
J
H
E
P
1
2
(
2
0
1
6
)
1
3
7

Published for SISSA by Springer

Received: October 6, 2016

Accepted: December 16, 2016

Published: December 27, 2016

Higgsed Chromo-Natural Inflation

Peter Adshead,a Emil Martinec,b,c Evangelos I. Sfakianakisa and Mark Wymand

aDepartment of Physics, University of Illinois at Urbana-Champaign,

1110 West Green Street, Urbana, IL 61801, U.S.A.
bEnrico Fermi Institute, University of Chicago,

5640 S. Ellis Ave., Chicago, IL 60637-1433, U.S.A.
cDepartment of Physics, University of Chicago,

5640 S. Ellis Ave., Chicago, IL 60637-1433, U.S.A.
dPDT Partners,

1745 Broadway, 25th Floor, New York, NY 10019, U.S.A.

E-mail: adshead@illinois.edu, ejmartin@uchicago.edu,

esfaki@illinois.edu, markwy@gmail.com

Abstract: We demonstrate that Chromo-Natural Inflation can be made consistent with

observational data if the SU(2) gauge symmetry is spontaneously broken. Working in the

Stueckelberg limit, we show that isocurvature is negligible, and the resulting adiabatic

fluctuations can match current observational constraints. Observable levels of chirally-

polarized gravitational radiation (r ∼ 10−3) can be produced while the evolution of all

background fields is sub-Planckian. The gravitational wave spectrum is amplified via linear

mixing with the gauge field fluctuations, and its amplitude is not simply set by the Hubble

rate during inflation. This allows observable gravitational waves to be produced for an

inflationary energy scale below the GUT scale. The tilt of the resulting gravitational wave

spectrum can be either blue or red.

Keywords: Chern-Simons Theories, Spontaneous Symmetry Breaking, Cosmology of

Theories beyond the SM

ArXiv ePrint: 1609.04025

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP12(2016)137

mailto:adshead@illinois.edu
mailto:ejmartin@uchicago.edu
mailto:esfaki@illinois.edu
mailto:markwy@gmail.com
https://arxiv.org/abs/1609.04025
http://dx.doi.org/10.1007/JHEP12(2016)137


J
H
E
P
1
2
(
2
0
1
6
)
1
3
7

Contents

1 Introduction 1

2 Higgsed Chromo-Natural Inflation 3

2.1 Background solutions 4

2.2 Background parameter scan 5

3 The quadratic fluctuation action 7

4 Scalars 11

4.1 Quantization and initial conditions 12

5 Tensors 16

5.1 Approximate solutions 17

6 Curvature perturbations and primordial spectra 19

6.1 Curvature perturbations 20

6.2 Entropy perturbations and isocurvature 21

6.3 Density fluctuation 23

7 Parameter dependence and observational constraints 23

7.1 Validity of the linear theory 28

8 Higgsed Gauge-flation 29

9 Conclusions 30

A Conventions 32

B A specific realization: adjoint Higgs model 33

C Details of the scalar action 35

D Vector fluctuations 36

1 Introduction

Inflation [1–3] remains a remarkably successful paradigm for describing the initial con-

ditions of our Universe. As well as solving the flatness and horizon problems, inflation

provides a mechanism for generating primordial fluctuations with the right amplitude and

scale dependence to seed structure formation [4, 5], as well as possibly producing primor-

dial gravitational waves [6]. While there exist many models of inflation in the current
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literature, and many that fit the data well, most existing models of inflation rely on scalar

fields slowly rolling on flat potentials to drive the inflationary epoch.

Chromo-Natural Inflation [7] is a model for the inflationary epoch where non-Abelian

gauge fields in classical, color-locked configurations generate an attractor solution which

decouples the motion of the inflaton, in this case a pseudo-scalar, from the gradient flow

of the potential. While Chromo-Natural Inflation can successfully generate long peri-

ods of inflation at the classical level, it fails to provide the seeds for structure formation

consistent with current observations [8–10]. Furthermore, related models such as Gauge-

flation [11, 12], are also inconsistent with current observations once the fluctuations are

taken into account [13].

In this paper we demonstrate that Chromo-Natural Inflation [7] can potentially be

made a viable candidate for the generation of primordial curvature perturbations by in-

troducing an additional mass for the gauge field fluctuations via spontaneous symmetry

breaking. While we dub the resulting theory Higgsed Chromo-Natural Inflation, in this

work we restrict consideration to the Goldstone sector of the resulting broken gauge sym-

metry, and work with the action in Stueckelberg form. We ignore the possible existence of

a Higgs boson, and assume its mass is large compared with the Hubble rate during infla-

tion. The resulting theory can generate large levels of gravitational radiation of a single

(helical) polarization only, while all background fields roll over sub-Planckian distances.

Further, the amplitude of the resulting gravitational wave spectrum is not simply set by

the Hubble rate, and as a result observable gravitational waves can be produced while

the inflationary energy density is somewhat below the energy scale associated with grand

unification. Despite consisting of several fields, isocurvature perturbations are suppressed

relative to adiabatic modes.

Admittedly, the addition of more fields is a little distasteful, an epicycle on an already

speculative idea. However, it is worth pointing out that the only SU(2) gauge theory which

appears to describe nature, that associated with the electroweak sector, exists in a broken

phase [14–21]. Further, the model we describe in this work provides an explicit counter-

example to the standard inflationary lore, that the detection of tensor modes implies that

inflation happened near the GUT scale and requires super-Planckian field excursions [22].

For a more sophisticated analyses of the field range bound see ref. [23], and for a more

general discussion of the relation between the energy scale of inflation and the gravitational

wave spectra see ref. [24].

Classical non-Abelian gauge fields lead to striking phenomenology in cosmological

settings, most notably chiral gravitational waves [10, 25–34]. These chiral gravitational

waves may be responsible for the matter-antimatter asymmetry via the gravitational

anomaly [25, 35–37]. Chiral gravitational waves also arise in other models involving axially

coupled gauge fields [38, 39] and axially coupled fermions [40]. For a recent review of axion

inflation see ref. [41] and for a recent review of gauge fields and inflation see ref. [42].

Throughout this work, we use natural units where the speed of light and the reduced

Planck constant, c = ~ = 1 and the reduced Planck mass 1/
√

8πG = Mpl = 1.
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2 Higgsed Chromo-Natural Inflation

We consider the theory of Chromo-Natural Inflation [7], which is described by the action

SCNI =

∫
d4x
√
−g

[
1

2
R− 1

2
(∂X )2 − V (X )− 1

2
Tr [FµνF

µν ]− λ

4f
XTr [F ∧ F ]

]
, (2.1)

where X is a pseudo-scalar (axion) with associated mass scale f . We will assume a si-

nusoidal Natural inflation-like axion potential with energy scale µ and decay constant,

f �MPl [43]:

V (X ) = µ4

(
1 + cos

(
X
f

))
. (2.2)

We emphasize that the existence of inflationary solutions is not dependent on this choice.

We consider a general SU(N) gauge field, Aµ, and our conventions for its covariant deriva-

tive and field strength will be the same as those outlined in [10], and detailed in appendix A.

The combination of the shift symmetry of the axion combined with the gauge symmetry

of the vector fields strongly restricts the types of interactions that we can write down. One

interaction omitted from consideration in [10] is the coupling of the theory to a Higgs

sector which spontaneously breaks the SU(2) gauge symmetry. In the following, we will

consider this addition to the theory, and work in the limit that the mass of the Higgs is

much much greater than the Hubble scale. This means that the dynamics of fluctuations

that change the Higgs mass will be irrelevant, and we can therefore ignore them. In this

limit, the particular representation we choose for the Higgs does not matter, since the only

relevant dynamics will be that of the Goldstone boson, whose action will be in Stueckelberg

form1 [44, 45]

SH,eff =

∫
d4x
√
−g

[
−g2Z2

0Tr

[
Aµ −

i

g
U−1∂µU

]2
]

(2.3)

where

U = exp [igξ] , ξ = ξaJa, (2.4)

and ξa are the Goldstone modes corresponding to fluctuations of the Higgs along its vacuum

manifold, and Ja are the generators of the gauge symmetry. Under an infinitesimal gauge

transformation,

ξa → ξa − αa, Aaµ → Aaµ + ∂µα
a + gεabcA

b
µα

c, (2.5)

and thus eq. (2.3) is gauge invariant.

While the main part of this work will restrict to the consideration of the dynamics of

the model in the Stueckelberg limit, in appendix B we describe a specific realization away

from this limit and demonstrate that the SU(2) gauge symmetry can be dynamically broken

in such a way as to generically preserve the background SO(3) symmetry of spacetime.

1In Higgs representations that do not completely break the gauge symmetry, such as the adjoint rep-

resentation, we must put a texture in the Higgs analogous to that of the gauge field; this is discussed in

appendix B.
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2.1 Background solutions

We find inflationary trajectories in the above action by considering the axion in a classical,

homogeneous configuration X = X (t) and the gauge fields in the classical configuration

A0 =0, Ai = φδai Ja = aψδai Ja, (2.6)

where Ja is a generator of SU(2) satisfying the commutation relations, and normalization

[Ja, Jb] = ifabcJc, Tr [JaJb] =
δab
2
, (2.7)

and fabc are the structure functions of SU(2). Note that for SU(2), fijk = εijk, where εijk
is the completely antisymmetric tensor in three dimensions.

On the background field configuration in eq. (2.6), the field strength tensor compo-

nents are,

F0i =∂τφδ
a
iJ
a, Fij = gφ2faijJ

a, (2.8)

where we work with conformal time, τ .

For these degrees of freedom, the mini-superspace action takes the form

L = a3N

[
− 3

ȧ2

N2
+

a2

2N2
Ẋ 2 − V (X ) +

3

2

φ̇2

N2
− 3

2
g2φ

4

a4
− 3

2
g2Z2

0

φ2

a2

]
− 3

λ

f
gX φ̇φ2, (2.9)

where here and in what follows an overdot represents a derivative with respect to cosmic

time, and the lapse, N = a on the background solution. This action leads to the equations

of motion for the axion X and gauge field vacuum expectation value (VEV) φ:

Ẍ + 3HẊ + V ′(X ) = − 1

a3

λ

f
g∂t
(
φ3
)
, (2.10)

φ̈

a
+H

φ̇

a
+ 2g2φ

3

a3
+ g2Z2

0

φ

a
=
λ

f
gẊ φ

2

a2
. (2.11)

The equations of motion for the metric are the Friedmann constraint

3H2 =
1

2
Ẋ 2 + V (X )+

3

2

(
φ̇2

a2
+ g2φ

4

a4
+ g2Z2

0

φ2

a2

)
, (2.12)

and the equation of motion for the scale factor

Ḣ = −Ẋ
2

2
− φ̇2

a2
− g2φ

4

a4
− 1

2
g2Z2

0

φ2

a2
. (2.13)

In [7] we showed that, in the absence of the Higgs terms, this model inflates. In the limit of

large λ, terms linear in time derivatives dominate the dynamics, and slow-roll is facilitated

by a magnetic-drift type force mediated by the Chern-Simons interaction [46]. The addition

of the Higgs only slightly modifies the dynamics, and it is easily seen that similar magnetic

– 4 –



J
H
E
P
1
2
(
2
0
1
6
)
1
3
7

drift type trajectories are also present in this theory. In the large drift force limit (λ� 1),

the slow-roll equations for this model are very well approximated by

ψ̇ = −Hψ − f

3gλ

V,X
ψ2

, (2.14)

λ

f
Ẋ = 2gψ +

gZ2
0

ψ
+

2H2

gψ
, (2.15)

where ψ = φ/a. To a good approximation, ψ ≈ const., and eq. (2.14) is solved by

ψ =

(
−fV,X
3gHλ

)1/3

, (2.16)

which has been used to simplify eq. (2.15). It will also prove useful to introduce the

dimensionless mass parameters

mψ =
gψ

H
, and MZ0 =

gZ0

H
, (2.17)

which characterize the various contributions of mass to the gauge field fluctuations in units

of the Hubble scale. In terms of these quantities, eq. (2.13) can be written

εH ≡ −
Ḣ

H2
=
Ẋ 2

2H2
+
ψ̇2

H2
+ 2

ψ̇

H
ψ +

(
1 +m2

ψ +
M2
Z0

2

)
ψ2 (2.18)

= εX +

(
1 + η2

ψ + 2ηψ +m2
ψ +

M2
Z0

2

)
εψ (2.19)

where we introduce the slow roll parameters,

εX =
Ẋ 2

2H2
, ηX =

Ẍ
ẊH

, εψ = ψ2, ηψ =
ψ̇

Hψ
. (2.20)

The addition of the Higgs VEV does not prevent the existence of inflationary background

solutions and the condition for inflation remains εH < 1. Thus, in the limit where the

gauge field is approximately static, ηψ � 1, the gauge field VEV εψ = ψ2 limits how large

the Higgs VEV can be.

2.2 Background parameter scan

Before proceeding to the analysis of the fluctuations in this model, it is worth examining the

parameter dependence of the total number of e-folds of inflation. We start by substituting

the value of ψ given in eq. (2.16) into eq. (2.15), leading to

λ

f
Ẋ =

2 3
√

3g
(
µ4 sin

(
χ
f

))2/3
+ 3g5/3Z2

0 (Hλ)2/3 + 6 3

√
H8λ2

g

32/3 3

√
gHλµ4 sin

(
χ
f

) . (2.21)
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Figure 1. Left: the number of e-folds as a function of the parameter α ≡ g2/(λµ4) for

z0 = 0, 0.5, 1, 1.5, 2, color-coded in a rainbow scale with red corresponding to Z0 = 0. Right: the

maximum number of e-folds (blue) and the value of α, where the maximum occurs (red dashed).

We now rescale the axion field amplitude as x = X/f and use the number of e-folds N as

our time variable (dN = Hdt). We can integrate the resulting expression, taking inflation

to start at an axion value x = X0/f and end at x = π obtaining

N(X0)=

∫ π

X0
f

3
√

3µ4 3
√
g2λ4 sin(x)(cos(x) + 1)2

3Z2
0

3
√
g6λ2µ4(cos(x)+1)+2

(
3
√
λ2µ16(cos(x)+1)4+32/3 (g2µ4 sin(x))2/3

)dx .
(2.22)

Reference [47] demonstrated that the maximum number of e-folds in the case of Chromo-

Natural Inflation (Z0 = 0) occurs for a specific relation of parameters, namely g2/λ ' µ4/3.

The present case is more complicated, since there is one further parameter to consider,

Z0. We start by performing the substitution g2 = αλµ4, where α is a numerical factor.

This makes the integrand independent of µ. For Z0 = 0 the scaling N ∝ λ emerges for

g2 = αλµ4. This scaling is broken for Z0 6= 0 but can be formally recovered by defining

z0 = Z0

√
λ, which simplifies the analysis somewhat. For Z0 = 0 the maximum number

of e-folds is N ' 0.6λ and occurs for α ' 0.36. As one increases the rescaled Higgs VEV

z0, the decrease in α is much more dramatic than the decrease in Nmax/λ. Furthermore,

as we increase z0 the number of e-folds falls much more quickly as we move away from its

maximum, as a function of α, as shown in figure 1.

The result of varying the potential parameters on the duration of inflation is shown

in figure 2. We use the approximate expression of eq. (2.22), setting X0 = 0, as well as a

numerical evaluation of the full second-order system of equations for X (t), φ(t) and H(t).

It is worth noting that as X0 → 0 it becomes numerically more difficult to approach the

axion-gauge inflationary attractor. Choosing X0 ' 0.1f gives numerically well-behaved

results and the difference between N(X0 = 0) and N(X0 = 0.1f) is at the level of a few

percent. In general, increasing Z0 reduces the number of e-folds of inflation, unless g is very

small, or µ is very large, both leading to the combination g/µ2 being small. Furthermore,

the analytically and numerically derived values of N are in excellent agreement for a wide

range of parameters.

– 6 –
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Figure 2. We present the total number of e-folds of inflation for various parameter choices. The

solid/dotted/dashed lines correspond to the analytical values for Z0 = 0, 0.1, 0.2 respectively and

the dots/triangles/squares show the results of numerical simulations. Upper left: the total amount

of inflation varies as we vary the energy scale of the axion potential µ. Upper right: the total amount

of inflation varies as we vary the gauge field coupling strength g. Lower left: the number of e-foldings

of inflation is kept constant if the gauge field strength and the axion energy scale are varied in a

way that keeps a constant ratio g/µ2 = 0.5. We also show the effect of setting λ = 200, 800, 2000

(black, red, blue respectively). Lower right: the total amount of inflation scales almost linearly with

λ when keeping the remaining parameters fixed. Unless otherwise noted, the remaining parameters

are fixed at the values {µ, f, g, λ} = {3.16× 10−4, 0.01, 2.0× 10−6, 200}, as in [47].

3 The quadratic fluctuation action

In order to find the equations of motion for small fluctuations about the above background

solutions, we compute the action to quadratic order in fluctuations. The variation of this

quadratic action will yield the linear equations of motion.2

We work with the metric in ADM form [48],

ds2 = −N2dτ2 + h̃ij(dx
i +N idτ)(dxj +N jdτ), (3.1)

where N is the lapse function, N i is the shift vector, and h̃ij is the metric on the spatial

hypersurface. In our conventions, the background Friedmann-Robertson-Walker (FRW)

2In practice, we make use of Mathematica to obtain the action for the quadratic fluctuations and the

resulting equations of motion.

– 7 –



J
H
E
P
1
2
(
2
0
1
6
)
1
3
7

metric in conformal coordinates corresponds to N = a and N i = 0. The diffeomorphism

invariance of general relativity allows us to choose our coordinates so that spatial hypersur-

faces are Ricci flat. This gauge choice completely fixes the coordinates. We further write3

h̃ij = a2 [eγ ]ij = a2

[
δij + γij +

1

2!
γikγkj + . . .

]
, (3.2)

so that γ is a spin-2 mode of the metric.

It was demonstrated in ref. [8] that the contributions of the lapse and shift constraints

have no effect on the equations of motion until after horizon crossing, where the fluctuations

have frozen out. Further, in [10] we demonstrated that the contributions to the action

due to integrating out the lapse and the shift (i.e. solving the Einstein constraints) are

suppressed relative to the contributions to the action from the non-gravitational terms by

small background quantities such as Ẋ and ψ. The same is true in the case at hand, and we

ignore contributions to the action from the gravitational constraints as well as contributions

due to the evolution of the background.

Defining the fluctuations of the gauge field by

δAµ = Ψµ (3.3)

and using the background field configuration of eq. (2.6), the quadratic Yang-Mills

Lagrangian density can be written,

δ2LYM = Tr
[
(∂iΨ0−igφ [Ji,Ψ0])2

]
−4ig∂τφTr [Ψ0 [Ψi, Ji]]−2Tr [Ψ0∂τ (∂iΨi−igφ [Ji,Ψi])]

+ Tr [∂τΨi∂τΨi]− Tr [∂jΨi∂jΨi − ∂iΨj∂jΨi] + 2gφεijkTr [∂iΨjΩk]

− g2φ2Tr [(Ωk −Ψk)Ωk] , (3.4)

where we have defined

Ωi = iεijk [Jj ,Ψk] . (3.5)

Similarly, the quadratic order Chern-Simons Lagrangian density can be written,

δ2LCS = 2gφ2λ

f
δXTr [∂iΨ0Ji]−

λ

f
∂τXTr [gφΨiΩi − εijkΨi∂jΨk] + 2gφ2λ

f
∂τδXTr [ΨiJi]

− 2
λ

f
εijk∂τφδXTr [Ji∂jΨk] . (3.6)

The axion contribution to the quadratic Lagrangian density is

δ2LX =
1

2
a2(∂τδX )2 − 1

2
a2(∂iδX )2 − a4 1

2

d2V

dX 2
δX 2. (3.7)

The quadratic Lagrangian density for the transverse-traceless components of the metric,

and their interactions with the gauge field fluctuations is given by

δ2Lγ =
a2

8

(
(∂τγ)2 − (∂iγ)2 + 2

(
φ̇2 − g2φ

4

a2

)
γ2

)
− a2

(
φ̇

a
∂τΨjl − g

φ2

a2
(2εaij∂[iΨ

a
l] + gφΨjl)

)
γjl, (3.8)

3Our summation convention is as follows. Repeated lower Roman indices and all gauge field indices are

summed with the Kronecker delta.
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where γ2 = γijγij . These four contributions make up the action for the original theory of

Chromo-Natural Inflation and the above was presented in [10]. The key addition that we

are introducing in this work is the interaction of the gauge field with a Higgs sector. As

we have mentioned above, we are assuming that fluctuations that change the mass of the

Higgs will be irrelevant, since these are much more massive than the Hubble scale. We

thus restrict to the Goldstone bosons which fluctuate along the vacuum manifold, these

contribute at quadratic order in fluctuations via

δ2LHiggs = a4

[
− g2Z2

0

2
gµν

(
∂µξ

a + Ψa
µ

)
(∂νξ

a + Ψa
ν) +

g2Z2
0gψ

a
εbicξ

b∂iξ
c

− g2ψ2Z2
0

4
γ2 + g2Z

2
0ψ

a
γijΨij

]
. (3.9)

The addition of a Higgs sector thus yields an additional mass term for the gauge field fluc-

tuations. Note, however, retaining gauge-invariance requires us to also add the Goldstone

modes ξ.

Following [10], we work with a 2-dimensional representation of the gauge field and

decompose the fluctuations in the gauge field as

Ψa
i =

(
tai + εaijχ

j + δai δφ
)
Ja. (3.10)

We also work with explicit components of the fields. Choosing the wavenumber along

the x3 direction, the gauge-field modes eq. (3.10) then have a scalar-vector-tensor (SVT)

decomposition in which

t± =
1√
2

(
1

2
(t11 − t22)± it12

)
(3.11)

forms the two helicities of a transverse traceless tensor,

v± =
1√
2

(t3,1 ± it3,2) , u± =
1√
2

(χ1 ± iχ2) (3.12)

are helicity states of transverse vectors, and

z ≡ 1

6
(2t33 − t11 − t22), (3.13)

is a scalar along with χ3, and δφ. Rotational invariance ensures that the particular choice

of direction is irrelevant, and thus we drop the ‘3’ subscript on the momenta. Additionally,

the Goldstone modes can be similarly decomposed into a scalar mode ξ ≡ ξ3 and two

vector modes

ξ± ∝ ξ1 ± iξ2. (3.14)

The SU(2) gauge invariance of the action allows us to fix a gauge for the gauge field

fluctuations and eliminate three of the degrees of freedom in the gauge sector. Observable

quantities, such as the components of the energy-momentum tensor, are by definition gauge

– 9 –
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invariant. This means as long as the gauge is completely fixed, physical quantities will not

be dependent on the particular choice of gauge. In this work, we will work in a non-Abelian

generalization of the Coulomb condition [10]

D̄iΨi = ∂iΨi − igφ [Ji,Ψi] = 0, (3.15)

dubbed non-Abelian Coulomb gauge. A nice property of this gauge choice is that it elimi-

nates time derivatives of the gauge field from solution of the Gauss law constraint. There

are of course many other choices on might make. The works of [8, 13, 49] chose to work

in a gauge where Ψa
i was symmetric, this is equivalent to setting to zero the field χi. In

analogy with particle physics, one may choose to work in unitary gauge, where the Higgs

fluctuations are chosen to be zero ξa = 0. Alternatively, one may work with combinations

of the field fluctuations which are invariant under SU(2) gauge transformations [11, 12].

In terms of the field decomposiiton in the two-dimensional representation, the non-

Abelian Coulomb gauge condition, eq. (3.15), additionally imposes a relationship between

the degrees of freedom

∂i(t
a
i + εaijχj + δai δφ) = 2gφχa. (3.16)

In terms of the above fields, the gauge condition as written in eq. (3.16) becomes,

−ik(v± ± iu±) = 2gφu±, (3.17)

−ik(2z + δφ) = 2gφχ3. (3.18)

These three conditions remove three degrees of freedom. The Gauss law constraint, or

the equation of motion for the non dynamical temporal component of the gauge field A0,

removes three further degrees of freedom leaving the six physical propagating degrees of

freedom of the gauge theory.

Ignoring the gravitons for a moment, on the above decomposition, the action reads

δ2L=
a2

2
(∂τδX )2 +

a2

2
(∂iδX )2 − a4 1

2

d2V

dX 2
δX 2 (3.19)

+ a2g2Z2
0Ψd

0∂τξ
d
a+

a2g2Z2
0

2
∂τξ

a∂τξ
a− a

2g2Z2
0

2
∂iξ

a∂iξ
a−a2g2Z2

0

(
tai +εaijχ

j+δai δφ
)
∂iξ

a

+ g2Z2
0a

2gψεbicξ
b∂iξ

c +
1

2
Ψa

0(−∂2 + 2g2φ2 + g2a2Z2
0 )Ψa

0 + gφεibaΨ
b
0∂iΨ

a
0

+ Ψa
0

(
∂τ∂i(t

a
i + εaijχ

j + δai δφ)− 2∂τ (gφχa) + 4g∂τφχ
a − gφ2λ

f
∂aδX

)
+

1

2
∂τ t

a
i ∂τ t

a
i + ∂τχi∂τχi +

3

2
∂τδφ∂τδφ−

1

2
∂jt

a
i ∂jt

a
i − ∂jχi∂jχi −

3

2
∂jδφ∂jδφ

+
1

2
∂i(t

a
i +εaijχ

j+δai δφ)∂k(t
a
k+εakjχ

j+δakδφ)+gφ
(
εijk∂it

a
j t
a
k − εijk∂iχjχk+6∂iχ

iδφ
)

− 1

2
g2φ2(tai t

a
i + 2χiχi + 12δφ2)− 1

2
gφ

(
λ

f
∂τX − gφ

)(
tai t

a
i − 2χiχi − 6δφ2

)
− g2a2Z2

0

2
(tai t

a
i + 2χiχi + 3δφ2)

+
λ

2f
∂τX

(
εijk∂it

a
j t
a
k−2∂it

i
jχ

j−εijk∂iχkχj−4δφ∂iχ
i
)
+3gφ2λ

f
∂τδX δφ+2

λ

f
∂τφδX∂jχj ,
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where we have not fixed the gauge for the SU(2). The coordinates have been chosen

according to eq. (3.2) and as described above, we have ignored the contributions due to

the gravitational constraint equations.

4 Scalars

We begin by examining the behavior of the scalar modes. The dynamics of these modes

follows from the scalar parts of the action, which reads

δ2L =
a2

2
∂τδX∂τ δ̄X −

a2

2
k2δX δ̄X − a4 1

2

d2V

dX 2
δX 2

− 1

2
(k2 + 2g2φ2 + g2a2Z2

0 )−1|4g∂τφχ3 + a2g2Z2
0∂τξ + ikgφ2λ

f
δX|2

+ 3∂τz∂τ z̄ + ∂τχ3∂τχ3 +
3

2
∂τδφ∂τδφ− 3k2zz̄ − k2χ3χ̄3 −

3

2
k2δφδ̄φ

+
a2g2Z2

0

2
∂τξ∂τ ξ̄ −

a2g2Z2
0

2
k2ξξ̄ − ga

2g2Z2
0

2

(
ik (2z + δφ) ξ̄ + c.c.

)
− g2a2Z2

0

2
(6zz̄ + 2χ3χ̄3 + 3δφδ̄φ) + 3gφik(χ̄3δφ− χ3δ̄φ)

− 9g2φ2δφδ̄φ− 1

2
gφ
λ

f
∂τX

(
6zz̄ − 2χ3χ̄3 − 6δφδ̄φ

)
+ ik

λ

f
∂τX

(
zχ̄3 − z̄χ3 + δ̄φχ3 − χ̄3δφ

)
+

3

2
gφ2λ

f

(
∂τ δ̄X δφ+ ∂τδX δ̄φ

)
+ ik

λ

f
∂τφ(δX χ̄3 − δ̄Xχ3). (4.1)

Note that, in this expression we have integrated out the Gauss law constraint associated

with the temporal components of the gauge field, the solution of which is

Ψ3
0 = −

4g∂τφχ3 + a2g2Z2
0∂τξ + ikgφ2 λ

f δX
(k2 + 2g2φ2 + g2a2Z2

0 )
. (4.2)

We have also made use of the gauge condition eq. (3.15) to simplify several terms, however,

we have not yet completely imposed the gauge condition. It remains to eliminated one of

the degrees of freedom in order to obtain an action that contains only dynamical degrees of

freedom. In this work we choose to eliminate χ3 using eq. (3.15), although there is nothing

special about this choice. The elimination of χ3 kinetically couples the fields, and we shift

and rescale the fields

δ̂φ =
√

2

√
2 +

k2

g2φ2

(
δφ

2
+ z

)
, ẑ =

√
2(z − δφ), (4.3)

X̂ = a δX , Ĥ = gZ0

√
2g2φ2 + k2

g2a2Z2
0 + 8g2φ2 + 4k2

iaξ (4.4)

which puts the action in canonical form. Writing,

∆ = (δ̂φ, ẑ, X̂, Ĥ), (4.5)

– 11 –



J
H
E
P
1
2
(
2
0
1
6
)
1
3
7

and after integration by parts and the neglect of a boundary term the action can be put

in the form

S =
1

2

∫
d3xdτ

[
∆†′T∆′ + ∆†K∆′ −∆†′K∆−∆†Ω2∆

]
, T = 1. (4.6)

The matrix K is anti-Hermitian and Ω2 is symmetric. Their exact forms are not partic-

ularly illuminating, and so we omit reproducing them here, however, they are reproduced

in appendix C.

4.1 Quantization and initial conditions

Following the treatment of [13, 50], we expand the fields into modes,

∆i(τ,k) = Qij(τ, k)aj(k) +Q∗ij(τ, k)a†j(−k),
[
ai(k), a†j(k

′)
]

= δ3(k− k′)δij , (4.7)

where we impose the canonical commutation relation between ∆i and its canonically con-

jugate momentum

[∆i(τ,x), πj(τ,y)] = iδijδ
3(x− y), πi ≡

∂L
∂(∂τ∆†i )

. (4.8)

Decomposing πi in terms of the same creation/annihilation operators as above,

πi(τ,k) = πij(τ,k)aj(k) + π∗ij(τ,k)a†j(−k), πij = k(Q′ij +KilQlj) , (4.9)

we find that the relations (4.7) and (4.8) can only be simultaneously imposed if the condition[
Qπ† −Q∗πT

]
ij

= iδij (4.10)

is obeyed. As pointed out by [13], eq. (4.10) can be imposed as an initial condition, which

then holds at all times if one also imposes that the initial conditions satisfy

ππ† − π∗πT = QQ† −Q∗QT = 0, (4.11)

which is equivalent to imposing that the products ππ† and QQ† are real.

In the limit x = −kτ → ∞ the matrices K → O(x−1) and Ω2 = 1 + O(x−1) and

appears that in this limit one can easily set the initial conditions for the mode-functions

by identifying the positive frequency modes,

Qij =
1√
2k
δij , Q′ij = −i

√
k

2
δij . (4.12)

However, this turns out to be incorrect at any finite time due to the mode couplings. These

become important when

x ∼ Λ, where Λ = λψ/f, (4.13)

and must be retained in order to correctly identify and quantize the normal modes of

the system. We now use a Wentzel-Kramers-Brillouin (WKB) method to identify and

subsequently quantize the normal modes.
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In the limit x� Λ, working in the slow roll limit and making use of the equations of

motion for the background, we can expand the equations of motion for the fluctuations in

a series in powers of Λ/x, keeping only the terms that become important when x ∼ Λ

δ̂φ
′′

+ δ̂φ =
√

2Λ
X

x
+O

(
1

x
,

Λ

x2

)
(4.14)

ẑ′′ + ẑ = −
√

2mψΛ
X ′

x
+O

(
1

x
,

Λ

x2

)
(4.15)

X ′′ +

(
1−Λ2

m2
ψ

x2

)
X =

√
2Λ

δ̂φ

x
+
√

2mψΛ
ẑ′

x
+O

(
1

x
,

Λ

x2

)
(4.16)

Ĥ ′′ + Ĥ = 0 +O
(

1

x
,

Λ

x2

)
. (4.17)

We adopt a WKB ansatz for the mode functions

~Qj = ~aj exp

[
i

∫
dxω(x)

]
(4.18)

and substituting into the system of equations, neglecting terms of order O(ω′/ω) and

O(ω′′/ω) and we find eight solutions for the frequencies

ω ≈

±1,±1,±

1 +
3

2
Λ2

m2
ψ

x2
± Λ

x

√
9

4

Λ2

x2
m4
ψ + 2(1 +m2

ψ)

1/2
 . (4.19)

In order for the system to be stable, all of these instantaneous WKB frequencies must be

real. The only frequency that is possibly imaginary is the last one for the choice of the

minus sign inside the outer square root. This frequency becomes imaginary, and thus the

mode becomes unstable when

1 +
3

2
Λ2

m2
ψ

x2
<

Λ

x

√
9

4

Λ2

x2
m4
ψ + 2(1 +m2

ψ), (4.20)

which occurs when

x2 < Λ2
(
2−m2

ψ

)
. (4.21)

Thus there is an instability in the system for parameters such that m2
ψ = g2ψ2/H2 < 2, as

was found for the original model [8–10]. The additional mass for the gauge fields does not

stabilize the low mass regime, at least in the limit MZ0 � Λ.

Expanding the eigenfrequencies in eq. (4.19) in the limit x→∞, we have

ω ∼

±1,±1, 1±Λ

√
1 +m2

ψ
√

2x
,−1±Λ

√
1 +m2

ψ
√

2x

 (4.22)
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and the corresponding mode solutions are, up to an irrelevant phase

~Qj = c1j~a1e
−ix + c2j~a2e

ix + c3j~a3e
−ix + c4j~a4e

ix + c5j~a5e
−ix+iΛ

√
1+m2

ψ
√
2

lnx

+ c6j~a6e
ix−iΛ

√
1+m2

ψ
√
2

lnx
+ c7j~a7e

−ix−iΛ

√
1+m2

ψ
√
2

lnx
+ c8j~a8e

ix+iΛ

√
1+m2

ψ
√
2

lnx
(4.23)

where the cij are constants and the ~ai are the vectors

~a1 = ~a2 =


0

0

0

1

 , ~a3 = ~a∗4 =


i
√

2m2
ψ

2+M2
Z0

Λ
√

2mψ
2+M2

Z0

Λ

1

0

 , (4.24)

~a5 = ~a∗6 =


1√

1+m2
ψ

imψ√
1+m2

ψ

1

0

 , ~a7 = ~a∗8 =


− 1√

1+m2
ψ

− imψ√
1+m2

ψ

1

0

 . (4.25)

Note that in all cases, in finding both the frequencies and vectors we have expanded and

dropped terms that are subleading both in powers of Λ and x = −kτ .

Now, demanding the solutions approach the positive frequency solutions as x = −kτ →
∞ means we can set c1j = c3j = c5j = c7j = 0. The remaining constants now need to be

set be imposing the quantization conditions above. Working in the limit x→∞, it is then

straightforward to see that a solution that satisfies the initial conditions is

Goldstone mode: c21 = c22 = c33 = 0, c24 =
1√
2k

(4.26)

Regular mode: c42 = c43 = c44 = 0, c41 =
1√
2k

1√
1 + 2Λ2m

2
ψ(1+m2

ψ)

(2+M2
Z0

)2

(4.27)

Slow mode: c61 = c62 = c64 = 0, c63 =
1

2
√
k

(4.28)

Fast mode: c81 = c83 = c84 = 0, c82 =
1

2
√
k
. (4.29)

We show the solutions to all four modes in figure 3. The gauge field fluctuation z

becomes constant at late times, while δφ grows. However, note that the physical gauge field

fluctuations are proportional to δφ/a, which becomes constant at late times. In principle,

to numerically solve the system of equations and obtain all solutions, one needs to solve the

system of equations four times starting the system in each of the four normal modes with

the other amplitudes set to zero. However, in practice we are interested in the curvature

fluctuation which, as we demonstrate below, to a good approximation arises solely from

the axion fluctuation. Note that in all but the “slow-mode”, which corresponds to the
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Figure 3. Evolution of scalar fluctuations in Higgsed Chromo-Natural inflation. The values of the

other parameters here are chosen to be µ = 8 × 10−5, g = 1.28 × 10−7, λψ/f = 3920, mψ ≈ 2.5,

H ≈ 1.2× 10−9, ψ ≈ 0.022. The four panels show the four independent solutions of the equations

of motion, corresponding to the four independent initial conditions in eq. (4.26). Shown are the

solutions for two different values of the Higgs vev, in thick lines MZ0
= 2.5, and in thin lines we

show MZ0 = 5.

magnetic drift mode with c63 6= 0, the axion fluctuation has a negligible final amplitude.

Thus to a very good approximation we need only simulate this mode when computing the

curvature spectrum. We revisit this point in section 7, where we present the numerical

parameter scan of the model and show that the “slow-mode” is indeed the dominant one

for the whole parameter range of interest.

Notice that the effect of the Higgs VEV and accompanying Goldstone fluctuations

boosts the final amplitude of the fluctuations. These dynamics are what allows the model

to become consistent with the data — the scalar curvature fluctuations are boosted, more

than the tensor fluctuations, thus lowering the tensor-to-scalar ratio. In generating figure 3,

we have smoothed the curves for the fast, regular and Goldstone modes to eliminate con-
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tamination from errors in the initial conditions. This smoothing is not required for the

slow mode and the initial condition above is an excellent approximation.

5 Tensors

We now turn to the spin-2 modes. While the addition of the Higgs sector introduces new

scalar and vector degrees of freedom via the Goldstone modes, in this limit there are no

new spin-2 degrees of freedom in the theory. The only difference in the case at hand from

Chromo-Natural Inflation is that the Higgs generates a new mass term for the spin-2 parts

of the gauge field and the graviton, and changes the details of the interactions between

them. We thus expect the analysis of these modes to mirror that of Chromo-Natural

Inflation presented in refs. [9, 10]. The action for the canonical variables

γ̂± =
aγ±√

2
, and t̂± =

√
2t±, (5.1)

is given by

S =
1

2

∫
d3k

(2π)3
dτ

[
∂τ γ̂

±
k ∂τ

¯̂γ±k −
(
k2 − 1

a

∂2a

∂τ2
− 2φ̇2 + 2g2φ

4

a2
+ 2g2a2Z2

0ψ
2

)
γ̂±k

¯̂γ±k

+ ∂τ t̂
±
k ∂τ

¯̂t±k −
(
k2+gφ

λ

f
∂τX + 2g2a2Φ2

)
t̂±k

¯̂t±k ± k
(
λ

f
∂τX + 2gφ

)
t̂±k

¯̂t±k

− 2φ̇(∂τ t̂
±
k

¯̂γ±k + ∂τ
¯̂t±k γ̂

±
k )∓ 2kg

φ2

a
(t̂±k

¯̂γ±k + ¯̂t±k γ̂
±
k )

+ 2g2φ
3

a
(t̂±k

¯̂γ±k + ¯̂t±k γ̂
±
k ) + 2g2a2Z2

0ψ(¯̂t±γ̂± + t̂± ¯̂γ±)

]
. (5.2)

Note that these modes are not subject to either the constraints from the Einstein equations

or the Gauss law constraints at linear order in perturbation theory. Furthermore, they are

invariant under coordinate and SU(2) gauge transformations. We work in the slow roll

limit, and introducing x = −kτ , this action becomes

S =
1

2

∫
d3k

(2π)3

dx

−k

[
∂xγ̂

±
k ∂x

¯̂γ±k −
(

1− 2

x2
+

2ψ2

x2

(
m2
ψ − 1 +m2

Z0

))
γ̂±k

¯̂γ±k

+ ∂xt̂
±
k ∂x

¯̂t±k −

(
1 +

mψ

x2

λ

f

Ẋ
H

+
M2
Z0

x2

)
t̂±k

¯̂t±k ±
1

x

(
λ

f

Ẋ
H

+ 2mψ

)
t̂±k

¯̂t±k

+
2ψ

x
(∂xt̂

±
k

¯̂γ±k + ∂x
¯̂t±k γ̂

±
k )∓ 2ψ

mψ

x
(t̂±k

¯̂γ±k + ¯̂t±k γ̂
±
k )

+ 2ψ

(
m2
ψ +M2

Z0

)
x2

(t̂±k
¯̂γ±k + ¯̂t±k γ̂

±
k )

]
, (5.3)

Varying the action, we find the equations of motion for the fields,

γ̂±k
′′ +

(
1− 2

x2
+

2ψ2

x2

(
m2
ψ − 1 +M2

Z0

))
γ̂±k =

2ψ

x
∂xt̂
±
k ∓ 2ψ

mψ

x
t̂±k + 2ψ

(
m2
ψ +M2

Z0

)
x2

t̂±k

(5.4)
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and

t̂±k
′′+

(
1+

mψ

x2

λ

f

Ẋ
H

+
M2
Z0

x2

)
t̂±k ∓

1

x

(
λ

f

Ẋ
H

+2mψ

)
t̂±k = −2ψ∂x

¯̂γ±k
x

+ 2ψ

(
1

x2
∓
mψ

x

)
γ̂±k

+ 2ψ

(
m2
ψ +M2

Z0

)
x2

γ̂±k . (5.5)

Notice that the spin-2 mode of the gauge field becomes temporarily unstable due to the

fact that its instantaneous WKB frequency becomes temporarily negative. Making use of

the background equations of motion (2.14) and (2.15), and taking mψ,MZ0 � 1 we find

that the instantaneous WKB frequency is negative during the period,

4m2
ψ +M2

Z0
+
√

8m4
ψ +M4

Z0

2mψ
& x &

4m2
ψ +M2

Z0
−
√

8m4
ψ +M4

Z0

2mψ
, (5.6)

during which period the amplitude of the gauge field will increase exponentially. Note

that, although we have given the gauge fields an additional mass term, this then causes

the background axion to roll faster which means the instability is still present. However,

while this ruled out the previous models of Chromo-Natural Inflation and Gauge-flation,

the addition of the Goldstone modes alters the scalar dynamics in such a way as to allow

this model to satisfy current observational constraints.

In figure 4 we plot the evolution of the tensor modes for this model. Note that one

helicity of the gauge tensor is strongly amplified, which in turn strongly amplifies one of

the gravitational wave helicities. We also note that the gauge tensor appears to freeze out

on large scales. However, this does not lead to any contribution to the stress tensor at late

times, as it contributes as t±/a, and thus its contributions decay at late times.

5.1 Approximate solutions

Analogously to Chromo-Natural inflation, the above set of equations, (5.4) and (5.5), ad-

mits an excellent analytic approximation. Note first that the coupling between these equa-

tions proportional to ψ � 1, while the dominant part of the gauge field equation of motion

is its mass term. For the left handed t̂+ modes, this mass becomes negative leading to the

exponential enhancement of its amplitude; the right-handed modes remain stable. This

suggests that, to a good approximation, we may simply ignore the right-handed gauge

field modes and treat the right-handed gravitational wave modes as unperturbed. For the

left-handed modes we can solve the free equation of motion for the gauge field modes and

use these solutions as sources for the left-handed gravitational wave equation of motion.

Furthermore, we may neglect the mass terms for the graviton,4 treating its equation of

motion as that of a massless scalar field in de Sitter space. In this approximation, the

equation of motion for the gauge field is well approximated by

t̂+k
′′ +

(
1 +

m

x2
− mt

x

)
t̂+k = 0, (5.7)

4Note that this small mass term will lead to evolution of the gravitational wave amplitudes on super-

horizon scales, and may lead to interesting effects in the tensor squeezed limits [51].
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Figure 4. Evolution of tensor fluctuations in Higgsed Chromo-Natural inflation. The addition

of the Higgs leads to a temporary exponential instability in the tensor modes that begins near

kτ ∼MZ0 . The values of the other parameters here are chosen to be µ = 8×10−5, g = 1.28×10−7,

λψ/f = 3920, mψ ≈ 2.5, H ≈ 1.2 × 10−9, ψ ≈ 0.022. The green squares show the approximate

late-time result of eq. (5.10) for the positive helicity modes and the free field theory result for the

negative helicity modes.

where we have defined

m = 2(1 +m2
ψ +M2

Z0
) =

1

4
− β2 (5.8)

mt =
1

mψ

(
2 + 4m2

ψ +M2
Z0

)
= −2iα, (5.9)

introducing α and β for convenience. The modes can be quantized in an analogous fashion

to that presented above. The analysis of this case is identical to that of Chromo-Natural

inflation [9, 10], and we refer the reader to those works for details and merely state the

results here.

At late times, the solution for the left-handed gravitational wave is well approxi-

mated by

γ+(x) =
Hx√
k3
u1(x) + 2

√
2
H

k
Bkψ

(
I1 +mψI2 − (m2

ψ +M2
Z0

)I3

)
, (5.10)

where u1(x) is the free solution of the canonically normalized gravitational wave equation,

u1(x) =

(
1 +

i

x

)
eix (5.11)
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and

I1 =

(
m2 − 2immt + 2m− 2m2

t

)
sec (πβ) sinh (−iπα) Γ (α)

2m(m+ 2)

−
π2
(
m2 + 2immt + 2m− 2m2

t

)
sec (πβ) csch (−iπα)

2m(m+ 2)Γ (α+ 1) Γ
(
−α− β + 1

2

)
Γ
(
−α+ β + 1

2

) ,
I2 =

π sec (πβ) Γ (−α)

2Γ
(
−α− β + 1

2

)
Γ
(
−α+ β + 1

2

) − π sec (πβ) Γ (1− α)

mΓ
(
−α− β + 1

2

)
Γ
(
−α+ β + 1

2

)
+
πm sec (πβ)− iπmt sec (πβ)

2mΓ (1− α)
,

I3 =
π2(m+ imt)sec (πβ) csch (−iπα)

m(m+ 2)Γ (α) Γ
(
−α− β + 1

2

)
Γ
(
−α+ β + 1

2

) +
π(mt + im)sec (πβ)

m(m+ 2)Γ (−α)
. (5.12)

The total gravitational wave power spectrum at late times, kτ∗ → 0, is given by

∆2
γ(k) = 2∆2

γ+(k) + 2∆2
γ−(k) (5.13)

where the spectra of left and right-handed modes are defined by

〈γ±k (τ∗)γ
±
k′(τ∗)〉 = (2π)3δ3(k + k′)

2π2

k3
∆2
γ±(k). (5.14)

Now, the right handed modes γ− are, to a very good approximation, unaffected by their

interactions with the spin-2 fluctuations of the gauge fields. Their spectrum is given by

the usual result,

∆2
γ−(k) =

H2

2π2
. (5.15)

For the left handed modes, γ+, the vacuum fluctuations are uncorrelated with the con-

tribution due to their interaction with the gauge field fluctuations, and thus to a good

approximation

∆2
γ+(k) =

H2

2π2
+ 4k

H2

π2
ψ2|Bk|2|I1 +mψI2 − (m2

ψ +M2
Z0

)I3|2. (5.16)

We can also compute the chirality parameter

∆χ =
∆2
γ+ −∆2

γ−

∆2
γ+

+ ∆2
γ−
. (5.17)

This quantity is plotted in figure 5. Note that the resulting gravitational wave spectrum

very quickly becomes completely polarized as mψ or MZ0 is increased.

6 Curvature perturbations and primordial spectra

In this section we consider the effect of field fluctuations on the late time universe. The

presence of multiple degrees of freedom means that the curvature fluctuations on large

scales may evolve due to the presence of entropy perturbations. We begin by evaluating

the curvature fluctuation on superhorizon scales. We then calculate the entropy pertur-

bation, demonstrating that it is slow-roll suppressed compared to the adiabatic curva-

ture fluctuation.
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Figure 5. The chirality parameter ∆χ as a function of mψ for two different values of the gauge

field VEV ψ = 0.01 (blue and black) and ψ = 0.025 (red and green). The Higgs mass is set to

MZ0
= 0 (solid curves) and MZ0

= 1.5 (dashed curves).

6.1 Curvature perturbations

The comoving curvature perturbation is given by the gauge invariant quantity

R =
A

2
+Hδu, (6.1)

where δu is the perturbation to the scalar velocity potential, and A is defined via the

general perturbed spatial metric

h̃ij = a2 [(1 +A)δij + ∂i∂jB + ∂iCj + ∂jCi + γij ] . (6.2)

In spatially flat gauge, A = B = 0 by coordinate choice and thus, it remains to find

the perturbation to the velocity potential. This is found from the perturbation to the

momentum flux

δT0i = p̄ h̃i0 − a(ρ̄+ p̄)(∂iδu+ δuiV ). (6.3)

In this expression, δu and δuiV are the scalar and vector perturbations to the velocity po-

tential respectively, while h̃0i = a2δijN
j is the perturbation to the space-time components

of the metric gµν and ρ̄ and p̄ are the background energy density and pressure respectively.

The stress tensor for the theory defined at eqs. (2.1) and (2.3) is given by

Tµν = 2Tr [FµαFνβ ] gαβ − gµν
2

Tr
[
FαβF

αβ
]

+ ∂µX∂νX − gµν
[

1

2
gρσ∂ρX∂σX + V (X )

]
+ 2g2Z2

0Tr

[(
Aµ−

i

g
U−1∂µU

)(
Aν−

i

g
U−1∂νU

)]
−gµνg2Z2

0Tr

[(
Aµ−

i

g
U−1∂µU

)2
]
.

(6.4)

– 20 –



J
H
E
P
1
2
(
2
0
1
6
)
1
3
7

We can calculate the momentum flux from this expression; to linear order in fluctua-

tions, it is

T0i = (p̄X + p̄YM + p̄Z)a2δijN
j + aẊ∂iδX +

φ̇

a

(
2∂[kΨ

k
i] + gφεaikΨ

a
k

)
(6.5)

− gφ
2

a2
(εaki∂τΨa

k − εaik∂kΨa
0 − 2gφΨi

0) + g2Z2
0aψδaiΨ

a
0 + gZ2

0aψ∂0ξ
i

−
(

2g2ψ4 +
1

2
g2Z2

0ψ
2

)
a2δijN

j . (6.6)

Inserting our field decomposition and ignoring the vector degrees of freedom we find

T0i ≈ (p̄X + p̄YM + p̄Z)a2δijN
j + aẊ∂iδX −

(
Hψ∂i(2z + 4δφ)− gaψ3λ

f
∂iδX

)
−
(
2g2ψ4 + g2Z2

0ψ
2
)
a2δijN

j , (6.7)

where the ‘≈’ indicates that we have dropped terms that decay at late times and worked

in the slow-roll approximation. We have also made use of the non-Abelian gauge condition

and imposed the Gauss’s law constraint, eq. (4.2), in the long wavelength limit (k → 0). In

this expression, p̄X , p̄YM and p̄Z are the background isotropic pressures due to the axion,

gauge fields and Higgs respectively.

Now, note that in the limit k → 0 where λ � 1, to a very good approximation the

curvature perturbation is given by

R ≈ H

ρ̄+ p̄
gψ3λ

f
δX =

mψψ
2

2εH

λ

f
δX , (6.8)

where ρ̄ and p̄ are the total background energy density and pressure respectively. In the

second equality we have made use of the relation

εH =
ρ̄+ p̄

2H2
. (6.9)

Thus the form of the curvature fluctuation is identical to that of Chromo-Natural inflation,

and admits the familiar interpretation from single clock inflation that the inflaton is simply

acting as a clock. The curvature perturbation then arises as fluctuations of the time on

this clock from place to place

R ≈ δX
∆X

(6.10)

where ∆X = Ẋ/H.

6.2 Entropy perturbations and isocurvature

As noted above, the additional degrees of freedom in the theory leave open the question of

how these fluctuations affect the curvature perturbation. To address this, we compute the

entropy perturbation, a gauge invariant quantity defined (see e.g. [52])

S = H

(
δp

ṗ
− δρ

ρ̇

)
=
H

ρ̇

(
c−2
s δp− δρ

)
. (6.11)

– 21 –



J
H
E
P
1
2
(
2
0
1
6
)
1
3
7

The quantity in parenthesis is proportional to the total non-adiabatic pressure pertur-

bation. In Higgsed Chromo-Natural Inflation, the background energy and pressures are

given by

ρ =
1

2
Ẋ 2 + V (X ) +

3

2

(
φ̇2

a2
+ g2φ

4

a4

)
+

3

2
g2ψ2Z2

0 (6.12)

p =
1

2
Ẋ 2 − V (X ) +

1

2

(
φ̇2

a2
+ g2φ

4

a4

)
− 1

2
g2ψ2Z2

0 . (6.13)

Differentiating these expressions, to a good approximation we then find

ρ̇

H
≈ 3H2

(
2 + 2m2

ψ +m2
Z0

)
εψ

(
1 + ηψ −

2

2 + 2m2
ψ +m2

Z0

εH

)
(6.14)

ṗ

H
≈ −3H2

(
2 + 2m2

ψ +m2
Z0

)
εψ

(
1− 1

3

(2 + 2m2
ψ −m2

Z0
)ηψ − 2εH

2 + 2m2
ψ +m2

Z0

)
(6.15)

where we have used the background equations of motion, eqs. (2.14) and (2.15) and dropped

the terms involving Ẍ and ψ̈. The adiabatic sound speed is

c2
s =

ṗ

ρ̇
≈ −1 +

2

3

(2 + 4m2
ψ +m2

Z0
)ηψ − 4εH

2 + 2m2
ψ +m2

Z0

. (6.16)

The energy density and pressure at linear order in field fluctuations are found by evaluating

ρ = −T 0
0, p =

δj i
3
T ij , (6.17)

where Tµν is the mixed energy-momentum tensor. In spatially flat gauge, the density and

pressure perturbations are

δρ = V ′δX +
(
Ẋ ˙δX − δNa2Ẋ 2

)
+

1

a2
Z2

0

(
gφ∂iξ

i + g2φΨi
i

)
− 3δNφ̇2

+
φ̇

a3
(∂τΨi

i − ∂jΨ
j
0) +

gφ2

a4
(εami∂[mΨa

i] + 2gφΨi
i) (6.18)

δp = −V ′δX +
(
Ẋ ˙δX − δNa2Ẋ 2

)
− 1

3a2
Z2

0

(
gφ∂iξ

i + g2φΨi
i

)
− δNφ̇2

+
φ̇

3a3
(∂τΨi

i − ∂jΨ
j
0) +

gφ2

3a4
(εami∂[mΨa

i] + 2gφΨi
i). (6.19)

where δN is the first order perturbation to the lapse function in eq. (3.1). Working in

the long wavelength limit, dropping the metric terms (which are expected to be small, in

addition to having small coefficients), we find the entropy perturbation

S ≈ −ψHτ
3εH

(
2
∂δφ

∂ ln τ
+
(
4m2

ψ +m2
Z0

)
δφ

)
− 2

3

(
4 + 8m2

ψ + 2m2
Z0

)
ηψ − 4εH

2 + 2m2
ψ +m2

Z0

gψ3

2HεH

λ

f
δX .

(6.20)
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Note that, ignoring the fluctuations from the gauge fields for a moment, the ratio of the

entropy perturbation to the adiabatic curvature perturbation due to the axion fluctuations

in the long wavelength limit is proportional to the small quantities εH , ηψ � 1, and thus the

ratio of their power goes as the square of this quantity. Further, note that the contribution

to the entropy perturbation due to the gauge field fluctuations is proportional to ψ. Thus,

this contribution is additionally suppressed since the final gauge field fluctuations are small

compared to those of the axion.

The presence of a non-zero entropy perturbation S will cause the adiabatic mode to

evolve on large scales,

Ṙ = −3H
ṗ

ρ̇
S. (6.21)

However, this effect will be comparable to the effect of the gravitational interactions which

we have neglected in this work. In what follows, we will evaluate the curvature perturbation

near horizon crossing, and postpone analysis of the super-horizon evolution to future work.

6.3 Density fluctuation

As a check we may also evaluate the curvature fluctuation on uniform density hypersurfaces

ζ =
A

2
− Hδρ

ρ̇
. (6.22)

On superhorizon scales, where we can neglect gradients, ζ and R should agree. As a

non-trivial check we can test this. From above, the perturbation to the energy density is

dominated by the axion

δρ ≈ V ′δX ≈ −3gHψ3λ

f
δX (6.23)

so that, after using the continuity equation for the background fluids, we have in spatially

flat gauge in the long wavelength limit

ζ = −Hδρ
ρ̇
≈3gH2ψ3

ρ̇

λ

f
δX =

gψ3

2HεH

λ

f
δX (6.24)

and thus we confirm that R = ζ in the long wavelength limit.

7 Parameter dependence and observational constraints

The system of equations for the fluctuations in Higgsed Chromo-Natural Inflation is ex-

tremely involved, and does not readily admit analytic solutions. Furthermore, our study

of the tensor sector of this model (cf. eq. (5.6)) showed that the Higgs mechanism does not

entirely quell the strong gravitational wave production that prevented the earlier version

of this model from agreeing with data. In order to determine if the model is viable, we

perform a numerical scan of the parameter space to determine the scalar and tensor power

spectra, as well as their tilts.

The results of our numerical study are shown in figures 6, 7 and 8, and the parameters

and the resulting spectral properties of some specific viable models are shown in table 1.

The figures were produced as follows.

– 23 –



J
H
E
P
1
2
(
2
0
1
6
)
1
3
7

• We construct a grid of values for each of the following model parameters: g, λ, µ and

Z0. The results are insensitive to the choice of the axion decay constant, f , and we

fix f = 0.1 for all runs.

• For each combination of parameters, we evolve the background equations to determine

the axion location that corresponds to N = 60 e-foldings prior to the end of inflation.

We can then establish what conformal time corresponds to horizon exit for the “pivot”

momentum mode k = 0.05h/Mpc.

• We evolve the perturbation equations for the scalars from an initial time correspond-

ing to xi = −kτi = 5 × 104 until a final time corresponding to xf = 10−3 with

k = 0.05h/Mpc and compute the curvature power spectrum and its tilt. We com-

pute the amplitude of the tensor power spectrum by evolving the tensor equations

for k = 0.002h/Mpc and compare this with the amplitude of the scalar curvature

perturbation at the same k to evaluate the scalar-to-tensor ratio, r.

Since only the “slow” mode results in a significant final axion amplitude, we only initialize

the computation in this mode, as described in section 4.1.

We begin by addressing the dependence of the observables (r, ns) on the combination

g/µ2. In section 2.2, we demonstrated that by varying µ and g, but keeping the ratio

g/µ2 fixed, the number of e-folds of inflation does not change; it is natural to explore the

dependence of the fluctuations on this combination. Fixing the ratio g/µ2, as well as Z0

and λ, and varying the value of µ, we found that both the tensor to scalar ratio, r, as

well as the spectral index, ns − 1, change negligibly. However, the amplitude of scalar

and tensor perturbations are proportional to H2 ∼ µ4, thus the overall amplitudes of the

spectra can be tuned while r and ns remain fixed. This means that once a combination

of parameters is found to give desired values r and ns, PR can be adjusted by varying

µ and g while keeping g/µ2 and the other parameters fixed. We will thus only vary the

combination g/µ2 in our scans.

Figure 6 shows the results of our parameter scan on the ns-r plane. In contrast to the

case of Chromo-Natural Inflation [10], we are able to find regions of parameter space where

the spectra are consistent with current data. We find that the Higgs VEV must satisfy

Z0 & 0.025 in order for the model to fall within observational limits (linearity considerations

further increase the bound on Z0, as discussed in section 7.1). Increasing the value of the

Higgs VEV generally reduces the tensor-to-scalar ratio r. This is due to the fact that both

scalar modes and tensor modes are amplified, however, the scalar modes are more strongly

amplified as Z0 is increased. This behavior is evident from examination of figures 3 and 4,

note that increasing MZ0 here by a factor of two boosts the scalar spectrum by nearly

three orders of magnitude, while the tensors are only boosted by approximately one and a

half orders of magnitude. In table 1, we present a series of specific scenarios from figure 6,

highlighted using black dots.

In order to keep PR ' 2 × 10−9, we generally must reduce µ as we increase Z0. For

Z0 ≈ 0.035 the tensor-to-scalar ratio is r = O(10−3), which is small enough to be outside

the region that is potentially observable in the immediate future r & O(0.01). Further

increasing Z0 reduces the tensor to scalar ratio even more, making its detection impossible,

even with next-generation experiments [53].
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Figure 6. The tensor-to-scalar ratio, r, (at k = 0.002h/Mpc−1) and the spectral tilt, ns(at

k = 0.05h/Mpc−1) for models drawn from a grid of values for the parameters g,f ,µ,λ. The mode

k = 0.05h/Mpc−1 is assumed to leave the horizon 60 e-foldings before the end of inflation. In both

panels Z0 is increased along each rainbow-colored curve (from top to bottom). In the left panel

the different rainbow-colored curves have λ = 2600 and g/µ2 varying from 30 to 60 with a step of

5 (left to right). The vertical dashed curve is common in the two panels. The diagonal blue dotted

and blue dashed curves correspond to fixing Z0 = 0.035 and Z0 = 0.04 respectively and varying

g/µ2 (left) or λ (right). In the right panel the different rainbow-colored curves have g/µ2 = 50 and

λ varying from 2000 to 3200 with a step of 200 (left to right). The diagonal blue dotted and dashed

curves correspond to fixing Z0 = 0.035 and Z0 = 0.04 respectively and varying λ. In both panels,

the shaded light red regions correspond to the 10% and 1% limits of the linear regime, as discussed

in section 7.1.

µ Z0 X/f ψ mψ mZ0 ns r nt α× 104

5.4× 10−4 0.031 2.42 0.0185 3.22 5.39 0.961 4.4× 10−3 −0.016 2

2.1× 10−4 0.035 2.37 0.0184 2.99 5.67 0.967 6.6× 10−4 −0.009 4

4.5× 10−5 0.041 2.28 0.0183 2.68 5.99 0.969 5.7× 10−5 0.020 9

1.5× 10−5 0.045 2.22 0.0182 2.50 6.17 0.962 1.2× 10−6 0.044 14

Table 1. Potential parameters and observables for the black dots shown in figure 6. The two

parameters that remain constant are g/µ2 = 50 and λ = 2400.

In order to provide a better understanding of the behavior of the inflationary spectrum,

we plot the scalar spectrum for the parameters corresponding to the black dots in figure 6

over three decades of wavenumbers 10−3 ≤ k < 1 (in Mpc−1) in figure 7. These can be

fitted very well by a simple power law

PR '
(

k

0.05

)ns−1

(7.1)

where ns is the value presented in table 1. If the power-law fit was exact, the running

would vanish, since

α ≡ dns
d ln k

' 0 (7.2)
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Figure 7. Left: the scalar power spectrum amplitude normalized to unity at k = 0.05 Mpc−1

as a function of wavenumber for the parameters corresponding to the four dots of figure 6. The

green, red, blue and black lines (from smaller to larger r respectively) correspond to power-law fits,

kns−1, while the dots show the results of numerical simulations. Right: the ratio of the normalized

tensor amplitude (plotted on the left panel) to the form given in eq. (7.1). This is a constant line

in the case of zero running of the spectral index, hence it can be used as a visual estimator of the

magnitude of the running α.

for constant ns. In order to calculate the running we locally fit lnPR as a function of ln k

using a second order polynomial around k = 0.05. The resulting running of the primordial

spectral index is shown in table 1. From this small subset of parameters, we observe

that the running of the tilt is positive, in contrast to simple single-field models (see, for

example [54]) and increases as the tensor-to-scalar ratio is decreased. The constraints from

Planck [55] are α = −0.0084± 0.0082. This result can be lowered to α = −0.0033± 0.0074

if the high−l polarization and CMB lensing data is included. Thus for values of the tensor-

to-scalar ratio larger than r ' 10−6 our model is consistent with the Planck data. The

trend of table 1 indicates that for r < 10−6 the observables can be in conflict with the data

due to the large positive running of the spectral tilt, α. Between this and the linearity

considerations (discussed in section 7.1) this model provides a viable band of observables

in accordance with present observational data.

Since the value of the axion decay constant f does not affect the observables, the in-

flaton can be arranged to have arbitrarily sub-Planckian field excursions regardless of the

tensor-to-scalar ratio, in violation of simple formulations of the Lyth bound [22]. How-

ever, a more meaningful comparison is between the Hubble rate during inflation and the

amplitude of primordial gravitational waves produced — in the simple single-field infla-

tionary scenario, the gravitational wave spectrum depends only on the Hubble rate during

inflation. Thus, in standard single field inflation, a measurement of the gravitational wave

power spectrum (via the B-mode of the CMB) is a direct measurement of the energy scale

of inflation, which can be inferred from

H2
Inf

M2
Pl

=
π2

2
∆2
Rr. (7.3)
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Figure 8. The tensor-to-scalar ratio, r, (at k = 0.002h/Mpc−1) as a function of the spectral

tilt of the tensor modes, nT (at k = 0.05h/Mpc−1) for models drawn from a grid of values for

the parameters g,f ,µ,λ. All parameters and color-coding are as in figure 6. The solid black line

corresponds to the tensor consistency relation r = −8nT . The color-coding follows the convention

of figure 6.

The model presented here explicitly breaks this connection by exponentially enhancing

the amplitude of the tensor fluctuations. Therefore, in this scenario, a measurement of

the tensor-to-scalar ratio does not directly measure the Hubble rate during inflation. In

particular, for r = 4.4×10−3, the inferred value of H from eq. (7.3) is H2 ≈ 5.3×10−11M2
Pl,

while the actual value computed from table 1 is somewhat lower: H2 ≈ 7.1× 10−15M2
Pl.

Furthermore, in standard single field scenarios, the tensor-to-scalar ratio and the tilt

of the tensor spectrum obey a consistency condition

nT = −r
8
, (7.4)

which guarantees a red-tilted spectrum (nT < 0). In figure 8 we display the relationship

between r and nT in Higgsed Chromo-Natural Inflation. Note that in the regions of pa-

rameter space preferred by the Planck data (the yellow - orange curves) the gravitational

wave spectra can be either blue- or red-tilted.

Before concluding this section we revisit the claim made in section 4.1 regarding the

dominance of the “slow-mode” of the scalar perturbations over the “fast”, “regular” and

“Goldstone” modes. Figure 3 shows the time evolution for two different sets of parameters.

Figure 9 shows the ratio of the late-time amplitude of the “fast”, “regular” and “Goldstone”

modes to the “slow-mode” for various parameters, following the range and color-coding of

figures 6 and 8. Despite using a sparser parameter grid, the conclusion is unambiguous. The

“slow-mode” is clearly dominant for the whole parameter-space of interest, by more than

one order of magnitude. For values of Z0 & 0.025 that provide an observationally allowed

tensor-to-scalar ratio r < 0.1 the “slow-mode” dominance is even more pronounced. We

are thus safe to initialize the system along the “slow-mode” when calculating the spectral

observables in this model. Finally, the value of the scalar modes’ ratio is mostly dominated

by Z0 and exhibits a weaker dependence on λ and g/µ2.
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Figure 9. The ratio of the late-time amplitude of the “fast”, “regular” and “Goldstone” modes to

the super-horizon amplitude of the “slow-mode” (solid, dashed and dotted curves respectively) as a

function of the Higgs VEV Z0. In the left panel the different rainbow-colored curves have λ = 2600

and g/µ2 = 30, 45, 60. In the right panel the different rainbow-colored curves have g/µ2 = 50 and

λ = 2000, 2600, 3200. The color-coding of the curves follows that of figures 6 and 8 and the range

of Z0 used engulfs the values of the observables shown in figure 6.

7.1 Validity of the linear theory

We end this section with some comments about the linearity of the perturbations. The

initial motivation for adding mass to the theory was to try and tame the instability in

the spin-2 sector of the gauge field modes at large mψ in order to yield scalar fluctuations

with acceptable scale dependence. It is evident from eq. (5.6) that this expectation is not

borne out. The instability persists and, for moderate values of the gauge field mass, the

spin-2 modes of the gauge field fluctuations still attain significant amplitudes. Further, the

additional Goldstone mode dynamics also lead to the amplification of the scalar and vector

parts of the gauge field.

It thus behooves us to determine if our linearized treatment is under control — we are

working at linear order in perturbation theory, and making use of a scalar-vector-tensor

decomposition of the fluctuations. It is thus natural ask at what point our assumptions

become invalidated by these growing field fluctuations? We do not attempt to answer this

question carefully here, but provide a quick estimate of when non-linearity could become

important.

From figures 3, 4 and 10, the gauge field modes undergo a period of amplification that

begins near −kτ∗ ∼ MZ0 and continues until near −kτ ∼ 1, as their wavelengths become

equal to the Hubble rate, and they freeze out. However, we need to determine if these

modes could be sourcing non-linearities.

In order that our linearized theory is under control, we require that the background

field fluctuations, δAµ are smaller than the classical field value itself Āµ = (0, aψδai Ja),

|δAµ|
|Āµ|

� 1. (7.5)
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We can estimate the size of our fluctuations relative to the background by computing the

root-mean-square (rms) value of the field fluctuations

|δA| =
√
〈δA2〉 =

√∫
d3k

(2π)3
|δAk|2 ∼

(MZ0aH)

2π
|
√

2k δAk(kτ∗)| (7.6)

where we cut the integral off at the peak of the amplification, which is observed to be near

k/aH ∼MZ0 . Comparing eq. (7.6) to the classical background gauge field shows that our

theory is we described by the linear approximation provided that

(MZ0H)

2π
|
√

2k δAk(kτ∗)| � ψ. (7.7)

Therefore, provided that the gauge field amplification remains much smaller than approx-

imately H−1, our linear theory should remain well under control. Note that this can also

be rewritten

|
√

2k δAk(kτ∗)|
2π

� 1

g

mψ

MZ0

. (7.8)

We now can impose these limits on our parameter scan. In the region shown in figure 6,

that is for 0.1 > r > 10−4, the typical maximum value that the gauge-tensor attains is

|
√

2k δAk(kτ∗)| ' 104. We then indicate in red bands the regions where eq. (7.8) is worse

than 10% and 1% respectively for the value of the gauge coupling chosen so that the scalar

amplitude matches the value measure by Planck. For r . 10−3, the system appears to

be well within the linear regime according to the estimate in eq. (7.8). Note that large

values of the tensor-to-scalar ratio r & 0.01 are likely to be in the non-linear regime. In

this regime, the non-linear effects of the gauge fields can not be neglected. The situation

is less clear for 10−3 . r . 10−2.

While it seems clear that there is a well defined region of observables when our linear

perturbation theory is under control, it is less clear if the resulting fluctuations are close

to Gaussian. We leave the study of non-Gaussianities in this theory to future work.

8 Higgsed Gauge-flation

In specific cases where the axion is close to the bottom of its potential throughout the

entirety of the inflationary evolution, it can be integrated out to give a related model of

inflation, Gauge-flation [11, 12] (see [47, 56]). Gauge-flation is described by the action

S =

∫
d4x
√
−g

[
1

2
R− 1

2
Tr [FµνF

µν ] +
κ

96
Tr [F ∧ F ]2

]
, (8.1)

and thus is an example of a model of inflation where the accelerated expansion is not

driven by a scalar degree of freedom. Unfortunately, as mentioned above, at the level of

the fluctuations Gauge-flation does not result in a viable cosmology for the same reasons

as Chromo-Natural Inflation [10, 13]. This is unsurprising given that the models are very
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closely related; Gaugflation may be put in a form suitable for applying the analysis of

Chromo-Natural Inflation with the introduction of a pseudo-scalar auxiliary field X

S =

∫
d4x
√
−g

[
1

2
R− 1

2
µ4

(
X
f

)2

− 1

2
Tr [FµνF

µν ]− λ

4f
XTr [F ∧ F ]

]
.

Integrating out this auxiliary field yields the Gauge-flation action with the identification

of parameters

κ = 3
λ2

µ4
. (8.2)

The introduction of a Higgs sector to this theory would give “Higgsed Gauge-flation”5

S =

∫
d4x
√
−g

[
1

2
R− 1

2
Tr [FµνF

µν ] +
κ

96
Tr [F ∧ F ]2 − g2Z2

0Tr

[
Aµ −

i

g
U−1∂µU

]2
]
,

(8.3)

where as above, U = exp(igξ). It would be interesting to check to see if this theory can

provide viable inflationary scenarios. We leave detailed investigation of Higgsed Gauge-

flation to future study.

9 Conclusions

In this work we have shown that Chromo-Natural Inflation can be potentially made com-

patible with existing limits from Planck data by introducing an additional mass term for

the gauge field fluctuations. In this work, we assume that the symmetry is spontaneously

broken by a Higgs sector and the resulting Higgs boson is much heavier than the Hubble

scale, and is thus irrelevant. We therefore work with the theory in the Stueckelberg form.

While the addition of the Stueckelberg symmetry breaking sector was initially moti-

vated to provide a stabilization mechanism for the spin-2 modes of the gauge field by giving

it an additional mass, this does not in fact happen. The reason is that such a mass term

also contributes to the equations of motion at the background level, leading to larger values

of the axion velocity which sources the tensor instability. However, the Goldstone modes

contribute additional scalar and vector degrees of freedom at the level of the fluctuations.

The interaction of the additional scalar degree of freedom boosts the curvature fluctuation

relative to the tensor fluctuations. This consequently lowers the tensor-to-scalar ratio into

the region allowed by BICEP, the Keck Array, and the Planck satellite [55, 58].

Observable gravitational waves (r & 10−3) may be produced in this model, despite in-

flation occurring below the GUT scale, and all fields evolving over sub-Planckian distances

in field space. The model therefore violates some formulations of the Lyth bound. The

gravitational waves in this model predominantly arise from linear mixing with the gauge

field fluctuations. These gauge field modes are enhanced by their interactions with the

5While this work was in progress similar ideas were proposed in ref. [57].
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rolling axion and subsequently oscillate into gravitational waves. The form of the gravita-

tional wave spectra produced in this model is therefore significantly altered from the usual

form assumed in formulations of the Lyth bound. In contrast to standard inflationary

scenarios which uniformly predict red tilted gravitational wave spectra (see, however, [59]),

these gravitational waves can have either red- or blue-tilted spectra on CMB scales. Fur-

thermore, these gravitational waves have the distinct characteristic that they are chirally

polarized and, to a very good approximation, consist only of a single helicity. Unfortunately,

it seems that future CMB experiments will be unable to distinguish between unpolarized

and chirally polarized gravitational waves [60].

The equations of motion for the field fluctuations that result in this system are compli-

cated, but are fairly simple to solve numerically. Of the four normal modes of the system,

only the mode with the smallest frequency (the slow, or magnetic drift mode) results in

fluctuations which attain significant superhorizon amplitude. At first glance, one may

worry that the presence of multiple large-amplitude scalar modes on superhorizon scales

may lead to pathological effects, such as isocurvature or entropy fluctuations which cause

the curvature perturbation to evolve. However, we have shown that entropy or isocurva-

ture fluctuations are suppressed relative to adiabatic curvature fluctuations, and contribute

only at the sub-percent level. The dominant contribution to the perturbed stress-energy

tensor is due to the axion’s fluctuations along its potential, and since this term dominates

the evolution of the background, the non-adiabatic pressure is small.

We have demonstrated that the parameters of the theory can be chosen to produce

fluctuations that, near horizon crossing, match the required amplitude and tilt of the

scalar spectrum as determined by the Planck satellite [55]. While we have neglected the

contributions of the metric fluctuations (in the form of the perturbed lapse and shift) in

this work, we expect that including these will alter our results at the level of slow roll

corrections. The fluctuations in the gauge field and axion, as well as the Goldstone modes,

depend exponentially on the Higgs VEV, which makes some level of fine-tuning necessary

in order to match observations.

For parameters leading to large values of the tensor-to-scalar ratio, r > 0.1, our esti-

mates suggest that the linear approximation used in deriving the equations of motion for

the fluctuations likely fails. For r & 10−2 and r & 10−3, we estimates that the linearity

fails on the level of 10% and 1%, respectively.

A potentially significant restriction on this model comes from the running of the spec-

tral index. While this running is negligible for parameters leading to r & 10−3, as r

decreases we have found that the running increases. Furthermore, the running of the tilt in

this model is positive, in contrast to many single field models that predict negative running

at the O
(
(ns−1)2

)
level (see, e.g. [54]). This is also in contrast to the slight preference for

negative running observed in the CMB data [55]. For r ' 10−5 the running of the spectral

index remains within the observational bounds set by the Planck mission, however, for very

low values of r this model will likely be ruled out.

Throughout this work, we have neglected the contribution of metric fluctuations as

well as slow-roll corrections to the equations of motion. For an initial investigation this is

most likely a good approximation, at least until after horizon crossing where we evaluate
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the spectra. However, computation of the full evolution of the modes outside the horizon

requires a more careful analysis that includes the contributions from the gravitational

constraints and the slow-roll corrections due to the evolution of the background. We leave

this, as well as detailed investigations of non-Gaussianity to future work. Finally, given

that adding Higgs sector to Chromo-Natural inflation potentially yields viable cosmologies,

it would be interesting to check whether the related model of Gauge-flation can be made

viable in the same fashion.
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A Conventions

We adopt the conventions of Peskin and Schroeder [61] for the action of the gauge field.

In particular, the field-strength tensor and covariant derivative are defined as6

Fµν =
1

−ig
[Dµ, Dν ] , Dµ = ∂µ − igAµ, (A.1)

where g is the gauge field coupling, not to be confused with the determinant of the spacetime

metric. We normalize the trace over the SU(N) matrices, which we denote Ja, so that

Tr [JaJb] =
1

2
δab. (A.2)

Our convention for the antisymmetric tensor is

ε0123 =
1√
−g

. (A.3)

while our spacetime metric signature is (−,+,+,+). Here and throughout, Greek letters

denote spacetime indices, Roman letters from the start of the alphabet denote gauge indices

and Roman letters from the middle of the alphabet denote spatial indices.

We work with conformal time, which we define to be a negative quantity during

inflation

τ =

∫ t

0

dt

a(t)
, (A.4)

6Note that this is opposite to [7, 11, 12], where the opposite sign for the covariant derivative was used.
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and make use of the near de Sitter expansion to write

a ≈ − 1

Hτ
. (A.5)

When we are dealing with fluctuations of the fields, we work in Fourier space where our

convention is

A(x) =

∫
d3k

(2π)3
Ake

−ik·x, (A.6)

so that we replace spatial derivatives with

∂iA→ −ikiAk. (A.7)

We make extensive use of the fact that the fields satisfy a reality condition, which implies

A−k = Āk. (A.8)

It will often prove useful to work with the dimensionless time variable

x = −kτ, (A.9)

where k is the Fourier space wavenumber. When we match to observations, we take k to

have cosmological units, h/Mpc, which also fixes the units for τ . Where necessary, we match

physical length scales to inflationary scales by choosing the scale k = 0.05 Mpc−1 to leave

the horizon 60 e-folds before the end of inflation. Throughout we denote derivatives with

respect to cosmic time by an overdot (˙), primes ( ′ ) denote derivatives with respect to x,

while derivatives with respect to conformal time are kept explicit (∂τ ). Our symmetrization

and antisymmetrization conventions throughout are

Z[ij] =
1

2
(Zij − Zji), Z(ij) =

1

2
(Zij + Zji). (A.10)

B A specific realization: adjoint Higgs model

In the main text we worked only with the Higgs action in Stueckelberg form where all fluctu-

ations are taken to be along the vacuum manifold. In this limit all models where a Higgs is

introduced must be identical. However, away from this limit there is considerable freedom.

In general, a Higgs field Z with a general potential

LZ =
√
−g
[
−g

µν

2
DµZDνZ

† − V (Z)

]
(B.1)

has a stress tensor

Tµν = DµZDνZ
† − gµνLZ . (B.2)

Note that, due to the background gauge field, if the background value of the Higgs field is

allowed to evolved with some Ż 6= 0, there is a non-zero momentum flux

T0i = ∂0ZAiZ
† − g0iLZ . (B.3)
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It thus initially appears that unless the Higgs is completely fixed on its vacuum manifold

then the resulting stress-energy tensor is in fact inconsistent with the symmetries of FRW

spacetime. However, in this section we introduce an explicit model that is compatible with

the symmetries of FRW regardless of the evolution of the Higgs to allay these concerns.

We first note that, if we choose a triplet of Higgs fields in the adjoint representation of

SU(2),

ZA = ZaAJa, (B.4)

where A ∈ {1, 2, 3} is a field index, then we can choose the expectation value to be of

the form

ZA = Z0(t)δaAJa. (B.5)

For this field configuration, one has an additional residual SO(3) symmetry with which

to protect the background spacetime and in this case it is straightforward to see that T0i

vanishes independently of Ż.

Generically, such a (matrix valued) scalar field has a potential of the form

V (Z) = Tr

[
−Υ

4
[ZA, ZB]2 +

iκ

3
εABC [ZA, ZB]ZC +

m2

2
ZAZA

]
. (B.6)

Note that, by choosing

κ =
3

2
Υβ, m2 = Υβ2 (B.7)

for the above configuration, the potential is put in the symmetry breaking form

V (Z) =
3

2
ΥZ2

0 (Z0 − β)2. (B.8)

So that for large values of Υ, the classical Higgs is confined to Z0 = β. Moreover, it is

straightforward to show that quadratic fluctuations about the minimum at Z0 = β [62]

V (2) =
Υβ2

2

[
ω2 + 2ω + 1

]
δZAa δZ

A
a , (B.9)

where ω are the Eigenvalues of Ω̃a = ωδZa where

Ω̃a = iεabc [δZb, Jc] . (B.10)

We can further decompose

ZA = Z0δ
A
a Ja + δZAa Ja = exp [−iadj(ξ)]

(
(Z0 + δZ)δAa +KA

a

)
Ja, (B.11)

where KA
a is a traceless symmetric matrix. Under this decomposition the modes δZ and

KA
a have eigenvalues ω = −2 and ω = 1 respectively, and are thus modes with masses

Υβ2/2 and 2Υβ2. The ξ modes have eigenvalue −1, and are thus the massless Goldstone

bosons corresponding to fluctuations along the vacuum manifold.

In the main text we have worked in the limit where Υβ2 � H2 so that the fluctuations

of these massive modes are irrelevant for cosmology. However, we note that one could in-

troduce symmetry breaking patterns to the background spacetime by allowing for evolving

Higgs vacua in, for example, the fundamental representation. We leave the study of these

effects to future work.
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C Details of the scalar action

In this appendix we present the details of the matrices for the canonically normalized

scalar modes ∆ = (δ̂φ, ẑ, X̂, Ĥ) in their full gore. The anti-Hermitian 4× 4 matrix K from

section 4 has non-zero components

K13 = −K31 ' −
1

2

λψ

f

mψ

x

1√
1 + x2

2m2
ψ

(C.1)

K14 = −K41 ' −
√

2MZ0mψ

(2m2
ψ + x2)

1√
M2
Z0

+ 2m2
ψ + x2

, (C.2)

K23 = −K32 '
1√
2

λψ

f

mψ

x
(C.3)

K34 = −K43 ' −
1

2

λψ

f

MZ0mψ√
(2m2

ψ + x2)
(
M2
Z0

+ 2m2
ψ + x2

) (C.4)

with all remaining components zero. The symmetric frequency matrix Ω2 has entries

Ω2
11 ' 1 +

8M2
Z0
m2
ψ(

M2
Z0

+ 2m2
ψ + x2

)(
2m2

ψ + x2
)2 +

m2
ψ(

2m2
ψ + x2

) +
3(

2m2
ψ + x2

)2

+
M2
Z0

+ 2m2
ψ

x2
−

mψ

2m2
ψ + x2

λẊ
Hf

, (C.5)

Ω2
12 ' −

√
2m2

ψ + x2

x2

(
2mψ −

λẊ
Hf

)
, (C.6)

Ω2
13 ' −

λψ

f

√
2
(
M2
Z0

(
m2
ψ+x2

)(
3m2

ψ+x2
)

+
(

6m6
ψ+7m4

ψx
2+4m2

ψx
4+x6

))
x2
(

2m2
ψ+x2

)3/2 (
M2
Z0

+2m2
ψ+x2

) , (C.7)

Ω2
14 ' −

√
2MZ0mψ

(
M4
Z0

+2M2
Z0

(
2m2

ψ+x2+1
)

+
(

2m2
ψ+x2

)2
+4m2

ψ+5x2

)
(

2m2
ψx+ x3

)(
M2
Z0

+ 2m2
ψ + x2

)3/2
, (C.8)

Ω2
22 ' 1−

mψ

x2

λẊ
Hf

+
1

x2

(
M2
Z0

+ 4m2
ψ

)
, (C.9)

Ω2
23 '

3√
2

λψ

f

mψ

x2
, Ω2

24 = 0, (C.10)

Ω2
33 ' 1−

(
2

x2
− V ′′

H2x2
− 1

f2

λ2ψ2m2
ψ

M2
Z0

+ 2m2
ψ + x2

)
, (C.11)

Ω2
34 ' −

λψ

f

mψMZ0

(
M2
Z0

(
4m2

ψ + x2
)

+ 4
(
m2
ψ + x2

)(
2m2

ψ + x2
))

2x
((

2m2
ψ + x2

)(
M2
Z0

+ 2m2
ψ + x2

))3/2
, (C.12)
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Ω2
44 ' 1− 2

x2
−

2M2
Z0
m2
ψ

(
M2
Z0

+ 8m2
ψ + 4x2

)
(

2m2
ψ + x2

)2 (
M2
Z0

+ 2m2
ψ + x2

)2 +
3M2

Z0(
M2
Z0

+ 2m2
ψ + x2

)2 +
M2
Z0

+ 2

2m2
ψ + x2

− 2

M2
Z0

+ 2m2
ψ + x2

(C.13)

In the above expressions the ‘'’ refers to the fact that we have worked in the slow roll

limit, dropping the variation of the background.

D Vector fluctuations

For completeness, we now examine the vector degrees of freedom in the theory. We work

in the basis,

u± =
1√
2

(χ1 ± iχ2), v± =
1√
2

(t31 ± it32) , ξ± =
gZ0√

2

(
ξ1 ± iξ2

)
. (D.1)

In this basis, working in the slow-roll limit, and using the variable x = −kτ , we have for the

vector degrees of freedom of the gauge fields from the Yang-Mills and Chern-Simons actions

δ2LV
k2

= ∂xv±∂xv̄± + ∂xu±∂xū± − v±v̄± − u±ū±

+

(
2m2

ψ − 8
m2
ψ

x2 ± 2mψx+ 2m2
ψ +M2

Z0

)
u±ū±
x2

+
mψ

x
(v±v̄± ∓ u±ū±)

]
− (m2

ψ +M2
Z0

)(v±v̄± + u±ū±)−
mψ

x2

(
λ

f

Ẋ
H
−mψ

)
(v±v̄± − u±ū±)

± λ

2f

Ẋ
H

[
v±v̄± + i (v±ū± − v̄±u±) + u±ū±

]
, (D.2)

where we have integrated out the Gauss law constraint, and simplified things using the non-

Abelian Coulomb gauge choice at eq. (3.17). The action for the Higgs vector fluctuations

and their interaction with the gauge fields is given by

δ2LHiggs

k2
=
a2

2
ξ±′ξ̄±′ − a2

2
ξ±ξ̄± ∓ a2mψ

2x
ξ±ξ̄± + a

mψ

x2
(u±ξ̄± + ū±ξ±)

−
2amψ(u±ξ̄±′ + ū±ξ±′)

x
(
x2 ∓ 2mψx+ 2m2

ψ +M2
Z0

) − a2ξ±′ξ̄±′

2
(
x2 ∓ 2mψx+ 2m2

ψ +M2
Z0

) , (D.3)

Next, we need to eliminate the additional degree of freedom by imposing our gauge condi-

tion eq. (3.17). We choose to eliminate v± in favour of u± and write

v± = i
(mψ

x
∓ 1
)
u± = iF±u±. (D.4)

Note that there is nothing special about this choice, and we could equally well have elimi-

nated u± in favour of v±. We further canonically normalize the fields, introducing

V± =
√

2(1 + F±)u± (D.5)

Ξ± = a

√√√√ x2 ∓ 2mψx+ 2m2
ψ

x2 ∓ 2mψx+ 2m2
ψ +M2

Z0

iξ± = aGξ±. (D.6)
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Organizing the fields into the vector

∆±V = (V±,Ξ±) (D.7)

the action can be put into the form

δ2LV =
k2

2

[
∆†′V±T±∆′V± + ∆†′V±K±∆V± + ∆†V±K

†
±∆′V± + ∆†V±Ω2

±∆V±

]
, T± = 1

(D.8)

where the matrix K± is anti-Hermitian, while Ω2
± is symmetric. These matrices have

components

K±,21 = ∓
2MZ0mψ(

2m2
ψ ∓ 2mψx+ x2

)√
M2
Z0

+ 2m2
ψ + 2mψx+ x2

, (D.9)

with K±,11 = K±,22 = K±,12 = 0, and

Ω2
±,11 = −1−

2
(
M2+m2

ψ+1
)

x2
−

(
M2+2

)
x

2mψ

(
2m2

ψ ∓ 2mψx+x2
) ± M2+4m2

ψ+2

2mψx
(D.10)

+
2m2

ψ

(
M2
Z0
− 3

(
2m2

ψ ∓ 2mψx+ x2
))

2
(

2m2
ψ ∓ 2mψx+ x2

)2 (
M2 + 2m2

ψ ∓ 2mψx+ x2
)

Ω2
±,22 = −1 +

1

x2
±

2M2
Z0

+M4
Z0

+ 4M2
Z0
m2
ψ + 4m4

ψ

2mψ

(
M2
Z0

+ 2m2
ψ

)
x

−
m2
ψ(

2m2
ψ ∓ 2mψx+ x2

)2 (D.11)

+
2M2

Z0
mψ + 4m3

ψ ∓ (2M2
Z0
x+M4

Z0
x)

2M2
Z0
mψ

(
2m2

ψ ∓ 2mψx+ x2
) −

M2
Z0

+m2
ψ(

M2
Z0

+ 2m2
ψ ∓ 2mψx+ x2

)2

+
M4
Z0
− 4M2

Z0
m2
ψ − 4m4

ψ + 2M2
Z0
mψx

M2
Z0

(
M2
Z0

+ 2m2
ψ

)(
M2
Z0

+ 2m2
ψ ∓ 2mψx+ x2

)
Ω2
±,12 = +

1(
2m2

ψ ∓ 2mψx+ x2
)2√

M2
Z0

+ 2m2
ψ ∓ 2mψx+ x2

(D.12)

×

∓2
(
M3
Z0
m3
ψ + 2MZ0m

5
ψ + 2MZ0m

3
ψ

)
x

∓MZ0mψx
(
M2
Z0

+ 8m2
ψ + 2

)

+ 2MZ0m
2
ψ

(
M2
Z0

+4m2
ψ+2

)
−

2 (mψ ∓ x)M3
Z0
mψ

M2+2m2
ψ∓2mψx+x2

+4MZ0m
2
ψx

2 ∓MZ0mψx
3


and Ω2

±,21 = Ω2
±,12. In the far past, the action quickly becomes diagonal (as x2), and the

fields become free. They are thus quantized in the usual way, as free plane waves.

In figure 10 we plot the evolution of the norm of the vector modes for the gauge fields

modes, v±, and the Goldstone, ξ±. As is evident from the figure, the addition of the
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Figure 10. Evolution of vector fluctuations in Higgsed Chromo-Natural inflation. The addition

of the Higgs leads to a temporary exponential instability in the vector modes that begins near

kτ ∼ MZ0 . At late times, the gauge vectors decay as 1/a, while the Higgs vector freezes out. The

values of the other parameters here are chosen to be µ = 8× 10−5, g = 1.28× 10−7, λψ/f = 3920,

mψ ≈ 2.5, H ≈ 1.2× 10−9, ψ ≈ 0.022.

Higgs leads to a temporary exponential instability in the vector modes that begins near

kτ ∼ MZ0 . At late times, the gauge vectors decay as 1/a, while the Higgs vector freezes

out. These modes do not imprint any signatures on large scales due to the fact that their

contribution to the vorticity and anisotropic stress is suppressed by additional factors of

the scale factor.
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