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1 Introduction

The AdS/CFT [1–3] correspondence has led to detailed studies of local operators in gauge

theories. A remarkable success has been the discovery of integrability in planar N = 4

SYM, which allows the computation of conformal dimensions and other quantities at any

value of the ’t Hooft coupling [4]. In parallel, the study of AdS/CFT at finite Nc, the

rank of the gauge group, is making progress. The CFT duals of giant gravitons [5] are

local BPS operators, which have been investigated using techniques based on permutation

groups and Fourier transformation in representation theory [6–13]. A class of quarter BPS

operators, showing finite Nc cutoffs related to Brauer algebras, were constructed [14]. The

general quarter BPS for the case where the dimension of the operators is less than Nc were

constructed using permutation algebras in [9, 12, 15, 16]. Integrability of excitations around

large half-BPS operators has been established [17–19]. A natural direction of investigation

is the application of the permutation-based methods to problems in the 1/Nc expansion

and far from planarity. In this paper we will take a further step in this direction, studying

singlet operators in the SO(6) sector made from six scalars. The study of non-planar

corrections in this sector was initiated in [20].

We will focus on the sector of hermitian scalar fields in N = 4 SYM with U(Nc) gauge

group, and consider “mesonic” gauge-invariant operators. The mesonic SO(6)-invariant

operators form a simple closed subsector under the action of one-loop dilatation operator;

namely the explicit form of the one-loop dilatation tells that there is no mixing between

mesonic operators and other operators like non-scalar singlets with derivatives or “bary-

onic” operators.1 It is in fact convenient to replace SO(6) by SO(Nf ) and discuss the general

Nf theory. Various arguments simplify at large Nf thanks to the absence of finite Nf con-

straints. We obtain identities relating different ways of counting gauge-invariant operators.

There is an essential distinction between Nc ≥ 2n and Nc < 2n, where 2n is the opera-

tor length. For example the planar limit is a limit in the former regime. The latter regime

contains interesting limits like Nc � 1, n ∼ O(Nc), which is related to the description of

giant gravitons. Conventionally the former is called large Nc and the latter is called finite

Nc. Likewise we mean large Nf and finite Nf by Nf ≥ 2n and Nf < 2n.

In section 2 we show that operators Oα of length 2n can be parametrised by permu-

tations α in S2n, the symmetric group of all permutations of 2n distinct objects. Different

permutations giving rise to the same mesonic operator are related by conjugation with an

element γ in the wreath product subgroup Sn[S2] ⊂ S2n. This group, of dimension 2nn!,

contains n copies of S2 as well as the symmetric group Sn consisting of permutations of

n pairs. The two-point function of operators 〈Oα1Oα2〉 is expressed in terms of a sum of

permutations in S2n. The all-orders expansion in Nf and Nc is given in terms of symmetric

group data such as cycle types of appropriate permutations. This wreath product group is

also used in [21, 22] to organise the colour structure in SO(Nc) and Sp(Nc) gauge theories.

In section 3, we show how to take a linear combination of the operators labelled by

permutations to form a new basis of operators labelled by representations of S2n, along

with a group-theoretical multiplicity label. This procedure can be thought of as the Fourier

1The absence of mixing with baryonic operators is discussed around (7.1) in section 7.
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transform on finite groups, which replaces permutation labels by representation labels. The

two-point function for these representation-labelled operators is diagonal, as given in (3.9).

The diagonal operators become null when the constraints of finite Nc or Nf are violated.

The construction in this section is an explicit realisation for the mesonic sector of a general

construction in [12].

In section 4 we take a careful look at the counting of the mesonic operators constructed.

We obtain the exact counting formula using representation theory, in particular Schur-Weyl

duality. The representation labels are equipped with finite Nc and finite Nf cut-offs, which

give the correct counting for general n. We return to the language of permutations, and

analyze the large Nc, Nf limits. In this way, we make contact with counting of the graphs

via the Burnside Lemma.

In section 5 we consider a topological lattice gauge theory with a discrete gauge group

S2n of the type discussed in [23–25]. The counting of mesonic operators in the permutation

basis, and their free-field two-point functions can be interpreted as the partition functions

of this topological field theory, defined on 2-complexes with boundaries and a defect.

Finally in section 6, we derive formulae for the action of the one-loop dilatation operator

acting on the operators constructed above.

In appendices we will explain our notation, collect mathematical statements and details

of computation.

Key technical results

Here is a brief summary of the key technical results of this paper.

Mesonic gauge-invariant operators, composite fields made of 2n scalars (Φa)
i
j , are asso-

ciated to permutations α ∈ S2n. They are written as Oα. Different permutations α related

through conjugation by a permutation γ ∈ Sn[S2] are identical.

Oα = Oγαγ−1 for γ ∈ Sn[S2] (1.1)

We denote the two-point functions of normal-ordered operators Oα of length 2n by

〈Oα1(x)Oα2(y)〉 =
〈Oα1Oα2〉
|x− y|4n

, (1.2)

where the bracket 〈Oα1Oα2〉 contains the sum of all Wick contractions between the two

operators. The two-point functions 〈Oα1Oα2〉 in the free theory will be described by an

elegant formula expressed in terms of cycle structures of permutations (2.31). However,

〈Oα1Oα2〉 viewed as a function of the permutation equivalence classes, is not diagonal.

To find a basis of operators with diagonal two-point functions in the free theory, we use

Fourier transformation on finite groups. Ordinary Fourier transformation can be written as

fK =

∫
dθDK(θ) f(θ), DK(θ) = eiKθ (1.3)

where DK(θ) is the action of the U(1) group element eiθ in the representation of charge

K. Fourier transformation on finite groups is given by

fRij =
∑
g∈G

DR
ij(g)f(g), f(g) ∈ C (1.4)

– 3 –
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where DR
ij(g) is the matrix element of g in the representation R and i, j run over some basis

of the representation, which we will choose to be an orthogonal basis. A similar transfor-

mation in the group algebra C(G), formed by linear combinations of group elements with

complex coefficients, is

QRij =
∑
g∈G

DR
ij(g) g (1.5)

Specializing G to the symmetric group, the irreducible representations R will correspond

to Young diagrams.

In this paper, we find a new diagonal basis for the free-field two-point functions, labelled

by two irreducible representations R,Λ1 of the permutation group S2n and a multiplicity

label τ ,

OR,Λ1,τ = tr2n(PR,Λ1,τ Φa1 ⊗ Φa1 ⊗ Φa2 ⊗ Φa2 ⊗ · · · ⊗ Φan ⊗ Φan)

(τ = 1, 2, . . . , C(R,R,Λ1)) (1.6)

as in (3.1). Here R corresponds to a Young diagrams with 2n boxes, Λ1 to an even Young

diagram with 2n boxes, i.e. all the row lengths are even numbers, and C(R,R,Λ1) is the

number of times Λ1 appears in the irreducible decomposition of R⊗R. PR,Λ1,τ is a linear

combination of the sums over the equivalence classes of permutations

[α] =
1

|Sn[S2]|
∑

γ∈Sn[S2]

γαγ−1, |Sn[S2]| = 2nn! (1.7)

which live in the group algebra C[S2n]. The equation (3.1) for PR,Λ1,τ is a generalisation

of (1.5), and the equation (1.6) for OR,Λ1,τ is a generalisation of (1.4), where f(g) has

been replaced by gauge-invariant polynomials in (Φa)
i
j parametrised by permutations. The

coefficients in PR,Λ1,τ do not depend explicitly on Nc or Nf , though R,Λ1 are required to

have a bound on the number of rows when Nf , Nc < 2n.

The number of diagonal operators (1.6) is given by

Number of mesonic operators =
∑
R

c1(R)≤Nc

∑
Λ1:even

c1(Λ1)≤Nf

C(R,R,Λ1). (1.8)

The two-point functions of (1.6) are given by (3.9),〈
OR,Λ1,τOR′,Λ′1,τ ′

〉
= δRR

′
δΛ1Λ′1 δττ

′
(

(2n)!

dR

)2

Dim(R)Nn
f ωΛ1/2(Ω

(f)
2n ) (1.9)

and they vanish unless the corresponding representation labels on the two operators are

identical. The normalisation factor ωΛ1/2(Ω
(f)
2n ) is a polynomial in Nf .

The wreath product group Sn[S2] in (1.7) also appears as a symmetry of the Kronecker

delta’s used for the contraction of flavour indices. The groups S2n and Sn[S2] form what

is called a Gelfand pair (S2n, Sn[S2]). A notable property of the Gelfand pair is that the

reduction of an irreducible representation of S2n into the singlet representation of Sn[S2] is

multiplicity-free. This property plays an essential role in our construction of the diagonal

operators (1.6), which is in the trivial representation of Sn[S2].

– 4 –
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The free-field two-point functions and the number of operators (1.8) are closely related,

which become manifest in the large Nc, Nf limit. Indeed, this agreement opens up a novel

interpretation as the partition function of a topological field theory with a discrete gauge

group.

The representation basis highly constrains the one-loop mixing, shown in (6.11). We

then establish that the elements of the mixing matrix are non-zero for operators having

a pair of representation labels R,R′ related by the move of at most one box. This is a

familiar fact from previous studies of one-loop mixing in representation bases.

2 Singlet operators

2.1 Mesonic operators and wreath-product permutation group

We denote a hermitian scalar field of gauge theory by Φ = (Φa)
i
j with a = 1, 2, . . . , Nf and

i, j = 1, 2, . . . Nc . The N = 4 SYM corresponds to Nf = 6. The upper gauge indices are

identified with the lower gauge indices, up to an ordering parametrised by a permutation α

(Φa1)i1iα(1)
(Φa2)i2iα(2)

· · · (Φa2n)i2niα(2n)
(2.1)

Regarding (Φa)
i
j as matrix elements of operators Φa : VN → VN and defining

Φ~a = Φa1 ⊗ Φa2 ⊗ · · · ⊗ Φa2n (2.2)

which are operators in V ⊗2n
N , we have

(Φa1)i1iα(1)
(Φa2)i2iα(2)

· · · (Φa2n)i2niα(2n)
= trV ⊗2n

N
(α Φ~a) = tr2n(α Φ~a) (2.3)

with α acting in the standard way on the tensor product V ⊗2n
N . In the second equality, the

trace has been abbreviated as tr2n.

Mesonic operators are defined as gauge-invariant operators whose flavour indices are

pairwise contracted. The general mesonic operator can be written by a permutation α ∈
S2n,

Oα =

( n∏
k=1

δa2k−1a2k

)
tr2n(αΦ~a)

= tr2n (α Φa1 ⊗ Φa1 ⊗ Φa2 ⊗ Φa2 ⊗ · · · ⊗ Φan ⊗ Φan) . (2.4)

Generally this is a multi-trace operator, whose trace structure is given by the cycle type

of α. If the cycle type of α is p,

p = [1p1 , 2p2 , . . . , (2n)p2n ],
2n∑
i=1

i pi = 2n , (2.5)

then the number of traces of Oα is equal to the number of cycles in α,

C(α) =
∑
i

pi . (2.6)
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The flavour contractions appear in pairs (2k − 1, 2k), which is invariant under the

permutation Σ0 = (1, 2)(3, 4) · · · (2n−1, 2n) consisting of pairwise swops. The permutation

Σ0 is invariant when conjugated by another set of permutations γ belonging to a subgroup

Sn[S2] of S2n

γΣ0γ
−1 = Σ0 for γ ∈ Sn[S2]. (2.7)

This wreath product group Sn[S2]2 has order 2nn!

|Sn[S2]| = 2nn! (2.8)

It contains each of the n pairwise swops, which form a subgroup (S2)×n ⊂ Sn[S2], along with

n! permutations of the n pairs. The operator Oα is invariant under conjugation by Sn[S2],

Oα = Oγαγ−1 for γ ∈ Sn[S2] (2.9)

because conjugation by a permutation gives re-ordering of the flavour indices, (A.6). Re-

calling the definition of [α] in (1.7), we observe

[α] = [γαγ−1] = γ[α]γ−1 for γ ∈ Sn[S2]. (2.10)

We define

O[α] ≡
1

|Sn[S2]|
∑

γ∈Sn[S2]

Oγαγ−1 (2.11)

and observe that

Oα = O[α] (2.12)

It follows therefore that gauge-invariant mesonic operators are in 1-1 correspondence with

the sums [α] in the group algebra.

For Nc ≥ 2n and Nf ≥ 2n, the mesonic operators of the form (2.12) is uniquely and

completely specified by the equivalence classes (2.9). The latter number is given by the

Burnside Lemma as

Number of mesonic operators =
1

|Sn[S2]|
∑

γ∈Sn[S2]

∑
α∈S2n

δ2n(γαγ−1α−1), (2.13)

where

δ2n(g) =

{
1 (g = identity ∈ S2n)

0 (otherwise).
(2.14)

Consider Oα with fixed trace structure, where the cycle type of α is p in (2.5). The number

of such gauge-invariants is

1

|Sn[S2]|
∑

γ∈Sn[S2]

∑
α∈Tp

δ2n(γαγ−1α−1), (2.15)

2Sn[S2] is also called the hyperoctahedral group in mathematics.

– 6 –
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where Tp consists of permutations of cycle type p. This is also equal to

1

|Hp|
∑
σ∈Hp

ϕ(σ), ϕ(σ) =
∑
γ∈[2n]

δ2n(γσγ−1σ−1), (2.16)

where the elements of Hp commute with a fixed permutation of cycle type p. A derivation

of the equality of these formulae, along with counting at finite Nf is in section 4.3.

When Nc < 2n or Nf < 2n, there exist a number of linearly dependent relations among

operators. They are called finite Nc constraints or finite Nf constraints. These constraints

can be expressed in terms of Young diagrams.3 In section 3, we will construct a set of oper-

ators with representation labels, where the finite Nc and finite Nf constraints are manifest.

2.2 Two-point functions

Consider the free two-point functions of the mesonic operators (2.4). Using the Wick

contraction rule (A.1), we obtain

〈Oα1Oα2〉=δ~a δ
~b
〈 2n∏
k=1

(Φak)ikiα1(k)

2n∏
m=1

(Φbm)jmjα2(m)

〉
= δ~a δ

~b
∑
σ∈S2n

2n∏
k=1

δakbmδ
ik
jα2(m)

δjmiα1(k)

∣∣∣
m=σ−1(k)

= δ~a δ
~b
∑
σ∈S2n

2n∏
k=1

δakbσ−1(k)
δikiα1σα2σ

−1(k)
(2.19)

where σ represents all possible Wick contractions, and δ~a =
∏n
i=1 δa2i−1a2i . The results can

be expressed by permutations,4

〈Oα1Oα2〉 =
∑
σ∈S2n

W (σ−1) tr2n(α1σα2σ
−1) =

∑
σ∈S2n

W (σ−1)NC(α1σα2σ−1)
c . (2.20)

Here C(σ) is (2.6), and W (σ) is the flavour factor

W (σ) = δ~a δ
~b

(
2n∏
k=1

δakbσ(k)

)
≡ δ~a δ

~b (σ)a1,a2,··· ,a2n

b1,b2,··· ,b2n . (2.21)

We have W (1) = Nn
f . The σ in (2.21) acts on V ⊗2n

F , with matrix elements equal to Kro-

necker deltas. We can also write W (σ) by introducing contraction operators C12, C34 · · · ,
where C12 acts on the first and second tensor factors of V ⊗2n

F as

C12 ea1 ⊗ ea2 = δa1a2 eb ⊗ eb (2.22)

3Here is a simple example of a finite Nc constraint. For a 2× 2 matrix X, we have the identity

tr(X3) =
3

2
trX tr(X2)− 1

2
(trX)3. (2.17)

We can rewrite this identity in terms of the projection operator associated with the anti-symmetric repre-

sentation as

tr3(p[13]X
⊗3) = 0. (2.18)

In short, we cannot anti-symmetrise more than Nc = 2 indices.
4tr2n(σ) = tr2n(σ 1) is a special case of (2.3).

– 7 –
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=

Figure 1. The left figure shows C12C34 · · ·C2n−1,2nσ acting on V ⊗2nF . The upper and lower

horizontal lines are identified when taking the trace, as in the right figure.

Figure 2. (Left) Diagram for W (γ1σγ2), which counts the number of connected components.

(Right) An example of γ ∈ Sn[S2], showing that Sn[S2] does not change the number of connected

components.

Then

W (σ) = trV ⊗2n
F

(C12C34C56 · · ·C2n−1,2nσ) . (2.23)

The contractions form part of the Brauer algebra which is the commutant of O(Nf ) acting

on V ⊗2n
F , the 2n-fold tensor product of the fundamental representations.

The contraction operators obey

γ1(C12C34 · · ·C2n−1,2n)γ2 = (C12C34 · · ·C2n−1,2n) (2.24)

as can be seen from figure 2. It follows that

W (σ) = W (γ1σγ2), ∀γ1, γ2 ∈ Sn[S2] (2.25)

and from (2.21)

W (σ) = W (σ−1). (2.26)

Let us denote by z(σ) the number of cycles W (σ) represented in figure 1. Then W (σ)

is given by

W (σ) = N
z(σ)
f . (2.27)

– 8 –
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Indeed, the function z(σ) satisfies

z(σ) = z(γ1σγ2), ∀γ1, γ2 ∈ Sn[S2], (2.28)

We will show in appendix B that it can be expressed as

z(σ) =
1

2
C(Σ0σΣ0σ

−1). (2.29)

Since permutations can be multiplied efficiently using group theory software such as GAP

or with Mathematica, this is a very useful expression for practical calculations. It does not

involve explicitly doing sums over indices ranging from 1 to Nf . The quantity (2.29) also

has a nice mathematical meaning. It is equal to the number of cycles in the coset type of

σ as explained in appendix A.3.

For later purposes, let us define

Ω
(f)
2n =

1

Nn
f

∑
σ∈S2n

N
z(σ)
f σ−1, Ω2n =

1

N2n
c

∑
σ∈S2n

NC(σ)
c σ−1. (2.30)

In terms of these quantities the two-point functions (2.20) have the form of

〈Oα1Oα2〉 =
∑
σ∈S2n

N
z(σ)
f NC(α1σα2σ−1)

c =
∑
σ∈S2n

N
1
2
C(σΣ0σ−1Σ0)

f NC(α1σα2σ−1)
c

=
∑
σ

N2n
c Nn

f δ2n(Ω
(f)
2n σ) δ2n(Ω2nα1σα2σ

−1). (2.31)

From (2.28), the Ω
(f)
2n satisfies

γ1Ω
(f)
2n γ2 = Ω

(f)
2n , (2.32)

and we recover W (σ) by

W (σ) = Nn
f δ2n(Ω

(f)
2n σ). (2.33)

3 Orthogonal two-point functions

We now propose a set of operators labelled by representations,

OR,Λ1,τ = tr2n(PR,Λ1,τ Φa1 ⊗ Φa1 ⊗ Φa2 ⊗ Φa2 ⊗ · · · ⊗ Φan ⊗ Φan),

PR,Λ1,τ =
∑
α∈S2n

BΛ1
k Sτ,Λ1

k
R
i
R
j D

R
ij(α

−1) [α], (3.1)

where R, Λ1 are irreducible representations of S2n, τ runs over 1, . . . , C(R,R,Λ1) is the

Clebsch-Gordan multiplicity for S2n tensor products (see (A.21)), and the Sτ,Λ1
k
R
i
R
j is the

Clebsch-Gordan coefficient (A.20). The use of this group theory data in the construction

of covariant bases was developed in [9, 12]. The BΛ1
k , called a branching coefficient, is

defined in terms of the reduction of the irreducible representation Λ1 of S2n in terms

of a direct sum of irreducible representations of Sn[S2] ⊂ S2n. A generic state |Λ1, k〉
can be expanded in terms of irreducible representations of Sn[S2]. The one-dimensional

irreducible representation of Sn[S2] is known to appear in the decomposition of Λ1 with

– 9 –



J
H
E
P
1
2
(
2
0
1
6
)
1
4
2

unit multiplicity if Λ1 is even, i.e. the partition of Λ has the form (2λ1, 2λ2, · · · ) with

integers λi. Denoting this one-dimensional subspace of Λ1 as |Λ1 → 1Sn[S2]〉, we have the

branching coefficients

BΛ1
k = 〈Λ1, k | Λ1 → 1Sn[S2]〉, (3.2)

where k runs over 1, · · · , dΛ1 .5 The branching coefficient is related to the singlet projector

p1Sn[S2]
by

DΛ1
k1k2

(p1Sn[S2]
) = BΛ1

k1
BΛ1
k2
, p1Sn[S2]

=
1

|Sn[S2]|
∑

γ∈Sn[S2]

γ . (3.3)

The quantity PR,Λ1,τ has the symmetry

PR,Λ1,τ = γPR,Λ1,τγ−1 (3.4)

for γ ∈ Sn[S2]. From the inverse of (3.1), [α] is expressed by

[α] =
1

(2n)!

∑
R,Λ1,τ

dRB
Λ1
k Sτ,Λ1

k
R
i
R
j D

R
ji(α)PR,Λ1,τ . (3.5)

Let us introduce

ωΛ/2(σ) =
1

|Sn[S2]|
∑

γ∈Sn[S2]

χΛ(σγ), (3.6)

where Λ is an even Young diagram (A.27). The function ωΛ/2(σ) is called the zonal

polynomial of the Gelfand pair (S2n, Sn[S2]) [26]. We have other expressions in terms of

the projection operator associated with the singlet representation of Sn[S2],

ωΛ/2(σ) = χΛ(σp1Sn[S2]
) = 〈Λ→ 1Sn[S2]|σ|Λ→ 1Sn[S2]〉. (3.7)

The zonal polynomial has the property

ωΛ/2(σ) = ωΛ/2(γ1σγ2), (γ1, γ2 ∈ Sn[S2]). (3.8)

The prominent property of the operators is that they have diagonal two-point functions

〈OR,Λ1,τOS,Λ
′
1,τ
′〉 = δRS δΛ1Λ′1 δττ

′
(

(2n)!

dR

)2

Dim(R)Nn
f ωΛ1/2(Ω

(f)
2n ), (3.9)

where Dim(R) is the dimension of U(Nc) associated with the representation R, and dR
is the dimension of S2n associated with the representation R. ωΛ1/2(Ω

(f)
2n ) is a speciali-

sation of the zonal spherical function of the Gelfand pair (GL(Nf ),O(Nf )) explained in

appendix C.2. It is a polynomial in Nf , which was also encountered in [21, 22]. This

equation is derived in appendix C.1. Concrete examples of the operators OR,Λ1,τ are given

in appendix D.

In section 4.1 we count the number of mesonic operators using Schur-Weyl duality. It

will turn out that the representation-labelled operator (3.1) should vanish if

c1(R) < Nc or c1(Λ1) < Nf , (3.10)

5Due to Frobenius duality between restriction and induction, the state |Λ1 → 1Sn[S2]〉 can also be

thought as the Λ1-component of the induced representation IndGH1H with G = S2n and H = Sn[S2].
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where c1(R) denotes the length of the first column of the Young diagram R. This expec-

tation is consistent with the normalisation of our two-point functions (3.9). We can find

the vanishing properties from the formulae

Dim(R) =
∏

(i,j)∈R

(Nc + j − i)
h(i, j)

(3.11)

and

ωΛ1/2(Ω
(f)
2n ) =

|Sn[S2]|
Nn
f

∏
(i,j)∈Λ1/2

(Nf + 2j − i− 1), (3.12)

where (i, j) labels the row and column of the boxes of the Young diagram, and h(i, j) is

the hook-length (A.11). The formula (3.12) was derived in [21, 26]. Both (3.11) and (3.12)

depend on Nc and Nf through the product of factors, e.g.

Dim(R) ∼
∏

boxes

Nc Nc + 1 Nc + 2 Nc + 3

Nc − 1 Nc

(3.13)

ωΛ1/2(Ω
(f)
2n ) ∼

∏
boxes

Nf Nf + 2Nf + 4Nf + 6

Nf − 1Nf + 1

(3.14)

In [12] a general formula of diagonal operators is presented, which works for any group

G and representation V . However, the formula requires the calculation of the CG coeffi-

cients arising from the decomposition of V ⊗2n
F by G× S2n . It turns out that our operator

OR,Λ1,τ is a concrete realisation of the general formulae of [12]. The relevant CG coefficients

can be obtained explicitly as explained in appendix E. The branching coefficients associ-

ated with the Gelfand pair (S2n, Sn[S2]) provide a neat description of these Clebsch-Gordan

coefficients, and hence of the space of O(Nf ) singlet operators of length 2n.

4 Operator counting

In this section we discuss several aspects of the counting formula, taking care of essential

distinction between large Nc and finite Nc ( i.e. Nc ≥ 2n and Nc < 2n ) as well as large

Nf and finite Nf ( i.e. Nf ≥ 2n and Nf < 2n). First we employ Schur-Weyl duality

and to obtain group theoretic expressions for the dimension of the space of operators

at finite Nc, Nf . Then we rewrite the counting formula in terms of delta functions of

permutations in the large Nc and large (Nc, Nf ) limits. The latter formulae are recognised

as the counting formulae for graphs based on Burnside’s Lemma. We will rediscover various

ways of associating permutation labels to gauge-invariant operators at large Nc, Nf .

4.1 Schur-Weyl duality and counting for finite Nc, Nf

The construction of our operators can be explained by Schur-Weyl duality, along the lines

of [9, 12, 27, 28]. The scalar field (Φa)ji has one flavour and two colour indices, and belongs
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to VF ⊗ VC ⊗ V C . Thus the tensor product Φ⊗2n belongs to
(
VF ⊗ VC ⊗ V C

)⊗2n
. There

is a natural action of permutations σ ∈ S2n on the tensor product,

σ : (Φa1)j1i1 (Φa2)j2i2 . . . (Φ
a2n)j2ni2n 7→ (Φaσ(1))

jσ(1)

iσ(1)
(Φaσ(2))

jσ(2)

iσ(2)
. . . (Φaσ(2n))

jσ(2n)

iσ(2n)
. (4.1)

The r.h.s. is a polynomial of bosonic variables (Φa)ji . Since they commute with each other,

this polynomial is invariant under σ.

Let us count the number of gauge-invariant scalar operators. We regard VF , VC , V C

as U(Nf ),U(Nc)-modules and apply Schur-Weyl (SW) duality. We find(
VF ⊗ VC ⊗ V C

)⊗2n
(4.2)

=
⊕
Λ`2n

c1(Λ1)≤Nf

⊕
R`2n
c1(R)

⊕
S`2n

c1(S)≤Nc

(
V
U(Nf )

Λ ⊗ V S2n
Λ

)
⊗
(
V
U(Nc)
R ⊗ V S2n

R

)
⊗
(
V̄
U(Nc)
S ⊗ V S2n

S

)
.

where c1(R) is defined in (A.8). We impose the condition R = S to select U(Nc)-invariant

operators,

V
U(Nc)
R ⊗ V̄ U(Nc)

S

∣∣∣
U(Nc)

= δR,S V
U(Nc)
∅ (4.3)

and the operators should also be S2n-invariant

V S2n
Λ ⊗ V S2n

R ⊗ V S2n
R

∣∣∣
S2n

=
⊕
Λ′

V S2n
Λ ⊗ V Λ′

RR ⊗ V
S2n

Λ′

∣∣∣
S2n

= V Λ
RR ⊗ V

S2n

[2n] . (4.4)

where V Λ′
RR is the multiplicity space of V S2n

Λ′ in the tensor product V S2n
R ⊗V S2n

R . Its dimension

is the CG multiplicity C(R,R,Λ′) (A.21). This implies(
VF ⊗ VC ⊗ V C

)⊗2n
∣∣∣
U(Nc)×S2n

=
⊕

Λ

⊕
R

(
V
U(Nf )

Λ ⊗ V Λ
RR ⊗ V

S2n

[2n]

)
. (4.5)

The number of gauge-invariant scalar operators is given by taking the dimension of both

sides.

Now we count the number of mesonic operators (2.4), which contains the Kronecker

delta
∏n
i=1 δ

a2i−1a2i . The mesonic operator is invariant under the following action of per-

mutations γ in the wreath product group Sn[S2],

γ :

( n∏
i=1

δa2i−1a2i

)
(Φa1)j1i1 (Φa2)j2i2 . . . (Φ

a2n)j2ni2n

7→
( n∏
i=1

δaγ(2i−1)aγ(2i)

)
(Φaγ(1))j1i1 (Φaγ(2))j2i2 . . . (Φ

aγ(2n))j2ni2n . (4.6)

This γ is not part of σ in (4.1), because γ does not change the colour indices. Recall

that the wreath product subgroup Sn[S2] is the set of permutations which leaves Σ0 =

(12)(34) . . . (2n− 1, 2n) ∈ S2n invariant under action by conjugation

γΣ0γ
−1 = Σ0 for γ ∈ Sn[S2]. (4.7)
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2n 2 4 6 8 10 12

I2n 2 8 34 182 1300 12534

Table 1. The number of all mesonic operators of length 2n for Nc ≥ 12 and Nf ≥ 6.

The contraction of the flavour indices breaks U(Nf ) to O(Nf ) and projects to the invariant

representation of O(Nf ). So we can count the number of mesonic operators by restrict-

ing (4.2) to the subspace invariant under O(Nf )×Sn[S2]×S2n×U(Nc). We use the fact that

V ⊗2n
F

∣∣
O(Nf )×Sn[S2]

=
⊕

Λ

V
U(Nf )

Λ

∣∣
O(Nf )

⊗ V S2n
Λ

∣∣
Sn[S2]

=
⊕

Λ1: even

V
U(Nf )

Λ1

∣∣
O(Nf )

⊗ V S2n
Λ1

∣∣
Sn[S2]

.
(4.8)

Both (GL(Nf ),O(Nf )) and (S2n, Sn[S2]) are Gelfand pairs [26], which has the multiplicity-

free property. In particular Λ of the parent group contains the trivial of the subgroup with

unit multiplicity if Λ1 is an even partition (A.27). Now we repeat the above argument,

taking into account that the two factors in (4.8) are one-dimensional, to obtain(
VF ⊗ VC ⊗ V C

)⊗2n
∣∣∣
O(Nf )×Sn[S2]×U(Nc)×S2n

=
⊕

Λ1: even

⊕
R

V Λ1
RR (4.9)

The number I2n(Nc, Nf ) of mesonic singlet operators of length 2n at finite Nc, Nf is thus

I2n(Nc, Nf ) =
∑

Λ1: even
c1(Λ1)≤Nf

∑
R

c1(R)≤Nc

C(R,R,Λ1). (4.10)

This result agrees with the number of diagonal operators (3.1). Table 1 shows some values

of I2n(Nc, Nf ) at large Nc, Nf .

The formula (4.10) counts only the O(Nf ) singlets. The method to count the SO(Nf )

singlets or other representations are described in [12]. The difference between O(Nf ) and

SO(Nf ) lies in the existence of “baryonic” operators. We will explain more about these

points in appendix E.2.

4.2 Large Nc

The number of singlet mesonic operators for finite Nc and finite Nf is given by (4.10). We

consider simplifications at large Nc; more precisely Nc ≥ 2n. There we can convert the

sum over R into a sum over permutations.

Let us define

ϕNf (σ) :=
∑

Λ1:even
c1(Λ1)≤Nf

χΛ1(σ), (4.11)

and apply the formula (A.12), valid for Nc ≥ 2n, to the counting formula (4.10). It

simplifies as

I2n(Nf ) ≡ I2n(Nc ≥ 2n,Nf ) =
1

(2n)!

∑
σ∈S2n

∑
γ∈S2n

δ2n(γσγ−1σ−1)ϕNf (σ) (4.12)

– 13 –



J
H
E
P
1
2
(
2
0
1
6
)
1
4
2

p [4] [3, 1] [22] [2, 12] [14]

Hp Z4 Z3 × Z1 S2[Z2] Z2 × S2 S4

Table 2. The symmetry group which preserves the cycle type at 2n = 4.

where δ2n(g) is defined by (2.14). When the cycle type of σ is p = [1p1 , 2p2 , · · · , npn ]

(
∑

i=1 ipi = 2n), define

Tp = {σ ∈ S2n | cycle type of σ is p} (4.13)

Hp(σ) = {γ ∈ S2n | γσ = σγ, σ ∈ Tp}. (4.14)

Note that Hp(σ), Hp(σ
′) are conjugate with each other if σ, σ′ ∈ Tp. We define Hp as Hp(σ∗)

for a fixed σ∗ ∈ Tp . The order of Hp , namely the number of elements that commute with

any permutation of cycle type p, is given by

|Hp| =
(2n)!

|Tp|
. (4.15)

See table 2 for examples. In particular, when the cycle type is [2n], the symmetry group

(the stabiliser) is H[2n] = Sn[S2]. Thus

|Sn[S2]| = (2n)!

(2n− 1)!!
= 2nn!. (4.16)

Then (4.12) may be written as6

I2n(Nf ) =
1

(2n)!

∑
σ∈S2n

∑
p`2n

∑
γ∈Tp

δ2n(γσγ−1σ−1)ϕNf (σ)

=
1

(2n)!

∑
p

|Tp|
∑
σ∈Hp

ϕNf (σ)

=
∑
p

1

|Hp|
∑
σ∈Hp

ϕNf (σ) (4.17)

or

I2n(Nf ) =
1

(2n)!

∑
q`2n

∑
σ∈Tq

∑
γ∈S2n

δ2n(γσγ−1σ−1)ϕNf (σ)

=
1

(2n)!

∑
q

|Hq|
∑
σ∈Tq

ϕNf (σ)

=
∑
q

1

|Tq|
∑
σ∈Tq

ϕNf (σ) (4.18)

6Here we used the fact that any γ ∈ Tp is written as γ = νγ∗ν
−1 with a fixed γ∗ ∈ Tp for some ν ∈ S2n.

This ν disappears after the redefinition σ′ = ν−1σν. The sum of ϕNf (σ) over Hp(γ∗) does not depend on

the choice of γ∗.
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The two expressions give the large Nc equivalence

I2n(Nf ) =
∑
p

1

|Hp|
∑
σ∈Hp

ϕNf (σ) =
∑
q

1

|Tq|
∑
σ∈Tq

ϕNf (σ). (4.19)

This equivalence can also be derived from the following group theory identity∑
p

1

|Hp|
∑
σ∈Hp

∑
µ∈S2n

µσµ−1 =
∑
q

1

|Tq|
∑
σ∈Tq

∑
µ∈S2n

µσµ−1 (4.20)

The expressions (4.17) and (4.18) will be used in the next subsection.

4.3 Large Nc and Nf

We take large Nf and large Nc limits to convert all representations to permutations, and

obtain several expressions of the counting.

We define

ϕ(σ) := ϕNf≥2n(σ) =
∑

Λ1:even

χΛ1(σ) =
∑

Λ1`2n

χΛ1(σ)MΛ1
1Sn[S2]

. (4.21)

where we used the formula (A.26) saying that (S2n, Sn[S2]) is a Gelfand pair. We also have

ϕ(σ) =
1

|Sn[S2]|
∑
Λ1

∑
u∈Sn[S2]

χΛ1(σ)χΛ1(u)

=
1

|Sn[S2]|
∑

u∈Sn[S2]

∑
µ∈S2n

δ2n(µσµ−1u). (4.22)

Let us define

Zp ≡
1

|Hp|
∑
σ∈Hp

ϕ(σ), (4.23)

which is also written as

Zp =
∑

Λ1`2n

MΛ1
1Hp

MΛ1
1Sn[S2]

=
∑

Λ1`2n,even

MΛ1
1Hp

(4.24)

From (4.17) the total number of singlets with 2n fields is

I2n ≡ I2n(Nf ≥ 2n) =
∑
p`2n

Zp (4.25)
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We will derive three expressions for Zp below.7

The quantity Zp is the number of equivalence classes in the double coset

Sn[S2]\S2n/Hp,

Zp =
1

|Sn[S2]|
1

|Hp|
∑
σ∈Hp

∑
u∈Sn[S2]

∑
µ∈S2n

δ2n(uµσµ−1) (4.29)

The double coset space is the set of equivalence classes of permutations in S2n, generated

by the left and right multiplications by the subgroups Sn[S2] and Hp respectively.

µ ∼ uµσ (u ∈ Sn[S2], σ ∈ Hp) . (4.30)

The above delta-function sum (4.29), counting the number of elements in the double coset

space, is the application of the Burnside Lemma, which reduces the counting of orbits

under a group action to the counting of fixed points under the group action. This double

coset counting is the same as the counting of bi-partite graphs. The bi-partite graphs have

vertices in two colours (say black and white), and edges which connect only the vertices

of different colours. The black vertices associated with partitions p, have cyclic order and

there are p1 univalent, p2 bi-valent, p3 trivalent vertices, etc. These are easy to understand

in terms of counting of traces of the scalar fields with global symmetry indices contracted.

A cyclic black vertex of valency v corresponds to a trace with v scalar fields. The white

vertices correspond to links between pairs of edges emanating from the black vertices, and

correspond to flavour indices of the corresponding fields being contracted. The connection

between double cosets and graph counting is explained in a physics context in [29]. By going

to large Nc, Nf , we see that counting SO(Nf ) invariants is simply counting the graphs.

7Each expression of Zp is related to different ways of writing the mesonic operators. Let us introduce

Oα,ρ =

( n∏
i=1

δa2i−1a2i

)
tr2n

(
α Φaρ(1) ⊗ Φaρ(2) ⊗ · · · ⊗ Φaρ(2n−1)

⊗ Φaρ(2n)

)
. (4.26)

This description is redundant in the following way,

Oα,ρ = O
γ1αγ

−1
1 ,γ2ργ

−1
1

(γ1 ∈ S2n , γ2 ∈ Sn[S2]) . (4.27)

The permutation γ1 comes from the re-ordering (A.6), and γ2 is the symmetry of the Kronecker delta’s.

By using this redundancy we can gauge-fix either α or ρ. If we fix ρ, we obtain the operator Oα in (2.4).

The corresponding counting formula is (4.34). If we fix α, then the cycle structure of α, denoted by p ` 2n,

determines the colour (or multi-trace) structure. It corresponds to the counting formula is (4.29). Finally,

we use the contraction operators (2.22) and write

Oα,τ =

( n∏
i=1

Cρ(2i−1)ρ(2i)

)
tr2n (α Φa1 ⊗ · · · ⊗ Φa2n) (4.28)

We find that the transformation rule of the quantities
∏n
i=1 Cρ(2i−1)ρ(2i) = ρ−1

(∏n
i=1 C2i−1,2i

)
ρ and τ =

ρ−1Σ0ρ under the map ρ → ργ−1 are identical. The expression (4.28) is related to the last counting

formula (4.33).
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Now observe that the last line in (4.22) can be rewritten as8

ϕ(σ) =
1

|Sn[S2]|
∑
u∈S2n

∑
µ∈S2n

δ2n(µσµ−1u)δ2n(Σ0uΣ−1
0 u−1)

=
1

|Sn[S2]|
∑
µ∈S2n

δ2n(Σ0µσµ
−1Σ−1

0 µσ−1µ−1)

=
∑
τ∈[2n]

δ2n(τστ−1σ−1). (4.32)

From (4.12), (4.25) and (4.32),

Zp =
1

(2n)!

∑
σ∈Tp

∑
γ∈S2n

δ2n(γσγ−1σ−1)ϕ(γ)

=
1

(2n)!

∑
σ∈Tp

∑
γ∈S2n

δ2n(γσγ−1σ−1)
∑
τ∈[2n]

δ2n(τγτ−1γ−1). (4.33)

This can be recognised as the counting of pairs (σ, τ) in conjugacy classes (Tp, [2
n]), subject

to equivalences (σ, τ) ∼ (γσγ−1, γτγ−1) where γ ∈ S2n. Such equivalence classes of pairs

form another way of encoding bi-partite graphs. It amounts to choosing a labelling of the

edges using integers {1, · · · , 2n} and reading off the labels of the edges around the black

and white vertices. This is an alternative way to encode graphs, which differs from the

encoding by a permutation σ ∈ S2n which links directly with the counting by double cosets.

This way of encoding graphs, in the context of Feynman graphs (which have symmetric

rather than the cyclic vertices here) is illustrated in figure 7 of [29]). The way that links

directly with double cosets is shown in figure 10 there.

Some further manipulation of (4.33) gives

Zp =
1

|Sn[S2]|
∑
σ∈Tp

∑
γ∈Sn[S2]

δ2n(γσγ−1σ−1). (4.34)

The equation (4.34) establishes the equivalence between (2.15) and (2.16). We can repro-

duce this result also by applying the Burnside Lemma directly to the equivalence class

of (4.27).

Using (4.18) we obtain yet another formula

I2n =
∑
q

Z̃q, Z̃q =
1

|Tq|
∑
γ∈Tq

∑
τ∈[2n]

δ2n(τγτ−1γ−1). (4.35)

Note however that Z̃q 6= Zq.
9 We now have some physical insight into the two ways of

writing I2n as sums over partitions in (4.20). (4.19) In one way we have Zp. In another, we

8At the first line of (4.32) we have used that the elements in Sn[S2] satisfy

Σ0uΣ−1
0 = u (4.31)

for Σ0 = (12)(34) · · · (2n− 1, 2n). See also the discussion in section 5.4 of [29].
9For example, when q = {[4], [3, 1], [22], [2, 12], [14]}, then Z̃q = {1, 0, 3, 1, 3} and Zq = {2, 1, 2, 2, 1}.

– 17 –



J
H
E
P
1
2
(
2
0
1
6
)
1
4
2

have ϕ(γ) with γ ∈ Tq. The partition p is the trace structure. The partition q is the cycle

structure of γ which commutes with τ ∈ [2n]. Note that we have arrived at the sums over

a product of two delta functions in this section by taking large Nc, Nf .

It is instructive to reconsider in reverse what we did in this section. Start from gauge-

invariant operators parametrised by permutation equivalence classes. Graph counting asso-

ciated with gauge-invariant operators can be expressed in terms of permutation sums with

a product of delta functions. The Young diagrams R,Λ come from Fourier transforming

these two delta functions. In the present context, we have seen that the numbers of rows

of R,Λ are cut off by the rank of gauge and global symmetry groups. In a wider context,

we may wonder about the physical meaning of introducing extra integers to cut off the

numbers of columns.

5 Permutation topological field theory

We explore the connection to a two-dimensional topological field theory (TFT) of permu-

tation groups. This TFT is a topological lattice gauge theory whose gauge group is S2n,

defined on a 2-complex (collection of 0- , 1- and 2-cells glued together). The computation

of observables of the TFT involves a sum over the group elements of S2n for every edge

(1-cell), with a weight equal to a product of delta functions, one for every face (2-cell).

The delta function weight ensures that the sum is invariant under refinement of the cell

decomposition, so that a continuum limit can be reached. This type of TFT is discussed in

the physics literature in e.g. [23–25]. A review of the TFT of permutations and application

to a large class of observables in quiver gauge theories is given in [30].

As a first step, we reconsider the number of mesonic states as a partition function in

TFT. By summing over p ` 2n in (4.33), we find

I2n =
1

|Sn[S2]|
∑
σ∈S2n

∑
γ∈S2n

δ2n(γσγ−1σ−1)δ2n(Σ0γΣ0γ
−1) (5.1)

This formula gives the number of mesonic singlets as a partition function for S2n TFT on

the 2-complex shown in the upper left of figure 3. The 2-complex consists of two tori (drawn

as cylinders with top and bottom boundaries identified) joined along a circle, associated

with permutation σ. One of the tori has a cycle with permutation Σ0, which is fixed rather

than being summed. This cycle with constrained permutation is a defect. Note that the

delta function δ2n(Σ0γΣ0γ
−1) can be solved explicitly as in (4.34).

Next we rewrite the free two-point functions (2.31) to make contact with (5.1),

〈Oα1Oα2〉 =
∑

β1∈S2n

∑
β2∈S2n

∑
σ∈S2n

NC(β1)
c N

1
2
C(β2)

f δ2n(β−1
1 α1σα2σ

−1)δ2n(β−1
2 σΣ0σ

−1Σ0)

(5.2)

If we take the large Nf , Nc limit, the leading terms only come from β1 = β2 = 1. If we

set [α1] = [α−1
2 ] = [α] and sum over the conjugacy class [α], we reproduce the number of
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Figure 3. Observables in TFT. The upper left figure is the number of states I2n, where Σ0, γ

and the two ends of σ are identified. The upper right figure is the two-point function 〈Oα1Oα2〉,
where Σ0 and the two ends of σ are identified. The lower figures represent a pair of 2-cells in the

two-point function.

states (5.1) as

1

|Sn[S2]|
∑
α

〈OαOα〉 = N2n
c Nn

f

∑
α∈S2n

∑
σ∈S2n

δ2n(α−1σασ−1)δ2n(σΣ0σ
−1Σ0)

= N2n
c Nn

f I2n (5.3)

Note that the free two-point functions (5.2) become diagonal in the large Nf , Nc limit

owing to the symmetry (4.27).

The formula (5.2) can be recognised as the partition function of the S2n TFT on a

2-complexM with boundaries and a defect, as we now describe. The first delta function is

associated to a 2-torus with the disc removed. The boundary of the disc has permutation

β2, summed with N
C(β2)

2
f (this forms the ΩNf factor). One of the cycles of the 2-torus is con-

strained to be the permutation Σ0. This constraint can be viewed as a defect. The second

delta function is associated to a topological quotient of a cylinder with a disc removed, re-

lated to β1, which is summed with weight N
C(β2)
c to give ΩNc . The permutations α1, α2 cor-

respond to the two boundary circles of the cylinder, and a point from each of the two bound-

ary circles is identified by the quotienting. The 2-torus and the quotiented cylinder are

glued along a circle, to form the 2-complex which we callM. This is illustrated in figure 3.

The 2-complex M cannot be the cell decomposition of a 2-manifold (which should lo-

cally be R2), because a 1-cell (the red-dashed circle denoted by σ) is incident on four 2-cells.
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Still, it should be possible to realise it as the 2-skeleton of a higher dimensional manifold.

In that case higher dimensional TFT would be the natural setting for the interpretation

of the 2-point function. TFT3 has arisen in the context of refined counting formulae for

graphs in [31].

6 One-loop operator mixing

In this section we will compute the mixing matrix under the action of the one-loop dilatation

operator [32]

H = −1

2
tr[Φm,Φn][Φ̌m, Φ̌n]− 1

4
tr[Φm, Φ̌

n][Φm, Φ̌
n], (6.1)

where (Φ̌m)ij(Φn)kl = δmn δjkδil. On the representation basis, the mixing matrix is almost

diagonal, where the non-zero components are explained by the repositioning of boxes.

On the permutation basis, the mixing matrix is given by

HOσ =
∑
ρ

Mσ,ρOρ (6.2)

Mσ,ρ = −
∑
〈i,j〉

∑
β∈S〈j〉2n−1

δ2n([σ, (ij)]X(j)β−1)δ2n([ρ−1, (ij)]β)

−Nf

∑
(i,j)

δ2n(ρ−1(ij)σ)−
∑
〈i,j〉

δ2n

(
ρ−1(Σ0(i)j)(ij)σ(Σ0(i)j)

)
+Nf

∑
(i,j)

∑
β∈S〈j〉2n−1

δ2n((ij)σX(j)β−1)δ2n(ρ−1(ij)β)

+
∑
〈i,j〉

∑
β∈S〈j〉2n−1

δ2n((ij)σX(j)β−1)δ2n(ρ−1(Σ0(i)j)(ij)β(Σ0(i)j)) (6.3)

where Σ0 = (12)(34) · · · (2n− 1, 2n), and we have defined

X(j) = Nc +
∑
k( 6=j)

(kj). (6.4)

The sum
∑

(i,j) is over (1, 2), (3, 4), · · · , while the sum
∑
〈i,j〉 is over the other pairs. We

do not distinguish (i, j) and (j, i). The first line of (6.3) comes from the first term of (6.1),

and the remaining lines come from the second term. The derivation of this mixing matrix

is presented in appendix F.

Given that we have expressed the mixing matrix purely in terms of permutations, we

expect that there will be an interpretation in terms of permutation topological field theory.

The construction of 2-complex will be analogous to our interpretation for the free field two-

point function given in figure 3, but will involve some new features given the additional

complexity apparent here. We will return to this problem in the near future.
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In the latter part of this section we study the mixing matrix on the representation

basis. We denote the change of basis by

PR,Λ1,τ =
∑
α

cR,Λ1,τ (α)[α],

[α] =
∑
R,Λ1,τ

fR,Λ1,τ (α)PR,Λ1,τ . (6.5)

See (3.1) and (3.5) for the definition of cR,Λ1,τ and fR,Λ1,τ . The mixing matrix on the

representation basis is related to the mixing matrix on the permutation basis by

M
R′,Λ′1,τ

′

R,Λ1,τ
=

∑
σ,ρ∈S2n

cR,Λ1,τ (σ)Mσ,ρfR′,Λ′1,τ ′(ρ). (6.6)

Let us take one term in the first line of (6.3), and simplify the mixing matrix on the

representation basis,

∑
σ,ρ∈S2n

cR,Λ1,τ (σ)

 ∑
β∈S2n−1

δ2n(σUβ)δ2n(ρV β−1)

 fR′,Λ′1,τ ′(ρ)

U = (ij)X(j), V = (ij). (6.7)

Expand the Kronecker delta’s using (A.13). We now use the following formula to remove

the sum over β∑
β∈S2n−1

DR
ij(β)DR′

kl (β−1) = (2n− 1)!
∑
r,m,n

1

dr
BR,r
i,mB

R,r
j,n B

R′,r
k,n B

R′,r
l,m

= (2n− 1)!
∑
r,m,n

1

dr
IRR

′,r
il IRR

′,r
jk (6.8)

Here we have introduced the branching coefficient

BR,i
r,m = 〈R, i|R→ r,m〉, (6.9)

where the r is a Young diagram with 2n−1 boxes, and m runs over 1, · · · , dr. The quantity

IRR
′,r

il is the intertwiner map

IRR
′,r

il =
∑
m

BR,r
i,mB

R′,r
l,m (6.10)

of [17, 19], here expressed in terms of branching coefficients. In the formula, the r.h.s. is

non-zero when both g([1], r;R) and g([1], r;R′) are non-zero.10 In other words, the r.h.s.

of (6.8) is non-zero only when the R is obtained from the S by moving a single box.

Performing the sum over σ, ρ in (6.7),

∑
σ,ρ

cR,Λ1,τ (σ)

 ∑
β∈S2n−1

1

((2n)!)2
dAdBD

A
ji(σU)DA

ij(β)DB
lk(ρV )DB

kl(β
−1)

 fR′,Λ′1,τ ′(ρ)

= (2n)!BΛ1
k′ S

τ,Λ1
k′
R
s
R
j D

R
si(U)

∑
β

DR
ij(β)DR′

kl (β−1)

DR′
qk (V )dR′B

Λ′1
k′′ S

τ ′,Λ
′
1

k′
R′
l
R′
q (6.11)

10g([1], r;R) is the Littlewood-Richardson coefficient (A.24).
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This mixing matrix is non-zero if R and R′ become identical after the move of a single

box. This kind of mixing, re-positioning of boxes, is common for representation bases, which

has been studied concretely in [12, 17, 33–36]. The diagonalisation of one-loop mixing is

still not trivial, which has been achieved in the SU(2) sector in special cases [18, 19]. This

will be an interesting avenue for future investigation.

7 Conclusion and discussion

We summarise the results of this paper. We studied mesonic operators, that is the O(Nf )-

singlet scalar operators in U(Nc) gauge theory, and computed free field two-point functions.

The two-point functions are expressed them in terms of permutations. We performed a

Fourier transform from the permutation basis to the representation basis, which made the

two-point functions diagonal. Our mesonic operator provided a concrete realisation of the

formula for diagonal operators [12]. We counted the number of operators in both bases

by applying inverse Fourier transform. It was important to remove the redundancy of the

wreath product group Sn[S2], noting that (S2n, Sn[S2]) is a Gelfand pair. We computed

the one-loop mixing matrix in both bases.

Our expression for the 2-point function on the permutation basis was used to give

an interpretation in terms of TFT, based on topological lattice gauge theory of permuta-

tions equipped with defects. This extends the connection between TFT and quiver gauge

theories [30]. An interesting problem is to connect these results with axiomatic TFT as

discussed in [37–40].

An important point is that the R-symmetry group of N = 4 SYM is SO(6) rather than

O(6). The SO(Nf )-singlet operators include

ε
a1···aNf trNf (σΦ~a), δa1a2ε

a3···aNf+2 trNf+2(σΦ~a), . . . (7.1)

which we call baryonic singlets.11 The mesonic operators are invariant under O(Nf ), while

the baryonic operators are invariant under SO(Nf ) only. The mesonic and baryonic oper-

ators are orthogonal at g2
YM = 0. Since the Lagrangian of N = 4 SYM does not contain

the ε tensor of SO(6), the two-point functions remain orthogonal to all orders of perturba-

tion theory. A systematic generalisation of our study of correlation functions to baryonic

operators is left for the future.

Our explicit construction of operators and free-field 2-point functions has been given

for U(Nc) theories. Generalisations to other gauge groups, e.g. SU(Nc) along the lines

of [7, 41, 42], and SO(Nc) or Sp(Nc) following [21, 22] will be interesting.

Our results provide a foundation for the systematic studies of planar zero modes (PZM)

in the SO(6) singlet sector. Group-theoretical counting methods for the PZM’s can be

developed, analogously to the construction of general mesonic singlets here. Often the

counting formula implies the existence of a basis of PZM’s labelled by permutations or

representations. An interesting application of such a formalism is to compute the non-

planar anomalous dimension of the PZM’s [20]. The PZM’s are expected to have negative

11The term “baryon” refers to the flavour group, and not the colour group.

– 22 –



J
H
E
P
1
2
(
2
0
1
6
)
1
4
2

anomalous dimensions by 1/Nc corrections, according to the results at strong coupling [43–

47] and those of conformal bootstrap [48–50]. Following this paper, the general Nf setup

can provide a tractable approach to finite Nf = 6.

Another application of our results is to determine physical quantities of N = 4 SYM

at this level of generality, such as non-planar correlation functions [51, 52], partition func-

tions [53–56], and statistical properties of one-point functions via matrix product states [57].

The sector of SO(6) singlets offers a rich and interesting setting to explore non-planar

effects in a non-supersymmetric sector of N = 4 SYM.
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A Notation and formulae

A.1 Notation

We denote by Φ = (Φa)
i
j a hermitian scalar field, a = 1, 2, . . . , Nf and i, j = 1, 2, . . . Nc.

The flavour group is SO(Nf ) and the colour group is U(Nc). Φ belongs to the fundamental

representation VF of SO(Nf ), and to the adjoint representation VC ⊗ V C of U(Nc). The

case of Nf = 6 describes the six scalars of N = 4 SYM in four dimensions.

The U(Nc) Wick-contraction rule is

(Φa)
j
i (Φb)

l
k = δab δ

l
i δ
j
k . (A.1)

We introduce a gauge-covariant operator Φa, which is related to the component fields by

〈j1j2 . . . j2n | Φa1 ⊗ Φa2 ⊗ · · · ⊗ Φa2n | i1i2 . . . i2n〉 = (Φa1)j1i1 (Φa2)j2i2 · · · (Φa2n)j2ni2n (A.2)

Permutations act on the bases as

〈~j |α ≡ 〈j1j2 . . . j2n|α = 〈jα−1(1)jα−1(2) . . . jα−1(2n)| (A.3)

α|~i 〉 ≡ α|i1i2 . . . i2n〉 = |iα(1)iα(2) . . . iα(2n)〉 (A.4)

Thus, permutations act on SYM fields by

〈~j | α (Φa1 ⊗ Φa2 ⊗ · · · ⊗ Φa2n)β |~i 〉 = (Φa1)
jα−1(1)

iβ(1)
(Φa2)

jα−1(2)

iβ(2)
· · · (Φa2n)

jα−1(2n)

iβ(2n)
, (A.5)

and thus

ρ(Φa1 ⊗ Φa2 ⊗ · · · ⊗ Φa2n)ρ−1 = Φaρ(1)
⊗ Φaρ(2)

⊗ · · · ⊗ Φaρ(2n)
. (A.6)
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The order of a finite group G is denoted by |G|. The words “representations of SL”,

“Young diagrams”, and “partitions of L” are used interchangeably. A partition of L is

expressed in two ways. The first expression is

Q = [q1, q2, . . . , q`] ` L, q1 ≥ q2 ≥ · · · ≥ q` ,
∑̀
i=1

qi = L. (A.7)

If we collect the same q’s together, we obtain the second expression (2.5). The symbol

c1(Y ) is the length of the first column of the Young diagram Y . In (A.7),

c1(Q) = `. (A.8)

Clearly c1(Q) ≥ c2(Q) ≥ · · · ≥ cq1(Q).

A.2 Formulae

In this subsection the definition of group theory quantities, and group theory formulas are

collected.

The matrix elements (i, j) of the group element σ ∈ SL in the representation R are

denoted by DR
ij(σ). We assume all representations of SL are real and unitary, and thus

DR
ij(σ) = DR

ji(σ
−1). They satisfy the so-called grand orthogonality relation∑

σ∈SL

DR
ij(σ)DS

kl(σ
−1) =

L!

dR
δilδjkδ

RS , (A.9)

where dR is the dimension of R of symmetric group SL,

dR =
L!∏

i,j h(i, j)
(A.10)

The product is over the boxes of the Young diagram R with i, j labelling the rows and

columns. The quantity h(i, j) is the hook-length associated with the box at (i, j), namely

the number of boxes intersecting the hook which extends from (i, j) toward the right and

bottom. For example,

⇒ 5 4 2 1
2 1

, h(1, 1) = 5, h(1, 2) = 4, h(1, 3) = 2, h(1, 4) = 1, . . . (A.11)

The character of σ in the representation R is denoted by χR(σ). The characters satisfy

the orthogonality ∑
R`L

χR(σ)χR(ρ) =
∑
γ∈SL

δL(γσγ−1ρ) (A.12)

where the delta function is defined by

δL(σ) =
1

L!

∑
R`L

dR χ
R(σ) =

{
1 (σ = 1)

0 (σ 6= 1)
(A.13)

Consider the tensor space V ⊗L, where V is the fundamental representation of the

unitary group U(N). The symmetric group acts on the tensor space by permuting the L
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factors. From the fact that these two actions commute each other, the tensor space can be

decomposed as

V ⊗L =
⊕
R

(V
U(N)
R ⊗ V SL

R ) (A.14)

where the sum is over the Young diagrams with at most N rows, which is expressed in terms

of the length of the first column c1(R) by c1(R) ≤ N . This equation is the Schur-Weyl

duality between U(N) and SL.

A trace over this tensor space is denoted by trL,

trL(σ) = NC(σ) = NLδL(ΩLσ) (A.15)

where we have defined the quantity

ΩL =
∑
σ∈SL

σNC(σ)−L. (A.16)

According to the Schur-Weyl duality, a trace of an element σ ∈ SL can be written as

trL(σ) =
∑

R`L,c1(R)≤N

Dim(R)χR(σ) (A.17)

where Dim(R) is the dimension of R of Lie group U(N)

Dim(R) =
∏
i,j

N − j + i

h(i, j)
(A.18)

Setting σ = 1 in (A.17) gives the identity

NL =
∑

R`L,c1(R)≤N

Dim(R)dR (A.19)

Let R1 , R2 be the irreducible representations of SL . Sτ,Λ1
k
R1
i1
R2
i2

is the Clebsch-Gordan

(CG) coefficients, defined by the irreducible decomposition of the tensor product R1⊗R2 =

⊕S, with the multiplicity label τ ,

|Λ, τ, k〉 =

dR∑
i1,i2=1

Sτ,Λ1
k
R1
i1
R2
i2
|R1, i1〉 ⊗ |R2, i2〉 . (A.20)

The indices (k, i1, i2) specifies the elements of (R,R1, R2). The multiplicity label τ runs

over 1, · · · , C(R,R,Λ), where C(R,S, T ) is called the CG number (also known as CG

multiplicity or Kronecker coefficient)

C(R,S, T ) =
1

|SL|
∑
σ∈SL

χR(σ)χS(σ)χT (σ). (A.21)

The CG coefficients satisfy the following properties∑
σ∈SL

DΛ1
ba (σ)DR

jk(σ)DR
li (σ

−1) =
L!

dΛ1

∑
τ

Sτ,Λ1
b
R
i
R
j S

τ,Λ1
a
R
l
R
k (A.22)
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and ∑
ij

Sτ,Λ1
a
R
i
R′
j Sτ

′,Λ
′
1

b
R
i
R′
j = δΛ1Λ′1 δττ

′
δab ,

∑
τ,Λ1,a

Sτ,Λ1
a
R
i
R′
j Sτ,Λ1

a
R
k
R′
l = δik δjl (A.23)

Let R1, R2, R be the irreducible representations of Sm, Sn, Sm+n, respectively. The

Littlewood-Richardson coefficient g(R1, R2;R) counts the number of R1⊗R2 appearing in

the decomposition of R under Sm × Sn,

g(R1, R2;R) =
1

m!n!

∑
σ1∈Sm,σ2∈Sn

χR1(σ−1
1 )χR2(σ−1

2 )χR(σ1 ◦ σ2). (A.24)

A.3 Gelfand pair and coset type

A pair of finite groups (G,H) with G ⊃ H is called Gelfand pair if they satisfy either of

the following conditions:

(i) Any irreducible representation of G contains at most one singlet representation of H.

(ii) Consider a set of functions on the double coset H\G/H,

C(G,H) :=
{
w : G→ G

∣∣∣w(g) = w(γ1gγ2), (g ∈ G, γ1, γ2 ∈ H)
}

(A.25)

where the multiplication is defined by convolution. The algebra C(G,H) is commu-

tative.

The two conditions are equivalent [26]. The Gelfand pair for Lie groups is defined similarly.

An important example of the Gelfand pair is (S2n, Sn[S2]). From (i), an irreducible

representation R of S2n satisfies

MR
1Sn[S2]

:=
1

|Sn[S2]|
∑

γ∈Sn[S2]

χR(γ) =

{
1 (R is even)

0 (R is odd)
. (A.26)

An even representation R corresponds to even Young diagram

R = [2r1, 2r2, · · · ] ` 2n, ri ∈ Z>0 (A.27)

in (A.7).

The double coset function in the condition (ii) corresponds to W (σ) defined in (2.21),

which satisfies the equivalence relation,

W (σ) = W (γ1σγ2), (σ ∈ S2n, γ1, γ2 ∈ Sn[S2]). (A.28)

The function W (σ) defines the unique coset type for each permutation σ,

p̃ = [2p̃1 , 4p̃2 , . . . , (2n)p̃n ],

n∑
i=1

i p̃i = n . (A.29)
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=

Figure 4. This is identical to figure 1. The left figure shows C12C34 · · ·C2n−1,2nσ acting on V ⊗2nF .

The upper and lower horizontal lines are identified when taking the trace, as in the right figure.

where p̃l in (A.29) is the number of length-2l loops in W (σ) shown in figure 4.12 The

number of all loops is equal to the power of Nf in (2.27),

z(σ) =
∑
l

p̃l. (A.30)

Two permutations σ1, σ2 ∈ S2n have the same coset type if and only if they are related by

σ1 = γ1σ2γ2 for γ1, γ2 ∈ Sn[S2].

B Powers of Nf

We denote the number of loops in the graph of W (σ) by z(σ). We will show the identity

z(σ) =
1

2
C(Σ0σ

−1Σ0σ), (B.1)

where Σ0 = (12)(34) . . . (2n− 1, 2n) and C(σ) counts the number of cycles in σ ∈ S2n .

The structure of W (σ) is depicted in figure 4. Consider the labelled points

{1, 2, · · · , 2n} in that diagram. If these points move along the lines toward the upper

arcs, they will return to the labelled points {1, 2, · · · , 2n} after a permutation

Σ0 = (12)(34) · · · (2n− 1 2n) (B.2)

If the points went down through σ, the lower arcs, and back up σ again, they will undergo

the permutation

Σ1 ≡ σ−1Σ0σ = (σ(1)σ(2))(σ(3)σ(4)) · · · (σ(2n− 1)σ(2n)). (B.3)

The graph of W (σ) contains flavour loops. A flavour loop is a sequence of transitions

of the form

Σ0Σ1 , Σ0Σ1Σ0Σ1 , Σ0Σ1Σ0Σ1Σ0Σ1 , · · · (B.4)

or their inverses. Note that Σ2
0 = Σ2

1 = 1. We cannot return to the original point by after

an odd number of Σ’s, because both Σ0 and Σ1 have cycle type [2n]. In other words, Σ0

12A loop W (1) at n = 2 is defined to have length 2.
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Figure 5. Another graph of W (σ). The dashed edges represent the elements of Σ0 , and the sold

ones those of Σ1 . This graph contains two loops, (NΣ0) and (HΣ0NΣ0HΣ0NΣ0).

and Σ1 acting on i behaves as a permutation of odd signature for any i. The number of

flavour loops, i.e. the power of Nf denoted by z(σ), is same as the number of orbits in the

subgroup of S2n generated by 〈Σ0,Σ1〉. This is also the number of connected components

in the ribbon graph determined by the permutations Σ0,Σ1.

Let us introduce the notation

2i− 1 = i−, 2i = i+, (i = 1, 2, . . . , n). (B.5)

Recall that Sn[S2] is the stabiliser of Σ0 ,

ξ−1Σ0 ξ = Σ0 , ∀ξ ∈ Sn[S2]. (B.6)

By using this “gauge degree of freedom” of Sn[S2], we may transform Σ1 to Σ′1 = ξ−1Σ1 ξ

without changing C(Σ0Σ1). There exists a useful gauge:

Lemma 1. By a gauge transformation in Sn[S2], we can transform Σ1 to the form

Σ′1 = (1− τ(1)+) . . . (n− τ(n)+), τ ∈ Sn . (B.7)

Proof of 1. We draw another graph of W (σ) emphasising the structure of loops, with

1+, 2+, . . . along the upper line and 1−, 2−, . . . along the lower line. We connect the points

i± and j± when (i±, j±) belong to Σ0 or Σ1 as shown in figure 5. The horizontal edges of

Σ1 , namely those connecting (+,+) or (−,−), will be called H-edges. The other edges of

Σ1 , (+,−) or (−,+), will be called N-edges.

Let us prove that every loop has to have an even number of H-edges. As discussed

in (B.4), every loop consists of even number of edges. Within the loop, only Σ0 and N-edges

change the parity ±. If we circle around the loop, then there should be no change in parity.

Thus, every loop (Σ1Σ0 . . .Σ1Σ0) satisfies

Parity (Σ1Σ0 . . .Σ1Σ0) = (−1)#(N)(−1)#(Σ0) = +1. (B.8)

Since #(H) + #(N) + #(Σ0) is even for each loop, the number of H-edges is also even.
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The statement (B.7) is equivalent to saying that we can remove all H-edges by gauge

transformations Sn[S2]. Consider how the flip (i−i+) ∈ Sn[S2] acts on the Σ1 edges con-

nected to the points i±. Inspecting figure 5, we find

(i−i+) :


H(Σ0)i±H → N(Σ0)i±N

H(Σ0)i±N → N(Σ0)i±H

N(Σ0)i±H → H(Σ0)i±N

. (B.9)

The flip cannot change HΣ0N into NΣ0N or HΣ0H, because it violates the par-

ity rule (B.8). The same is true for NΣ0H. Now, if we have a flavour loop

(HΣ0N · · ·Σ0H . . . ), flipping all the edges in Σ0 between two H-edges will convert the

loop to (NΣ0N · · ·Σ0N . . . ). Since the number of H-edges is even, applying this process

repeatedly will remove all H-edges. This means that there is a gauge transformation which

converts Σ1 to Σ′1 of the form (B.7).

The permutation τ is itself defined up to conjugation in Sn. This is in fact a way

to understand the correspondence between partitions of n and the double coset space

Sn[S2] \ S2n/Sn[S2], as we will explain subsequently.

Let us denote by (`1, `2, . . . ) the number of edges in the loops of the graph W (σ).

These {`i} are all even, and satisfy
∑

i `i = 2n. Thus, λi ≡ `i/2 defines a partition of

n. This partition λ is same as the cycle decomposition of τ . We are going to relate the

number of loops with the number of cycles in Σtot ≡ Σ0Σ′1.

Corollary 2. Σtot maps minus variables to minus variables, plus to plus.

Proof of 2. From (B.7) we find Σtot(i
−) = Σ0(τ(i)+) = τ(i)− and Σtot(i

+) =

Σ0(τ−1(i)−) = τ−1(i)+.

Thus, Σtot splits into two disjoint actions Σ−tot × Σ+
tot , where Σ±tot acts on the set

V ±n = (1±, . . . , n±). Then, the number of cycles is equal to

C(Σ0Σ1) = C(Σtot) = C(τ) + C(τ−1) = 2C(τ). (B.10)

Lemma 3. The number of loops in Σ−tot acting on V −n is equal to C(τ), and similarly for

Σ+
tot acting on V +

n .

Proof of 3. Let us define

Σtot = Σ−tot Σ+
tot, Σ−tot ≡

n∏
i=1

(i−τ(i)−), Σ+
tot ≡

n∏
i=1

(i+τ−1(i)+). (B.11)

We can express the number of loops in Σ±tot as

N
#(loops)
f =

n∏
h=1

δ
ch−
cτ(h)−

=
n∏
h=1

δ
ch+
cτ(h)+

= N
C(τ)
f , (B.12)

showing that #(loops) = C(τ). It can also be derived graphically as in figure 6.
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. . .

Figure 6. Σ−tot acting on (1− . . . n−). Σ0 interchanges (i−i+) and Σ′1 permutes by τ . We can draw

a similar graph for (1+ . . . n+).

The identity (B.1) follows from (B.12) and (B.10),

W (σ) = N
z(σ)
f = N

#(loops)
f = N

C(τ)
f , z(σ) =

1

2
C(Σ0σ

−1Σ0σ). (B.13)

The above discussion gives a concrete insight into the coset type (A.29); a coset type

is a partition of n which parametrises the elements of double coset Sn[S2]\S2n/Sn[S2].

Lemma 1 says that Σ1 = σ−1Σ0σ can be gauge transformed by ξ ∈ Sn[S2] to the form (B.7).

We take τ̃ to be a permutation in S2n which leaves i− fixed and acts nontrivially on

i+ (i = 1, 2, . . . n). The gauge transformation of ξ can be written as

ξ−1σ−1Σ0σξ = τ̃−1Σ0τ̃ (B.14)

= (τ̃(1−)τ̃(1+))(τ̃(2−)τ̃(2+)) · · · (τ̃(n−)τ̃(n+))

≡ (1−τ(1)+)(2−τ(2)+) · · · (n−τ(n)+).

So τ̃ ξ−1σ−1 is in the stabiliser of Σ0, and τ̃ ξ−1σ−1 = η ∈ Sn[S2] for some η. Hence any σ

can be written as

τ̃ = ησξ, η, ξ ∈ Sn[S2] (B.15)

Therefore, the elements of the double coset Sn[S2]\S2n/Sn[S2] correspond to the permuta-

tions τ̃ ∈ S2n, or the permutations τ ∈ Sn.

The condition (B.14) does not completely fix the gauge. The residual gauge freedom

is conjugation of τ by ξ ∈ Sn ⊂ Sn[S2], which should not change the double coset element.

As a result, the double coset elements are in 1-1 correspondence with the conjugacy classes

in Sn, i.e. partitions of n called coset types.

C Diagonal two-point functions

In this appendix, we will derive (3.9) and compute the normalisation factor.

C.1 Proof of diagonality

Let us first rewrite the two-point functions of the permutation basis

〈Oα1Oα2〉 =
∑
σ∈S2n

W (σ) tr2n(α1σα2σ
−1). (C.1)
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The colour factor can be expanded using (A.17) as

tr2n(α1σα2σ
−1) =

∑
R

Dim(R)χR(α1σα2σ
−1)

=
∑
R

Dim(R)DR
ij(α1)DR

jk(σ)DR
kl(α2)DR

li (σ
−1), (C.2)

where Dim(R) is the dimension of R associated with U(Nc). The flavour factor can be

written from (2.33) as

W (σ) =
Nn
f

(2n)!

∑
Λ1

dΛ1D
Λ1
ab (Ω

(f)
2n )DΛ1

ba (σ). (C.3)

The sum over σ in (C.1) can be removed using (A.22) to obtain

〈Oα1Oα2〉 =
∑
R,Λ1

∑
i,j,k,l,a,b

Dim(R)DR
ij(α1)DR

kl(α2)Nn
f D

Λ1
ab (Ω

(f)
2n )

∑
τ

Sτ,Λ1
b
R
i
R
j S

τ,Λ1
a
R
l
R
k (C.4)

We now compute the two-point functions of the representation basis

〈OR,Λ1,τOS,Λ
′
1,τ
′〉 = BΛ1

k B
Λ′1
k′ S

τ,Λ1
k
R
i
R
j S

τ ′,Λ
′
1

k′
R′
i′
R′
j′

∑
α1,α2∈S2n

DR
ij(α

−1
1 )DR′

i′j′(α
−1
2 )〈Oα1Oα2〉.

(C.5)

Substituting (C.4) into this and using the relation (A.23),

〈OR,Λ1,τOS,Λ
′
1,τ
′〉 = δRSδττ ′δΛ1Λ′1

(
(2n)!

dR

)2

Dim(R)Nn
f 〈Λ1 → 1Sn[S2] | Ω

(f)
2n | Λ1 → 1Sn[S2]〉.

(C.6)

The last factor has several expressions

〈Λ1 → 1Sn[S2] | Ω
(f)
2n | Λ1 → 1Sn[S2]〉 = BΛ1

k1
BΛ1
k2
DΛ1
k1k2

(Ω
(f)
2n )

= χΛ1(Ω
(f)
2n p1Sn[S2]

)

= ωΛ1/2(Ω
(f)
2n ). (C.7)

The second equality comes from γ1Ω
(f)
2n γ2 = Ω

(f)
2n for γ1, γ2 ∈ Sn[S2]. It is non-zero only for

the case Λ1,Λ
′
1 are even Young diagrams.

C.2 Twisting Wick-contraction rules

We derive the formula (3.12) by developing the connection with [26]. The function

ωΛ1/2(Ω
(f)
2n ) which appears in the normalisation of the diagonal two-point functions (C.7)

is equal to the zonal spherical function of the Gelfand pair (GL(Nf ),O(Nf )), introduced

in [26].13 In developing this connection, it is instructive to introduce a twist of the two-point

functions parametrised by matrices Tab ∈ GL(Nf ) and Y i
j ∈ GL(Nc).

Since PR,Λ1,τ does not depend explicitly on Nc or Nf , our construction of diagonal op-

erators can be readily generalised to the case where the Wick-contraction rules are twisted,

(Φa)
j
i (Φb)

l
k = Tab Y

l
i Y

j
k (C.8)

13The colour factor Dim(R) in (A.17) is replaced by the Schur polynomial of the eigenvalues of Y 2 [26].
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T T T T T T

Figure 7. Generalisation of W (σ) in figure 1 including the twist T .

The two-point functions (2.19) become

〈Oα1Oα2〉=δ~a δ
~b
∑
σ∈S2n

2n∏
k=1

T akbσ(k)
Y
iσ(k)

jα2(k)
Y jk
iα1σ(k)

=
∑
σ∈S2n

(
δ~a δ

~b
2n∏
k=1

T akbσ(k)

)(
2n∏
k=1

(Y 2)ikiα1σα2σ
−1(k)

)
≡
∑
σ∈S2n

WT (σ)PY (α1σα2σ
−1), (C.9)

where WT collects the flavour factors and PY the colour factor. They can be written as

the power sum,

PY (ρ) =
2n∏
`=1

tr(Y 2`)p` , WT (σ) =
n∏
k=1

πk(T
TT )p̃k , πk(X) ≡ tr(Xk) (C.10)

where p ` 2n is the cycle type of ρ = α1σα2σ
−1, and p̃ ` n is the coset type of σ. When

we untwist as T = Y = 1, both factors reduce to

PY (α1σα2σ
−1)
∣∣
Y=1

=

2n∏
i=1

Npi
c = NC(α1σα2σ−1)

c (C.11)

WT (σ)
∣∣
T=1

=
n∏
k=1

N p̃k
f = N

z(σ)
f . (C.12)

A graphical representation of WT (σ) is shown in figure 7.

Owing to (C.10), the operator Ω
(f)
2n in (2.30) is twisted as

Ω
(fT )
2n =

1

Nn
f

∑
σ∈S2n

(
n∏
k=1

πk(T
TT )p̃k

)
σ−1. (C.13)

The flavour factor in the diagonal two-point functions in (3.9) becomes

ωΛ1/2(Ω
(fT )
2n ) = χΛ1

(
Ω

(fT )
2n p1Sn[S2]

)
=

1

Nn
f

∑
σ∈S2n

(
n∏
k=1

πk(T
TT )p̃k

)
χΛ1

(
σp1Sn[S2]

)
,

= |Sn[S2]|ZΛ(T TT ) (C.14)
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where we used χΛ1

(
σ−1

)
= χΛ1 (σ). It turns out that the function ωΛ1/2(Ω

(fT )
2n ) is iden-

tical, up to normalisation, to the zonal spherical function ZΛ(T TT ) of the Gelfand pair

(GL(Nf ),O(Nf )) introduced in [26]. In [26] it is shown that

ZΛ(1) =
∏

(i,j)∈Λ

(Nf + 2j − i− 1), (C.15)

where (i, j) specifies the position of the Young tableau Λ. From (C.15), we reproduce the

formula (3.12).

The overall normalisation of ωΛ1/2(Ω
(fT )
2n ) is determined as follows. If we take T = 1

and Nf � 1 in (C.14), the leading terms come from σ ∈ Sn[S2], whose coset type is

[2n]. Since (S2n, Sn[S2]) is a Gelfand pair, the restriction to Sn[S2]-invariant subspace is

multiplicity-free; χΛ1(p1Sn[S2]
) = 1.

D Examples of diagonal operators

We will explain how to construct the diagonal operators (3.1) in U(Nc) theories

OR,Λ1,τ =

dΛ1∑
k=1

BΛ1
k

∑
α∈S2n

dR∑
i,j=1

Sτ,Λ1
k
R
i
R
j D

R
ij(α

−1)Oα , (D.1)

and give explicit examples at 2n = 2, 4.

D.1 Generality

Let us explain our strategy. First, we classify all irreducible representations R such that

R ⊗ R contains an even partition Λ1 . The irreducible decomposition of R ⊗ R can be

computed from the character table by using (A.21).

Second, we specify an orthonormal basis of the irreducible representations of S2n ex-

plicitly. We use the Young-Yamanouchi orthonormal form for this purpose [58, 59]. The

Young-Yamanouchi basis is labelled by the standard Young tableaux λ of shape R, and

the transposition (j, j + 1) acts on them as

(j, j + 1) |R, λ〉 =
1

ρλ(j + 1, j)
|R, λ〉+

√
1− 1

ρλ(j + 1, j)2
|R, (j, j + 1)λ〉 , (D.2)

where ρλ(j + 1, j) is the axial distance from j + 1 to j in the standard Young tableau λ.14

The matrix representation of all other elements follows from (D.2). It is straightforward

to compute the branching coefficient from (3.3).

The final ingredient to obtain the diagonal operators (D.1) is the CG coefficient defined

by (A.20). To extract Sτ,ΛRR
′

kij , we apply σ ∈ S2n to (A.20) and compare both sides.

14The axial distance between a and b is defined by counting the number of boxes we need to pass through

from a to b in the Young tableau. We add +1 by going left or down, and −1 by going right or up. For

example, ρ 1 2 3
4

(3, 4) = −ρ 1 2 3
4

(4, 3) = +3.
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Let us explain the computation of the CG coefficients in detail. We rewrite the matrix

representation of the product DR ⊗ DR(σ) into a block diagonal form by a similarity

transformation,

(UTR )−1
(
DR ⊗DR(σ)

)
UR =


Dr1(σ)

Dr2(σ)
. . .

 . (D.3)

The CG coefficients are equal to the elements of the rotation matrix UR . We compute

each column of UR by using the Young symmetriser,

Pλ =
∑
σ∈S2n

pλ(σ)σ ≡ Nλ

∏
k∈Column(λ)

Ak
∏

`∈Row(λ)

S` , (D.4)

where pλ(σ) is a coefficient, Nλ is a normalisation constant, and Ak (or S`) is anti-symmetric

(or symmetric) combination of the entries in the k-th column (or `-th row) of the standard

Young tableau λ, respectively. For example,

P 1 2
3

= N 1 2
3

[id− (13)] [id + (12)] , P 1 3
2

= N 1 3
2

[id− (12)] [id + (13)] . (D.5)

The Young symmetriser projects DR⊗R onto the state corresponding to {ẽλ}.15 Thus,

the combination
∑

σ pλ(σ)DR⊗R(σ) becomes a rank-one matrix corresponding to a single

eigenvector ẽλ . By collecting all eigenvectors (and orthogonalizing them appropriately),

we obtain the rotation matrix UR .

D.2 Explicit operators

Length two. The group S2 has two irreducible representations, symmetric and anti-

symmetric. Their tensor products decompose as

[1, 1]⊗ [1, 1] = [2], [2]⊗ [2] = [2], (D.6)

The symmetric representation [2] is an even partition. The representation matrices are

D[2](α) = 1, D[1,1](α) = sign (α). (D.7)

The CG coefficients and the branching coefficients are trivial. The operators (D.1) are

given by

O[2],[2] = Oid +O(12) = tr(Φa) tr(Φa) + tr(ΦaΦa),

O[2],[1,1] = Oid −O(12) = tr(Φa) tr(Φa)− tr(ΦaΦa). (D.8)

15The new basis {ẽλ} is not orthogonal. The new basis is related to the Young-Yamanouchi basis in a

trivial way after orthogonalization, in the simple cases studied here.
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Length four. We need the following irreducible representations of S4

R = {[14], [2, 12], [22], [3, 1], [4]}, dR = {1, 3, 2, 3, 1},
Λ1 = {[22], [4]}, dΛ1 = {2, 1}. (D.9)

The tensor products decompose as

[14]⊗ [14] = [4], [22]⊗ [22] = [14]⊕ [22]⊕ [4], [4]⊗ [4] = [4],

[2, 12]⊗ [2, 12] = [3, 1]⊗ [3, 1] = [2, 12]⊕ [22]⊕ [3, 1]⊕ [4].
(D.10)

This decomposition is multiplicity-free, so we can drop the index τ in OR,Λ1,τ .

After the procedures of appendix D.1, we obtain

O[4],[4] = tr(a1)2 tr(a2)2+2 tr(a1)2 tr(a2a2)+4 tr(a1) tr(a2) tr(a1a2)+8 tr(a1) tr(a1a2a2)

+ 2 tr(a1a2)2 + tr(a1a1) tr(a2a2) + 4 tr(a1a1a2a2) + 2 tr(a1a2a1a2),

O[14],[4] = tr(a1)2 tr(a2)2−2 tr(a1)2 tr(a2a2)−4 tr(a1) tr(a2) tr(a1a2)+8 tr(a1) tr(a1a2a2)

+ 2 tr(a1a2)2 + tr(a1a1) tr(a2a2)− 4 tr(a1a1a2a2)− 2 tr(a1a2a1a2),

O[22],[4] = − 2√
2

{
tr(a1)2tr(a2)2−4tr(a1)tr(a1a2a2)+tr(a1a1)tr(a2a2)+2tr(a1a2)tr(a1a2)

}
,

O[22],[22] = − 4√
2

{
tr(a1)2 tr(a2a2)− tr(a1) tr(a2) tr(a1a2) + tr(a1a2a1a2)− tr(a1a1a2a2)

}
,

O[3,1],[4] =
1√
3

{
3 tr(a1)2 tr(a2)2 + 2 tr(a1)2 tr(a2a2) + 4 tr(a1) tr(a2) tr(a1a2)

− 2 tr(a1a2)2 − tr(a1a1) tr(a2a2)− 4 tr(a1a1a2a2)− 2 tr(a1a2a1a2)
}
,

O[2,12],[4] =
1√
3

{
3 tr(a1)2 tr(a2)2 − 2 tr(a1)2 tr(a2a2)− 4 tr(a1) tr(a2) tr(a1a2)

− 2 tr(a1a2)2 − tr(a1a1) tr(a2a2) + 4 tr(a1a1a2a2) + 2 tr(a1a2a1a2)
}
,

O[3,1],[22] =
4√
6

{
tr(a1)2 tr(a2a2)− tr(a1) tr(a2) tr(a1a2)

− tr(a1a2)2 + tr(a1a1) tr(a2a2) + tr(a1a1a2a2)− tr(a1a2a1a2)
}
,

O[2,12],[22] = − 4√
6

{
tr(a1)2 tr(a2a2)− tr(a1) tr(a2) tr(a1a2)

+ tr(a1a2)2 − tr(a1a1) tr(a2a2) + tr(a1a1a2a2)− tr(a1a2a1a2)
}
, (D.11)

where we used the notation tr(a1a2a3a4) = tr(Φa1Φa2Φa3Φa4). Their free two-point func-

tions are given by (3.9).

E Relation to covariant approach

E.1 O(Nf) × S2n CG coefficients

In [12] a general construction of free-field diagonal operators was given, where the opera-

tors are built out of fields transforming in a general representation V of a general global
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symmetry group G. This general construction requires the explicit computation of the

Clebsch-Gordan coefficients, which decompose the tensor products V ⊗m in terms of irre-

ducible representations of G×Sm. Our approach to the free-field diagonal operators in the

current paper is similar to [12] since both diagonal operators carry the same representa-

tion labels. However, the two operators look slightly different, since the mesonic operators

discussed here do not involve the CG coefficients.

We will show that the two operators are identical, by giving an explicit formula for

the relevant CG coefficients. Recall that in [12] the colour and flavour indices are treated

separately. A gauge-covariant operators turn into gauge-invariant operators by combining

indices appropriately. Instead, we may fix a gauge in the gauge-covariant form, and then

combine them into gauge-invariant operators. In this way we can reproduce the mesonic

operators. The CG coefficients are related to the product of branching coefficients and

Kronecker delta’s.

Let us just focus on the CG problem for the 2n-fold tensor product of VF with G =

O(Nf ). In particular, we are interested in the one-dimensional representation of both S2n

and SO(Nf ). Let va be basis vectors in VF . Consider

va1 ⊗ va2 ⊗ · · · ⊗ va2n (E.1)

A vector vρ, parametrised by a permutation ρ ∈ S2n which controls the pairwise contrac-

tions, is invariant under O(Nf ) :

vρ = δaρ(1)aρ(2) · · · δaρ(2n−1)aρ(2n) va1 ⊗ · · · ⊗ va2n (E.2)

Following a theme we have seen repeatedly, whenever we have some invariants parametrised

by permutations, in the present case tensor products of vectors invariant under O(Nf ), we

must ask about the redundancy in the description. Here the redundancy is

vρ = vγρ (E.3)

for γ ∈ Sn[S2]. So we can also write

vρ =
1

2nn!

∑
γ∈Sn[S2]

vγρ (E.4)

Again, following a familiar theme, disentangle these equivalence classes by using represen-

tation theory. The first step is to define

vΛ1
IJ =

1

(2n)!

∑
ρ∈S2n

DΛ1
IJ (ρ) vρ (E.5)

Exploiting the invariance in the Fourier transformed basis,

vΛ1
IJ =

1

(2n)!

1

|Sn[S2]|
∑
ρ∈S2n

DΛ1
IJ (ρ)

∑
γ∈Sn[S2]

vγρ

=
1

(2n)!

1

|Sn[S2]|
∑

γ∈Sn[S2]

∑
ρ∈S2n

DΛ1
IJ (ργ−1) vρ
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=
1

(2n)!

∑
ρ∈S2n

DΛ1
IJ (ρ p1Sn[S2]

) vρ

=
1

(2n)!

∑
ρ∈S2n

DΛ1
IK(ρ)BΛ1→1

K BΛ1→1
J vρ (E.6)

The branching coefficient is zero if Λ1 is not even. The invariant vectors are therefore16

vΛ1
I ≡

1

(2n)!

∑
ρ∈S2n

DΛ1
IK(ρ)BΛ1→1

K vρ (E.7)

Recalling the definition of vρ

vΛ1
I =

1

(2n)!

∑
ρ∈S2n

DΛ1
IK(ρ)BΛ1→1

K δaρ(1)aρ(2) · · · δaρ(2n−1)aρ(2n) va1 ⊗ · · · ⊗ va2n (E.8)

This can be written in terms of a CG coefficient coupling V ⊗2n
F to the state (Λ1, I)× ∅ of

S2n × O(Nf ), where Λ1 refers to the representation of S2n, I is the state label of Λ1, and

∅ the one-dimensional representation of O(Nf ):

vΛ1
I = C~aΛ1,Iva1 ⊗ · · · ⊗ va2n (E.9)

Multiplicity labels are not needed.

It is tempting to identify the CG coefficients as

C~aΛ1,I =
1

(2n)!

∑
ρ∈S2n

DΛ1
IK(ρ)BΛ1→1

K δaρ(1)aρ(2) · · · δaρ(2n−1)aρ(2n) (E.10)

There is an important subtlety of normalisation which has to be considered when comparing

to [12]. The key point is that the normalisation of the above-defined C~aΛ1,I
is∑

~a

C~aΛ1,I,τΛ
C~aΛ′1,I′,τ ′Λ

= NCG δΛ1Λ′1
δII′δτΛτ ′Λ (E.11)

where NCG is determined below. Let us compute vΛ
I v

Λ
J (no sum over Λ1)

〈vΛ1
I , vΛ1

J 〉 =
1

(2n)!2

∑
~a,~b

C~aΛ1,IC
~b
Λ1,J

〈
v~a, v~b

〉
(E.12)

=
1

(2n)!2

∑
ρ1

∑
ρ2

DΛ1
IK(ρ1)DΛ1

JL(ρ2)BΛ1→1
K BΛ1→1

L 〈vρ1 , vρ2〉. (E.13)

Since C~aΛ1,I
= C

σ(~a)
Λ1,I

for any σ ∈ S2n, the first line is also written as

〈vΛ1
I , vΛ1

J 〉 =
NCG

(2n)!2
δIJ . (E.14)

16See e.g. appendix B of [9] of the relevant fact from linear algebra.
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Note we assumed, as in [12], that the vectors in VF are unit normalised

〈va, vb〉 = δab , 〈v~a, v~b〉 =

n∏
k=1

δakbk . (E.15)

The norm of the permutation-parametrised vectors is

〈vρ1 , vρ2〉=δaρ1(1)aρ1(2) · · · δaρ1(2n−1)aρ1(2n)δbρ2(1)bρ2(2) · · · δbρ2(2n−1)bρ2(2n)〈va1 · · · va2n , vb1 · · · vb2n〉
= W (ρ−1

2 ρ1) (E.16)

This determines NCG via

〈vΛ1
I , vΛ1

J 〉 =
δIJ

(2n)! dΛ1

∑
ρ

W (ρ)χΛ1(ρ−1 p1Sn[S2]
) = δIJ

Nn
f ωΛ1/2(Ω

(f)
2n )

(2n)! dΛ1

. (E.17)

If we substitute the CG coefficients (E.10) to the general diagonal operator of [12], we

obtain gauge-invariant operators involving a sum over permutations ρ, α. After doing the

sum over ρ, our diagonal operators in section 3 can be recovered.

E.2 Baryonic operators

We explain how to count SO(Nf ) singlets following [12]. Let us take the flavour part of

the Schur-Weyl duality

V ⊗2n
F =

⊕
Λ1

c1(Λ1)≤Nf

(
V

GL(Nf )
Λ1

⊗ V S2n
Λ1

)
. (E.18)

We restrict GL(Nf ) to O(Nf ), and further to SO(Nf ) by the projection π [60, 61],17

V
GL(Nf )

Λ1
=
⊕
Λ2

VΛ1,Λ2 ⊗ V
O(Nf )

Λ2
=
⊕
Λ2

⊗V SO(Nf )

π(Λ2) , (E.19)

dimVΛ1,Λ2 =
∑
β:even

g(Λ2, β; Λ1), (E.20)

where g(A,B;C) is the LR coefficient (A.24). The singlet representations of SO(Nf ) have

two origins. The first origin is an O(Nf ) singlet. The other is a non-singlet of O(Nf )

projected by π. An example is π([1Nf ]) = ∅, corresponding to

Φ[a1
· · ·ΦaNf ] =

1

Nf !
εa1···aNf ε

b1···bNf Φ[b1 · · ·ΦbNf ]. (E.21)

Following the arguments in section 4.1, the number of SO(Nf ) singlet operators is counted

by ∑
R

c1(R)≤Nc

∑
Λ1

c1(Λ1)≤Nf

n∑
p=0

∑
β`2p

∑
Λ2`(2n−2p)

C(R,R,Λ1)g(Λ2, β; Λ1) δπ(Λ2),∅ . (E.22)

The mesonic operators are counted by setting Λ2 = ∅ in the above formula, yielding (4.10).

The baryonic operators correspond to Λ2 6= ∅.
17The unitary irreducible representations of O(Nf ) should satisfy c1(Λ2) + c2(Λ2) ≤ Nf .
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F Mixing matrix in detail

In this appendix we derive the mixing matrix on the permutation basis (6.3).

For our convenience we call each term of the following dilatation operator Hi

H = H1 +H2 = −1

2
tr[Φm,Φn][Φ̌m, Φ̌n]− 1

4
tr[Φm, Φ̌

n][Φm, Φ̌
n] (F.1)

where18

H2 = −1

4
tr[Φm, Φ̌

n][Φm, Φ̌
n] = −1

2
tr(ΦmΦ̌nΦmΦ̌n) +

1

2
tr(ΦmΦmΦ̌nΦ̌n)

= H21 +H22. (F.2)

The following formulae are useful,

tr([Φm,Φn][Φ̌m, Φ̌n])(Φa)ij(Φb)kl = 2([Φa,Φb]kjδil − [Φa,Φb]ilδkj) (F.3)

tr(ΦmΦ̌nΦmΦ̌n)(Φa)ij(Φb)kl = 2δab(Φm)il(Φm)kj (F.4)

tr(ΦmΦmΦ̌nΦ̌n)(Φa)ij(Φb)kl = δab(ΦmΦm)ilδjk + δab(ΦmΦm)kjδil. (F.5)

It is convenient to consider the dilatation operator acting on general operators built

from SO(Nf ) scalars in (2.3). The action of H1 is given by

tr([Φm,Φn][Φ̌m, Φ̌n]) tr2n(σΦ~a)

= 2
∑
i 6=j

tr2n([σ, (ij)]Φa1 ⊗ · · · ⊗ [Φai ,Φaj ]⊗ · · · ⊗ 1⊗ · · · ⊗ Φa2n)

= 2
∑
i 6=j

∑
α∈S2n

δ2n([σ, (ij)]α−1)tr2n(αΦa1 ⊗ · · · ⊗ [Φai ,Φaj ]⊗ · · · ⊗ 1⊗ · · · ⊗ Φa2n) (F.6)

where [Φai ,Φaj ] is in the i-th slot and 1 is in the j-th slot.19 Here the sum
∑

i 6=j is over

different pairs (i, j), i.e. we do not distinguish (i, j) = (1, 2) and (2, 1).

In order to express the above operator in terms of (2.3), we consider the decomposition

S2n → S2n−1×S1 [17, 62]. Elements in S2n can be expressed in terms of elements in S2n−1 as

{α | α ∈ S2n} = {β |β ∈ S〈j〉2n−1}∪{β(jk) | k = 1, 2, j− 1, j+ 1, · · · , 2n; β ∈ S〈j〉2n−1}, (F.7)

where S
〈j〉
2n−1 is the subgroup obtained by removing the j-th slot from S2n. We illustrate

how it works for the case 2n = 3, j = 3. Take (i, k) = (2, 1). When α = β,

tr3(βΦa1 ⊗ [Φa2 ,Φa3 ]⊗ 1) = Nc tr2(βΦa1 ⊗ [Φa2 ,Φa3 ]) = Nc tr3([(23), β]Φa1 ⊗ Φa2 ⊗ Φa3)

(F.8)

and when α = β(jk),

tr3(β(31)Φa1⊗[Φa2 ,Φa3 ]⊗1) = tr2(βΦa1⊗[Φa2 ,Φa3 ]) = tr3([(23), β]Φa1⊗Φa2⊗Φa3) (F.9)

18The Hamiltonian of integrable SO(Nf ) spin chain is obtained by changing the coefficient of H2 to

−1/(Nf − 2) and taking the planar limit [32].
19In the planar limit, only the terms j = σ(i) and j = σ−1(i) survive.
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The case (i, k) = (2, 2) is same as above.

We then find that (F.6) can be written as

2Nc

∑
i 6=j

∑
β∈S〈j〉2n−1

δ2n([σ, (ij)]β−1)tr2n([(ij), β]Φ~a)

+ 2
∑
i 6=j

∑
k(k 6=j)

∑
β∈S〈j〉2n−1

δ2n([σ, (ij)](jk)β−1)tr2n([(ij), β]Φ~a)

= 2
∑
i 6=j

∑
β∈S〈j〉2n−1

δ2n([σ, (ij)]X(j)β−1)tr2n([(ij), β]Φ~a), (F.10)

where we have introduced

X(j) = Nc +
∑
k( 6=j)

(kj). (F.11)

Next study the action of H21,

tr(ΦmΦ̌nΦmΦ̌n) tr2n(σΦ~a) = 2
∑
i 6=j

δai,aj tr2n((ij)σΦa1 ⊗ · · · ⊗ Φm ⊗ · · · ⊗ Φm ⊗ · · · ⊗ Φa2n)

(F.12)

where two Φm’s are in the i-th position and the j-th position. Introducing the flavour

contraction operator acting on two Φ’s at (i, j),

Cf(ij)Φa ⊗ Φb = δabΦm ⊗ Φm, (F.13)

we have

tr(ΦmΦ̌nΦmΦ̌n) tr2n(σΦ~a) = 2
∑
i 6=j

Cf(ij)tr2n((ij)σΦ~a). (F.14)

The action of H22 is computed using (F.5) as

tr(ΦmΦmΦ̌nΦ̌n) tr2n(σΦ~a)

= 2
∑
i 6=j

δaiaj tr2n((ij)σΦa1 ⊗ · · · ⊗ ΦmΦm ⊗ · · · · · · ⊗ 1⊗ · · ·Φa2n)

= 2
∑
i 6=j

δaiaj
∑
α∈S2n

δ2n((ij)σα−1)S(ij)(α), (F.15)

S(ij)(α) := tr2n(αΦa1 ⊗ · · · ⊗ ΦmΦm︸ ︷︷ ︸
i

⊗ · · · · · · ⊗ 1︸︷︷︸
j

⊗ · · ·Φa2n) (F.16)

where i, j represent the site of ΦmΦm and that of 1. We now apply the reduction S2n →
S
〈j〉
2n−1 × S1 to S(ij)(α). For example for i = 2, j = 1, we have

S(21)(β) = Nc tr2n−1(βΦmΦm ⊗ Φa3 ⊗ · · · ⊗ Φa2n)

S(21)(β(1k)) = tr2n−1(βΦmΦm ⊗ Φa3 ⊗ · · · ⊗ Φa2n) (F.17)

where β ∈ S〈1〉2n−1, and we can use the following formula,

tr2n−1(βΦmΦm ⊗ Φa3 ⊗ · · · ⊗ Φa2n) = tr2n((12)βΦm ⊗ Φm ⊗ Φa3 ⊗ · · · ⊗ Φa2n). (F.18)
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We then find that (F.15) can be expressed by

tr(ΦmΦmΦ̌nΦ̌n) tr2n(σΦ~a) = 2
∑
i 6=j

C(ij)

∑
β∈S〈j〉2n−1

δ2n((ij)σX(j)β−1)tr2n((ij)βΦ~a). (F.19)

Collecting these results,

H1tr2n(σΦ~a) = −
∑
i 6=j

∑
β∈S〈j〉2n−1

δ2n([σ, (ij)]X(j)β−1)tr2n([(ij), β]Φ~a),

H21tr2n(σΦ~a) = −
∑
i 6=j

C(ij)tr2n((ij)σΦ~a),

H22tr2n(σΦ~a) =
∑
i 6=j

C(ij)

∑
β∈S〈j〉2n−1

δ2n((ij)σX(j)β−1)tr2n((ij)βΦ~a). (F.20)

Note that the Nc-dependence appears only in X(j).

Let us next focus on the mesonic singlet operators

O(σ) ≡ Oσ = tr2n(σΦa1 ⊗ Φa1 ⊗ Φa2 ⊗ Φa2 · · · ⊗ Φan ⊗ Φan). (F.21)

We decompose the sum over i, j into

∑
i 6=j

=
∑
(i,j)

+
∑
〈i,j〉

(F.22)

where (i, j) run over (1, 2), (3, 4), · · · , and 〈i, j〉 over the other pairs.20 We have

H1O(σ) = −
∑
〈i,j〉

∑
β∈S〈j〉2n−1

δ2n([σ, (ij)]X(j)β−1)O([(ij), β]),

H21O(σ) = −Nf

∑
(i,j)

O((ij)σ)−
∑
〈i,j〉

C(ij)O((ij)σ),

H22O(σ) = Nf

∑
(i,j)

∑
β∈S〈j〉2n−1

δ2n((ij)σX(j)β−1)O((ij)β)

+
∑
〈i,j〉

C(ij)

∑
β∈S〈j〉2n−1

δn((ij)σX(j)β−1)O((ij)β). (F.23)

The mixing matrix

HiO(σ) =
∑
τ∈S2n

M (i)
σ,τO(τ) (F.24)

20i = Σ0(j) in the sum over (i, j).
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is given by

M (1)
σ,τ = −

∑
〈i,j〉

∑
β∈S〈j〉2n−1

δ2n([[σ], (ij)]X(j)β−1)δ2n([[τ−1], (ij)]β),

= −2n (n− 1)
∑

β∈S〈2n〉2n−1

δn([[σ], (1, 2n)]X(2n)β−1)δn([[τ−1], (1, 2n)]β), (F.25)

M (21)
σ,τ = −Nf

∑
(i,j)

δ2n([τ−1](ij)[σ])−
∑
〈i,j〉

δ2n

(
[τ−1](Σ0(i)j)(ij)[σ](Σ0(i)j)

)
,

= −Nfnδ2n([τ−1](12)[σ])− 2n (n− 1) δ2n

(
[τ−1](2, 2n)(1, 2n)[σ](2, 2n)

)
, (F.26)

where Σ0 = (12)(34) · · · (2n− 1, 2n),

M (22)
σ,τ = Nf

∑
(i,j)

∑
β∈S〈j〉2n−1

δ2n((ij)[σ]X(j)β−1)δ2n([τ−1](ij)β) (F.27)

+
∑
〈i,j〉

∑
β∈S〈j〉2n−1

δ2n((ij)[σ]X(j)β−1)δ2n([τ−1](Σ0(i)j)(ij)β(Σ0(i)j))

= Nfn
∑

β∈S〈2n〉2n−1

δ2n((2n− 1, 2n)[σ]X(n)β−1)δ2n([τ−1](n− 1, n)β)

+ 2n (n− 1)
∑

β∈S〈n〉2n−1

δ2n((1, 2n)[σ]X(2n)β−1)δ2n([τ−1](2, 2n)(1, 2n)β(2, 2n)).
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