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the fluctuations are simultaneously scaled to zero as D is taken to infinity. We demonstrate

that the resultant nonlinear equations, which capture the Gregory-Laflamme instability and

its end point, exactly agree with the effective dynamical ‘black brane’ equations of Emparan

Suzuki and Tanabe. Our results thus identify the ‘black brane’ equations as a special limit

of the membrane equations and so unify these approaches to large D black hole dynamics.
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1 Introduction

A few years ago Emparan, Suzuki, Tanabe and collaborators observed [1–7] (see also [8, 9])

that the classical equations that govern the dynamics of black holes in D dimensions

simplify in the large D limit. Motivated by this observation, several papers written over the

last year or so have demonstrated that black hole physics at large D can be reformulated

in terms of dual non gravitational equations. In broad terms there have been two different

approaches to this problem.

The first of these approaches is laid out in the ‘membrane paradigm’ papers of [10–12]

(see also [13–15]1). The authors of these papers have demonstrated that nonlinear black

hole dynamics can be reformulated in terms of the equations of motion of a non gravitational

membrane that lives in flat space. The variables of this problem are the shape of the

membrane and a velocity field on this membrane.2 Einstein’s equations force the membrane

variables to obey a set of equations of motion. There are as many equations of motion as

variables, so the membrane description defines a good initial value problem. We emphasize

that the membrane equations of [10–12] apply to arbitrarily nonlinear and completely

dynamical black hole motions. There are, in particular, no restrictions on the initial shape

of the membrane which can be chosen to be any sufficiently smooth codimension one

submanifold of flat spacetime; the evolution of this shape (and the membrane velocity

fields) in time is, of course, governed by the membrane equations of motion.

A second approach is that of the ‘scaled black brane’ papers of [16, 17] (see also [18, 19]).

These papers study small fluctuations about the p dimensional ‘black brane’; a spacetime

given by the direct product of the Schwarzschild solution in RD−p−1,1 and Rp. The authors

of [16] consider fluctuations that preserve SO(D − p − 1) isometry but vary in the Rp

1These papers worked out the equations that govern the shape of the membrane, described later in this

paragraph, for stationary configurations. Atleast in the absence of a cosmological constant, these equations

may be shown to follow from the more general dynamical membrane equations of [10–12] upon inserting an

appropriate stationary ansatz, and so are special cases of the general membrane equations.
2The variables of the membrane also include a charge field for charged black holes. In this note, however,

we focus solely on solutions of the vacuum Einstein equations RMN = 0. We leave the generalization of our

study to charged black holes, and to dynamics in spaces with nonzero cosmological constants, to future work.
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direction over length scales of order 1
√

D
and time scales of order unity. Focusing attention

on wiggles of the event horizon of amplitude 1

D
and on boost velocities of the horizon

of order 1
√

D
, the authors of [16] were able to derive a set of effective non gravitational

nonlinear equations that completely reproduce black brane dynamics in the scaled large D

limit described above. This scaling limit is of particular interest because it turns out to

capture the Gregory-Laflamme instability of black branes at large D.3,4

In this brief note we derive the ‘black brane’ equations of [16] starting from the mem-

brane equations of [10–12]. The starting point of our analysis is the simple exact solution

to the membrane equations of motion that is dual to the p dimensional ‘black brane’ de-

scribed in the previous paragraph. This solution is static, which means that the membrane

velocity field is simply given by u = −dt. The shape of the membrane on this solution

is SD−p−2 × Rp,1. We then proceed to study the scaling limit of [16] directly within the

membrane picture. In other words we study fluctuations of the membrane that preserve

SO(D − p − 1) isometry but vary in the Rp direction over length scales of order 1
√

D
and

time scales of order unity. We then focus on wiggles of the shape of the membrane with

amplitude of order 1

D
and on membrane velocities of order 1

√

D
. At leading order in the

large D limit we obtain a simple set of scaled equations of membrane dynamics which (after

the appropriate field redefinitions) turn out to agree exactly with the equations of [16]. We

view our derivation of the (uncharged) black brane equations from the membrane equations

as a unification of these two approaches to horizon dynamics at large D. Note it follows, in

particular, that the dynamics of the Gregory-Laflamme instability is captured by scaling

limit of membrane equations described above.

The limit of the previous paragraph is loosely reminiscent of the scaling limit that

yields the nonrelativistic Navier-Stokes equations starting from the more general relativistic

equations [26]. The membrane equations may also admit other interesting scaling limits.

We leave the investigation of this point to future work.

2 A scaling limit of the membrane equations

In this note we study the equations of motion [10–12] of an uncharged large D membrane

propagating in flat Minkowski spacetime. To leading order in 1

D
these equations take

the form
[

∇2uA
K − ∇AK

K + uBKBA − uB∇BuA

]

PA
C = 0 (2.1)

with,

∇.u = 0 . (2.2)

Here KAB is the extrinsic curvature of the membrane, K is its trace and u is the local

world volume velocity field of the membrane. All covariant derivatives in (2.1) and (2.2)

3[16] has subsequently been generalized to the the study of charged black branes in [17]. As mentioned

above, however, in this note we focus attention on uncharged black holes and black branes.
4Additional recent studies of black hole physics at large D include [20–25].
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are defined with respect to the induced metric on the membrane. Also

PAB = ĝAB + uAuB (2.3)

where ĝAB is the metric induced from the ambient flat space on the world volume of

the membrane. In other words PAB is the projector, on the membrane world volume,

orthogonal to the velocity field u.

2.1 Linearized fluctuations

In our study we will find it useful to use coordinates in which the flat space D dimensional

metric takes the form

ds2 = −dt2 + dx̃adx̃a + dr2 + r2dΩ2

n (2.4)

where

n = D − p− 2 .

and a = 1 . . . p label the spatial directions on the black brane. A simple solution to the

equations (2.1) and (2.2) is given by the membrane shape r = 1 and constant static velocity

field u = −dt.5

The solution of the membrane equations described in the previous paragraph is dual

to a ‘black brane’ — the solution of general relativity given by the direct product of Rp

and the Schwarschild black hole in D− p dimensions. It is well known that this solution of

general relativity is unstable in an arbitrary number of dimensions. We will now use the

membrane equations to exhibit this instability, by linearizing these equations about the

simple solution. The Gregorry Laflamme instability of black branes is known to preserve

the SO(n + 1) symmetry of the sphere but to break translational invariance along Rp, so

we study fluctuations with the same property. In other words we set

r = 1 + δ̃r(t, x̃a)

u = −dt+ ˜δua(t, x̃
a)dx̃a .

(2.5)

Note that our velocity fluctuations lie entirely in the black brane directions and none of

our fluctuations fields depend on the angular variables on Sn.

Following the method described in section 5 of [11], it is not difficult to linearize the

membrane equations around the ‘black brane’ solution. The equation (2.2) reduces to

n ∂tδ̃r + ∂̃a ˜δua = 0 (2.6)

(recall n = D− p− 2).6 The equation with a free index in the (spatial) Rp direction turns

out to take the form

(

∂̃aδ̃r − ∂t∂̃aδ̃r − ∂t ˜δua

)

+

(

−∂2
t + ∂̃b∂̃

b

n

)

(

˜δua + ∂̃aδ̃r
)

= 0 (2.7)

5The choice r = 1 involves no loss of generality, as the scale invariance of the classical Einstein equations

relate the solution with r = 1 to the solution with r = r0 for any constant r0.
6The factor of n, which plays a crucial role in the analysis below, has its origin in the fact that the

induced metric on the world volume of the membrane is given, to leading order in fluctuations by

ds
2 = −dt

2 + dx̃
a
dx̃a + (1 + 2δ̃r)dΩ2

n

so that
√
g = 1 + nδ̃r in these coordinates.
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where ∂̃a is the derivative with respect to the coordinate x̃a defined in (2.4). When all

spatial and time derivatives are of order unity or smaller, the term
(

−∂2
t + ∂̃b∂̃

b

n

)

(

˜δua + ∂̃aδ̃r
)

in (2.7) is subleading in the 1

n
expansion and so can naively be dropped at leading order.

However we will soon find ourselves interested in configurations with spatial derivatives

of order
√
n but time derivatives of order unity. For such configurations the term pro-

portional to time derivatives in (2.7) is indeed subleading in 1

n
. On the other hand the

term proportional to the spatial laplacian is comparable to the other terms in (2.7) and so

must be retained. Over the parameter ranges of interest to this paper, therefore, we can

replace (2.7) with the slightly simpler equation7

(

∂̃aδ̃r − ∂t∂̃aδ̃r − ∂t ˜δua

)

+

(

∂̃b∂̃
b

n

)

(

˜δua + ∂̃aδ̃r
)

= 0 . (2.8)

The equations (2.8) and (2.6) are easily analysed. Substituting the plane wave ex-

pansion

δ̃r(t, x̃a) = δr0e−iωteik̃ax̃
a

˜δua(t, x̃
a) = δu0ae

−iωteik̃ax̃
a

(2.9)

into (2.8) and (2.6) turns these equations into eigenvalue equations for the fluctuation

frequencies ω. Solving the resultant cubic equation in ω we find find that the most general

solution to these equations is given by

δ̃r(t,x̃a) = δr01e
−iω1teik̃ax̃

a

+ δr02e
−iω2teik̃ax̃

a

˜δua(t,x̃
a) = δr01k̃a

(

−i+

√
n

k̃

)

e−iω1teik̃ax̃
a

+ δr02k̃a

(

−i−
√
n

k̃

)

e−iω2teik̃ax̃
a

+ vae
−iω3teik̃ax̃

a

w1 = i

(

k̃√
n
− k̃2

n

)

, w2 = i

(

− k̃√
n
− k̃2

n

)

, w3 = −i
k̃2

n
, where k̃2 = k̃ak̃

a.

(2.10)

(2.10) is a solution to the linearized membrane equations for arbitrary constant values of

δr0
1
and δr0

2
and for any constant vector va s.t. k̃ava = 0.

Note that the mode proportional to δr0
1
— i.e. the mode with frequency ω1 — is

unstable when k̃ <
√
n. This IR instability (i.e. an instability that occurs at distance

scales lareger than a minimum) is the membrane dual of the Gregory-Laflamme instability.

When k̃ is of order unity time scale associated with this frequency is of order
√
n and so is

very large. The minimum time scale for an instability, however, occurs at k̃ =
√

n
2
. At this

wavelength the time scale of the instability is order unity.8

7The membrane equations with free index in sphere direction is trivially satisfied, while the equation in

the time direction is also a triviality (this is a consequence of the projector in (2.1)).
8The expression for the unstable mode w1 was conjectured earlier from fluid/gravity methods in [27].

See also [28] and [1] for further evidence for the above proposal.
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At the level of the linearized equations the Gregory-Laflamme unstable modes simply

grow forever. Nonlinear effects, however, stabilize these modes. The discussion of the

previous paragraph makes it clear that the length scale relevant to this physics is 1
√

n
. We

will now proceed to find the effective nonlinear theory within which the Gregory-Laflamme

instability and its end point can be reliably studied.

2.2 Scaled nonlinear equations

In order to restrict attention to distance of order 1
√

n
in the spatial black brane directions

we work with the scaled coordinate xa defined by x̃a = xa

√

n
. Unstable modes with finite

wavelength in this new coordinate have frequencies of order unity. The background flat

space metric now takes the form

ds2 = −dt2 + dr2 +
1

n
dxadx

a + r2dΩ2

n . (2.11)

As our fluctuations field all vary over distances of order unity and time scales of order unity

in scaled coordinates, the velocity field ua should thus also be of order unity. This implies

that ua ∼ O( 1
n
) . Translating back to unscaled coordinates it follows that ũa = O( 1

√

n
).

In order to ensure this scaling in our solution (2.10) we must choose va ∼ O( 1
√

n
), δr0

1
∼

δr0
2
∼ O( 1

n
). These choices, in turn, ensure that δ̃r ∼ O( 1

n
) (see (2.10)). It is thus natural

to make the further coordinate change

r = 1 +
y

n
. (2.12)

The flat space metric is now given by

ds2 = −dt2 +
dy2

n2
+

1

n
dxadx

a +
(

1 +
y

n

)2

dΩ2

n . (2.13)

With our scalings now in place we focus attention on membrane configurations of

the form

y = y(xa, t)

ua = ua(xa, t)
(2.14)

where the functions y(xa, t) and ua(xa, t) are independent of n. We then evaluate the mem-

brane equations (2.2) and (2.1) for such configurations propagating on the metric (2.13).

Retaining only terms of leading order at large n we find that the equation (2.2) (which we

call Es below) and the a components of (2.1) (which we call Ev
a below) reduce to

Es ≡ ub∂by+∂bub+∂ty = 0

Ev
a ≡ ∂b∂bua+∂ay−ub∂bua+∂by∂bua−ub∂b∂ay+∂by∂b∂ay+∂b∂b∂ay−∂tua−∂t∂ay = 0 .

(2.15)

Note that the equations (2.15) are nonlinear. If we linearize these equations around the

background y = ua = 0 we obtain the linearized equations

∂bδub + ∂tδr = 0

∂b∂bδua + ∂aδr + ∂b∂b∂aδr − ∂tδua − ∂t∂aδr = 0 .
(2.16)

– 5 –
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The first and second of (2.16) are simply (2.6) and (2.8) expressed in scaled variables. It

follows that (2.15) are nonlinear generalizations of the linearized fluctuation equations of

the previous subsection. The (2.16) are exact at large n within the scaling limit described

in this section.

The nonlinear equations (2.15) capture both the linear exponential growth as well

as the nonlinear settling down of the Gregory-Laflamme instability. We do not need to

perform the analysis of this fact, however, because it has already been done! We will now

demonstrate that the equations (2.15) are equivalent to those that Emparan Suzuki and

Tanabe [16] derived to study large D ‘black branes’ — and used to perform an extensive

study of the Gregory-Laflamme instability.

In order to make contact with the work of [16] we make the following field redefinitions

y(t, xa) = logm(t, xa)

ua(t, x
a) =

pa(t, x
a)− ∂a (m(t, xa))

m(t, xa)
(2.17)

and work with the following linear combinations of (2.15)

E1 = m(t, xa)Es and Ea = pa(t, x
a)Es −m(t, xa)Ev

a . (2.18)

It is easily verified that E1 and Ea take the form

E1 = ∂tm− ∂b∂
bm+ ∂bp

b = 0

Ea = ∂tpa − ∂b∂
bpa − ∂am+ ∂b

(

pap
b

m

)

= 0 .
(2.19)

The equations (2.19) are precisely the nonlinear black brane equations (11) and (12) of [16].

It follows that these black brane equations are simply a particular scaled limit of the general

leading order (in an expansion in 1

D
) equations (2.2) and (2.1).

3 Discussion

In this note we have demonstrated by explicit computation that the uncharged ‘black

brane’ equations of [16] may be obtained from a scaling limit of the general membrane

equations (2.2) and (2.1). The reader may, at first, find herself puzzled at this agreement,

given the scaling limit described in this note focuses on length scales of order 1
√

D
while

that the membrane equations (2.2) and (2.1) were derived as the first term in a systematic

expansion in 1

D
under the assumption that the horizon and velocity fields all vary on length

scale unity. We will now explain why this agreement was infact to be expected despite the

apparent conflict of regimes of validity.

The equations (2.2) and (2.1) would fail to accurately capture dynamics at leading

order in the large D limit if the explicit factors of D in the metric (2.13) ensured that a

higher order term9 were to contribute to the equations at same (or higher) order in 1

D
as

9I.e. a term that appears at higher order in the expansion in 1

D
in the membrane equations of [12].

– 6 –
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the terms in (2.2) and (2.1). We will now explain that this never happens. Potentially

dangerous terms are those that contain one or more factors of the inverse metric gab where

the indices a and b are spatial black brane directions. These terms are potentially dangerous

as gab (see (2.13)) is of order D. However these factors never actually lead to a mixing of

orders because the extra indices a and b each need to contract with something. When these

indices contract with ua the extra factor of D is nullified by the fact that ua is of order 1

D
.

When these indices contract with a derivative, the derivative acts on some quantity built

out of fluctuation fields. However all such quantities are of order 1

D
(recall, for instance,

that every fluctuation component of the extrinsic curvature is proportional to δ̃r which

is of order 1

D
). The smallness of fluctuations in our scaling limit once again counteracts

the potential enhancement of powers of D. It follows that leading order equations (2.2)

and (2.1) is infact sufficient to capture the leading order large D dynamics of the scaling

limit described in this note despite the fact that the scaling limit zooms in on distance

scales of order 1
√

D
.

It should not be difficult to generalize the discussion of this note to obtain the first

corrections, in an expansion in 1

D
, to the black brane equations of (2.19). These corrections

have been obtained from ‘scaled black brane’ approach in [18, 22, 23]. The starting point

for such an analysis would be the first order corrected membrane equations derived in [12].

It would also be interesting to check whether the analysis of this note generalizes to a

derivation of the charged ‘black brane’ equations of [17] starting with the charged membrane

equations of [11].10 We leave a study of these issues to future work.

We end this note by reiterating that we have demonstrated that the black brane equa-

tions of [16] can be derived as a special case of the more general membrane equations

of [10–12], leading to a satisfying unification recent attempts to reformulate large D hori-

zon dynamics in non gravitational terms.
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