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1 Introduction

Entanglement entropy of many body systems has been a very useful tool and a fundamental

concept in the last three decades in the vast majority of areas of research in physics. It

has been studied in the context of free field theories [1–3], conformal field theories [4–

6], holographic theories [7, 8], integrable models [9, 10] and many other branches of the

condensed matter physics [11, 12].

It is a useful concept to classify field theories, especially the massless conformal field

theories and ultimately it can be used to extract a lot of information regarding the univer-

sality class of the critical systems. It is now well-known that the bipartite entanglement

entropy of the ground states of the quantum systems follow the area-law [1, 2], for review
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see [13]. The most famous exception to this law appears in the critical 1 + 1 dimensional

systems. The bipartite entanglement entropy of the ground state of an infinite critical

chain has a logarithmic behaviour with respect to the size of the subsystem with a coeffi-

cient which is dependent on the central charge of the underlying conformal field theory [4].

This behavior opened a new way to classify the universality classes of systems at and near

quantum critical points using entanglement entropy [6]. Since the bipartite entanglement

entropy of the ground state of the system does not determine the universality class uniquely,

there has been an intense research to calculate quantities like the entanglement entropy of

two disjoint intervals [14–27] and the entanglement entropy of excited states [28–30]. Al-

though the bipartite entanglement entropy of the ground state of the quantum chains has

been studied thoroughly there are not many studies regarding tripartite systems. There

are few entanglement measures for tripartite systems, such as negativity [31, 32] and lo-

calizable entanglement [33–38]. Negativity has recently been the subject of intense studies

in the context of many body systems [39–62] and references therein. However, as we will

comment in the next section, because of the nature of the definition of the localizable

entanglement it has been very difficult to make progress in that direction. Recently, we

introduced a new setup for tripartite systems which is although intimately related to the

localizable entanglement it has the advantage of being calculable [63]. The setup which will

be further elaborated in the next section is as follows: take a many body entangled state

and make a partial projective measurement of an observable in part of the system. After

the measurement that part of the system is decoupled from the rest of the system, however,

the remaining part still has an entangled state. When the result of the measurement is

known the final state is a pure state and we call the measurement “selective measurement”.

When the result of the measurement is not known the final state is a mixed state and we

call the process “non-selective measurement”. The goal is the investigation of the bipartite

entanglement entropy in the remaining state.

In [63], we studied the post measurement entanglement entropy after selective measure-

ment in the 1 + 1 dimensional conformal field theories. It was argued that one can use the

conformal field theory techniques as far as one does the measurement in particular bases,

so-called “conformal bases”. The conformal bases have been studied intensely in recent

years in the context of Shannon information [64–68] and formation probabilities [69–72].

The important result of these studies is that there are some bases that if one makes the

measurement in those bases the final system has a boundary which is conformally invariant

and so one can use the techniques of boundary conformal field theory (BCFT) to calcu-

late the entanglement entropy. The technique used in [63] was based on the well-known

method of twist operators introduced in [5]. However, this technique is not much useful in

those cases that after the projective measurement the two parts of the remaining region

are completely decoupled. In [73] we introduced a new method of calculation of the en-

tanglement entropy which has a close connection to the Casimir energy of floating objects.

The idea was inspired by the earlier works on the entanglement entropy [4, 74] and the

Casimir energy of floating objects [75, 76]. The method suggests that the Rényi entropy

can be considered as the ratio of the Casimir energy of two floating objects on the Reimann

surfaces. Although this connection might have some deep consequences in the study of the
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entanglement entropy of field theories in this paper we focus on its practical use in cal-

culating the post measurement entanglement entropy in conformal and massive quantum

field theories. The effect of the measurement on the area-law in higher dimensions has

been also studied numerically in [77]. It is worth mentioning that the post measurement

entanglement entropy setup has found recently many interesting applications in the study

of quantum teleportation in holography [78]. In the same work the authors also study the

evolution of the entanglement entropy after the projective measurement.

In this paper we extend the results of [63, 73] and [77] in few more directions. In the

next section, we first define the setup and fix some notations. In section 3, we first review

the method introduced in [73]. Using this method we find the post measurement entangle-

ment entropy in different situations such as, semi-infinite system and finite temperature.

We also study the Affleck-Ludwig boundary entropy. We then provide the entanglement

Hamiltonian of the post measurement systems in different cases and finally, we discuss

post measurement entanglement spectrum and entanglement gaps. In section 4, we make

some predictions regarding post measurement entanglement entropy in massive systems.

Most of the results in this section are based on physical arguments and not some concrete

mathematical calculations. In section 5, we provide an efficient method to calculate the

post measurement entanglement entropy in free fermions. Although the method can be

used in any dimension in this paper we focus on just 1+1 dimension. The rest of the article

is almost exclusively dedicated to the numerical study of the post measurement entangle-

ment entropy in the well-known XY chain. The XY-chain provides a perfect laboratory

to check numerically the CFT formulas derived in the earlier sections. In section 6, we

provide all the necessary ingredients regarding XY chain including the partition functions

on the annulus and the conformal bases and the conformal configurations. In section 7,

we study throughly the post measurement entanglement entropy in the critical transverse

field Ising chain as an especial limit of the XY-chain. Then in section 8, we focus on the

critical XX-chain. The reason that we dedicate two separate sections for these two models

will be clear throughout the paper. In section 9, we numerically study the gapped Ising

chain. In section 10, we will study numerically the effect of the finite temperature on the

post measurement entanglement entropy. In the section 11 we will briefly comment on the

possible experimental setup to study the post measurement entanglement entropy. Finally,

in the last section, we will conclude the paper with some general remarks about the results

and future directions.

2 Setup and definitions

Consider a quantum system in a generic dimension and divide the system into two subsys-

tems D and D̄. The von Neumann entanglement entropy of D with respect to D̄ is defined

as follows:

S[D, D̄] = −trρD ln ρD, (2.1)

where ρD is the reduced density matrix of the subsystem D. There is a generalization of

the von Neumann entanglement entropy called Rényi entropy and is defined as

Sα[D, D̄] =
1

1− α
ln trραD. (2.2)

– 3 –
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The limit α→ 1 gives back the von Neumann entropy. Note that when there is no danger

of confusion, we replace Sα[D, D̄] with Sα. The setup of our problem is as follows: consider

a quantum system in its ground state and then choose an observable. Finally, make local

projective measurements of the chosen observable in a subsystem A of the total system.

Note that A does not need to be a simply connected domain. After partial projective

measurement, the subsystem A gets disentangled from its complement Ā. However, the

subsystem Ā has a state which is in principle entangled. If after the projective measurement

we know the outcome then the post measurement state will be a pure state which can have

a definite wave function. In this case, we call the procedure “selective measurement”.

However, it is quite possible that after partial projective measurement we do not know

exactly the outcome of the measurement. In this case, the system can have different wave

functions with different probabilities. In other words

ρns[Ā] =
∑

pi|ψi〉〈ψi|, (2.3)

where pi is the probability of collapsing to the wave function |ψi〉. The system is in a mixed

state and we call the procedure “non-selective measurement”.

Now divide the subsystem Ā to two new subsystems B and B̄. Note that B and B̄

do not need to be connected to each other. We are interested in the entanglement entropy

between B and B̄. When the measurement is selective one is left with a pure state and so

one can use von Neumann entanglement entropy as the entanglement measure as before.

However, in the case of non-selective measurement, the situation is more complicated.

Although still, the von Neumann entropy is an interesting quantity to calculate it is not

a measure of entanglement. There are a few entanglement measures for mixed states,

such as entanglement witnesses, partial transposition and negativity [38], however, they

are all difficult quantities to calculate. For the non-selective measurement it is possible to

show that

ρ̄[Ā] = trAρns[Ā] = trAρ (2.4)

where ρ is the initial density matrix of the total system. Note that ρ̄[Ā] is a mixed state and

for the CFTs its entanglement content is already studied in the context of the entanglement

negatvity in [39–62].

The setup defined above is reminiscent of a concept called localizable entanglement,

see [11, 12, 34–38]. It is a useful quantity when one is interested in a tripartite system as

our setup. The localizable entanglement between the two parts B and B̄ after doing local

projective measurement in the rest of the system A is defined as

Eloc(B, B̄) = supE
∑
i

piE(|ψi〉BB̄), (2.5)

where E is the set of all possible outcomes (pi, E(|ψi〉BB̄) of the measurements and E

is the chosen entanglement measure. The maximization is done with respect to all the

possible observables to make the quantity independent of the observable. Because of the

maximization over all the possible measurements, the localizable entanglement is a very
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difficult quantity to calculate [79]. Note that in our setup we take E() to be the von

Neumann or the Rényi entropy and in principle, we calculate just E(|ψi〉BB̄) for just one

observable. Consequently knowing pi in our setup can in principle provide a lower-bound

for the localizable entanglement. A complete discussion about this point will appear in

a future work [80]. Finally note that, as we will discuss in more detail in section 11, in

our setup we do not consider the evolution of the entanglement entropy after selective

measurement as it is discussed in [78]. Apart from the discussion in section 11 there is

also another reason behind this: as we discussed in this section one of the motivation

of this study is the definition of a tripartite setup for the entanglement entropy. From

this perspective one can actually forget about projective measurement and talks about

conditional entanglement entropy. From this perspective one does not need to worry about

the evolution of the system after projective measurement.

3 Conformal field theory results: 1+1 dimensions

The Rényi entropy in the Euclidean languge can be derived as [4, 6]:

Sα =
1

1− α
ln
Zα
Zα1

, (3.1)

where Zα is the partition function of the system on α-sheeted surfaces. If the short-range

interacting system is at the critical point, then it is expected that one can replace Zα of the

discrete critical system with the partition function of the CFT on the α-sheeted Riemann

surfaces. Then using the CFT techniques one can calculate the entanglement entropy

exactly [4, 6]. As we already stated before, the bipartite Von Neumann and Rényi entropies

after partial projective measurements are dependent on both the basis (observable) that one

chooses to perform the measurement and also to the outcome of the measurement. After

partial measurement, the A part of the system decouples and one is left with the Ā part. In

the Euclidean language, one can still use the equation (3.1) but with a slit on the A part.

Depending on the chosen basis for the measurement and the outcome of the measurement

the boundary condition on the slit can be different. Consider that the chosen basis and

the outcome of the measurement are in a way that the induced boundary condition on the

slit is conformally invariant. In this particular case, which as we will comment with more

detail later is a very frequent scenario for quantum critical chains [63, 64, 67, 73], one can

use CFT techniques to calculate the equation (3.1). Since these particular bases do not

destroy the conformal structure of the system we will call them conformal bases. In these

particular circumstances interestingly one can even go further and calculate the probability

of occurrence of particular configuration as the result of the projective measurement [69–

72]. We will come back to this point when we discuss localizable entanglement [80]. In the

following sections we will first summarize the results of [63] and [73] for the infinite and

the periodic systems. Then using the same method as [73] we will derive the formula for

the post measurement entanglement entropy for the open systems. After presenting the

formulas for the post measurement entanglement entropy in different conditions we will

comment on the entanglement gaps and entanglement Hamiltonians.
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z

B̄ A B A B̄

s1 l s2

w

w(z)

e−h/α1

Figure 1. Mapping between different regions. The whole plane with two slits A and a branch cut

(dashed line) on B can be mapped to an annulus by the conformal map wα(z).

3.1 Entanglement entropy after selective measurements and the Casimir effect

In this subsection we summarize the results of [63, 73] regarding the post measurement

entanglement entropy in the 1 + 1-dimensional CFT’s. The results concerning the open

boundary conditions and finite temperature are new. For later convenience, consider that

the measurement region A is made of two disconnected sections with the lengths s1 and

s2 and the distance l as it is shown in the figure 1. The branch cut on B part is needed

to produce Riemann surfaces. It is quite obvious that this setup is related to the Casimir

energy of two slits on the Riemann surfaces. In other words based on (3.1) to calculate the

entanglement entropy one just needs to calculate the Casimir free energy of two slits on

the Riemann surfaces. This simple connection helps us to hire the techniques used in the

study of the Casimir energy to calculate the entanglement entropy. Using the techniques

of [4, 74] and [75, 76] it was shown in [73] that one can calculate the partition function on

the Riemann surfaces by mapping the system to the annulus. On the annulus, the partition

function of the CFT is known so one just needs to consider an extra term which comes

from the conformal mapping. The final result is as following [73]:

lnZα = lnZgeom
α + lnZannu

α , (3.2)

– 6 –
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where Zannu
α is the partition function on the annulus and Zgeom

α is the geometric term

coming from the conformal mapping. The annulus part of the partition function which is

dependent on the full operator content of the CFT can be written in two equivalent forms

as follows [81]:

lnZannu
α = ln

[
q−c/24
α

(
1 +

∑
j

njq
∆j
α

)]
− c h

12α
, (3.3)

lnZannu
α = ln

[
q̃−c/24
α

(
b20 +

∑
j

b2j q̃
∆j
α

)]
− c h

12α
, (3.4)

where nj and bj are numbers and ∆j in the first formula is the boundary scaling dimension

and in the second formula is the bulk scaling dimension. Here r = e−
h
α is the inner radius

of the annulus. Finally qα and q̃α are defined as

qα = e−π
2πα
h , q̃α = e−

2h
α . (3.5)

The geometric part of the partition function which is only dependent on the central charge

can be written as

δ lnZgeom
α

δl
= − ic

12π

∮
∂S2

{wα, z}dz, (3.6)

where wα is the conformal map from the original α-sheeted Riemann surface with slits to

the annulus and {f, z} = f ′′′

f ′ −
3
2(f

′′

f ′ )
2 is the Schwartzian derivative and the integral is

around one of the slits (here the second one). Later, for notational convenience, we will

also use S(f) = {f, z} for the Schwartzian derivative. Note that the above formulas are

correct even for finite size systems as far as the Riemann surface is topologically equivalent

to an annulus.

3.1.1 Infinite systems

This case is already discussed in full detail in the [73].1 When s1 and s2 are much smaller

than l and is in the order of the lattice spacing one is left with the bipartite entanglement

entropy without any measurement. This is the well-known case and it is fully studied in

the last two decades, see for example [4, 6]. When s2 is in the order of lattice spacing but s1

and l are macroscopically big the setup corresponds to the post measurement entanglement

entropy of the connected regions B and B̄. The formula, in this case, is [63, 73]:

Sα =
c

12

(
1 + α

α

)
ln
l(l + s1)

s2s1
+ 2 ln b0 +

b21
b20

(
s2s1

2l(l + s1)

)2∆1/α

+ . . . , (3.7)

where ∆1 is the smallest scaling dimension present in the spectrum of the system and the

second term is the Affleck-Ludwig boundary term [82] studied already in the context of the

entanglement entropy in the [6]. When we have just one simply connected measurement

domain, we should substitute 2 ln b0 with ln b0. We will discuss this issue in more detail

1The corresponding conformal map is written explicitly in the appendix.
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in the later sections. Note that when s1 goes to infinity the above result goes to the

entanglement entropy of a domain at the beginning of a semi-infinite chain. For later use,

we also report here the approximate value for h when s2 is in the order of lattice spacing

but s1 and l are macroscopically big as follows [73]:

h = − ln
s2s1

16l(l + s1)
+ . . . . (3.8)

Finally, when s1, s2 and l are all much bigger than the lattice spacing one is left with

the two regions B and B̄ that are effectively disconnected. For l � s1 = s2 = s one can

find [73]:

Sα �



1

α− 1

(
l

8s

)2α∆1

, α < 1(
l

8s

)2∆1

ln
8s

l
, α = 1

α

α− 1

(
l

8s

)2∆1

, α > 1,

(3.9)

where ∆1 is the smallest boundary scaling dimension in the spectrum of the system. The

above formula is an example of entanglement entropy of two disconnected regions. For

later use we also report the approximate value of h in the above limit as follows [73]:

h =
π2

ln 8s
l

+ . . . . (3.10)

3.1.2 Finite periodic systems

One can follow the above procedure also for a system with the periodic boundary conditions

with the total size L. The corresponding conformal map which is already discussed in [73]

can be found in the appendix A. As before when s1, s2 � l we have just the bipartite

entanglement entropy without the projective measurement, see [4, 6]. The case s2 � l, s1

is the post measurement entanglement entropy of two connected regions B and B̄. The

first leading term, in this case, has the following form [63, 73]:2

Sα =
c

12

(
1 +

1

α

)
ln

(
L

π

sin π
L(l + s1) sin π

L l

s2 sin π
Ls1

)
+ . . . , (3.11)

where the first important term in the dots is the Affleck-Ludwig term that we will discuss

with more details later. The h in this limit is

h = − ln
πs2 sin[πs1L ]

16L sin[πlL ] sin[π(l+s1)
L ]

+ . . . . (3.12)

2The corresponding conformal map is written explicitly in the appendix A.
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Finally when l� s1 = s2 = s (in a way that we have s = L−2l
2 ) one can derive the following

formula [73]:

Sα �



1

α− 1

(
πl

4L

)4α∆1

, α < 1(
πl

4L

)4∆1

ln
πl

4L
, α = 1

α

α− 1

(
πl

4L

)4∆1

, α > 1,

(3.13)

The above formula is the second example of the post measurement entanglement entropy

of two disconnected regions. The value of h in this limit is [73]

h =
−π2

2 ln πl
4L

+ . . . . (3.14)

3.1.3 Semi-infinite open systems

This case has not been addressed in the previous works. The setup that we would like

to study is shown in the figure 2. As before the projective measurement is done on the

A part, and we would like to calculate the entanglement entropy of B with respect to B̄.

To derive the Rényi entropy one needs to calculate the partition function of the Riemann

surfaces shown in the figure 2.

The corresponding conformal map from the upper half plane with one slit and a branch

cut on B to an annulus can be derived as follows:

Step I: we first map the upper half plane to a unit disc by the conformal map

z1 = z1 =
z − i
z + i

. (3.15)

The coordinates of P1 and P2 are now (b, 0) and (a, 0) respectively with

a =
l − 1

l + 1
, (3.16)

b =
l + s− 1

l + s+ 1
. (3.17)

Step II: the unit disc with unsymmetric slit can be mapped to a unit disc with symmetric

slit by the conformal map

z2 =
g − z1

1− gz1
, (3.18)

g =
1 + ab−

√
(a2 − 1)(b2 − 1)

a+ b
. (3.19)

The length of the slit is now 2d with

d =
−1 + ab+

√
(a2 − 1)(b2 − 1)

a− b
. (3.20)

– 9 –
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z
B̄

A

B

P2

s

P1

l

I

P1 P2

II

P2 P1

d d

III

e−h1IVe−h/α1

w

Figure 2. Mapping between different regions. The upper half plane with slit A and branch cut

(dashed line) on B can be mapped to annulus by the conformal map wα(z) in four steps.
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Step III and IV: the remaing disc with slit can now be mapped to the annulus by using

the conformal map w1(z2) provided in [84]. Finally, one needs to uniformize the

surface by the map (w1(z))
1
α . The final result is

wα(z) =
(
ie−he

π
2iK(k2)

sn−1 z2
d

) 1
α

; (3.21)

where

k = d2, (3.22)

h =
π

4

K(1− k2)

K(k2)
. (3.23)

Note that the equation (3.21) is valid just for Imz > 0 and in principle for Imz < 0

one needs to use

wα(z) =
(
− ie−he

π
2iK(k2)

sn−1− z2
d

) 1
α

; (3.24)

This subtility does not affect the upcoming calculations.

To calculate the Schwartzian derivative we need the following chain rule

S(f ◦ g) =
(
S(f) ◦ g

)
(g′)2 + S(g). (3.25)

The first two steps do not contribute to the Schwartzian derivative because they are both

Mobius transformations. The Schwartzian derivative has two poles at z = il and z = i(l+s).

After calculating the integral in (3.6) we have

δ lnZgeom
α

δl
=

c

12πi
2πα

(−1 + g)(π2 − 4(1 + k2)α2K2(k2))

8α2(1 + g)(−1 + k2)K2(k2)
, (3.26)

We are interested to study two limits: the first interesting limit s� l is the problem of the

entanglement entropy of a subsystem without any projective measurement. In this limit

we have

h = ln
8l

s
+ . . . , (3.27)

q̃ =

(
s

8l

) 2
α

+ . . . . (3.28)

Since in this limit q̃ is the small parameter as far as α is not too big we use the equation (3.4).

We have

lnZannu
α = 2 ln b0 +

b21
b20

(
s

8l

) 2∆1
α

+ . . . , (3.29)

where ∆1 is the smallest dimension in the conformal tower. In addition after expand-

ing (3.26) and integrating with respect to l we have

lnZgeom
α =

c

12

1− α2

α
ln
l

a
+ . . . , (3.30)
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where the dots are the subleading terms. Putting all the terms together we have

Sα =
c

12

(1 + α)

α
ln
l

a
+ 2 ln b0 +

b21
b20

(
s

8l

) 2∆1
α

+ . . . . (3.31)

The above result is the standard result of the entanglement entropy of a subsystem [6].

The second term is the Affleck-Ludwig boundary term and the third term is the unusual

correction to the entanglement entropy discussed in [83]. Note that in the limit of no

measurement region one needs to replace 2 ln b0 with ln b0.

The next interesting limit is l� s which is the third example of the post measurement

entanglement entropy of disconnected regions. In this case, q is the small parameter and

we have

h =
π2

2 ln 4s
l

+ . . . , (3.32)

q =

(
l

4s

)4α

+ . . . . (3.33)

Then after a bit of algebra we have

lnZgeom
α =

c

24
α

(
ln a

l

2
+

π2

α2 ln 4s
l

)
+ . . . , (3.34)

lnZannu
α = − c

24
α

(
4 ln

l

4s
+

π2

α2 ln 4s
l

)
+ n1

(
l

4s

)4α∆1

+ . . . . (3.35)

Summing over all the terms gives

Sα �



1

α− 1

(
l

4s

)4α∆1

, α < 1(
l

4s

)2∆1

ln
l

8s
, α = 1

α

α− 1

(
l

4s

)4∆1

, α > 1,

(3.36)

where ∆1 is the smallest boundary scaling dimension in the spectrum of the system.

3.1.4 Finite open systems

In this case, we consider a finite total system with length L and make a projective mea-

surement in the part A which is a connected subsystem with length s starting from one

side of the system, see figure 3. Then we calculate the entanglement entropy of the simply

connected subsystems B and B̄ with lengths l and L− l − s respectively. In this setup B

and B̄ are connected and the formula of the post measurement entanglement entropy is

already calculated in [63] by using the twist operator technique. Although in principle the

formula can be re-derived with the method of the beginning of this section, we will just

report the final result [63]:

Sα =
c

12

(
1 + α

α

)
ln

(
2L

π

cos πsL − cosπ l+sL
a cos2 πs

2L

cot
π(l + s)

2L

)
+ . . . , (3.37)
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L

A B B̄

Figure 3. The setup for the post measurement entanglement entropy in an open finite system.

where the dots are the subleading terms. In the limit L→∞ we have the following simple

formula

Sα =
c

12

(
1 + α

α

)
ln

4l(l + 2s)

l + s
+ . . . . (3.38)

Note that the above results are correct as far as the measurement induces the same

boundary condition as the natural boundary condition of the open system. When the

conformal boundary condition on the slit is different from the boundary conditions of the

open system one needs to consider the effect of the boundary changing operator. Although

these boundary condition changing operators can appear frequently for technical reasons

we leave the proper treatment of them to another work.

3.1.5 Finite temperature

It is quite straightforward to extend the above results to a system with the finite temper-

ature. In principle, with a finite temperature, we mean that one first starts with a Gibbs

state for the entire system e−
H
T and then by tracing out one part of the system derives the

reduced density matrix. Then the Rényi entropy can be derived as before. Technically one

just needs to study the two-dimensional cylinder with a base circumferences β with two

slits and a branch cut in the direction of the axes of the cylinder. In principle, one can use

the results of the finite periodic system to extract the results for the finite temperature.

This can be done by just replacing L with iβ. For example, when the system is infinite

and s2 is small we will have

Sα(β) =
c

12

(
1 +

1

α

)
ln

(
β

π

sinh π
β (l + s1) sinh π

β l

s2 sinh π
β s1

)
+ . . . , (3.39)

In the limit of small s1, we recover the result of the finite temperature Rényi entropy for

a system without projective measurement [6], i.e.

Sα =
c

6

(
1 + α

α

)
ln

(
β

π
sinh

πl

β

)
+ . . . . (3.40)

It is easy to see that for a large temperature one can simply derive

Sα(β) =
πc

6

(
1 +

1

α

)
l

β
+ . . . , (3.41)
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In this limit, the entropy is extensive as it is expected. When s1 = s2 = s is much bigger

than l one can use the formulas of the appendix and find

h = − π2

ln
[
πl
8β coth πs

β

] + . . . , (3.42)

In the limit of small l when πl
8β coth πs

β � 1 we have h → 0 which means that the q is the

small parameter and we have

q =

(
πl

8β
coth

πs

β

)2α

+ . . . . (3.43)

Then after a bit of algebra we have

Sα(β) �



1

α− 1

(
πl

8β
coth

πs

β

)2α∆1

, α < 1(
πl

8β
coth

πs

β

)2∆1

ln

(
πl

8β
coth

πs

β

)
, α = 1

α

α− 1

(
πl

8β
coth

πs

β

)2∆1

, α > 1,

(3.44)

In the limit of the zero temperature, we are back again to the formula (3.9). However,

when πs
β � 1� πl

8β one can write

q = (
πl

8β
)2α + . . . . (3.45)

and consequently we have

Sα(β) �



1

α− 1

(
πl

8β

)2α∆1

, α < 1(
πl

8β

)2∆1

ln

(
πl

β

)
, α = 1

α

α− 1

(
πl

8β

)2∆1

, α > 1,

(3.46)

The above result interestingly shows that as far as the measurement region is big and the

size of the isolated subsystem small the entropy increases like a power-law with respect to

the temperature with a power which is dependent on the smallest scaling dimension in the

spectrum of the system. When β is small we need to use the expansion with respect to q̃

and we are back again to the formula (3.41).

The result for the connected regions can be also extended to the semi-infinite system

at finite temperature. In this case one just needs to replace L with β
2 in the equation (3.37).

The final result is

Sα =
c

12

(
1 + α

α

)
ln

(
β

π

cosh 2π l+sβ − cosh 2πs
β

a cosh2 πs
β

coth
π(l + s)

β

)
+ . . . . (3.47)

– 14 –



J
H
E
P
1
2
(
2
0
1
6
)
1
2
4

In the limit of β → ∞, we redrive the formula (3.38) and when β → 0 we are back again

to the formula (3.41). When we do not have any measurement region we are back to the

well-known result of [6], i.e.

Sα =
c

12

(
1 + α

α

)
ln

(
β

π
sinh

2πl

β

)
+ . . . . (3.48)

The above results can not be extended easily to the finite periodic systems. We leave the

proper treatment of this case to a future work.

3.1.6 Affleck-Ludwig boundary entropy

In this subsection, we make some further comments regarding the Affleck-Ludwig boundary

entropy term. So far we have been concentrating on the projective measurements in a way

that the measurement on the two slits are done on the same observables and the results

are also the same. However, the more general case is when the measurements are done on

different observables or they are done on the same observables but with different outcomes.

Depending on the observables and the outcomes the boundary conditions on the two slits

might be different. Note that even choosing the same observable on both slits does not

mean that the corresponding boundary conditions on the two slits are the same. When

there are two different conditions on the boundaries of the annulus, i.e. A and B, the

equations (3.3) and (3.4) have the following more general forms [81]:

lnZannu
α (q) = ln

[
q−c/24
α

(
1 +

∑
j

nABj q
∆j
α

)]
− c h

12α
, (3.49)

lnZannu
α (q̃) = ln

[
q̃−c/24
α

(
bA0 b

B
0 +

∑
j

bAj b
B
j q̃

∆j
α

)]
− c h

12α
, (3.50)

where nABj are the non-negative integers and bAj = 〈A|j〉〉 and bBj = 〈〈j|B〉. |A(B)〉 and |j〉〉
are Cardy and Ishibashi states respectively. Different coefficients are related to each other

with the formula nABj =
∑

j′ S
j′

j b
A
j b

B
j′ , where Sj

′

j is the element of the modular matrix S,

see [81]. Using (3.50) one can now write the Affleck-Ludwig boundary entropy as [73]:

SAL = ln bA0 + ln bB0 (3.51)

In the presence of one boundary, we need to consider just one of the above terms. The

above result is correct also in the presence of the boundary, for example in the case of

the semi-infinite system. Note that since all of the derived formulas have also an extra

non-universal constant contributions all the comments regarding The Affleck-Ludwig term

is meaningless if we do not factor out the unwanted non-universal terms. This can be

done following [6, 10, 85–87] as follows: we first write the entanglement entropy of a region

without any measurement domain for a periodic system as follows:

Sα =
c

6

(
1 +

1

α

)
ln

(
L

π
sin

πl

L

)
+ aα, (3.52)
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Then for the case with the measurement we have

Sα =
c

12

(
1 +

1

α

)
ln

(
4L

π

sin π
L(l + s1) sin π

L l

s2 sin π
Ls1

)
+ SAL +

aα
2
. (3.53)

With the above procedure, the definition of the SAL has no ambiguity. Note that in both

equations the aα is the same non-universal constant and we also introduced a factor of 4

inside the logarithm in the second equation. At the moment we have no concrete argument

why that factor should be 4 but as we will see in the upcoming sections its presence is

dictated by the numerical calculations. One way to see that a non-trivial factor should be

there is just by realizing that the ultra-violet cut-off is different in the two cases. However

to fix the number exactly one possibly needs to start from the massive case and go to the

massless regime as it was argued in [10, 85]. The result for the infinite chain can be derived

by just sending L to infinity. A similar result is also valid in the presence of the natural

boundary of the system. For example for the finite open system with one measurement

domain we have

Sα =
c

12

(
1 + α

α

)
ln

(
2L

π

cos πsL − cosπ l+sL
a cos2 πs

2L

cot
π(l + s)

2L

)
+ SAL +

aα
2
. (3.54)

The results can be extended also to non-critical systems. When we have a finite temperature

infinite size critical system the corresponding formula for the post measurement Rényi

entropy is

Sα(β) =
c

12

(
1 +

1

α

)
ln

(
4β

π

sinh π
β (l + s1) sinh π

β l

s2 sinh π
β s1

)
+ SAL +

aα
2
, (3.55)

Finally, for semi-infinite system at finite temperature we have

Sα =
c

12

(
1 + α

α

)
ln

(
β

π

cosh 2π l+sβ − cosh 2πs
β

a cosh2 πs
β

coth
π(l + s)

β

)
+ SAL +

aα
2
. (3.56)

Since the Affleck-Ludwig term is dependent on the corresponding boundary conditions

one can use it to identify the nature of the conformal boundary condition. We will use

extensively this fact to identify the boundary conditions induced by the configurations in

the later sections. It is worth mentioning that all of the above equations will change if the

boundary condition changing operators are present in the system.

In all of the above equations, we assumed that one of the measurement regions is big

and the other one is very small (or effectively does not exist) in a way that q̃α is small.

However, it is obvious that the situation would change if both of the measurement regions

are big enough. In this case, one needs to consider the most general formulas of Zannu and

Zgeom and try to extract the universal b0 terms. In this case, one might be even able to go

further and detect all of the bj with j > 0. However, since q̃
∆j
α in the partition function

expansion is accompanied with non-universal constants it might be really hard to detect

them numerically.

Finally, we close this subsection with some remarks regarding the g-theorem which

states that for a fixed bulk conformal theory, boundary conditions introduce the ln b0 in
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a way that b0 decreases to the infrared under the renormalization group [82, 88]. This

theorem is proved in a field theory context but there is no proof of it in the context of the

entanglement entropy, see [89, 90]. In the context of the post measurement entanglement

entropy, there might be two ways to look at this theorem. The important point about g-

theorem is that the bulk theory is conformal but the boundary is flowing. This means that

whatever measurement which induces non-conformal boundary condition can lead to differ-

ent value for the b0. Basically, a measurement of different outcomes might lead to the same

or different conformal (non-conformal) boundary conditions. This means that one might

derive different values for b0 depending on the outcome of the measurement. Of course, the

same argument goes for also the post measurement entanglement entropy done in the other

basis. The bottom line is that one might interpret different results for the measurement or

doing the measurement in different basis as some sort of boundary renormalization group

flow. We leave a more elaborate analysis of this point for a future work.

3.1.7 Lattice effects

In this section we briefly address the effect of the lattice on the CFT results. The effect in

the presence of one slit is already studied in [91] and here we apply the results to the post

measurement entanglement entropy. As it is argued in [91] the effect of the lattice can be

simulated by perturbing the CFT action by the energy momentum tensor as follows:

S → S +
ξ

2π

∫
slit
dxTxx (3.57)

where Txx is the element of the energy-momentum tensor in the x direction and ξ is called

extrapolation length and it usually plays the role of the UV cutoff in the presence of

the boundary. To study the effect of the above perturbation on the post measurement

entanglement entropy it is much easier to work with the twist operator technique. Here we

discuss the simplest setup of an infinite chain with one slit, in other words in the figure 1

we take s2 = 0. Based on the Calabrese-Cardy technique [5] the entanglement entropy of

the region B is given by

Sα =
1

1− α
ln〈Tα〉slit, (3.58)

where Tα is the twist operator with the conformal weight δα = cα
24 (1 − 1

α2 ) sitting at the

bundary between B and B̄. Finally 〈Tα〉slit is the expectation value of the twist operator in

the geometry of infinite plane minus a slit which can be calculated by mapping the whole

space minus a slit to the upper half plane by the conformal map z(w) =
√

s+2w
s−2w , see [63].

In [91] the effect of the perturbation (3.57) on the one point function of an arbitrary primary

operator is studied. Applying the result to the twist operators for fixed l
s we have

〈Tα〉slit =

(
sa

4l(l + s)

)2δα(
1− ξ

π
δα

(
2 +

1
l
s(1 + l

s)

)
ln s

a

s

)
, (3.59)

The entanglement entropy can now be calculated by plugging (3.59) into (3.58). For

example, for the von Neumann entanglement entropy we find

S =
c

6
ln
l(l + s)

as
+

cξ

12π

(
2 +

1
l
s(1 + l

s)

)
ln s

a

s
, (3.60)
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where the first term is the usual term appeared already in the section (3.1.1) and the second

term is the log s
s correction coming from the lattice effects. Although in many numerical

calculations these kinds of lattice corrections to the CFT results are the leading corrections,

since in our numerical calculations we are going to investigate just the leading term we will

not explore further this interesting effect.

3.2 Entanglement hamiltonians

The entanglement hamiltonian which is also called modular hamiltonian KB is defined as

follows:

ρB = e−2πKB , (3.61)

where ρB is as before the reduced density matrix of the subsystem. To calculate KB we

recall the partition function of CFT on the cylinder Zcyl which has the following form:

Zcyl = trqL0− c
24 . (3.62)

Using the definition of q and the relation between L0 and the energy-momentum tensor

T (z) one can simply write [74], see also [92]:

ρB ≈ e−2π
∫ h
0 T (x̃)dx̃, (3.63)

where h is the length of the cylinder with the base-circumference 2π. Having the above

result on the cylinder one just needs to come back to the original geometry that has two

slits on it. This can be done simply by first mapping the cylinder to the annulus by the map

w = ew̃ where w̃ and w represent the cylinder and the annulus respectively. After moving

to the annulus we can now use just the inverse of the conformal maps that we introduced

before to map the annulus to the geometry with the two slits stretched on the intervals

(0, s1) and (s1 + l, s1 + l + s2). Since after the conformal map f the energy-momentum

tensor changes as T (z) = (∂zf)2T (f) + (c/12){f, z} one can finally write

ρB ≈ e
−2π

∫ l+s1
s1

(
T (z)(

∂w̃(z)
∂z

)−1
)∣∣
z=x

dx
, (3.64)

Having the above formula one can simply identify the modular hamiltonian as

KB =

∫ l+s1

s1

(
T (z)

(
∂w̃(z)

∂z

)−1)∣∣∣∣
z=x

dx. (3.65)

It is common to call the space dependent coefficient of the energy-momentum tensor the

inverse of the temperature β(x). In other words we have:

β(x) = 2π

(
∂w̃(z)

∂z

)−1∣∣∣∣
z=x

. (3.66)

The formula (3.65) is valid for all the cases that we studied so far. One just needs to calcu-

late the derivative of w̃(z) = lnw(z) with respect to z and plug it into the above formula.

In the next subsections, we will list the entanglement hamiltonian of few interesting cases

such as the infinite system, finite periodic system and finite temperature.
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3.2.1 Infinite systems

Consider the infinite system with two measurement regions as the figure 1. Using the

conformal map provided in the appendix we can simply write

β(x) = 2π
1

π
2kx(1− ax+ bx)K(1− k2)cd

[
sn−1

[
1− 2ax+ bx

k + bkx
, k2

]
, k2

]
, (3.67)

where cd and sn−1 are the Jacobi and inverse Jacobi functions. a, b and k are defined in

the appendix. One can study the above formula in many different interesting limits. When

s1 = s2 = s� l we can simply find:

β(x) = 2π
x(l − x)

l
. (3.68)

If we symmetrize the above formula by putting l = 2R and x → x + R we reach to the

well-known result of [93], see also [94–97] and references therein. When s1 = s � s2, l we

can again expand the formula (3.67) and find:

β(x) = 2πx

√
(l − x)(l + s2 − x)

l(l + s2)
. (3.69)

which is a generalized form of the equation (3.68). It is very interesting to note that one

can now derive the entanglement entropy by integrating the equilibrium thermal entropy

per unite length as follows [4, 97]:

S1 = 2π
c

6

∫ s1+l

s1

1

β(x)
dx. (3.70)

Putting (3.69) in the above formula and expanding it with respect to s1 one can derive

the leading term of the equation (3.7). Note that the subleading terms that are unusual

corrections coming from the relevant operators sitting on the conical singularities [83] can

not be derived by using (3.70). This is simply because this equation does not take into

account the contributions coming from the two very ends of the subsystem. Finally, when

l � s1 = s2 = s we first make a change of coordinates z → z + s+ l
2 and put also l = 2R

then we expand the equation (3.67) for large s. Finally, we have

β(x) = 2
√
R2 − x2 ln

8s

l
. (3.71)

As it is expected one can not derive the equation (3.9) using the equations (3.70) and (3.71).

However, the above equation has some of the expected properties such as: it is zero at the

two ends of the subsection and it grows with increasing s. It is important to mention that

in the above limit although strictly speaking the q is not the small parameter we used the

expansion of the partition function with respect to q to derive the above formula. This

means that the validity of the above equation might break down for very large s. The

right way to study the entanglement Hamiltonian in this limit might be working with the

expansion with respect to q̃. In all of the upcoming calculations, we will just use the

expansion of the cylinder partition function with respect to the q.
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3.2.2 Finite periodic systems

The entanglement hamiltonian for a finite system can also be derived following the same

method. one just needs to use the conformal map introduced in the appendix in the

equation (3.65). Using Mathematica one can derive:

β(x) = − iL

π(b0 − a0b1)
e−

2πix
L (b0 + b1e

2πix
L )2K(1− k2)×

×cd

[
sn−1

[
1

b1 + b0−a0b1

a0+e
2πix
L

, k2

]
, k2

]
× dn

[
sn−1

[
1

b1 + b0−a0b1

a0+e
2πix
L

, k2

]
, k2

]
, (3.72)

where a0, b0, b1 and k are all defined in the appendix and cd and dn are the Jacobi

functions and sn−1 is the inverse Jacobi function. One can study the above equation in

different limits. For example, when s1 = s2 = s� l one can derive

β(x) = 2L
sin[π(l−x)

L ] sin[πxL ]

sin[πlL ]
. (3.73)

If we symmetrize the above formula by putting l = 2R and x → x + R we reach to the

known result of [97]. The other interesting case is when s1 = s � s2, l. In this limit

we have

β(x) = 2L sin

[
πx

L

]√
sin[ πL(l − x)] sin[ πL(l + s2 − x)]

sin[πlL ] sin[ πL(l + s2)]
. (3.74)

The above formula is the generalization of the formula (3.73) for the post measurement

systems. Finally, one can also study the limit l � s1 = s2 = s = L−2l
2 . In this case, we

first symmetrize the system by change of variables z → z + s + l
2 and l = 2R. Then we

expand the formula (3.72) with respect to R and find

β(x) =

√
1−

(
L

πR
tan

πx

L

)2

. (3.75)

Note that for R� L we have β(R) = β(−R) = 0 as it is expected.

3.2.3 Finite temperature

Entanglement hamiltonian for an infinite system with the finite temperature can be derived

simply by replacing L with iβ in the formulas of the finite periodic system. For example

for the case s1 = s� s2, l we have

β(x) = 2β sinh

[
πx

β

]√√√√sinh[πβ (l − x)] sinh[πβ (l + s2 − x)]

sinh[πlβ ] sinh[πβ (l + s2)]
. (3.76)

When s2 � l one can rederive the formula of [97] concerning the entanglement hamiltonian

of a system without any projective measurement. i.e.

β(x) = 2β
sinh[πxβ ] sinh[πβ (l − x)]

sinh[πlβ ]
. (3.77)
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It is worth mentioning that the formula (3.76) in the limit of large temperatures goes to

β(x) = 2β which is a constant. This is expected from physical arguments because in the

large temperature limit we expect to have just a Gibbs ensemble.

3.3 Entanglement spectrum and entanglement gaps

In this section, we study the entanglement spectrum of the system after partial projective

measurement. To calculate this quantity we follow the method of [98]. First of all, we note

that in the most general case one can write

Rα = trρα =
∑
i

λαi =
Zα
Zα1

=
Zgeom
α Zann

α

(Zgeom
1 Zann

1 )α
, (3.78)

where λi is the eigenvalue of the reduced density matrix. We first note that when the

two regions B and B̄ are connected the leading term of the above formula comes from the

geometric part of the partition function. However, the subleading terms come from the

annulus part and one needs to use the expansion with respect to q. Another crucial point

is that for the connected cases s1 or s2 is always in the order of lattice spacing which means

that for sufficiently small or big α’s one can use the extracted formulas. Having all the

Sα’s one can hope to find the distribution of the eigenvalues of the reduced density matrix.

This is the method which has been used in [98] to derive the distribution of the eigenvalues

in the case of the no projective measurement and we will also use the same method, for

other related study see [99]. The situation is different when the two regions B and B̄ are

disconnected in a way that s1, s2 and l are all bigger than the lattice spacing. In this case,

the leading term comes from the annulus part of the partition function and one needs to

use the expansion with respect to q. However, one should be careful that the expansion can

break down for very small α. For further details see [73]. This in principle means that one

can not rely on the equations (3.9) , (3.13) and (3.36) to get the distribution of eigenvalues.

We leave the calculation of the distribution of the eigenvalues of the non-connected cases

as an open problem. We now consider the case of connected regions and write

Rα ≈ aαL
− c

6
(α− 1

α
)

eff = aαe
−b(α− 1

α
), (3.79)

where here we adopted the notation of [98] and defined Leff which have the following form

in the case of the periodic boundary condition, see equation (3.11):

Leff =

√
L

π

sin π
L(l + s1) sin π

L l

s2 sin π
Ls1

. (3.80)

Similar Leff can be also defined for the semi-infinite case. In addition, we also defined

b = c
6 lnLeff . Having the above formulas the rest of the calculation is identical to [98]. We

are interested to calculate P (λ) =
∑

i δ(λ − λi) which can be derived out of the formula

λP (λ) = limε→0 Imf(λ−iε), where f(η) = 1
π

∑∞
n=1Rnη

−n. Finally, after some calculations

one has

P (λ) = δ(λmax − λ) +
bθ(λmax − λ)

λ
√
b ln λmax

λ

I1

(
2

√
b ln

λmax

λ

)
, (3.81)
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where b = − lnλmax and I1 is the modified Bessel function. The above formula is identical

to the result of [98] one just needs to consider that we have a new Leff . The asymptotic

behavior of the above formula can be derived for the large values of the argument of the

modified Bessel function as

P (λ) � 1

λb ln λmax
λ

e
2
√
b ln λmax

λ . (3.82)

It is worth mentioning that the above results are valid as far as aα = a
c
6

(α−1/α)f , where f

is a constant. However, we know that the Affleck-Ludwig term does not have such kind of

form. Considering the Affleck-Ludwig term we have

P (λ) � bA0 b
B
0

λb ln λmax
λ

e
2
√
b ln λmax

λ . (3.83)

The above formula shows the interesting physical meaning of b
A(B)
0 as the degeneracy in

the distribution of the eigenvalues of the reduced density matrix.

Now we will derive the entanglement gap of the system after partial projective mea-

surement. The entanglement gaps are defined as the difference between the logarithms of

the eigenvalues of the reduced density matrices. We first define Zcyl
α = e−c

h
12αZann

α . Then

we note that one can write

trρα =
Zgeom
α

(Zgeom
1 )α

e−
ch
12

( 1
α
−α)

((
q
−c/24
1

Zcyl
1

)α
+
∑
j

nj

(
q

∆j−c/24
1

Zcyl
1

)α)
. (3.84)

Note that for all the limiting cases that we studied so far the Zgeom
α

(Zgeom
1 )α

e−
ch
12

( 1
α
−α) is approx-

imately one, see [73]. Then it is easy to see that one can identify the following quantities

as the eigenvalues of the reduced density matrix:

λj ≈
q
−c/24+∆j+N
1

Zcyl
1

, (3.85)

where the integer N appears because the sum in (3.84) contains also the descendants of

the operator with the conformal weight ∆j . Finally we can write

δλ = lnλj − lnλ0 ≈ (∆j +N) ln q = −2π2(∆j +N)

h
. (3.86)

The above formula is valid for all the cases that we studied in the previous sections. One just

needs to use an appropriate h to derive the entanglement gap in the particular situation.

When s1 = s2 � l the above formula gives back the result of [74, 98, 100]. Note that the

smaller the h the bigger the gap gets, consequently one expects huge entanglement gap

when the two parts are disconnected and far from each other.

4 Massive field theories

In this section, we make a list of predictions regarding post measurement entanglement

entropy in massive systems. Most of the upcoming statements are already appeared in [73]
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and they were based on numerical calculations on the massive Klein-Gordon field theory.

It is quite well-known, see [3, 6, 9, 10], that in the 1 + 1 dimensional massive field theories

the entanglement entropy of a subsystem saturates with the size of the subsystem and is

given by

Sα = −κ c
12

(
1 +

1

α

)
ln am+ β(κ), a� m−1 � l, (4.1)

where κ is the number of contact points between the subsystem and the rest of the system

and l is the size of the subsystem. Finally β(κ) is a model-dependent universal constant [10].

For results regarding the non-critical spin chains see [100–105]. Note that one can interpret

ξ = m−1 as the correlation length of the system. The above equation is an example of

the area-law in the 1 + 1 dimension. It has been argued that one way to understand the

area-law is based on the short-range correlations present in the system which has significant

contributions just around the contact points of the two regions. Note that the above formula

is independent of the boundary conditions, in other words, it is valid for also periodic and

open systems as far as ξ is much smaller than the length of the system. Based on the above

line of thinking it was argued in [73] that the above equation should be valid also in the

presence of the measurement region as far as a� m−1 � l, s, where s is the length of the

measurement region. This was simply because since projective measurement in part of the

system in the massive field theories does not change the value of the correlations in the

other parts of the system one naturally expects that the only effect of the measurement

region be producing a boundary condition in that part of the system which can just affect

the value of κ and nothing more. Of course, a priory it is not guaranteed that the coefficient

of the logarithm should be the central charge and indeed we think that this might be the

case just when we perform our measurement in the conformal basis. An exact derivation of

the above formula should be in principle possible by following the arguments based on the

form factors of twist operators as it is done for the non-measurement case in [9, 10]. It is

worth mentioning that if the measurement region is not much bigger than the correlation

length ξ we expect

Sα = κ
c

12

(
1 +

1

α

)
ln
ξ(ξ + s)

as
+ β(κ), a� ξ � l. (4.2)

In the limit of ξ � s we are back again to the equation (4.1). Note that when s � ξ we

have just the case without any projective measurement. The equation (4.1) make sense

just when κ is not zero. If the two regions after the projective measurement are completely

decoupled one naturally expect an exponential decay of the entanglement entropy with

respect to the distance of the two regions [73]. In other words,

Sα �smin→∞
e−γ(α)msmin , (4.3)

where γ(α) is a number and smin is the minimum distance between the two regions. In

other words, with the notation of the previous section smin = min(s1, s2).

The massive theories are also studied in the presence of the temperature. In the

presence of a weak temperature the Rényi entropy follows the following formula [106]:

S(T )− S(0) ∼ e−
m
T , (4.4)
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where S(0) is the Rényi entropy of the bipartite system in the zero temperature limit.

Because of the short-range nature of the correlations in the massive systems, it is expected

that the above result is true also in the presence of the measurement region. We will support

the above guess later with some numerical calculations performed on the non-critical Ising

model. We summarize this section as follows: because of the short-range nature of the

correlations in the massive systems as far as one does the measurements in the conformal

basis we expect that all the results regarding the non-measurement case be valid also for

the post measurement entanglement entropy. We conjecture that the conclusion is valid

independent of the dimensionality of the system.

5 Post-measurement entanglement entropy in the free fermions

In this section, we present an efficient numerical method to calculate the entanglement

entropy after partial measurement on the number of fermions on some of the sites. A

similar method was already used in [63] to calculate the same quantity for the XX-model.

The method was inspired by the papers [107, 108]. To extend the work of [63] we use the

results of [109] as the starting point. The most general free fermion Hamiltonian is

H =
∑
ij

[
c†iAijcj +

1

2
(c†iBijc

†
j + h.c.)

]
. (5.1)

We first write the reduced density matrix of a block of fermions D by using block Green

matrices. Following [109] we first define the operators

ai = c†i + ci, bi = c†i − ci. (5.2)

Then the block Green matrix is defined as

Gij = tr[ρDbiaj ]. (5.3)

To calculate the reduced density matrix after partial measurement we need to first define

fermionic coherent states. They can be defined as follows:

|ξ >= |ξ1, ξ2, . . . , ξN 〉 = e−
∑N
i=1 ξic

†
i |0〉, (5.4)

where ξi’s are the Grassmann numbers following the properties: ξnξm + ξmξn = 0 and

ξ2
n = ξ2

m = 0. Then it is easy to show that

ci|ξ〉 = −ξi|ξ〉. (5.5)

With the same method one can also define another kind of fermionic coherent state as

|η〉 = |η1, η2, . . . , ηN 〉 = e−
∑N
i=1 ηici |1〉, (5.6)

where ηi’s are the Grassmann numbers. Then it is easy to show that

c†i |η〉 = −ηi|η〉. (5.7)
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Using the coherent states (5.4) the reduced density matrix has the following form [109]

< ξ|ρD|ξ′ >= det
1

2
(1−G)e−

1
2

(ξ∗−ξ′)TF (ξ∗+ξ′), (5.8)

where F = (G + 1)(G − 1)−1. If we use (5.6) the same reduced density matrix can be

written as

〈η|ρD|η′〉 = det
1

2
(1 +G)e−

1
2

(η∗−η′)TF−1(η∗+η′), (5.9)

where F−1 is the inverse of the matrix F . After diagonalization of the reduced density

matrix the Rényi entanglement entropy has the following form [3, 107–109]:

Sα =
1

1− α
tr ln

[(
1−
√
GT .G

2

)α
+

(
1 +
√
GT .G

2

)α]
, (5.10)

where G = (F−1)−1(F+1). The reason that we prefer to have the form of the entanglement

entropy with respect to the F matrix will be clear soon. Consider now the reduced density

matrix of the subsystem B after partial measurement of the occupation number of the

region A. This can be calculated in few different but equivalent ways as follows [63]: for

simplicity consider 1 + 1 dimensional system with the measurement performed on a string

of sites (region A) with the outcome |n1, n2, . . . , ns〉 with nj = 0, 1 and we are interested

in the entanglement entropy of the region B with respect to the rest. To calculate SB
we first calculate ρA∪B for the pre-measurement state. To calculate SB we need ρB =<

n1, n2, . . . , ns|ρA∪B|n1, n2, . . . , ns〉. The right-hand side can be calculated using the two

equations (5.8) and (5.9). For example, consider that the outcome of the measurement on

site j is |0j〉; then ρB can be calculated by using the equation (5.8) and putting ξj equal

to zero. This means that now one can think about a new reduced density matrix

〈ξ, 0j |ρAB|0j , ξ′〉 = 〈ξ|ρ̃B|ξ′〉 ∼ e−
1
2

(ξ∗−ξ′)T F̃ (ξ∗+ξ′), (5.11)

with the matrix F̃ln being a subblock of the matrix F with l, n ∈ B. Putting the new

F̃ matrix in the equation (5.10) one can find the entanglement entropy of the subsystem

B with this condition that the site j is empty. Now consider that the outcome of the

measurement on the site k is |1k〉; in this case, one needs to use the equation (5.9) instead of

the equation (5.8) and follow the same procedure. For an arbitrary outcome |n1, n2, . . . , ns〉
one just needs to use the equations (5.8) and (5.9) as follows: first we put ξj = 0 for all the

empty sites {j}. Now we have a new Gaussian reduced density matrix with F = F̃ . After

going to the η representation by calculating (F̃ )−1 we put ηk = 0 for all the filled sites {k}.
The new reduced density matrix in the η representation has the form e−

1
2

(η∗−η′)TF−1
f (η∗+η′)

with F−1
f being a subblock of the matrix (F̃ )−1. Finally, we put Ff in the equation (5.10)

to calculate the entanglement entropy. Note that the order of using the two equations does

not change the final outcome as it is expected. In principle, the above procedure works

in any dimension with an arbitrary outcome for the occupation number measurement. It

is worth mentioning that one can totally avoid using (5.9) by just starting with (5.8) and

putting ξj = 0 for the j’s that correspond to zero fermions. Then for those sites that we
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have a fermion we just need to Grassmann integrate over the corresponding sites. Note

that the Grassmann integration over particular ξk is like putting a fermion in that site.

This is simply because we have∫
|ξ〉dξk = −|ξ1, ξ2, . . . 1k, . . . , ξN 〉, (5.12)

We can now summarize the algorithm for the latter method as follows: we first calculate

ρA∪B with the corresponding F = F0, then we put ξj = 0 whenever the corresponding sites

are empty. Now we have a new Gaussian reduced density matrix with F = F1. Finally, we

perform Grassmann integral of the last reduced density matrix over all the ξk’s with the

occupied k’s. The final reduced density matrix is still Gaussian but with F = F2. Putting

this matrix in (5.10) one can easily calculate the entanglement entropy. In the next sections,

we will use the above procedure to calculate the post measurement entanglement entropy

in the quantum XY chain in the σz basis.

6 XY spin chain

In this section we summarize all the necessary formulas and facts regarding the XY-chain.

The necessary ingredients for our numerical calculations are the G matrices and the config-

urations that lead to the conformal boundary conditions. The Hamiltonian of the XY-chain

is as follows:

H = −
L∑
j=1

[(
1 + a

2

)
σxj σ

x
j+1 +

(
1− a

2

)
σyj σ

y
j+1 + hσzj

]
. (6.1)

After using Jordan-Wigner transformation, i.e. cj =
∏

m<j
σzm

σxj−iσ
y
j

2 and N =
∏L

m=1
σzm =

±1 with c†L+1 = 0 and c†L+1 = N c†1 for open and periodic boundary conditions respectively

the Hamiltonian will have the following form:

H =

L−1∑
j=1

[
(c†jcj+1 + ac†jc

†
j+1 + h.c.)− h(2c†jcj − 1)

]
+N (c†Lc1 + ac†Lc

†
1 + h.c.). (6.2)

Note that since [H,N ] = 0 one needs to consider the two sectors independently and find the

ground state of the spin chain as the ground state of the sector N = 1 or the first excited

state of the sector N = 1. Here we always concentrate on the cases that the ground state

of the spin chain is in the sector N = 1. The above Hamiltonian has a very rich phase

diagram with different critical regions [110]. In figure 4 we show different critical regions

of the system.

Because of the Jordan-Wigner transformation if the σz is up(down) at site j one can

interpret it as having (lacking) a fermion at the same site. Because of the Jordan-Wigner

transformation if the σz is up(down) at site j one can interpret it as having (lacking)

a fermion at the same site. This correspondence helps us to calculate the entanglement

entropy in the XY chain after projective measurement in the σz basis by using the results of

the previous section. In the next subsections, we will summarize the formulas regarding the

G matrix for the XY chain, see for example [111]. We also comment on the configurations

that lead to conformal boundary conditions [70].
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Figure 4. Different critical regions in the quantum XY chain. The critical XX chain has central

charge c = 1 and critical XY chain has c = 1
2 .

6.1 Critical transverse field Ising chain

In this section, we list some of the known facts about Ising model. Here, we first list the

correlation matrices necessary to calculate the post measurement entanglement entropy and

then we present the results known about the conformal configurations and the conformal

field theory of the Ising model.

6.1.1 Correlation matrices

When the size of the total system is finite L, depending on the form of the boundary

conditions, periodic or open; G at the Ising critical point has the following forms:

GPij = − 1

L sin(π(i−j+1/2)
L )

, (6.3)

GOij = − 1

2L+ 1

(
1

sin(π(i−j+1/2)
2L+1 )

+
1

sin(π(i+j+1/2)
2L+1 )

)
. (6.4)

Notice that for L → ∞ the first equation reduces to the one corresponding to the infinite

chain and the second equation gives the result for the semi-infinite chain. The critical XY

line in the figure 3 is in the same universality class as the Ising critical point and has the

central charge c = 1
2 . The Green matrix for the infinite system is given by

Gij =

∫ π

0

dφ

π

(cosφ− 1) cos[(i− j)φ]− a sinφ sin
[
(i− j)φ]√

(1− cosφ)2 + a2 sin2 φ
. (6.5)

The above Green matrix is useful to check the universality of the results.
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6.1.2 Boundary conformal field theory of the Ising model

There are two different conformal boundary conditions compatible with the CFT of the

Ising model, free and fixed boundary conditions [112]. Here, free and fixed refers to the state

of the spin in the σx direction. These two boundary conditions can produce four different

partition functions: 1) fixed with spins in the same direction on both boundaries “Fi1-Fi1”

2) fixed with spins in the opposite direction “Fi1-Fi2” 3) free on one boundary and fixed on

the other one “Fr-Fi” and 4) free on both boundaries “Fr-Fr”. The corresponding partition

functions on the cylinder with the length h
α and the circumference 2π can be written with

respect to characters as follows

ZFi1−Fi1 = χ0(τ) + χ1/2(τ) +
√

2χ1/16(τ), (6.6)

ZFi1−Fi2 = χ0(τ) + χ1/2(τ)−
√

2χ1/16(τ), (6.7)

ZFr−Fr = χ0(τ) + χ1/2(τ), (6.8)

ZFr−Fi = χ0(τ)− χ1/2(τ), (6.9)

where the characters are defined as follows:

χ0(τ) =
1

2
√
η(τ)

(√
Θ3(q̃

1/2
α ) +

√
Θ4(q̃

1/2
α )

)
= q̃−1/48

α (1 + q̃2
α + q̃3

α + . . .), (6.10)

χ1/16(τ) =
1

2
√
η(τ)

√
Θ2(q̃

1/2
α ) = q̃−1/48+1/16

α (1 + q̃α + q̃2
α + 2q̃3

α + . . .), (6.11)

χ1/2(τ) =
1

2
√
η(τ)

(√
Θ3(q̃

1/2
α )−

√
Θ4(q̃

1/2
α )

)
= q̃−1/48+1/2

α (1 + q̃α + q̃2
α + . . .). (6.12)

where Θi’s are the Jacobi theta functions and q̃α = eπiτ with τ = i hπα is as before. Finally

η is the Dedekind function with the following definition

η(q) = q
1
24

∞∏
n=1

(1− qn). (6.13)

There are some comments in order: first of all, for the first two partition functions, the

smallest non-trivial scaling dimension is ∆1 = 1
16 which is the scaling dimension of the spin

operator. However, for the last two ∆1 = 1
2 which is the scaling dimension of the energy

operator. Another interesting fact is that

ZFi1−Fi1 + ZFi1−Fi2 = 2ZFr−Fr . (6.14)

Which means that the partition function of the Ising model with the fixed boundaries, as

far as we do not know the nature of the fixed boundary conditions, is proportional to the

partition function of the Ising model with the free boundaries. In the next subsection, we

will comment on the configurations that lead to the above boundary conditions. Finally,

it is important to also comment on the parameter b0 that appears in the study of Affleck-

Ludwig term for different boundaries. Based on the above formulas it is easy to identify

bFr0 = 1, bFi0 =
1√
2
, (6.15)

for the free and fixed boundary conditions respectively.
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6.1.3 Conformal configurations

The conformal configurations for the critical XY line (including the Ising point) in the σz

basis are already studied in [70] and we summarize the results here. All the configurations

with the crystal structure are flowing to conformal boundary conditions. This has been

shown by studying the formation probability of crystal configurations and comparing the

results with the CFT predictions. Formation probability of a configuration is the probabil-

ity of occurrence of that configuration in the spin chain. We list here the most interesting

examples of the crystal configurations:

• a: (| ↑, ↑, ↑, ↑, . . . >)

• b: (| ↓, ↓, ↓, ↓, . . . >)

• c: (| ↓, ↑, ↓, ↑, . . . >)

Definition of more complicated crystal configurations is quite straightforward. We can

define some of them by labeling the configuration by a number x which is the ratio of the

number of down spins to the total number of spins in a base of a crystal configuration. For

example, we have xa = 0, xb = 1 and xc = 1
2 . Note that there are infinite different crystal

configurations with the same x. For example, the configuration (| ↓, ↓, ↑, ↑, ↓, ↓, . . . >) is

also x = 1
2 . We call this configuration, which can be derived from the configuration c

by doubling every spin, the configuration ( 1
2 , 2). We can now define a class of crystal

configurations (x, k), where x is defined as before and k is the number of neighboring down

spins in a base of the crystal configuration with this condition that in the base of the

crystal all the up (down) spins are neighbors. With the above definition (1, 1), (1
2 , 1) are

the configurations b and c respectively. Exceptionally, for later convinience, we take the

configuration (1, 0) as the configuration a. Note that although the above configurations do

not exhaust all the possible crystal configurations they are quite enough for our purpose.

It is expected that all of the above crystal configurations flow to conformal boundary

conditions [70]. It is worth mentioning that although all of these configurations flow to

conformal boundary conditions it is not a priory clear that they flow to what kind of

conformal boundary conditions. For example, in the case of the Ising model we have two

possible different conformal boundary conditions, free and fixed [81, 112]. It was argued

in [69] that all the spins up configuration should flow to free boundary condition. In the

case of the free-free boundary conditions on the two slits the smallest scaling dimension

present in the partition function of the annulus is ∆ = 1
2 which is the scaling dimension of

the energy operator [112]. Of course, this fact is important when we discuss disconnected

cases. Numerical calculations of the formation probabilities performed in the presence of a

boundary show that all the configurations (x, 2k) also flow to free boundary conditions [70].

However, the configurations (x, 2k+ 1), including the configurations b and c, flow to fixed

boundary conditions. The above considerations suggest that all of our CFT results should

be valid for all the crystal configurations as far as the system is infinite or we have periodic

boundary condition. We do not expect the validity of our results for the configurations

(x, 2k + 1) when the system has an open boundary condition. This is simply because
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since the natural boundary of the Ising chain that we are considering has a free boundary

condition if the configuration induces a fixed boundary condition on the slit one needs to

consider also the effect of the boundary changing operator. For the configurations (x, 2k)

the presented CFT results should be valid also in the presence of the open boundary

condition. We will numerically show that the above conclusions are indeed the case when

we study the critical transverse field Ising chain.

Using the numerical calculations in [70] it was argued that not only the crystal config-

urations but also some configurations that although not perfectly crystal but very close to

that can also flow to a boundary conformal field theory. This fact will be important in our

later discussion regarding the localizble entanglement [80]. Finally, it is worth mentioning

that all of the above results are valid when we are making the measurement in the σz basis.

The situation changes completely if one makes a measurement in the σx basis.

6.2 XX critical line

In this subsection, we list all the relevant results regarding the correlation matrices and

the conformal configurations of the XX model. We will also list the formulas regarding the

CFT of the XX chain.

6.2.1 Correlation matrices

The critical XX chain a = 0 has a very different structure than the critical Ising chain. It

has U(1) symmetry which guaranties the conservation of the total number of up spins, in

other words, the number of fermions. Since in this model < c†ic
†
j >=< cicj >= 0 one can

write Gij = 2Cij−δij , where Cij =< c†icj >. For the periodic boundary condition provided
L
2π arccos(−h) /∈ N the form of the C matrix is [111]

Cij =
1

L

L∑
k=1

e
2πik(j−i)

L θ

(
h+ cos

2πk

L

)
; (6.16)

where θ(x) =
1+sgn(x)

2 . When the ground state is non-degenerate3 and the magnetic field

is non-zero we have

CPij =
nf
π
δij + (1− δij)

sin(nf (i− j))
L sin(π(i−j)

L )
, (6.17)

where nf = π
L

(
2d L2π arccos(−h)e−1

)
is the Fermi momentum and dxe is the closest integer

larger than x.

For the open boundary condition provided h+cos πk
L+1 6= 0 the form of the C matrix is:

Cij =
2

L+ 1

L∑
k=1

sin
πki

L+ 1
sin

πkj

L+ 1
θ

(
h+ cos

πk

L+ 1

)
; (6.18)

3the ground state is degenerate, for example, when L
2π

arccos(−h) ∈ N , see [111].
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where θ(x) is defined as above. For a non-zero magnetic field when the ground state is

non-degenerate, i.e. h+ cos πk
L+1 6= 0 we have

COij =

(
1

2
−
(

L

2(L+ 1)
−
n′f
π

))
δij

+(1− δij)
1

2(L+ 1)

(
sin(n′f (i− j))

sin(π(i−j)
2L+2 )

−
sin(n′f (i+ j))

sin(π(i+j)
2L+2 )

)
, (6.19)

where n′f = π
2(L+1)

(
1 + 2b (L+1)

π arccos(−h))c
)

and bxc is the closest integer smaller than

x. The form of the above correlation matrix is consistent with the Dirichlet boundary

condition. Note that one can get the results for the infinite and the semi-infinite cases by

just sending L to infinity.

6.2.2 Boundary conformal field theory of the XX chain

It is quite well-known that the continuum limit of the XX chain can be described by a

compactified free bosonic theory,

S =
1

2

∫
dx1dx2[(∂1φ)2 + (∂2φ)2]; (6.20)

where φ ≡ φ+ 2πr with r = 1
2
√
π

. There are two possible conformal boundary conditions,

Dirichlet and Neumann. Since in this work we do not face Neumann boundary condition

we will just focus on the Dirichlet boundary condition. The partition function of the free

compactified bosonic theory on the finite cylinder has the following form

ZDD(q) =
1

η(q)

∑
n∈Z

q
1
2

(n+δ)2
, (6.21)

where δ = φ1−φ2√
π

with φ1 and φ2 being the value of the field φ on the two boundaries. The

above equation means that for positive δ the smallest scaling dimension is

∆1 =



1

2
δ = 0,

δ2

2
0 < δ ≤ 1

2 ,

(δ − 1)2

2
1
2 ≤ δ < 1.

(6.22)

The above scaling dimensions will frequently appear in our later numerical calculations.

6.2.3 Conformal configurations

It has been already shown that the all spins up and all spins down configurations, i.e. a

and b, do not lead to conformal boundary conditions, see for example [69, 70]. This is

possible because the XX chain has a U(1) symmetry which keeps the number of fermions

fixed. To have all the spins up one needs to inject fermions which are in contrast with the

U(1) symmetry. However, the antiferromagnetic configuration, i.e. c, leads to a conformal

boundary condition if one works with the half-filling case, see [70]. It was shown in [70]

– 31 –



J
H
E
P
1
2
(
2
0
1
6
)
1
2
4

that for an infinite system with the Fermi momentum nf just the configurations with

x =
nf
π flow to conformal boundary conditions. In addition based on the numerical results

of [71, 72] one can conjecture that the corresponding boundary conditions are all Dirichlet

boundary conditions.

We argued in the above that all the configurations (
nf
π , k) flow to Dirichlet boundary

conditions but a priory it is not clear what is the value of φ on the boundary for different

configurations. If one takes similar configurations on the two slits one is left with δ = 0

and consequently the smallest scaling dimension in the spectrum is ∆ = 1
2 . However, if

the configurations on the two slits are different one expect to find non-zero δ which means

a different spectrum for the system. Our CFT results suggest that the post measurement

entanglement entropy changes like a power-law with an exponent which depends on the

smallest scaling dimension present in the system. This means that one can find δ corre-

sponding to Dirichlet boundary conditions by studying the post measurement entanglement

entropy. Note that since different values of δ can lead to the same ∆1 the value of δ can

not be fixed uniquely. In principle, we have δ =
√

2∆1 or δ = 1 −
√

2∆1. The two differ-

ent δ’s although lead to the same smallest scaling dimension they have different partition

functions. To fix the total spectrum of the system with a Dirichlet boundary condition

one needs to also extract the second smallest scaling dimension. In this work, we will

concentrate on the smallest scaling dimension and leave the corrections to future studies.

The conclusion of the above argument is that the post measurement entanglement entropy

provides a method to characterize the conformal boundary conditions. We will study in the

next sections many different configurations based on the above idea. It is worth mentioning

that one can also extract similar results using the formation probabilities, see [70].

The Dirichlet-Dirichlet partition function that we wrote in the above can be also ex-

pressed in the q̃ representation as follows

ZDD(q̃) =
(bDD0 )2

η(q̃)

∑
n∈Z

q̃
n2

4 e2πnδi, (6.23)

where η(q̃) =
√

π
hη(q) and bDD0 = 1. The above results indicate that in this case the

boundary entropy SAL independent of the configuration is zero.

Finally, it is worth mentioning that all of the above results are valid if we make the

projective measurement in the σz basis. When the measurement is done in the σx-basis it

is expected that the boundary flows to a conformal Neumann boundary condition. Con-

sequently, one needs to work with either ZNN or ZDN , where N and D stands for the

Neumann and the Dirichlet. In these cases, first of all, the spectrum of the system is differ-

ent and in addition the Affleck-Ludwig term is not zero anymore. We leave more through

analysis of the σx basis for a future work.

7 Entanglement entropy after selective measurements in the critical Ising

chain

In this section, we will check the validity of the post measurement entanglement entropy

formulas derived in the section 3 for the Ising chain. In other words we will check the valid-
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Figure 5. Different setups for the post measurement entanglement entropy in the connected cases.

ity of the formulas: (3.7), (3.9), (3.11), (3.13), (3.36) and (3.37). The formulas (3.7), (3.11)

and (3.37) are the post measurement entanglement entropy of two connected regions and

the other three are the ones related to the disconnected regions, see figures 5 and 6. We per-

form the measurement in the σz basis so that we can use the results of the section 5. From

now on it is useful to fix some notations regarding the exponents appearing in the discon-

nected cases. First of all we define the setups leading to the equations (3.9), (3.13), (3.36)

as follows:

Setup I: the total system is infinite and the measurement region A is made of two large

disconnected regions with each of them with the length s around the domain B with

length l: the post measurement entanglement entropy, with this condition that the

result of the measurement on the two regions are C1 and C2, (up to a logarithm for

α = 1) decays as

Sα �
(
l

8s

)∆
{C1,C2}
I (α)

, (7.1)

where

∆
{C1,C2}
I (α) =

 2α∆
{C1,C2}
1 , α < 1,

2∆
{C1,C2}
1 α ≥ 1,

(7.2)

where ∆
{C1,C2}
1 is the smallest scaling dimension present in the spectrum of the

system. Note that this exponent can be dependent on the configuration.
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Figure 6. Three setups regarding post measurement entanglement entropy for disconnected cases.

Setup II: the system is periodic with the finite size L. The measurement region A is

made of two equal large disconnected regions in a way that the regions B and B̄ have

the same size l. The post measurement entanglement entropy (up to a logarithm for

α = 1) changes as

Sα �
(
πl

4L

)∆
{C1,C2}
P (α)

, (7.3)

where

∆
{C1,C2}
P (α) =

 4α∆
{C1,C2}
1 , α < 1,

4∆
{C1,C2}
1 α ≥ 1,

(7.4)

where as before ∆
{C1,C2}
1 is the smallest scaling dimension present in the spectrum

of the system.

Setup III: the system is semi-infinite and the measurement region A is made of one con-

nected large domain with the size s and the configuration C. The simply connected

domain B with the size l starts from the origin. The post measurement entanglement

entropy (up to a logarithm for α = 1) changes as

Sα �
(
l

4s

)∆
{C}
O (α)

, (7.5)
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where

∆
{C}
O (α) =

 4α∆
{C}
1 , α < 1,

4∆
{C}
1 α ≥ 1,

(7.6)

where ∆
{C}
1 is again the smallest scaling dimension present in the spectrum of the

system. Note that we will follow the same notation also for the XX model.

7.1 Connected regions

In this subsection, we check the validity of the formulas (3.7), (3.11) and (3.37) for the

critical transverse field Ising chain. We will just focus on the leading term in the corre-

sponding formulas.

We first check the formula (3.7) valid for the infinite system by fixing the spins in the

subsystem A in the up direction. The results for α = 1 and α = 2 shown in the figure 7

are in good agreement with the formula (3.7). We repeated the same calculation for the

case when all the spins are down, see figure 7. Here we realized that for small subsystem

sizes we have two branches for the two possible parities of the number of fermions in the

subsystem. However, the two branches start to get closer to each other by taking larger

and larger subsystem sizes. There is fairly a big deviation from the CFT result when l is

very small or when s is very small. We do not know the exact reason for this effect. One

possibility is the presence of the boundary changing operators or it might be the lattice

effect coming from the extrapolation length. We observed similar effect also for the case

when the result of the projective measurement is the antiferromagnetic configuration, see

figure 7. However, the effect disappears when we consider the configuration ( 1
2 , 2). We

checked the universality of our results by calculating the post measurement entanglement

entropy on the infinite critical XY line for the configuration a. The result is shown in

the figure 8 is consistent with the formula (3.7) which confirms the universality of our

results. Note that we observed the above behavior for also other crystal configurations

mentioned in the previous section. We expect that the CFT results are valid for all the

crystal configurations.

We then checked the formula (3.11), valid for the periodic systems, for the case when

the result of the measurement is the configuration a. The numerical results are shown

in the figure 9 are consistent with the CFT formulas. Similar results are also valid for

the configurations b and c. The conclusion is that the formula (3.11) is valid for all the

crystal configurations. Finally, we studied the open boundary condition in the presence of

different configurations. Our numerical results for the configurations (x, 2k) are consistent

with the formula (3.37). In the figure 10, we depicted the result for the configuration a.

We obtained similar result also for the configuration ( 1
2 , 2). However, the results for the

configurations (x, 2k+ 1) do not follow the formula (3.37). This might be, as we discussed

before, because of the presence of the boundary changing operators. It will be interesting

to study the effect of boundary changing operators on our CFT calculations. We leave

more through analyses of the configurations (x, 2k + 1) for a future work.
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Figure 7. Post measurement entanglement entropy for the infinite transverse field Ising model.

Top: post measurement entanglement entropy of the configuration a with α = 1 and α = 2. In the

numerics we fixed l+s = 300. Middle: post measurement entanglement entropy of the configuration

b with α = 1 for different values of l + s. Bottom: post measurement entanglement entropy of the

configuration c with α = 1 for different values of l+s. In the inset the even and odd means that l and

s are both even or both odd numbers. In all the figures the dashed lines are the CFT predictions.
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Figure 8. Post measurement entanglement entropy (with α = 1) of the configuration a for a point

on the critical XY line with a = 1
2 and fixed l + s = 100. The dashed line is the CFT prediction.
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Figure 9. post measurement entanglement entropy in the periodic transverse field Ising model for

the configuration a with respect to ln f(L, s, l), where f(L, s, l) = L
π

sin π
L (l+s) sin π

L l

a sin π
L s

. In the numerics

we fixed L = 200 and l + s = 100. The dashed line is the CFT prediction (3.11).

7.2 Affleck-Ludwig boundary entropy

To study the Affleck-Ludwig boundary entropy we first calculated the entanglement entropy

of a sub-region without projective measurement and fit the data to

Sα =
c

6

(
1 +

1

α

)
ln

(
L

π
sin

πl

L

)
+ aα, (7.7)

and determined aα. Then we did the same calculation in the presence of the measurement

region and fit the data to

Sα =
c

12

(
1 +

1

α

)
ln

(
4L

π

sin π
L(l + s1) sin π

L l

s2 sin π
Ls1

)
+ bα (7.8)
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Figure 10. Post measurement entanglement entropy for the transverse field Ising model with open

boundary conditions. The corresponding configuration is a and the post measurement entanglement

entropy is depicted with respect to ln f(L, s, l), where f(L, s, l) = 2L
π

cos πsL −cosπ
l+s
L

a cos2 πs
2L

cot π(l+s)2L for

the OBC. In the numerics we fixed L = 200 and l + s = 100. The dashed line is the CFT

prediction (3.37).

and determined bα. Finally the Affleck-Ludwig boundary entropy is given by

SAL = ln b0 = bα −
aα
2
. (7.9)

We did this calculation for the configurations (x, 2k) and for b0 found a value incredibly

close to one, for example, we derived

ba0 = 0.996 b
( 1

2
,2)

0 = 1.009. (7.10)

The above results are consistent with the free nature of the configurations (x, 2k). Then

we repeated the same calculations for the configurations (x, 2k+1). Here for SAL we found

a value very close to ln 2
2 . This is not exactly compatible with what we expect for the fixed

boundary condition which we have SAL = − ln 2
2 . The extra ln 2 factor can be understood

as follows: although all the configurations (x, 2k + 1) flow to fixed boundary conditions a

priory it is not known that they are flowing to the up (down) fixed boundary conditions

(here with up (down) we mean in the euclidean version when we consider the σx basis).

This ambiguity contributes a factor of two to the partition function and a factor of ln 2 to

the entanglement entropy. Taking to the account this factor we find the desired boundary

entropy. For example, our numerical calculations show

bb0 = 0.698 ≈ 1√
2

b
( 1

2
,1)

0 = 0.696 ≈ 1√
2
. (7.11)

The above reasoning will appear again in the next subsection when we discuss the discon-

nected cases.
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7.3 Disconnected regions

In this sub-section, we calculate the entanglement entropy of two regions that are dis-

connected after projective measurement. In other words, we verify the validity of the

equations (3.9), (3.13) and (3.36) for the critical Ising chain. As we discussed before it is

expected that most of the crystal configurations flow to free or fixed boundary conditions.

For the Ising model with the free-free boundary conditions the operator with the smallest

scaling dimension is the energy operator with ∆1 = 1
2 . However, for the fixed-fixed bound-

ary condition, it is the spin operator with ∆1 = 1
16 . We will show in the next subsections

that working in the σz basis we can just detect the first scaling dimension, ∆1 = 1
2 .

7.3.1 Infinite chain

Putting all the pieces of the above argument together for the setup I we expect

∆
{C1,C2}
I (α) =

{
α, α < 1,

1 α ≥ 1,
(7.12)

In the figure 11, we first showed that the power-law behavior is valid for the Ising model

when we consider the configuration a on both regions. Then we showed the validity of the

equation (7.12) for ∆
{a,a}
I (α).

To check that our results are configuration independent or not we also calculated

the post measurement entanglement entropy for the set-up I when the outcome of the

measurement is the configurations (x, 2k). We found that the power-law behavior with the

exponent (7.12) is valid also in these cases. However, for all the configurations (x, 2k + 1)

surprisingly we found a very different behavior. The Rényi entanglement entropy4 decreases

with respect to s and then saturates for a value which is very close to ln 2, see figure 12.

This behavior is totally counterintuitive because we expect that the Rényi entanglement

entropy always decreases to zero by increasing the size of the measurement region. The

above strange behavior can possibly be understood as follows: as we discussed in the

previous section although these configurations flow to fixed boundary conditions a priory

we do not know that they flow to ZFi1−Fi1 or ZFi1−Fi2 . This means that the total partition

function for these configurations on the cylinder is

Z = ZFi1−Fi1 + ZFi1−Fi2 = 2ZFr−Fr . (7.13)

The factor 2 in the above formula is independent of s and produces a ln 2 in the calculations

of the Sα which survives even when s goes to infinity. Another interesting feature of the

above formula is that now instead of the partition function of fixed-fixed on the cylinder

we have the partition function of free-free. If the above argument is correct we expect that

the Rényi entropy approaches to the ln 2 like a power-law with an exponent which is the

same as (7.12). In other words

Sα � ln 2 + β(α)

(
l

8s

)∆
{C1,C2}
I (α)

, (7.14)

4Note that depending on the l for some values of α the Rényi entanglement entropy increases with s

and then saturates to log 2.
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Figure 11. Post measurement entanglement entropy in the infinite transverse field Ising model

for the setup I with the configuration a. Top: log-log plot of the post measurement entanglement

entropy of the configuration a when the two subsystems are disconnected. We took l = 10 and s

goes from 10 to 300. Bottom: the exponent of the power-law ∆
{a,a}
I (α) with respect to α. The

dashed line is the formula (7.12).

where C1, C2 ∈ (x, 2k + 1). Our numerical results depicted in the figure 12 are consistent

with the above picture. The conclusion is that although the configurations (x, 2k + 1)

flow to fixed boundary conditions all of the exponents are the ones that come from the

free boundary conditions. In the discrete level we realized that for the large s the post

measurement G is in a way that the eigenvalues of the matrix G̃T .G̃ are all close to one

except one eigenvalue which is approximately zero. Then having the equation (5.10) it is

obvious that one expects Sα = ln 2 for the large s. It will be interesting to prove this fact

by exact calculations starting with the configurations (x, 2k + 1).
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Finally, we also studied the case with C1 ∈ (x, 2k) and C2 ∈ (x, 2k + 1). Based on

the previous arguments this example should be related to the free-fixed partition function.

We expect that the entanglement entropy follows the equation (7.14). Although not shown

here our numerical calculations confirmed our expectations. The conclusion is that as far

as one of the configurations is from the set (x, 2k + 1) the entanglement entropy follows

the equation (7.14).

7.3.2 Periodic chain

Following similar argument as above one can write for the setup II

∆
{C1,C2}
P (α) =

{
2α, α < 1,

2 α ≥ 1,
(7.15)

In the figure 13, we checked the validity of the equation (7.15) for the ∆
{a,a}
P (α) in

the finite periodic system. The results are consistent with the CFT predictions. Note that

the above result should be correct for all the crystal configurations discussed in this paper.

However, one needs to be careful that for C1 = C2 = (x, 2k + 1) we expect a factor of two

in the partition functions which leads us to have

Sα � ln 2 + β(α)

(
πl

4L

)∆
{C1,C2}
P (α)

. (7.16)

7.3.3 Semi-infinite chain

In the setup III for the configuration (x, 2k) we expect

∆
{C}
O (α) =

{
2α, α < 1,

2 α ≥ 1,
(7.17)

In the figure 14, we checked the validity of (7.17) with ∆
{a}
O (α). The results are consistent

with our CFT calculations. Note that again we expect that the von Neumann entropy

saturates to ln 2 for the configurations (x, 2k + 1).

8 Entanglement entropy after selective measurements in the critical XX

chain

In this section, we will check the validity of the post measurement entanglement entropy

formulas derived in the section 3 for the critical XX chain. In other words we will check

the validity of the formulas: (3.7) , (3.9), (3.11), (3.13), (3.36) and (3.37). The formu-

las (3.7), (3.11) and (3.37) are the post measurement entanglement entropy of two con-

nected regions and the other three are the ones related to the disconnected regions. We

perform the measurement in the σz basis so that we can use the results of the section 5.

For the critical XX chain as we mentioned in the previous section the configurations a and

b are not conformal configurations, however, the configurations (
nf
π , k) lead to conformal
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Figure 12. Post measurement entanglement entropy for the infinite transverse field Ising model

in the setup I with the corresponding configuration b for different values of α.a) Sα with respect

to the size of the measurement region. b) log-log plot of the post measurement entanglement

entropy. Bottom: the exponent of the power-law ∆
{b,b}
I (α) with respect to α. The dashed line is

the formula (7.12). We took l = 30 and s goes from 10 to 400.
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Figure 13. The exponent of the power-law ∆
{a,a}
P (α) with respect to α. We took L = 400 and l

goes from 4 to 50. The dashed line is the formula (7.15).
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Figure 14. The exponent of the power-law ∆
{a}
O (α) with respect to α. We took l + s = 200 and

the fit is done for the interval l ∈ (1, 100). The dashed line is the formula (7.17).

boundaries. We mostly focus here on these configurations and check the CFT results. It is

worth mentioning that although it is expected that the configurations (x, k) with x 6= nf
π

are not conformal it was shown numerically [63] that if l is sufficiently large with respect

to s the CFT results still can be used. For example, for the configuration a the CFT

results are valid for l > π
nf
s. Of course, the range of the validity of the CFT results is

bigger for those cases that x is closer to
nf
π . We will comment more about this fact in the

upcoming subsections.
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Figure 15. Post measurement entanglement entropy for the periodic XX model with the configura-

tion c with respect to ln f(L, s, l), where f(L, s, l) = L
π

sin π
L (l+s) sin π

L l

a sin π
L s

for the PBC. In the numerics

we fixed L = 200 and l + s = 100. In the figure the dashed line is the CFT prediction (3.11)

with c = 1.

8.1 Connected regions

In this subsection, we first study the entanglement entropy in the presence of the configu-

rations (x, k) with x =
nf
π which we call them conformal configurations. Then we comment

about the effect of the non-conformal configurations, i.e. (x, k) with x 6= nf
π .

8.1.1 conformal configurations

The formula (3.7) has been already checked for the XX chain when the outcome of the

measurement is an antiferromagnetic configuration [63]. We calculated numerically the

post measurement entanglement entropy of two connected regions when the corresponding

configuration is c, for the finite periodic and open chains. The numerical results depicted

in the figures 15 and 16 show a reasonable compatibility with the CFT formulas (3.11)

and (3.37). We have obtained similar results for also the configurations (
nf
π , k) in the case

of infinite and periodic boundary conditions. For the open chain when k > 1 one needs to

take into account also boundary changing operators. We leave more through analysis of

this point to a future work. Final conclusion is that the CFT results are valid for all the

conformal configurations (
nf
π , k).

8.1.2 non-conformal configurations

As we mentioned before all the configurations (x, k) with x 6= nf
π are not conformal config-

urations, however, it is expected that for large l
s , in other words small measurement region,

the CFT results be valid. This has been already shown in ([63]) for the configuration a

with different nf ’s. Here we examined similar phenomena for the configuration c. This

configuration is conformal just for nf = π
2 and not for other fillings. In the figure 17, we
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Figure 16. Post measurement entanglement entropy for the XX model with open boundary condi-

tions. The corresponding configuration is c and post measurement entanglement entropy is depicted

with respect to ln f(L, s, l), where f(L, s, l) = 2L
π

cos πsL −cosπ
l+s
L

a cos2 πs
2L

cot π(l+s)2L for the OBC. In the nu-

merics we fixed L = 200 and l+ s = 100. In the figure the dashed line is the CFT prediction (3.37)

with c = 1.

change the filling but with fixed configuration calculated the post measurement entangle-

ment entropy. Numerical result show that for this configuration as far as l
s > 1 − 2

nf
π

the CFT results are valid. We expect similar behavior also for the other configurations.

At the moment it is not clear how one can predict the regime of the validity of the CFT

results. However, it is not difficult to see that whenever we need to inject fermions to the

subsystem in contrast to the filling factor of the system one leads to the non-conformal

configurations. The more fermions we inject the bigger l we need to have results consistent

with the CFT. In the regime that the CFT results are not valid, we see an exponential

decay of the entanglement entropy.

8.2 Affleck-Ludwig boundary entropy and the g-theorm

In this subsection, we make some comments regarding the Affleck-Ludwig boundary entropy

and the g-theorem. We calculated the Affleck-Ludwig term for the conformal configurations

as we did for the transverse field Ising model. We followed the same procedure and basically

used the equation (7.9). Our numerical results performed for nf = π
2 show that

b
( 1

2
,1)

0 = 1.00, b
( 1

2
,2)

0 = 1.00. (8.1)

The above results are perfectly consistent with what we expect for the Dirichlet boundary

conditions which we have b0 = 1.

After finding the b0 for the conformal configurations we calculated the same quantity

for the non-conformal configurations. As we mentioned before all the configurations (x, k)

with x 6= nf
π are not conformal so in principle, they are a good laboratory to verify the
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Figure 17. Post-measurement entanglement entropy in the XX-chain for an infinite chain in the

presence of the configuration c for different values of the fillings nf .
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Figure 18. b0 for different configurations (x, 1) for the half-filling case nf = π
2 .

entropic version of the g-theorem. For this reason, we followed the same procedure as above

but this time, we just used the regime that the CFT results are valid. The results shown

in the figure 18 show that for nf = π
2 the b0 for the configurations (x, k) start to decrease

by decreasing x from 1
2 which is the conformal Dirichlet point to the non-conformal point

at x = 0. This is compatible with the g-theorem which states that the b0 decreases to the

infrared. It is worth mentioning that in principle for the XX chain we have two boundary

fixed points, Dirichlet with b0 = 1 and Neumann with b0 = 1
2 . Every other boundary

conditions should be between these two values. As it is clear from the figure 18 our results

are in complete agreement with the above arguments.
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8.3 Disconnected regions

In this subsection, we study the post measurement entanglement entropy in the XX chain

by using the configurations (
nf
π , k). We will show that based on the chosen configuration

and the boundary condition the smallest scaling dimension in the spectrum of the system

changes. Because of this subtlety we study the infinite (setup I), the periodic (setup II)

and the open (setup III) chains separately.

8.3.1 Infinite chain

As we mentioned in the section 6 if we take equal configurations on the two slits the operator

with the smallest scaling dimension has ∆1 = 1
2 [114, 115]. Consequently for the setup I

if the result of the projective measurement is a conformal configuration, for example, the

configuration c for nf = π
2 , we have

∆
{C,C}
I (α) =

{
α, α < 1,

1 α ≥ 1.
(8.2)

where C stands here for (
nf
π , k). In the figure 19, we checked the validity of the equa-

tion (8.2) for the configuration c. Our numerical results are consistent with the CFT

predictions. To check that the above result for nf = π
2 is independent of the conformal

configuration we also calculated the entanglement entropy for the configurations ( 1
2 , k) with

k = 2, 3 and 4. The results shown in the figure 20 demonstrate that the smallest scaling

dimension in all of the above cases are the same. In other words all of the configurations

(1
2 , k) flow to a Dirichlet boundary condition. Note that based on the above results al-

though one can conclude that all of the boundary conditions are the Dirichlet boundary

conditions it is not yet clear that they are all the same Dirichlet boundaries. We will come

back to this point in a few lines.

To study the effect of the Fermi momentum nf we also studied the entanglement

entropy in the presence of the configurations (
nf
π , k). The results shown in the figure 21

demonstrate that the smallest scaling dimension present in the spectrum is the same as

before. In other words as far as we take similar configurations on the two slits the smallest

scaling dimension is ∆1 = 1
2 .

As we mentioned before although all of the above configurations flow to Dirichlet

boundary condition it is yet unclear what is the value of φ on the boundary for the dif-

ferent configurations. To have an idea about this quantity one can simply study the post

measurement entanglement entropy when there are different configurations on the two slits.

For example, one can put the configuration ( 1
2 , 1) on the slit one and the configuration ( 1

2 , 2)

on the slit two and then calculate the exponent of the power-law decay ∆(α) of the entan-

glement. If the exponent is the same as before one can conclude that most probably both

of the configurations flow to the same Dirichlet boundary condition but if the exponent is

different one can simply write

∆
{C1,C2}
I (α) =

 2α∆
{C1,C2}
1 , α < 1,

2∆
{C1,C2}
1 α ≥ 1,

(8.3)
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Figure 19. Post-measurement entanglement entropy of the disconnected regions in the half filling

XX model for the setup I with the configuration c. Top: log-log plot of Sα with respect to s

for different α’s. The dashed lines are the CFT predictions. Bottom: the exponent ∆
{c,c}
I (α) for

different α’s is extracted by taking l = 10 and fitting the data to a straight line in the region

s ∈ (100, 160).

where ∆
{C1,C2}
1 is the same as (6.22). This can give an idea about the nature of the

corresponding Dirichlet boundary condition. Having the above ideas in mind one can

calculate the ∆
{C1,C2}
1 by taking different conformal configurations. In the figure 22, we

have depicted the results for the configurations C1 = (1
2 , 1) and C2 = (1

2 , 2) which shows

that indeed the two configurations apparently flow to two different Dirichlet boundary

conditions. The ∆
{( 1

2
,1),( 1

2
,2)}

1 in this case is around 1
4 . We will show later that this number is

consistent with the calculations of the open boundary conditions. For δ12 := δ{(
1
2
,1),( 1

2
,2)} =

φ{(
1
2 ,1)}−φ{(

1
2 ,2)}

√
π

at this level we have two possibilities δ12 = 1√
2

or δ12 = 1 − 1√
2
. We

have repeated the calculations for also other configurations and realized that the ∆
{C1,C2}
1

changes by changing the configurations. This numerical exercise means that although all
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Figure 20. The exponent ∆
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I (α) for α = 1

2 and 2 for different configurations C = ( 1
2 , k) with

k = 1, 2, 3 and 4. We took the half filling case nf = π
2 . The exponents are extracted by taking

l = 10 and fitting the data to a straight line in the region s ∈ (200, 250). The dashed lines are the

CFT predictions for the Dirichlet boundary conditions. The large deviation for k = 4 is most likely

the finite size effect.
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Figure 21. The exponent ∆
{C,C}
I (α) for α = 1

2 and 2 for different fillings. Here the C stands

for the configurations C = (
nf
π , 1). The exponents are extracted by taking l = 10 and fitting the

logarithm of the data to a straight line in the region s ∈ (200, 250). The dashed lines are the CFT

predictions for the Dirichlet boundary conditions.

the different configurations flow to the Dirichlet boundary conditions they are not equal.

We leave more through analyzes of this point for a future study.

8.3.2 Periodic chain

We also studied the post measurement entanglement entropy for the periodic boundary

condition. In the XX model as we discussed before if we take the same conformal con-

figurations on both lines the operator with the smallest scaling dimension has ∆1 = 1
2 .
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Figure 22. The exponents ∆
{( 1

2 ,1),(
1
2 ,2)}

I (α) and ∆
{( 1

2 ,1),(
1
2 ,2)}

P (α) for different Rényi entropies.

The exponents are extracted by taking l = 10 and fitting the logarithm of the data to a straight

line in the region s ∈ (200, 250). For α = 1 the empty circle and square are the results without

considering the logarithmic correction. However the filled ones are the correct ones after considering

also the logarithm corrections. The dashed lines are the CFT predictions for the Dirichlet boundary

conditions with ∆
{( 1

2 ,1),(
1
2 ,2)}

1 = 1
4 .

Consequently for the setup II we have

∆
{C,C}
P (α) =

{
2α, α < 1,

2 α ≥ 1.
(8.4)

The numerical calculations are similar to the one done for the Ising model, however, one

should be careful that because of the presence of the zero mode the det(1 + G) or the

det(1 − G) or both of them are zero. To overcome this issue first of all we take h and

L in a way that nf = π
2 . Then we change Gii with a small amount ε and then do the

calculations. To find the most efficient ε we took smaller and smaller values up to time

that the results were reasonably stable. In our calculations, we took effectively ε = 10−6.

The results shown in the figure 23 are consistent with the CFT prediction (8.4). In the

more general case of different configurations on the two slits we have

∆
{C1,C2}
P (α) =

 4α∆
{C1,C2}
1 , α < 1,

4∆
{C1,C2}
1 α ≥ 1,

(8.5)

where the ∆
{C1,C2}
1 ’s are the same as the last subsection. The numerical results presented

in the figure 22 are consistent with CFT computations.

8.3.3 Semi-infinite chain

Finally, we repeated the calculations for the semi-infinite system. Note that we assumed

Dirichlet boundary condition for the actual boundary of the system. However this Dirichlet
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Figure 23. The exponent ∆
{c,c}
P (α) for the XX model in the setup II. We took L = 302 and l goes

from 4 to 24. The dashed line is the formula (8.4).

boundary condition can be different from the one induced by the projective measurement.

Based on the CFT calculations the entanglement entropy of the two disconnected systems,

i.e. setup III, should decay like a power-law with an exponent coming from the formula

∆
{C}
O (α) =

 4α∆
{C}
1 , α < 1,

4∆
{C}
1 α ≥ 1,

(8.6)

where the ∆
{C}
1 is unknown a priory but can be determined by the numerical calculations for

different configurations. Our numerical results performed by using different configurations

, i.e. (1
2 , 1) and (1

2 , 2) are shown in the figure 24. As it is clear from the figure the value of

∆
{C}
1 is dependent on the configuration but after fixing its value the other exponents can be

derived using our CFT results. Based on the numerical results for the configuration ( 1
2 , 2)

the ∆
{( 1

2
,2)}

1 = 1
2 which in principle means that δ2 = 0. In other words this configuration

flows to a Dirichlet boundary condition which is exactly the same as the natural Dirichlet

boundary condition of the semi-infinite system at the origin. However, for the configuration

(1
2 , 1) the ∆

{( 1
2
,1)}

1 = 1
4 . This value was expected from our earlier calculations based on

the infinite system with two slits, one slit with the configuration ( 1
2 , 1) and the other one

with (1
2 , 2). Since the configuration ( 1

2 , 2) is exactly the same as the natural boundary we

can simply find that ∆
{( 1

2
,1)}

1 = ∆
{( 1

2
,1),( 1

2
,2)}

1 = 1
4 . This result shows the consistency of our

computation in a most revealing way.

8.3.4 Non-conformal configurations

We also calculated the post measurement entanglement entropy when the result of the

measurement is not a conformal configuration, for example, a and b. The numerical results
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Figure 24. The exponent ∆
{C}
O (α) for the XX model in the setup III with the configurations

C = ( 1
2 , 1) and C = ( 1

2 , 2). We took l + s = 300 and l goes from 4 to 24. The dashed line is the

formula (8.6).

performed in different conditions suggest that the entanglement entropy of the disconnected

regions decays exponentially for the large measurement regions, see figure 25. This result

which can have important consequences when we discuss localizable entanglement could be

expected from our discussion regarding the post measurement entanglement entropy in the

connected cases. Since here we are working in the large s regime it is not expected that the

CFT results be valid. However, for small s one might hope to see some agreement with the

CFT formulas. Indeed as it is clear in the figure 25 the entanglement entropy does not decay

immediately after introducing the s. It just starts to decay exponentially when s is large

enough with respect to the l. Note that the exponential decay of the post measurement

entanglement entropy in this case is reminiscent of the the same quantity for the non-critical

systems. This means that for the large values of s non-critical boundary conditions suppress

the correlation functions between the subsystem and the rest of the system strongly which

effectively mimic the behaviour of a massive system. This interpretation is consistent with

what we argued during the discussion regarding Affleck-Ludwig boundary entropy. The

non-critical chains will be discussed in the upcoming section.

9 Entanglement entropy after selective measurements in the non-critical

Ising chain

In this section, we study numerically the non-critical transverse field Ising chain. In par-

ticular, we study the formulas (4.1), (4.2) and (4.3). The elements of the Green matrix can

be calculated using the following integral [113]

Gts =
1

2π

∫ 2π

0
dφe−i(t−s)φ

e−iφ − h√
(1− heiφ)(1− he−iφ)

. (9.1)
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Figure 25. Post-measurement entanglement entropy of the disconnected regions with different

fillings and configurations in the XX model for the setup I. The letter inside the parenthesis is the

corresponding configuration.
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Figure 26. Post measurement von Neumann entanglement entropy in a non-critical transverse

field Ising chain for two cases: the region B after measurement has one κ = 1 or two κ = 2 contact

points with B̄. The interval for h is chosen in a way that a < m−1 < l, s. The dashed lines are the

equation (4.1).

The above formula is valid for an infinite chain but we believe that all of our upcoming

conclusions are equally valid for also finite systems. For the gapped Ising model we have

m = |h− 1| = ξ−1.

We first study the post measurement entanglement entropy in the non-critical Ising

chain for the connected cases, in other words, we are interested to check the validity of

the equations (4.1) and (4.2). The results of the numerical calculations are shown in the

figures 26 and 27. The numerical calculations are in a reasonable agreement with the general
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Figure 27. Post measurement von Neumann entanglement entropy in a non-critical transverse

field Ising chain for two cases: the region B after measurement has one κ = 1 or two κ = 2 contact

points with B̄. The interval for h is chosen in a way that s < m−1 < l. The dashed lines are the

equation (4.2).

predictions. Note that here we discussed just the post measurement entanglement entropy

in the σz basis. As we discussed before we do not expect the equations (4.1) and (4.2) be

valid in generic bases. However, it is quite possible that if one stick to a domain which is

far from the measurement region then again the equation (4.1) be valid with κ = 2. This

is simply because any local measurement in part of a massive system affects very little the

correlation functions far from the measurement region. Finally, we also studied the post

measurement entanglement entropy of two decoupled regions. The results depicted in the

figure 28 shows that the entanglement entropy decreases exponentially with respect to the

size of the measurement region in complete agreement with the equation (4.3). We also

studied γ(α) with respect to α and surprisingly found that it closely follows (see figure 29):

γ(α) =

{
2α, α < 1,

2 α ≥ 1,
(9.2)

Although we do not expect the above formula be universal the general behaviour, linear

increase and then saturation, might be a universal pattern for the massive systems.

10 Entanglement entropy after selective measurements in the finite tem-

perature XY chain

In this section, we study numerically the effect of the temperature on the post measure-

ment Rényi entropy of the critical XY chain. In other words we would like to verify the

equations (3.39) and (3.46) for the critical XY chain. The method of the calculation is

exactly the same as before, one just needs to use the finite temperature Green matrix in
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Figure 28. Post measurement von Neumann entanglement entropy in a non-critical transverse

field Ising chain for disconnected regions (setup I): up) s is fixed and h changes. Down) h is fixed

and s is changing. The intervals are chosen in a way that a < m−1 < l, s. The dashed lines are the

equation (4.3).

the formulas of the section 5. The Green matrix of the finite temperature XY chain is

given by

Gij =

∫ 2π

0

dφ

2π
tanh

εφ
2T

eiθφeiφ(i−j) (10.1)

where

eiθφ =
cosφ− h+ ia sinφ

εφ
, (10.2)

εφ =

√
(cosφ− h)2 + a2 sin2 φ. (10.3)
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Figure 29. γ(α) vs. α. The dashed lines are the equation (9.2).

In the next two subsections we will use the above Green matrix for the critical transverse

field Ising model and the critical XX chain and calculate the Rényi entropies.

10.1 Transverse field Ising chain

In this subsection, we first study the post measurement Rényi entropy in the critical trans-

verse field Ising chain and later we focus on the non-critical case.

10.1.1 Critical transverse field Ising chain

To calculate the Rényi entropy of the finite temperature transverse field Ising point we first

put a = h = 1 in the equation (10.1) then we fixed the configuration to a. The results

for the infinite connected case is demonstrated in the figure 30 which have a reasonable

compatibility with our analytic result (3.39).

We then extended our calculations to the non-connected cases especially we studied

the regime πs
β � 1 � πl

8β where the entropy increases like a power-law with respect to

the measurement region. The numerical results shown in the figure 31 indeed confirm

the power-law behaviour and the power of the exponent is in a reasonable compatibility

with the CFT formula (3.46). After confirming the CFT results for the small temperature

regime we studied the large temperature regime. In this case, we expect a linear increase

of the post measurement Rényi entropy with respect to the temperature and the size of

the region. The interesting setup to study in this regime is the setup I which we have two

decoupled regions. Here we expect to have the equation

Sα(β) =
πc

6

(
1 +

1

α

)
l

β
+ . . . . (10.4)

The numerical results shown in the figure 32 show clearly the linear increase with respect

to the temperature and also the volume law. Note that the coefficient of the linear term is
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Figure 30. The finite temperature Rényi entropy for the critical transverse field Ising chain for

α = 1 and 2. In the above f(l, s, β) = c
12 (1 + 1

α ) ln

(
β
π

sinh π
β (l+s1) sinh

π
β l

s2 sinh π
β s1

)
and the dashed lines are

the CFT results.
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Figure 31. The finite temperature Rényi entropy for the critical transverse field Ising chain for

α = 1
2 and 2 in the regime πs

β � 1 � πl
8β . In the above the slop of the dashed lines are 0.83 and

0.49 for α = 2 and 1
2 respectively.

not a universal quantity but one expect

Sα1(β)

Sα2(β)
=
α2

α1

1 + α1

1 + α2
(10.5)

to be a universal quantity. Our numerical results are consistent with the above ratio.

10.1.2 Non-critical transverse field Ising chain

In this subsection, we study the von Neumann entropy in the finite temperature gapped

transverse field Ising chain. Following the ideas of section 4 we expect the entropy of a
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Figure 32. The high temperature Rényi entropy for the critical transverse field Ising chain for

α = 1 and 2 in the non-connected setup I. Top) The Rényi entropy with respect to the temperature

with fixed l = 10. Down) The Rényi entropy with respect to the length with fixed temperature

T = 0.1. The ratio of the coefficient of the two lines is around 1.3.

subsystem after projective measurement decays exponentially with respect to the gap in

the system. In other words, because of the Gibbs nature of the reduced density matrix one

expect that the leading term of the entropy changes as [106]

S(T )− S(0) ∼ e−
|h−1|
T , (10.6)

In the figure 33 we verified the above equation for a connected case. We expect similar

results for also non-connected cases.
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Figure 33. The high temperature Rényi entropy for the critical transverse field Ising chain for

α = 1. We took h = 1.50 and the sizes of the regions A and B are s = 40 and l = 20 respectively.
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Figure 34. The finite temperature Rényi entropy for the critical XX chain for α = 1 and 2. In the

above f(l, s, β) = c
12 (1 + 1

α ) ln

(
β
π

sinh π
β (l+s1) sinh

π
β l

s2 sinh π
β s1

)
and the dashed lines are the CFT results.

10.2 Critical XX chain

In this section, we calculated the Rényi entropy of the finite temperature XX chain by first

putting a = h = 0 in the equation (10.1). Then we fixed the configuration to c. The results

for the infinite connected case is demonstrated in the figure 34 which have a reasonable

compatibility with our analytic result (3.39).

We then calculated the Rényi entropy for the non-connected case in the setup I. We

first considered the regime of the small temperature with the constraint πs
β � 1 � πl

8β ,
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Figure 35. The finite temperature Rényi entropy for the critical XX chain for α = 1
2 and 2 in the

regime πs
β � 1� πl

8β . In the above the slop of the dashed lines are 0.88 and 0.47 for α = 2 and 1
2

respectively.

where the entropy increases like a power-law with respect to the measurement region, see

equation (3.46). The numerical results demonstrated in the figure 35 are consistent with

the CFT results. Finally, we made some numerical computations in the large-temperature

regime for the setup I. In this regime the Rényi entropy should increase linearly with respect

to the temperature and size of the sub-region. Our numerical results shown in the figure 36

are compatible with the CFT formula (10.4). It is worth mentioning that although for the

non-conformal configurations we expect a similar linear increase in the Rényi entropy with

respect to the temperature and the size of the subsystem we do not expect the ratio of the

slops for different α’s respects the equation (10.5).

11 Remarks on the possible experimental setup

In this section we will briefly make some remarks on the possible method to produce

the desired post measurement wave functions. The setup studied in this paper was the

following: take a wave function of the ground sate of a quantum chain and then choose

an observable (basis). Then make a partial projective measurement of that observable in

a subsystem A. The rest of the system collapses to a new wave function. The bipartite

entanglement entropy of the remaining subsystem is the desired quantity. However, to

use the powerful techniques of the CFT the observable and the result of the measurement

should be chosen appropriately. In the experiment one can choose the observable as she

wishes but the result of the measurement is something one can not control. On top of that

after the measurement the system will evolve by time and again all the three parts of the

system will get entangled one more time. To have the exact desired post measurement

wave function one can do as follows: prepare a system with the desired hamiltonian and let

the system relax to the ground state. Then turn-off the interactions between the particles
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Figure 36. The high temperature Rényi entropy for the critical XX chain for α = 1 and 2 in the

non-connected setup I. Top) The Rényi entropy with respect to the temperature with fixed l = 10.

Down) The Rényi entropy with respect to the length with fixed temperature T = 0.1.

(for example spins). Choose a conformal observable (basis) and with an external field

force the desired conformal configuration in the subsystem A. For example, in the spin

chains this can be done by a magnetic field acting on the spins in the particular directions.

The final wave function of Ā is the desired post measurement wave function. Then one

can try to study the bipartite entanglement entropy of this wave function by one of many

different methods that have been introduced recently, see [116–120] . Notice that in the

above procedure it is important to turn-off the interactions after preparing the system in

the ground state. This method can be obviously used to prepare many body entangled

states that are spatially disconnected.
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12 Conclusions

In this paper we studied different aspects of the post measurement entanglement entropy

in the critical and the non-critical quantum chains. We first derived different formulas for

the post measurement entanglement entropy in the conformal field theories. We studied

systems with boundaries and also conformal field theories at the finite temperature. In

addition, we studied the role of the boundary entropy in the post measurement entangle-

ment entropy. Some exact results were also presented for the entanglement Hamiltonian

and the distribution of the eigenvalues of the reduced density matrices. Based on some

physical arguments we also presented some predictions regarding the post measurement

entanglement entropy in the massive systems. The above analytical results are in principle

valid for all the projective measurements that respect the conformal symmetry of the bulk.

However, in reality one needs to check what bases and configurations respect this symmetry

in actual discrete models. To check the validity of our results we first provided a method

to study the post measurement entanglement entropy in the generic free fermion models.

The method is based on Grassmann variables and can be used in any dimension. We then

used the technique to study the post measurement entanglement entropy in the XY-chain.

In particular, we studied the transvese field Ising chain and the XX-chain. Because of

the presence of the U(1) symmetry in the XX-chain the model is strikingly different from

the Ising chain. Many subtilities appear during the study of the discrete models which

makes the applications of the CFT formulas to the discrete models very tricky. These

subtilities encourage further analytical and numerical calculations on the discrete models.

In particular, it is very imporatnt to study the effect of the basis of the measurement on

the post measurement entanglement entropy in different discrete models. Concerning the

massive systems all of our results were based on huristic arguments some analytical re-

sults and further numerical calculations are surely necessary to put the results on the firm

ground. In particular, calculations based on boundary integrable models can in principle

shed light in this direction. Most of the results presented in this paper can be more or less

strightforwardly generalized to higher dimensions [77] we leave more throuh analysis to a

future work.

Finally, it is worth mentioning that the method used in this paper to calculate the post

measurement entanglment entropy has a very intimte connection to the Casimir energy of

floating objects on the Reimann surfaces. In other words one can calculate the entanglement

entropy by knowing the Casimir energy. Since the reverse is not true it is quite encouraging

to think more seriously about the many implications that this approach might have in the

fundamental level.
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A Conformal maps

In this appendix we list the conformal maps derived in the [73]. Their exact form is needed

to derive the entanglement hamiltonians.

A.1 Infinite system

The conformal map from the plane with two slits on a line with lengths s1 and s2 and a

branch cut with the length l to an annulus with the inner and outer radiuses r = e−hα and

r = 1 with hα = h
α has the following form:

wα(z) =

(
e−

h
2 e
h

sn−1(z̃,k2)

2K(k2)

) 1
α

, (A.1)

h = 2π
K(k2)

K(1− k2)
, (A.2)

where K and sn−1 are the elliptic and inverse Jacobi functions5 respectively and

z̃ =
2a

k

z

bz + 1
− 1

k
,

a =

√
s2(s2 + l)

s1(s1 + l)

1

l + s1 + s2
,

b =

√
s1s2(l + s1)(l + s2)− s2(l + s1)

(l + s1)(s1s2 −
√
s1s2(l + s1)(l + s2))

,

(A.3)

with the parameter k given by

k = 1 + 2
s1s2 −

√
s1s2(l + s1)(l + s2)

l(l + s1 + s2)
. (A.4)

Having the above formulas we can calculate the geometric part of the partition func-

tion as

δ lnZgeom
α

δl
=
cα

6

(
(−2a+ b)2 − b2k

)(
2π2 − (1 + k(6 + k))α2K2(1− k2)

)
16ak(1 + k)α2K2(1− k2)

. (A.5)

Different limits of the above formula have been discussed in [73].

A.2 Finite system

The conformal map from the cylinder with two aligned slits and a branch cut to annulus

with the inner and outer radiuses r = e−hα and r = 1 with hα = h
α has the following form:

wα(z) =

(
e−

h
2 e
h

sn−1(z̃,k2)

2K(k2)

) 1
α

, (A.6)

h = 2π
K(k2)

K(1− k2)
, (A.7)

5Note that in all of the formulas we adopt the Mathematica convention for all the elliptic functions.
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where the conformal map z̃(z), which takes the system from infinite cylinder with two slits

to the whole plane with two symmetric aligned slits on the real line has the following form:

z̃ =
e2iπ z

L + a0

b1e
2iπ z

L + b0
, (A.8)

a0 =
e2iπ

s1
L

N

(
1− k − 2e2iπ

l+s1
L + (1 + k)e2iπ l

L

)
,

b1 =
−1

N

(
(1− k)e2iπ

l+s1
L + 2k − (1 + k)e2iπ

s1
L

)
,

b0 =
e2π

s1
L

N

(
1− k + 2ke2iπ

l+s1
L − (1 + k)e2iπ l

L

)
,

N = −2− e2iπ
l+s1
L (−1 + k) + e2iπ

s1
L (1 + k),

with the k given by

k = 1 + 2
sin[πs1L ] sin[πs2L ]−

√
sin[πs1L ] sin[πs2L ] sin[π(s1+l)

L ] sin[π(s2+l)
L ]

sin[πlL ] sin[π(l+s1+s2)
L ]

. (A.9)

Then geometric part of the partition function can be derived as

δ lnZgeom
α

δl
= −iπcP − α

2QK2(1− k2)

αRK2(1− k2)
(A.10)

with

P = 2π2
(
− 4k(e2πi

l+s1
L − 1) + (1 + k)2e2πi

s1
L (e2πi l

L − 1)2
)
,

Q = (1 + 6k + k2)

×
(
− 2(k − 1)2e2πi

l+s1
L − 4k − 4ke4πi

l+s1
L + (1 + k)2e2πi

s1
L + (1 + k)2e2πi

2l+s1
L

)
,

R = 48Lk(1 + k)2(−1 + e
2iπl
L )(−1 + e

2iπs1
L )(−1 + e

2iπ(s1+l)
L ).

Different limit of the above formula has been discussed in [73].

A.3 Infinite system in the finite temperature

When the system is infinite but at finite temperature the slits are in the direction of the

axes of the cylinder. This means that one can derive the formulas in this case by just

substituting L with iβ in the formulas of the previous section.
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[69] J.M. Stéphan, Emptiness formation probability, Toeplitz determinants, and conformal field

theory, J. Stat. Mech. 05 (2014) P05010 [arXiv:1303.5499].

[70] K. Najafi and M.A. Rajabpour, Formation probabilities and Shannon information and their

time evolution after quantum quench in the transverse-field XY chain, Phys. Rev. B 93

(2016) 125139.

[71] M.A. Rajabpour, Formation probabilities in quantum critical chains and Casimir effect,

Eur. Phys. Lett. 112 (2015) 66001.

[72] M.A. Rajabpour, Finite size corrections to scaling of the formation probabilities and the

Casimir effect in the conformal field theories, J. Stat. Mech. 12 (2016) 123101

[arXiv:1607.07016].

[73] M.A. Rajabpour, Entanglement entropy after a partial projective measurement in 1 + 1

dimensional conformal field theories: exact results, J. Stat. Mech. 06 (2016) 063109.

[74] J. Cardy, The entanglement gap in CFTs, talk given at Closing the entanglement gap:

Quantum information, quantum matter, and quantum fields, June 1–5, KITP, Santa

Barbara,U.S.A. (2015).

[75] B.B. Machta, S. L. Veatch and J.P. Sethna, Critical Casimir forces in cellular membranes,

Phys. Rev. Lett. 109 (2012) 138101.

[76] G. Bimonte, T. Emig and M. Kardar, Conformal field theory of critical Casimir

interactions in 2D, Eur. Phys. Lett. 104 (2013) 21001 [arXiv:1307.3993].

– 68 –

https://arxiv.org/abs/1602.01147
http://inspirehep.net/search?p=find+EPRINT+arXiv:1602.01147
http://dx.doi.org/10.1088/1742-5468/2016/08/083102
https://arxiv.org/abs/1604.02609
http://inspirehep.net/search?p=find+EPRINT+arXiv:1604.02609
http://dx.doi.org/10.1016/j.nuclphysb.2016.07.015
https://arxiv.org/abs/1604.06891
http://inspirehep.net/search?p=find+EPRINT+arXiv:1604.06891
http://dx.doi.org/10.1103/PhysRevB.94.195121
https://arxiv.org/abs/1607.02992
http://inspirehep.net/search?p=find+EPRINT+arXiv:1607.02992
http://dx.doi.org/10.1103/PhysRevB.92.075108
https://arxiv.org/abs/1501.07831
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,B92,075108%22
http://dx.doi.org/10.1103/PhysRevLett.111.017201
https://arxiv.org/abs/1305.1239
http://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,111,017201%22
https://doi.org/10.1103/PhysRevB.90.045424
http://dx.doi.org/10.1103/PhysRevB.90.075132
https://arxiv.org/abs/1405.1074
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,B90,075132%22
http://dx.doi.org/10.1103/PhysRevB.91.155122
https://arxiv.org/abs/1501.02852
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,B91,155122%22
https://doi.org/10.1103/PhysRevB.94.115116
http://dx.doi.org/10.1088/1742-5468/2014/05/P05010
https://arxiv.org/abs/1303.5499
https://doi.org/10.1103/PhysRevB.93.125139
https://doi.org/10.1103/PhysRevB.93.125139
http://dx.doi.org/10.1209/0295-5075/112/66001
https://arxiv.org/abs/1607.07016
http://dx.doi.org/10.1088/1742-5468/2016/06/063109
https://doi.org/10.1103/PhysRevLett.109.138101
http://dx.doi.org/10.1209/0295-5075/104/21001
https://arxiv.org/abs/1307.3993


J
H
E
P
1
2
(
2
0
1
6
)
1
2
4

[77] M.A. Rajabpour, Fate of the area-law after partial measurement in quantum field theories,

arXiv:1503.07771 [INSPIRE].

[78] T. Numasawa, N. Shiba, T. Takayanagi and K. Watanabe, EPR pairs, local projections and

quantum teleportation in holography, JHEP 08 (2016) 077 [arXiv:1604.01772] [INSPIRE].

[79] Y. Huang, Computing quantum discord is NP-complete, New J. Phys. 16 (2014) 033027.

[80] K. Najafi and M.A. Rajabpour, A lower bound for localizable entanglement in quantum

critical chains, in preparation.

[81] J.L. Cardy, Boundary conformal field theory, hep-th/0411189 [INSPIRE].

[82] I. Affleck and A.W.W. Ludwig, Universal noninteger ‘ground state degeneracy’ in critical

quantum systems, Phys. Rev. Lett. 67 (1991) 161 [INSPIRE].

[83] J. Cardy and P. Calabrese, Unusual corrections to scaling in entanglement entropy, J. Stat.

Mech. 04 (2010) P04023 [arXiv:1002.4353].

[84] Z. Nehari, Conformal mapping, McGraw-Hill, New York U.S.A. (1952).

[85] O.A. Castro-Alvaredo and B. Doyon, Bi-partite entanglement entropy in massive QFT with

a boundary: The Ising model, J. Statist. Phys. 134 (2009) 105 [arXiv:0810.0219]

[INSPIRE].

[86] H.Q. Zhou et al., Entanglement and boundary critical phenomena, Phys. Rev. A 74 (2006)

050305(R).

[87] N. Laflorencie, E.S. Sørensen, M.-S. Chang and I. Affleck, Boundary effects in the critical

scaling of entanglement entropy in 1D systems, Phys. Rev. Lett. 96 (2006) 100603

[cond-mat/0512475] [INSPIRE].

[88] D. Friedan and A. Konechny, On the boundary entropy of one-dimensional quantum

systems at low temperature, Phys. Rev. Lett. 93 (2004) 030402 [hep-th/0312197] [INSPIRE].

[89] D.R. Green, M. Mulligan and D. Starr, Boundary entropy can increase under bulk RG flow,

Nucl. Phys. B 798 (2008) 491 [arXiv:0710.4348] [INSPIRE].

[90] T. Azeyanagi, A. Karch, T. Takayanagi and E.G. Thompson, Holographic calculation of

boundary entropy, JHEP 03 (2008) 054 [arXiv:0712.1850] [INSPIRE].
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