− tu−1)

(
N q2

1− q2
+

q

1− q2

)]
checked for N ≤ 3, up to q5 order

Z
Sp(N)|θ=π
inst |wi=0 = PE

[
t(v + v−1 − u− u−1)

(1− tu)(1− tu−1)

(
N q2

1− q2
+

q2

1− q4

)]
checked for N ≤ 3, up to q5 order.

All of these partition functions include the 6d index on R4 × T 2 for N free (2, 0) tensor

multiplets, whose S-duality transformations were studied in [9]. Extra terms in the Sp(N)

partition functions are already discussed in section 3.

We are further interested in the special limit m → ε+ where the instanton partition

functions simplify into the following forms,

Z
SO(2N)
inst |m=ε+ = PE

[
N q

1− q

]
= η(τ)−N , (4.10)

Z
SO(2N+1)
inst |m=ε+ = PE

[
N q

1− q

]
= η(τ)−N , (4.11)

Z
Sp(N)|θ=0

inst |m=ε+ = PE

[
N q2

1− q2
+

q

1− q2

]
= η(τ)−N+1 η(2τ)−1, (4.12)

Z
Sp(N)|θ=π
inst |m=ε+ = PE

[
N q2

1− q2
+

q2

1− q4

]
= η(τ)−N−1 η(2τ)+1, (4.13)
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up to the overall factors e−Nπiτ/12 and e−(N±1)πiτ/12. These expressions will be useful

to study the 6d superconformal indices in section 4.3. The SO(2N) partition functions

are invariant under the S-duality τ → − 1
τ as expected. We expect the other two Sp(N)

partition functions to be S-dualized to the partition functions of the 5d gauge theories on

a circle with twisted boundary conditions [17]. It will be interesting to explicitly study the

dual partition functions with twisted boundary conditions.

4.3 6d superconformal index and W algebra

Here we study the S5 partition functions that correspond to the (2, 0) superconformal in-

dices [6, 7, 22, 23]. The superconformal indices [24] are the SUSY partition functions on

S5 × S1 which capture the 6d BPS operator spectra, due to the operator-state correspon-

dence of radially quantized CFTs.

It was proposed in [7, 23, 51] that the S5 partition functions are computed by merging

three Nekrasov partition functions on R4×S1. They depend on the dimensionless coupling

σ =
g25

2πr5
, made of the S5 radius r5 and the Yang-Mills coupling g5. σ can be interpreted

as the chemical potential analogous to inverse temperature on S5 × S1. The expressions

in [7, 23, 51] take the form of weak coupling expansions (σ � 1), while the 6d spectral data

are easier to read off in the strong coupling regime (σ � 1) by making a series expansion

in the fugacity e−σ. For example, strong coupling expansion was made for the S5 partition

functions of U(N) gauge theories in a special unrefined limit [6, 7]. The results give the

(2, 0) superconformal indices of SU(N)-type, reproducing the BPS Kaluza-Klein spectrum

of AdS7 × S4 supergravity in the large N limit. Also, they take the form of the vacuum

character of WAN−1
algebra for finite N , leading to the W algebra conjecture [25]. We

want to compute the S5 partition functions for other gauge groups: SO(2N), SO(2N + 1),

Sp(N).6

We follow the notations of [6, 7]. The path integrals for the S5 partition functions are

reduced to the following matrix integrals

ZS5(σ, a, b, c,m) =
1

|WG|

∫ ∞
−∞

[
N∏
i=1

dλi

]
e
− 2π2 Trλ2

σ(1+a)(1+b)(1+c) · Z(1)
pertZ

(1)
inst · Z

(2)
pertZ

(2)
inst · Z

(3)
pertZ

(3)
inst.

(4.14)

N is the rank of 5d gauge group. a, b, c are the S5 squashing parameters a, b, c satisfying

a + b + c = 0. σ =
g25

2πr5
is the dimensionless coupling made of the S5 radius r5 and the

Yang-Mills coupling g5. We use the normalized trace Tr(T aT b) = δab and set a long root

ϑ of G to satisfy |ϑ|2 = 2. The S5 Yang-Mills action is written as 1
4g25

∫
Tr (FµνFµν). The

6In the proposal to use 5 dimensional Yang-Mills theory on S5 to study the 6d index, it is unclear to

us whether one should use O(n) or SO(n) as the 5d gauge groups. If the orientifold picture works even

in curved 5d background with Euclidean signature, it might be more natural to use O(n) gauge theories.

Even if the gauge groups are O(n), the following analysis in our paper will still be unchanged if there are

no extra saddle points in the path integral on S5 which use the O(n)− group elements. In fact, S5 does

not have 1-cycle on which discrete Z2 holonomies can be turned. So we think it is natural to assume the

absence of extra saddle points in O(n) theories. This is in contrast with the path integral over R4 × S1, as

we explored in section 3 for O(2)− theories.
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unit instanton action is 4π2

σ for all gauge groups. Zpert are the indices for BPS bound states

of perturbative W-bosons only. Zinst are the instanton partition functions that we have

studied so far. Omega-deformation parameters ε1, ε2 of ZpertZinst are identified with the

squashing parameters a, b, c, such that (ε1, ε2) = (b− a, c− a), (c− b, a− b), (a− c, b− c)
at each fixed point. See [7] for the details.

Re-arranging the S5 partition functions into strong coupling expressions is generally

very difficult. Only the Abelian (2, 0) index [24] was reproduced from the 5d U(1) partition

function on S5 [7]. Instead, we consider the special limit m = 1
2 and a, b, c→ 0 in which the

S5 partition functions preserve 8 SUSYs. We can make the precise analysis in this limit

as follows. The instanton partition functions are simplified such that the net instanton

contributions come from only one fixed point.

Z
(1)
inst → 1 , Z

(2)
inst → 1 , Z

(3)
inst → Zinst|m=ε+ (4.15)

if the limit a, b, c → 0 is taken in a suitable order [7]. For all classical gauge groups, the

instanton corrections are given as follows:

U(N), SO(2N), SO(2N + 1) : Z
(3)
inst = PE

[
N e−4π2/σ

1− e−4π2/σ

]
, (4.16)

Sp(N) with θ = 0 : Z
(3)
inst = PE

[
N e−8π2/σ

1− e−8π2/σ
+

e−4π2/σ

1− e−8π2/σ

]
(4.17)

Sp(N) with θ = π : Z
(3)
inst = PE

[
N e−8π2/σ

1− e−8π2/σ
+

N e−8π2/σ

1− e−16π2/σ

]
(4.18)

Multiplying the overall factors e
Nπ2

6σ , e(N− 1
2

)π
2

3σ , e(N−1)π
2

3σ which correspond to the suitable

couplings of the theories to the background curvatures [6], the instanton contributions are

written as Dedekind eta functions. We can easily make strong coupling expansions using

the modular property of Dedekind eta function: η(− 1
τ ) =

√
−iτη(τ). After all,

U(N), SO(2N), SO(2N + 1) :
(

2π
σ

)N/2
e
Nσ
24 PE

[
N e−σ

1− e−σ

]
(4.19)

Sp(N) with θ = 0 : 2−1/2
(

4π
σ

)N/2
e

(N+1)σ
48 PE

[
(N − 1) e−σ/2

1− e−σ/2
+

e−σ

1− e−σ

]

Sp(N) with θ = π : 2−1/2
(

4π
σ

)N/2
e

(N+1/2)σ
48 PE

[
(N + 1) e−σ/2

1− e−σ/2
− e−σ/4

1− e−σ/4

]
We can also handle the matrix integrals (4.14) over the perturbative determinants

e−2π2 Trλ2/σ · Z(1)
pertZ

(2)
pertZ

(3)
pert. For classical gauge groups G, the integrals become [7](

σ
2π

)N/2
e
σ
12
c2|G|

∏
ρ∈∆+

G

2 sinh
(
σ·ρ(λ)

2

)
, (4.20)

where ∆+
G is the set of positive roots of G. c2 is the dual Coxeter number. |G| is the

dimension of the semi-simple part of G. ρ is the Weyl vector. The final results are products

of (4.19) and (4.20).
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We summarize the exact S5 partition functions for all classical gauge groups as follows:

Z
SU(N)
S5 ≡ ZU(N)

S5 /Z
U(1)
S5 = e

σ
6
c2|G|+σ(N−1)

24 · PE

[∑N
m=2 e

−mσ

1− e−σ

]
(4.21)

Z
SO(2N)
S5 = e

σ
6
c2|G|+σN

24 · PE

[
e−Nσ +

∑N−1
m=1 e

−2mσ

1− e−σ

]
(4.22)

Z
SO(2N+1)
S5 = e

σ
6
c2|G|+σN

24 · PE

[
−e−σ/2 + e−(N+ 1

2
)σ +

∑N
m=1 e

−(2m−1)σ

1− e−σ

]
(4.23)

Z
Sp(N)|θ=0

S5 = 2(N−1)/2 e
σ
6
c2|G|+ (N+1)σ

48

· PE

[
−e−σ/2 − e−

N+1
2
σ − e−

N+2
2
σ +

∑N
m=0 (e−

2m+1
2

σ + e−
2m+2

2
σ)

1− e−σ

]
(4.24)

Z
Sp(N)|θ=π
S5 = 2(N−1)/2 e

σ
6
c2|G|+ (N+1/2)σ

48 · PE

[
−e−σ/4 − e−

N+1
2
σ +

∑N
m=0 e

− 2m+1
2

σ

1− e−σ/2

]
(4.25)

We interpret them as the indices of 6d (2, 0) theories. Recall that (2, 0) theories follow the

ADE classification. The gauge theories with simply-laced groups uplift to (2, 0) theories

on S1. The gauge theories with non-simply-laced groups are proposed to uplift to circle

compactified (2, 0) theories with outer automorphism twists. The S5 partition functions

of SU(N) and SO(2N) gauge theories correspond to the (2, 0) superconformal indices of

SU(N)-type and SO(2N)-type. Note that the vacuum Casimir energies scale as N3 as

expected from dual gravity [52, 53]. The SU(N) superconformal indices were already

obtained in [7], which agree with the vacuum character of WAN−1
algebra. Our results

show that the SO(2N) superconformal indices also agree with the vacuum character of the

WDN algebra, providing the evidence that the W algebra conjecture made in [25] holds for

SO(2N) theories.

Let us turn to the SO(2N + 1) or Sp(N) partition functions. These non-simply-laced

gauge theories are obtained from ADE-type (2, 0) theories on S1 with outer automorphism

twists [16, 17]:

1. SU(2N)-type (2, 0) theories with Z2 outer automorphism give 5d SO(2N + 1) SYMs.

2. SO(2N + 2)-type (2, 0) theories with Z2 outer automorphism give 5d Sp(N) SYMs

with θ = 0.

3. SU(2N + 1)-type (2, 0) theories with Z2 outer automorphism give 5d Sp(N) SYMs

with θ = π.

We expect that the S5 partition functions for non-simply-laced gauge theories to be the

twisted indices of corresponding (2, 0) theories. To propose them as the new indices for

(2, 0) theories with twists, we remove by hand the overall numerical factor 2(N−1)/2 in (4.24)

to adjust the ground state contribution to the index to be 1. This may have to do with

a suitable choice of path integral measures for the 6d theories with outer automorphism
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twists. However, we have no good explanations at the moment. These indices are compat-

ible with the twisted compactification realizations of non-simply-laced gauge theories, in

that they have smooth large N limits. In the large N limit, these indices are given as

Z
SO(2∞+1)
S5 = PE

[
− e−σ/2

1− e−σ
+

e−σ

(1− e−σ)(1− e−2σ)

]
(4.26)

Z
Sp(∞)θ=0

S5 = PE

[
− e−σ/2

1− e−σ
+

e−σ/2

(1− e−σ/2)(1− e−σ)

]
(4.27)

Z
Sp(∞)θ=π
S5 = PE

[
− e−σ/4

1− e−σ/2
+

e−σ/2

(1− e−σ/2)(1− e−σ)

]
. (4.28)

These results may shed more lights on what one precisely means by outer automorphism

twists of 6d (2, 0) theories.

5 Conclusion

In this paper, we studied the instanton partition functions for 5d N = 2 SYM with classical

gauge groups. Our approach was to utilize the ADHM quantum mechanics of the D0-D4-

O4 systems. The instanton partition functions were obtained by computing their Witten

indices and extracting out the extra states’ index contribution. The extra factor captured

the BPS spectrum of D0-branes in pure orientifold backgrounds. We also studied S-dualities

of various O4-planes on S1.

The instanton partition functions respect 6d S-dualities which are uplifts of 4d S-

dualities. Using them, we also computed the S5 partition functions which correspond

to the 6d superconformal indices. In the special limit, our final results showed that the

superconformal indices of SO(2N)-type (2, 0) theories agree with the vacuum character

of WDN algebra. The instanton partition functions for non-simply-laced SO(2N + 1),

Sp(N)|θ=0, Sp(N)|θ=π groups also produced interesting results. They are proposed to be

the indices of (2, 0) theories with outer automorphism twists.

It would be important to understand S-dualities of the instanton partition functions

on R4×S1 in full generality. This will be useful to study the spectrum of (2, 0) theories via

the superconformal indices. More generally, it would allow us to have better understanding

on the high temperature behavior of (2, 0) theories.
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