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1 Introduction

The tantalizing pattern of masses and mixings of the elementary particles composing the

visible universe calls for a change of paradigm. The origin of flavour lurks behind the

limits of our understanding of the Standard Model (SM). Beyond the perplexity of “why

three fermion generations with such diverse masses and mixings”, the flavour puzzle is also

central to attempts to solve SM fine-tunings. For instance, beyond the SM theories (BSM)

attempting to solve the electroweak hierarchy problem typically convey unacceptable con-

sequences in the flavour sector: this is known as the flavour problem. Flavour contributions

are also one of the main ingredients in formulating the strong CP problem of the SM.

In the SM, the only source of flavour are the Yukawa couplings introduced as arbitrary

numerical inputs, “just-so” numbers which account for the fermion masses and mixings.

This consistent procedure is nevertheless unsatisfactory in its arbitrariness. Symmetries,

and in particular gauged symmetries, have engendered our deepest understanding of par-

ticle dynamics and a decades-old unfulfilled dream is that of explaining the flavour puzzle

in terms of a symmetry principle.

Attempts in this direction have been carried out in the past [1], generally from a top-

down approach. A generic consequence of these models is that the explanation of the

flavour puzzle is affected by the same flavour problem that afflicts many extensions of the
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SM, e.g., theories addressing the hierarchy problem. This issue of course does not disprove

the models of flavour, but it does however place the scale of new physics well beyond direct

probe [2].

Minimal flavour violation (MFV) [3, 4] is in contrast a bottom-up approach that aims

at characterizing the low energy effects of a class models that are not afflicted by the

flavour problem, e.g. SUSY models with gauge mediated SUSY breaking. The framework

is based on the global flavour symmetry group that the SM exhibits in the limit of vanishing

Yukawas [4], plus the simple assumption that at low-energies Yukawa couplings are the only

source of flavour in the SM and in whatever the BSM theory of flavour is. For quarks, the

flavour symmetry exhibited by the SM massless Lagrangian is [3]

U(3)Q ×U(3)u ×U(3)d , (1.1)

where Q denotes quark SU(2)L doublets and u and d stand for the right-handed components

of up and down quarks. Yukawa couplings break the symmetry and they are then treated

as spurions of the flavour group, weighting the possible BSM effective operators so as to

make them invariant under the flavour group. As a consequence, MFV predicts the relative

rates of flavour changing transitions, and furthermore new effects at or close the TeV scale

are allowed.

The MFV ansatz is neither the only flavour ansatz compatible with data nor a theory

of flavour, though. There have been attempts to go from the effective approach — where

the Yukawas are treated as spurions — to a more fundamental level where the Yukawas are

dynamical “flavon” fields, acquiring a non-trivial vacuum expectation value. The potentials

for the corresponding scalar fields have been discussed for several possible flavour repre-

sentations, with interesting consequences [1, 5–14]. Although a dynamical justification for

all fermion masses and mixings is still lacking, the potential minima lead for instance to no

mixing at leading order in the quark sector (in contrast to the lepton sector discussed fur-

ther below) when each Yukawa coupling is associated to a single flavon, a very encouraging

first step.

Nevertheless, unless the continuous symmetry in eq. (1.1) is substituted by a convenient

discrete subgroup, a generic consequence of breaking spontaneoulsy the SM global flavour

group is that of unobserved goldstone bosons. Would instead the symmetry be gauged,

the goldstone bosons would become the longitudinal degrees of freedom of massive vector

bosons. This exploratory effort was launched for the quark sector in ref. [15] and continued

in refs. [17–22]. In ref. [15] it was shown that the consistency of the gauge theory via

anomaly cancellation conditions, requires the addition of fermions with drastic implications

for phenomenology.

⊗∂µJ
µ
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The masses of the extra fermionic content of those gauged-flavour models are inversely

proportional to the masses of the light SM fermions (as it was introduced in ref. [16]), with

the consequence that flavour-changing neutral currents (FCNC) are highly suppressed for

light generations and new exotic gauge bosons could be as light as the electroweak scale.

This theory, with gauge symmetry at its core, offers a different take on the number of

generations; the fields must belong to irreducible representations of the flavour group and

thus the number of generations is linked to it, in the precise same sense in which there

are three colors in QCD. Although the starting motivation was the phenomenologically

successful MFV ansatz, the mechanism for protection against the flavour problem in the

gauged-flavour model does not conform to the MFV hypothesis; yet it is still very effective.

Here, the gauging of the lepton flavour group is considered. Our present knowledge of

masses and mixing in this sector is summarized as [24, 25]:

me = 0.511 MeV , mµ = 0.106 GeV , mτ = 1.78 GeV ,

∆m2
sol =

(
7.50+0.19

−0.17

)
10−5 eV2 , ∆m2

atm =

{
(2.457± 0.047)× 10−3 eV2 NH(
2.449+0.048

−0.047

)
× 10−3 eV2 IH

,

θ12 =
(
33.48+0.78

−0.75

)◦
, θ23 =

{(
42.3+3.0

−1.6

)◦
NH(

49.5+1.5
−2.2

)◦
IH

, θ13 =

{(
8.50+0.20

−0.21

)◦
NH(

8.51+0.20
−0.21

)◦
IH

,

(1.2)

where only three significant digits and no errors have been reported for the charged lepton

masses, as any further precision is below the present uncertainty on the other parameters.

In contrast to the quark case [15], the unknown nature of neutrino masses opens several

possibilities for constructing a consistent model with the lepton flavour symmetry gauged,

as evidenced by the various definitions of MFV in the lepton sector [26–30]. The guiding

principle followed here will be to consider phenomenologically viable setups with:

- Maximal flavour symmetry group of the Lagrangian for massless SM fermions

- Minimal extension of the spectrum

In the absence of right-handed neutrinos and neglecting fermion masses, the SM leptonic

Lagrangian is invariant under the continuous flavour group

U(3)` ×U(3)E , (1.3)

where ` denotes SU(2)L leptonic doublets and the subscript E stands for right-handed

charged leptons. The cancellation of gauge anomalies of this pure SM case along the

guidelines above will be shown to lead to the introduction of SM fermion singlets and thus

to Majorana neutrinos as a very natural consequence.

If instead one assumes from the beginning the existence of three right-handed neutrino

fields NR, two symmetry avenues are possible:

- Assuming Dirac neutrinos, the flavour group would be U(3)` × U(3)E × U(3)N , the

subscript N referring to the right-handed neutrinos [21].

– 3 –
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- Assuming instead Majorana neutrinos, the maximal flavour group is U(3)`×U(3)E×
O(3)N , leading naturally to a type I Seesaw [31–34] scenario with degenerate heavy

neutrinos.

This last option has been shown [10, 11, 13, 14] to allow a minimum of its scalar potential

with one maximal PMNS angle and Majorana phase (and a second angle generically large),

at leading order and for minimal flavon content. In contrast, the U(3)3 case tends to disfavor

large mixings, consistent with observations in the quark sector but in disagreement with the

observed leptonic mixing. The guiding principles chosen above also favor the second option

in that the extra field content needed is smaller, and therefore leads to more predictive

models: this scenario will be thus analyzed in detail. Interestingly, both cases — that is

with and without right-handed neutrinos — will lead to Majorana masses for the active

neutrinos, so that at low energies the Lagrangian responsible for masses and mixings will

be, for definiteness:

LY = −¯̀
LH YE eR −

1

2
¯̀
L H̃

Cν
ΛLN

H̃T `cL + h.c. , (1.4)

where H denotes the Higgs doublet, H̃ ≡ iσ2H
∗, YE is the matrix of charged lepton Yukawa

couplings, ΛLN the generic scale of Lepton Number (LN) violation and Cν the dimensionless

coefficient of the Weinberg operator [35] which describes light neutrino masses. The leptonic

mass matrices will then be given by

m` = YE
v√
2
, mν =

v2

2

Cν
ΛLN

, (1.5)

where v denotes the vacuum expectation value (vev) of the Higgs field, v = 246 GeV. The

generalized Seesaw pattern obtained below, together with the lightness of the electron as

compared to the τ and µ leptons, implies that the least broken subgroups of the flavour

symmetry are expected to reside in the µ − τ sector. The corresponding approximate

symmetries, the spectrum of new particles and the dominant experimental signals will be

determined and discussed in the following sections. Furthermore, the differences between

the effective low-energy couplings of the gauged-flavour theory and the leptonic MFV ansatz

will also be discussed.

The analysis will be restricted to the non-abelian sector of the global flavour symmetry,

as the focus is set on flavour-changing effects; some phenomenological differences which

result when gauging in addition the two non-anomalous abelian symmetries will be pointed

out, though.

The structure of the paper can be easily inferred from the table of Contents.

2 Gauged lepton flavour standard model: SU(3)` × SU(3)E

It will be shown in this section how the gauging of the pure SM leptonic flavour group

favours a Seesaw pattern and Majorana neutrino masses, and that the leading phenomeno-

logical signals are lepton universality violation (LUV), with deviations from the SM pre-

dictions which are particularly prominent in the τ sector.

– 4 –



J
H
E
P
1
2
(
2
0
1
6
)
1
1
9

SU(2)L U(1)Y SU(3)` SU(3)E

`L ≡ (νL , eL) 2 −1/2 3 1

eR 1 −1 1 3

ER 1 −1 3 1

EL 1 −1 1 3

NR 1 0 3 1

YE 1 0 3̄ 3

YN 1 0 6̄ 1

Table 1. Transformation properties of SM fields, of (flavour) mirror fields and of flavons under the

EW group and SU(3)` × SU(3)E .

The leptonic global flavour symmetry to be gauged is that exhibited by the SM in the

absence of Yukawa couplings, which is that of the kinetic terms,

Lleptons = i¯̀L /D`L + iēR /DeR . (2.1)

Anomaly cancellation of the non-abelian SU(3)` × SU(3)E symmetry is accomplished by

the addition to the Lagrangian of three extra fermion species, denoted here by ER, EL, and

NR. Their quantum numbers are shown in table 1, together with those for the SM fields.

In addition, for all fermion bi-linears invariant under the SM gauge symmetry but

not under the flavour symmetry, a scalar is introduced to restore flavour invariance. Only

two such scalar flavon fields are needed, denoted by YE and YN in table 1, belonging

respectively to the bi-fundamental representation of SU(3)`×SU(3)E and to the conjugate-

symmetric representation of SU(3)`. The vevs of these fields are related to the Yukawa

matrices but should not be directly identified with them, as functions of the flavon fields

may have the same transformation properties under flavour than YE,N , and they also

allow to build flavour invariant Lagrangian terms;1 this is a property essential to the

phenomenological success of the construction. Finally, other scalars charged under the SM

gauge group are not considered since they would not respect the condition of minimality

of the spectrum, in addition to potentially disrupting the electroweak symmetry breaking

(EWSB) mechanism.

Within this framework, the most general renormalizable Lagrangian with SU(3)` ×
SU(3)E gauge symmetry therefore reads:

L = i
∑
ψ

ψ̄ /Dψ − 1

2

∑
I

Tr
(
F IµνF

µν
I

)
+
∑
B

Tr
(
DµYBDµY†B

)
+DµH

†DµH

+ LY − V (H,YE ,YN ) ,

(2.2)

where ψ runs over all lepton species in table 1, I = `, E and B identifies flavon indices

B = E,N . The gauge bosons of SU(3)` and SU(3)E will be encoded in traceless hermitian

1For instance (Y−1
E )† and YE belong to the same flavour representation.
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matrices in flavour space, A`µ with A`µ,αβ = (A`µ,βα)∗ ,ΣαA
`
µ,αα = 0, and AEµ with AEµ,αβ =

(AEµ,βα)∗ ,ΣαA
E
µ,αα = 0, which can be alternatively decomposed in terms of generators

A`µ ≡
8∑

a=1

A`,aµ T a , AEµ ≡
8∑

a=1

AE,aµ T a , (2.3)

where T a are the flavour group generators, with Tr(T aT b) = δab/2 and T a ≡ λaSU(3)/2, and

λaSU(3) denote the Gell-Mann matrices. The gauge couplings of A`µ and AEµ will be denoted

by g` and gE , respectively. In eq. (2.2) the field strengths include those for the SM fields

and flavour gauge bosons, as do the covariant derivatives, e.g.

Dµ`L =

(
∂µ − i

g′

2
Bµ + i

g

2
σIW

I
µ + ig`A

`
µ

)
`L , (2.4)

while
DµYE = ∂µYE + igE A

E
µ YE − ig` YE A`µ ,

DµYN = ∂µYN − ig` (A`µ)T YN − ig` YN A`µ .
(2.5)

The Yukawa and mass terms can be written as follows:

LY = λE `LH ER + µE EL eR + λE EL YE ER + h.c.

+ λν `L H̃ NR +
λN
2
NRc YN NR + h.c. ,

(2.6)

where `L, eR, EL, ER and NR are vectors in flavour space. λE , λE , λν , λN and µE are each

a single complex parameter, since these couplings must be proportional to the identity to

preserve flavour invariance; moreover they can be made real and positive via chiral fermion

transformations. In contrast, YE and YN are matrices in flavour space and their nontrivial

background values are the only sources of flavour (including CP violation). Notice that

µE is not the mass of any of the particles in the spectrum, but simply a mass parameter

of the Lagrangian. The vev of YN is simultaneously the LN scale and the flavour scale;

in the limit YN = 0 in which only (diagonal) Dirac mass terms remain, the Lagrangian

would acquire a U(1)e×U(1)µ×U(1)τ symmetry which prevents the appearance of leptonic

mixing angles, a setup phenomenologically not viable. For this reason the introduction of

YN is necessary and therefore Majorana neutrino masses follow as a natural consequence

of gauging flavour in the lepton sector, even when taking as starting point only the SM

gauge symmetry.

The above Lagrangian has two accidental U(1) symmetries which are anomaly free

under the flavour gauge group. The first is an extension of LN symmetry, under which all

fermions transform with the same charge while YN transforms with minus twice that charge.

The second accidental symmetry is the abelian U(1)E acting on right-handed charged lep-

tons, that completes SU(3)E to a unitary group, and under which eR, EL and YE transform

non-trivially. Both U(1)’s would be spontaneously broken by the scalar vevs. However, in

all generality, the scalar potential contains terms such as det(YE) and det(YN ) [11], that

break explicitly these U(1)’s and prevent the appearance of phenomenologically dangerous

Goldstone bosons.

– 6 –
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In order to yield masses for all fermions, LY in eq. (2.6) must undergo both EWSB

and flavour symmetry breaking, so that in the unitary gauge

H ≡ (v + h)/
√

2 ,

YE ≡ 〈YE〉+ φE/
√

2 ,

YN ≡ 〈YN 〉+ φN/
√

2 ,

(2.7)

where h denotes the physical Higgs particle and φE and φN the physical scalar excitations

over the flavon vevs 〈YE〉 6= 0, 〈YN 〉 6= 0 (for simplicity, the Yukawa flavons and their

vevs will be denoted with the same symbols in the next sections). The ensuing spectrum

contains 6 Dirac electro-magnetically charged fermions and 6 Majorana neutral fermions.

There are no extra scalars charged under the SM gauge group and EWSB proceeds thus as

usual. The dynamics of flavour breaking is encoded in the scalar potential, which has been

studied in refs. [11, 13, 14]. The study of the potential is involved due to the complex flavour

structure that it aims to explain, but some general results and approximately conserved

symmetries where found in refs. [11, 13, 14]. In particular, a connection between degenerate

spectra with large angles and maximal Majorana phases was found for the neutrino sector.

2.1 Spectrum

Fermions. The Lagrangian in eq. (2.6) results in leptonic mass matrices for charged and

neutral leptons of the form(
0 λEv/

√
2

µE λEYE

)
+ h.c. ,

1

2

(
0 λνv/

√
2

λνv/
√

2 λNYN

)
+ h.c. , (2.8)

respectively, which suggest immediately a Seesaw-like pattern for both sectors. No addi-

tional fermions beyond those in the SM have been detected at experiments and this fact

sets strong bounds on the mass of the mirror fermions E and N introduced for the sake

of flavour anomaly cancellation. This indicates that the mass term for the extra charged

leptons, λEYE , should be larger than the other scales of the theory: YE � µE , v, — as-

suming all dimensionless parameters to be O(1). This is analogous to the condition for

neutrinos YN � v in the canonical type I Seesaw model on the right-hand side of eq. (2.8),

which leads to a mass scale of order ∼ 1012 GeV for the extra neutral fermions. With these

approximations, the Lagrangian in eq. (2.6) yields a Dirac mass for the heavy charged

leptons E and a Majorana mass for the right-handed singlets,

ME = λEYE
(

1 +O
(
v2

Y2
E

,
µ2
E

Y2
E

))
, MN = λNYN

(
1 +O

(
v2

Y2
N

))
, (2.9)

where ME and MN denote the heavy lepton mass matrices while the mass matrices for

the light states obey (see eq. (1.4))

YE =
m`

v/
√

2
=
λE
λE

(
µE
YE

)(
1 +O

(
v2

Y2
E

,
µ2
E

Y2
E

))
,

Cν
ΛLN

=
mν

v2/2
= λν

(
1

λNYN

)
λν

(
1 +O

(
v2

Y2
N

))
,

(2.10)
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µE

`L

λE

H

E eR

∼ λEµE
λEYE

eR

`L

H

Figure 1. Diagrammatic representation of the generation of SM charged lepton Yukawa couplings

(right figure) induced by the exchange of heavy mirror charged leptons (left figure).

illustrating that the mirror fermions are proportional to the flavon vevs while SM fermion

masses are inversely proportional to them. It follows that

m`ME ≈ λEµEv/
√

2 , mνMN ≈ λ2
νv

2/2 . (2.11)

The masses of the SM leptons are thus shown to be related to those of the heaviest extra

leptons by an inverse proportionality law: a Seesaw mechanism is present both for charged

and neutral leptons, similar to the case of quarks in ref. [15].

All flavour structure being encoded in YE and YN , their eigenvalues determine the

hierarchy of lepton masses up to common factors:

ME ≡ (Mê ,Mµ̂ ,Mτ̂ ) ' λEµE
(
3.5 · 105, 1.7 · 103, 102

)
, (2.12)

MN ≡ (M1 ,M2 ,M3 ) < |λν |2
v√
2

(
∞, 2 · 1013, 3.5 · 1012

)
, (2.13)

where ME (MN ) denotes the diagonal matrix of eigenvalues of the ME (MN ) matrix and

the hat refers to the individual charged mirror fermions masses.2

The expressions for the SM lepton masses can be also derived diagrammatically by

integrating out the heavy states as shown in figure 1 for charged leptons. It illustrates

that all light flavour structure stems from the mass matrix of mirror leptons given by YE ,

as the equivalent of the usual Yukawa couplings, λE and λE , as well as µE , are overall

constants. This resembles the MFV scenario of ref. [30] that, however, leads to different

phenomenology, see section 4.

From now on, we will work on a basis in which the charged lepton mass matrix YE
is diagonal, and thus ME = ME . For later use, it is convenient to explicitly invert the

relations in eq. (2.10) to extract the expressions for the flavon vevs,

YE =
λE µE√

2λE
diag

(
v

me
,
v

mµ
,
v

mτ

)
, YN =

λ2
ν v

2λN
U∗ diag

(
v

mν1

,
v

mν2

,
v

mν3

)
U † ,

(2.14)

where U is the PMNS leptonic mixing matrix. Notice that the choice of basis is allowed

by the flavour symmetry without loss of generality. The flavon vevs are thus determined

by low energy flavour data up to an overall constant.

2The unknown absolute neutrino mass scale translates in an inequality in contrast with the case of

charged leptons, and a bound on M1 cannot be derived since one neutrino could be massless.
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Figure 2. Gauge and fermion heavy spectrum for the gauged SM lepton flavour. Boxes composed

out of 3 × 3 squares depict the gauge boson mass eigenstates and rows of squares depict mirror

fermions. For the first, the squares are ordered according to the e, µ and τ flavour, from left to

right and from top to bottom. The boxes in the upper panel correspond dominantly to the SU(3)`
symmetry, with the gauge bosons shown in blue, while the lower panel shows in red the SU(3)E
gauge bosons. In both cases the intensity of the coloured cells represents the strength of the coupling

between the gauge boson and each lepton bilinear. As for the fermions, the intensity of the cells

represents, from left to right, the component of e, µ, τ , ê, µ̂ and τ̂ for the lower panel, and of νe,

νµ, ντ , νê, νµ̂, and ντ̂ in the upper panel. Normal ordering was assumed for neutrinos and the

parameter values used are θ23 = 45◦, θ12 = 33◦, θ13 = 8.8◦, Dirac CP phase δ = 2π/3, Majorana

phases α1 = α2 = 0, lightest neutrino mass mν1 = 10−11 GeV; all flavour gauge coupling constants

and all λ’s are set to 0.1, with µE = 15 GeV.

The spectrum of mirror fermions is illustrated as horizontal lines on the left-hand

side of figure 2 for natural values of the parameters. As anticipated, due to the inverse

dependence of mirror lepton masses with respect to their light counterparts the lightest

exotic fermion is the τ mirror lepton. The µ mirror lepton appears next, a factor ∼ mτ/mµ

higher. The mirror e appears yet a factor mµ/me above. Much higher in mass by a factor

∼ me/mν , the mirror neutrinos 3, 2 and 1 appear (in this illustration normal ordering was

assumed for the light neutrinos).

Flavoured gauge bosons. Flavour symmetry breaking produces masses for the sixteen

flavour gauge bosons encoded in A`µ and AEµ . The relevant part of the Lagrangian, including

only terms at most quadratic in the gauge fields, is given by

∑
I=`,E

Tr
(
AIµ∂

2AI,µ
)

+ Tr
{(
gEA

E
µYE − g`YEA`µ

)(
gEY†EAE,µ − g`A`,µY

†
E

)}

+ g2
`Tr

{(
A`∗µ YN + YNA`µ

)(
Y†N
(
A`,µ

)T
+A`,µY†N

)}
−
∑
I

gITr(AIµJ
µ
AI

) ,

(2.15)
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where the currents are hermitian matrices in flavour space:[
Jµ
A`

]
ij

= ¯̀j
Lγ

µ`iL + EjRγµE iR +N j
Rγ

µN i
R ,[

Jµ
AE

]
ij

= ējRγ
µeiR + EjLγµE iL ,

(2.16)

where i, j are flavour indices. The linear equations of motion (EOMs) in matrix form

stemming from eq. (2.15) reads

∂2A`µ − gEg`Y†EAEµYE +
g2
`

2

{
Y†EYE + Y†NYN + Y∗NYTN , A`µ

}
+2g2

`Y†NA`∗µ YN −
g`
2
JA

`

µ =
1

ng
Tr (L.H.S.)1 ,

(2.17)

∂2AEµ − gEg`YEA`µY†E +
g2
E

2

{
YEY†E , AEµ

}
− gE

2
JA

E

µ =
1

ng
Tr (L.H.S.)1 , (2.18)

where {. . . , . . .} denotes the anti-commutator, ng = 3 and L.H.S. stands for left hand

side.3 These equations can be alternatively written as an inhomogeneous linear system for

the sixteen gauge fields when the latter are described as an array of sixteen χaµ fields,

χµ ≡ (A`,1µ , . . . , A`,8µ , AE,1µ , . . . , AE,8µ ) , (2.19)

which allows to rewrite the Lagrangian in eq. (2.15) as

Lgauge = −1

2

∑
I=`,E

Tr
(
F IµνF

µν
I

)
+

1

2

16∑
a,b=1

χaµ
(
M2
A

)
ab
χb,µ −

∑
I=`,E

gITr
(
AIµJ

µ
AI

)
, (2.20)

where the mass matrix MA can be expressed as

M2
A =

(
M2
`` M2

`E

M2
E` M

2
EE

)
, (2.21)

with(
M2
``

)
ij

= g2
`

{
Tr
(
YE {Ti, Tj}Y†E

)
+ Tr

(
YN {Ti, Tj}Y†N

)
+Tr

(
Y†N
{
T Ti , T

T
j

}
YN
)

+ 2Tr
(
Y†NT Ti YNTj + Y†NT Tj YNTi

)}
,(

M2
`E

)
ij

=
(
M2
E`

)
ji

= −2g`gETr
(
TiY†ETjYE

)
,(

M2
EE

)
ij

= g2
ETr

(
Y†E {Ti, Tj}YE

)
,

(2.22)

where i, j = {1, . . . , 8}, and the linear EOM can be now written in the customary form,

(∂2 +M2
A)χµ = JµA , where JAµ ≡ (Jµ,1

A`
, . . . , Jµ,8

A`
, Jµ,1
AE
, . . . , Jµ,8

AE
) . (2.23)

Eq. (2.22) shows that gauge boson masses are proportional to the scalar fields YE and YN
whose structure is in turn given by, and inversely proportional to, light fermion masses

and mixings, see eq. (2.14). The spectrum of sixteen mass states is thus determined up

to two overall constants, that can be identified with the products gE ‖YE‖, g` ‖YN‖.4 The

3Eq. (2.18) displays explicitly the covariant properties of the gauge bosons and the trace removes the

singlet component of each term, leaving only the adjoint combination to which the gauge bosons belong.
4The modulus of a matrix B is defined as ‖B‖2 ≡ Tr

(
B†B

)
, implying that ‖YE‖ and ‖YN‖ are flavour

invariant constructions.
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hierarchy YN � YE that followed from assuming order one dimensionless coefficients and

µE around the EW scale, implies that:

- The heaviest gauge bosons to good approximation are those of the SU(3)` group, A`µ,

while the lightest gauge bosons will be those corresponding to the SU(3)E group, AEµ .

- In this regime the mixing between AEµ and A`µ is small. We will refer to AEµ (A`µ) as

the lightest (heaviest) states.

The spectrum of flavour gauge bosons is shown in figure 2 next to that for mirror

fermions, for natural values of the parameters. Boxes represent flavour gauge bosons and

the colored entries in a given box indicate the lepton flavours to which that gauge boson

couples. The blue-colored boxes in the upper panel correspond to the A`µ gauge bosons,

while the red-colored boxes correspond to the AEµ gauge bosons; as expected the former

are heavier by a factor ∼ me/mν due to the inverse dependence of their masses with the

light neutrino mass.

Lightest gauge bosons. The AEµ fields will thus dominate the phenomenology mediated

by flavour gauge bosons. Because their mass matrix is to a good approximation propor-

tional to the charged lepton flavon vev YE , while the charged lepton mass matrix is instead

inversely proportional to it, the hierarchies in charged lepton masses translate into hierar-

chies in the gauge boson spectrum: the lightest AEµ gauge bosons will be those mediating

transitions which involve the heaviest right-handed charged leptons and in particular the

τR lepton. In fact, because of the zero trace of the generators, at least two different leptons

must participate in any coupling, and the overall conclusion is that the lightest flavour

gauge bosons will produce deviations in both µR and τR sectors.

Technically, the AEµ mass eigenstates are largely aligned with the SU(3) generators

except for the diagonal components given by

T̂3 ≡ (
√

3T8 − T3)/2 =
1

2

 0 0 0

0 1 0

0 0 −1

 , T̂8 ≡ (
√

3T3 + T8)/2 =
1

2
√

3

 2 0 0

0 −1 0

0 0 −1

 .

(2.24)

It follows from eq. (2.22) that their respective masses are given by

M2
AE,aµ

' 2g2
E

∥∥∥T̂am−1
`

∥∥∥2

∥∥Y−1
E

∥∥2

∑
α=e,µ,τ

m2
α, (2.25)

where T̂ a = T a for all a 6= 3, 8, m` is the mass matrix of the charged leptons and greek

indices stand from now on for charged lepton flavours. The fact that the size of YE (Y−1
E )

is dominated by the electron (tau) mass,

‖YE‖2 =
λ2
Eµ

2
E

2λ2
E

v2

m2
e

(
1 +

m2
e

m2
µ

+
m2
e

m2
τ

)
,

∥∥Y−1
E

∥∥2
=

2λ2
E

λ2
Eµ

2
E

m2
τ

v2

(
1 +

m2
µ

m2
τ

+
m2
e

m2
τ

)
,

(2.26)
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makes all gauge bosons with a right-handed electron entry a factor mµ/me heavier than the

rest. Indeed, because me � mµ,mτ , this can be seen as an approximate SU(2) symmetry in

the µ−τ sector when YE is taken to be diag(1/ye, 0, 0), which is the reason why the diagonal

generators T̂8, T̂3 are better suited to describe mass states than T8, T3. Moreover, under

the U(1)e × U(1)µ × U(1)τ approximate symmetry present for YN � YE , the off-diagonal

gauge bosons transform as AEαβ → eiθα−iθβAEαβ , which requires that both components of

each off-diagonal entry have the same mass (so as to combine into a complex gauge boson):

this approximate symmetry will suppress charged lepton flavour violation.

In summary, the three AEµ gauge bosons corresponding to the approximate SU(2)

symmetry in the µ− τ sector are found to be the lightest (first layer of the lower panel in

figure 2); a factor mµ/me higher the remaining five SU(3)E gauge bosons appear (second

layer in that figure). In turn, the leading phenomenological signals consists of flavour-

conserving leptonic observables and, furthermore, low energy processes mediated by AEµ
for the lighter leptons are suppressed by heavier mass scales, providing a flavour protection

mechanism, as previously described for quarks in ref. [15].

As for the relative mass of mirror fermions versus flavour gauge bosons, the lightest

particle turns out to be the mirror tau lepton τ̂ , see figure 2. Indeed, the lightest gauge

boson mass ∼
(
gE/

∥∥Y−1
E

∥∥) (mτ/mµ) is a factor ∼ mτ/mµ larger than the lightest mirror

fermion mass ∼ λE/
∥∥Y−1

E

∥∥, due to the tracelessness of the generators implying a non-

vanishing µµ or µτ entry in the three lightest gauge boson interactions. In contrast, were

the full U(3)E group gauged an associated lighter (AEµ )ττ gauge boson would appear in the

spectrum.

Scalars. Flavour symmetry breaking gives rise to 18 (YE) + 12 (YN )− 16 (SU(3)2) = 14

physical scalar bosons, corresponding to fluctuations around the 6 mixing parameters, 6

masses and U(1)` and U(1)E phases. This part of the spectrum will in general contribute

to the same observables than flavour gauge bosons, although without disrupting the flavour

structure [15]. The detailed scalar mass spectrum depends however on the scalar potential

parameters, as opposed to the gauge bosons and fermions, and it will not be discussed

further in this work.

2.2 Interactions

The distinction between fermionic mass and interaction eigenstates will be relevant: there-

fore, for the rest of this section flavour eigenstates will be denoted with a prime5 and

described by(
e′L
E ′L

)
=

(
cΘ sΘ

−sΘ† cΘ†

)(
eL
EL

)
,

(
e′R
E ′R

)
=

(
c

Θ†R
−s

Θ†R

−sΘR −cΘR

)(
eR

ER

)
,(

νc′L
N ′R

)
=

(
c

Θ†ν
i s

Θ†ν

−sΘν i cΘν

)(
νcL
NR

)
,

(2.27)

where unprimed fields are here mass eigenstates and the mixing angles are encoded in 3×3

matrices in flavour space Θ, cΘ = (−1)n/(2n)!(ΘΘ†)n , sΘ = (−1)nΘ/(2n+1)!(Θ†Θ)n [36].

5For instance, all fermions in table 1 will be considered as primed fields for the sake of this section.
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These unitary rotations diagonalize the mass terms stemming from eq. (2.6) (see also

eqs. (2.9) and eqs. (2.10)):

−
(
cΘ −sΘ

sΘ† cΘ†

)(
0 λEv/

√
2

µE λEYE

)(
c

Θ†R
−s

Θ†R

−sΘR −cΘR

)
=

(
m` 0

0 ME

)
,

−
(
c

Θ†ν
−sΘν

i s
Θ†ν

i cΘν

)(
0 λνv/

√
2

λνv/
√

2 λNYN

)(
c

Θ†ν
i s

Θ†ν

−sΘν i cΘν

)
=

(
mν 0

0 MN

)
,

(2.28)

where ΘT
ν = Θν has been used. Although these equations can be solved exactly, as done

in ref. [15] for the quark case, the absence of a large Yukawa like that of the top quark

seems to indicate that an expansion in v/Y is valid. In particular in the charged lepton

sector, given eq. (2.14), the mixing terms are diagonal in flavour space (Θαβ = δαβ Θαα

and analogously for ΘR):

Θ =
λEv√
2λEYE

+O
(
v3

Y3
E

)
' λEv√

2Mτ̂

m`

mτ
,

ΘR =
µE
λEYE

+O
(
µ3
E

Y3
E

)
' m2

`

mτMτ̂

1

Θ
=
µE
Mτ̂

m`

mτ
,

Θν =
λνv√

2λNYN
+O

(
v3

Y3
N

)
' λνv√

2MN

.

(2.29)

In the case of O(1) dimensionless parameters considered here, the heavy NR neutrino

scale suppresses the mixing Θν which turns out to be O(10−10); all the effects associated

to Θν will thus be neglected in what follows.

After rotating to the mass basis, the fermion interaction Lagrangian is not diagonal,

and in particular heavy-light couplings arise. It can be written as a sum of three terms:

Lψ-int = Lψ̄ψASM + Lψ̄ψAFL + Lψ̄ψφ . (2.30)

The couplings to the SM gauge bosons can be casted in the conventional form,

Lψ̄ψASM = −eAµJµA −
g

2cW
ZµJ

µ
Z −

(
g√
2
W+
µ J
−µ
W + h.c.

)
, (2.31)

with modified currents defined as

Jµγ = −ēγµe− ĒγµE ,
J−µW = ν̄L U

†γµ (cΘeL + sΘEL) ,

JµZ = ēγµ
(
−(c2W − sΘsΘ†)PL + 2s2

WPR
)
e− Eγµ

(
sΘ†sΘPL − 2s2

W

)
E

+ ν̄Lγ
µνL −

(
ELγµsΘ†cΘeL + h.c.

)
,

(2.32)

where cW (c2W ) and sW stand for the cosine and sine of (twice) the Weinberg angle,

respectively, and PL,R are the chirality projectors. Notice that the right-handed mixing

ΘR does not appear in the gauge interactions, because the SM quantum numbers of ER
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and eR are the same. Most relevantly, as Θ is a diagonal matrix in flavour space as given in

eq. (2.29), the transitions mediated by SM electroweak gauge bosons differ in the charged

τ , µ and e sectors, with relative amplitudes given by mτ/mµ/me.

The interactions with flavour gauge bosons can be written as

Lψ̄ψAFL = −g` Tr(A`µJ
µ
A`

)− gE Tr(AEµ J
µ
AE

) , (2.33)

where the currents are given in eq. (2.16). Notice that the difference between flavour and

mass bases has been neglected in the previous expression, as that difference would only

induce subleading effects in the observables of interest.

Finally, the couplings to the radial components of the scalar fields — that is, to the

physical scalars — read, in the unitary gauge:

Lψ̄ψφ =
−1√

2

(
ēL
EL

)(
(λEcΘ h− λEsΘ φE)sΘR (λEcΘ h− λEsΘ φE)cΘR

(λEcΘ† φE + λEsΘ† h)sΘR (λEcΘ† φE + λEsΘ† h)cΘR

)(
eR
ER

)

− λν√
2
h ν̄LNR −

1

2
√

2
NRc φNNR + h.c. . (2.34)

The purely bosonic interactions follow from the Lagrangian in eq. (2.2) once the scalar po-

tential is specified. The variables in this potential will determine the scalar mass spectrum

which we do not examine in this work. However the scalar couplings to fermions given

above do enjoy the flavour suppression characteristic of this model and will not disturb the

flavour structure, as previously stated. Scalar excitation effects will be neglected in the

phenomenological analysis that follows.

2.3 Phenomenology

The exchange of mirror charged leptons and SU(3)E gauge bosons provides the dominant

signals, as argued above, and it will be shown here that LUV signals are particularly promi-

nent for τ -related observables, while no charged lepton flavour violation (cLFV) is induced

due to the preserved U(1) lepton number symmetry for each flavour: all modifications to

SM couplings induced are flavour diagonal, as explained earlier. Flavour observables for

the leading signals can be written in terms of only three independent parameters, which

here are chosen to be

- The mixing parameter Θ.6

- The lightest mirror fermion mass Mτ̂ .

- The norm
∥∥Y−1

E

∥∥, which is given approximately by its largest eigenvalue proportional

to mτ , see eq. (2.26).

We determine next the bounds on these three parameters.

6Given one mixing angle, the other two are obtained from it by scaling.
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Bounds on the mixing parameters: the strongest bounds on Θ come from non-

universality and non-unitarity of the PMNS matrix that follow from the (flavour

diagonal) modifications of the couplings of leptons to Z and W bosons, eq. (2.32).

The decay rate of the Z boson to a pair of charged leptons (denoted by l in the

following equation) is now given by:

Γ(Z → l−l+) =
g2MZ

96πc2
W

(
c2

2W + 4s4
W − 2c2W s

2
Θ

)
+O(Θ4)

= ΓSM

(
Z → l−l+

)(
1− 2c2W

c2
2W + 4s4

W

Θ2
ll

)
+O

(
Θ4
)
,

(2.35)

where the second line illustrates that the new contribution can only have a destructive

interference with the SM one. The ratio of the branching ratios for the decay of Z

into τ+τ− and e+e− allows to extract explicitly the dependence on Θττ ,

Br (Z → τ+τ−)

Br (Z → e+e−)
− 1 ' −2.14Θ2

ττ . (2.36)

The experimental bound [24] on the observable on the left hand side of this expression

leads to a strong limit on Θ:

Br (Z → τ+τ−)

Br (Z → e+e−)
−1 = 0.0019±0.0032 =⇒ |Θττ | =

λEv√
2Mτ̂

≤ 4.5×10−2 , (2.37)

where the bound has been rescaled to the 95% CL assuming a gaussian behaviour.

In consequence, using eq. (2.29),

|Θµµ| ≤ 2.7× 10−3 , |Θee| ≤ 1.3× 10−5 . (2.38)

At this point it is pertinent to ask whether the persistent anomalies in the decay of

B meson into K and K∗ bosons [37, 38] could be induced by the modifications to

Z-fermion couplings just discussed, as precisely they tend to diminish the decay rate

into µ and τ leptons while the electronic channels are almost uncorrected; this could

happen for instance via a Z-penguin loop attached to the quark legs and/or through

the equivalent mechanisms when gauging flavour in the quark sector [15]. Never-

theless, the bounds just set on Θµµ are too strong compared with the experimental

anomaly which, if confirmed, would require O(1) corrections.

Similar bounds on Θ can be inferred from the analysis of non-unitary contribu-

tions to the diagonal elements of the PMNS matrix U , to which other observables

contribute. The leptonic mixing matrix is now corrected by

Ũ ≡ cos ΘU , (Ũ Ũ †)αβ − δαβ ' −Θ2
αβ = −λ

2
Ev

2

2M2
τ̂

δαβ
m2
α

m2
τ

, (2.39)

and in consequence the most stringent bound stems again from the ττ entry; bounds

on the diagonal entries can be derived from a global fit to lepton universality and

precision electroweak observables [39], yielding

|Θττ | ≤ 7.5× 10−2 , (2.40)
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at 95% CL. An alternative bayesian global fit can be found in ref. [40] resulting in

|Θττ | ≤ 7.6× 10−2.

Bounds on Mτ̂ : the heavy-light fermion mixing is controlled by the Yukawa couplings,

see eq. (2.6), and in consequence the lightest fermion of the heavy spectrum — the

mirror tau — will decay predominantly to channels involving longitudinal gauge

bosons WL and ZL and the Higgs particle, provided τ̂ is heavy enough,

Γ(τ̂ → ZLτ) =
λ2
EMτ̂

64π
, Γ(τ̂ →WLντ ) =

λ2
EMτ̂

32π
, Γ(τ̂ → hτ) =

λ2
EMτ̂

64π
.

(2.41)

The τ̂ fermion is electrically charged and it would thus be copiously pair-produced

in e+e− colliders via photon exchange, if sufficiently light. The lack of evidence for

new resonances and for charged heavy leptons in LEP data [41] sets a constraint

Mτ̂ & 100.8 GeV at 95% CL, (2.42)

a bound that does not depend on the mixing parameter Θ. The LHC can provide

stronger constraints on the mass of the mirror taus. The most sensitive channel

would involve pair production of τ̂ via neutral current or photon exchange and their

subsequent decay to τ+Z with ∼ 25% branching ratio. To the best of our knowledge

such a search has not been performed yet. Related searches for SUSY chargino pair

production and their decay to W plus missing energy (neutralino) currently constrain

chargino masses to be above ∼ 620 GeV [42]. The decay of the τ̂ to W +ν would lead

to a similar final state, although with somewhat different kinematics. Thus, similar

constraints are expected to hold for the τ̂ , however a dedicated search that directly

applies to this scenario is still missing and needed.

Bounds on
∥∥∥∥∥∥∥∥∥Y−1

E

∥∥∥∥∥∥∥∥∥: eq. (2.42) can be translated into a limit on the flavon vev, applying

eq. (2.9),∥∥Y−1
E

∥∥ =
λE
Mτ̂

(
1 +O(m2

µ/m
2
τ )
)
< 0.01λE GeV−1 , at 95% CL . (2.43)

Moreover, bounds on
∥∥Y−1

E

∥∥ independent from λE can be extracted from the

limits on four-lepton interactions induced by the exchange of SU(3)E gauge bosons

among right-handed charged SM leptons. Integrating out those AEµ gauge bosons

results in effective low-energy couplings of the form

− cαβκρE

2

∥∥Y−1
E

∥∥2
(
eαRγµe

β
R

) (
eκRγ

µeρR
)
, (2.44)

which do not exhibit a dependence on the coupling constant gE . The coefficient cE
encodes a specific flavour-conserving suppression:

cαβκρE =
m2
αm

2
κ∑

γm
2
γ

[
δαρδβκ

1

m2
α +m2

κ

− δαβδκρ
1

2
∑

γm
2
γ

]
, (2.45)
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where the last term would be absent if gauging the full U(3)E . This expression is (tree-

level) exact up to YE/YN corrections as opposed to the approximate mass formula

in eq. (2.25). Considering specifically a process involving two electrons (denoted here

by e1
R) and two other generic charged leptons eαR, eq. (2.44) becomes7

∥∥Y−1
E

∥∥2 m2
e

m2
τ

(1 + δα1)

(
2m2

τm
2
α −m2

α(m2
e +m2

α)

2(m2
e +m2

α)m2
τ

)(
ē1
Rγ

µe1
R

)
(ēαRγ

µeαR) , (2.46)

where
∑
m2
β ' m2

τ has been used. These operators are suppressed by an extra ∼
m2
e/m

2
τ factor with respect to the case where no flavour symmetry is implemented [43].

Equivalently, it can be argued that the effective scale associated to the new physics

responsible for these processes can be mτ/me smaller than in the case without flavour

symmetry protection, in a pattern reminiscent of MFV as expected. The bounds

stemming from LEP data [44] on four-fermion interactions involving two electrons

can thus be translated into 95% CL constraints on
∥∥Y−1

E

∥∥:

e+e− → e+e− =⇒
∥∥Y−1

E

∥∥ < 0.41(0.44) GeV−1 ,

e+e− → µ+µ− =⇒
∥∥Y−1

E

∥∥ < 0.37(0.30) GeV−1 ,

e+e− → τ+τ− =⇒
∥∥Y−1

E

∥∥ < 0.57(0.57) GeV−1 ,

(2.47)

where the first (second) value is for destructive (constructive) interference with the

SM contributions. These constraints are weak but complementary to that in eq. (2.43)

since they are independent from λE .

Stronger bounds on
∥∥Y−1

E

∥∥ can be inferred from present data on other flavour conserv-

ing processes such as magnetic moments, to which the flavour SU(3)E gauge bosons may

contribute. Defining as is customary the muon anomalous magnetic moment, aµ, as the

coefficient of the muon dipole operator in the effective Lagrangian [45]

L(g−2)µ ≡ −
aµe

4mµ
µ̄ σρδ µF

ρδ + h.c. , (2.48)

it is easy to see that penguin diagrams mediated by the SU(3)E flavour gauge bosons induce

a correction of the form

δaµ = −
m2
µ

12π2

∑ g2
E

M2
AEa

(T̂ a · T̂ a)µµ ' −
3

4

m4
µ

6π2m2
τ

∥∥Y−1
E

∥∥2
, (2.49)

where the Casimir factor of 3/4 results from the SU(2)µ−τ quasi-degeneracy among the

lightest gauge bosons. Note that the sign of the contribution obtained is negative,8 as the

SM one, and therefore it does not help to relax the tension between the SM prediction and

the experimental determination, ∆aµ ≡ aExp
µ − aSM

µ = 287(63)(49)× 10−11 [24]. However,

7In eqs. (2.45) and (2.46) m1 = me, m2 = mµ and m3 = mτ .
8The sign of the contribution is negative because the lightest gauge bosons couple only to the right-

handed leptons. For a detailed analysis of the role of the chirality of the couplings to leptons in the g − 2

contributions see, e.g., ref. [23].
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requiring that the flavour correction does not increase the present tension beyond 5σ , the

following bound follows:∥∥Y−1
E

∥∥ ≤ 0.047 GeV−1 , or equivalently ‖YE‖ ≥ 7.4× 104 GeV . (2.50)

Note that, unlike for the other constraints discussed in this section, a 95% CL has not

been adopted in this bound since the SM prediction itself already presents a stronger

disagreement with current data.

It is interesting to translate the bounds on ‖YE‖ into a limit on the flavour gauge boson

mass scale. Eq. (2.50) translates into a limit on the mass of the lightest gauge bosons AE,3,

AE,6, AE,7 given by

MAE,i & 2.5× 102 gE GeV , (2.51)

as a function of the gauge flavour coupling gE . In the case of the illustrative benchmark

spectrum considered in figure 2, the lightest flavour gauge bosons have masses of O(10) TeV,

largely satisfying the bounds obtained in this section assuming a perturbative weak regime

for the new gauge sectors.

3 Gauged lepton flavour Seesaw model: SU(3)` × SU(3)E × SO(3)N

In the context of the type I Seesaw theory with three degenerate right-handed neutrinos

NR, the maximal flavour symmetry group of the Lagrangian in the limit of vanishing masses

for the three known fermion families is U(3)`×U(3)E×O(3)N . The latter is the symmetry

exhibited by the kinetic terms plus heavy degenerate right-handed neutrinos,

L = i¯̀L /D`L + iēR /DeR + iNR /∂NR +
1

2
{µLNNR

cNR + h.c.} . (3.1)

As earlier stated, we focus on flavour effects and restrain here to gauging the non-

abelian factors SU(3)` × SU(3)E × SO(3)N only. The field content that needs to be added

then in order to cancel gauge anomalies is identical to that in the previous model, since

triangle diagrams cancel for SO(3)N and the NR fermions are singlets under the SM gauge

symmetry. The fermion spectrum is summarized in table 2; note that the quantum numbers

for YN differ from those in the previous section.

Using again and until further notice unprimed fields to denote flavour eigenstates, the

Lagrangian describing the model can be written as that in eq. (2.2), where now LY encodes

both Yukawa interactions and Majorana mass terms,

LY = λE `LH ER + µE EL eR + λE EL YE ER

+ λν `L H̃ NR + λN N c
R YN NR +

µLN

2
NR

c
NR + h.c.,

(3.2)

where again all overall constants, i.e., λ’s and µ’s, can be made real via chiral rotations. The

only source of CP violation lies then in the non-trivial flavour structure of the vevs of the

scalar fields YE and YN . The charged lepton mass matrix inferred from this Lagrangian is

identical to that in eq. (2.8), and in consequence the particle spectrum and phenomenology

of the SU(3)E sector (gauge bosons and mirror charged leptons) matches the description
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SU(2)L U(1)Y SU(3)` SU(3)E SO(3)N

`L ≡ (νL , eL) 2 −1/2 3 1 1

eR 1 −1 1 3 1

NR 1 0 1 1 3

ER 1 −1 3 1 1

EL 1 −1 1 3 1

NR 1 0 3 1 1

YE 1 0 3̄ 3 1

YN 1 0 3̄ 1 3

Table 2. Transformation properties of SM fields, of (flavour) mirror fields and of flavons under the

EW group and SU(3)` × SU(3)E × SO(3)N .

given in the previous section. In contrast, the particle spectrum and phenomenology of the

SU(3)` and SO(3)N sectors (gauge bosons and heavy neutral fermions) will now depend

on three fundamental scales: the vevs of YE and YN and the lepton number parameter

µLN. Note that now the LN and flavour scales are distinct; for instance for µLN = 0, there

will still be be physical leptonic mixing and flavour effects associated to YN . The neutral

fermions mass matrix in the Lagrangian eq. (3.2) (in the {`c,NR, NR} basis),

1

2

 0 λνv/
√

2 0

λνv/
√

2 0 λNYTN
0 λNYN µLN

+ h.c., (3.3)

is typical of inverse Seesaw scenarios [46–48], in which generically that separation of the

two scales holds. Eq. (3.3) immediately suggests two interesting limiting regimes for the

parameters YN and µLN:

µLN � YN : in this limit the NR fields would decouple producing an effective mass term

for the NR of the form YNYTN/µLN. The basic type I Lagrangian of the previous

model is recovered, albeit with the (2, 2) entry of the neutral mass matrix in eq. (2.8)

replaced by that effective mass.

YN � µLN: an approximate U(1)LN symmetry holds in this limit, as often explored

within low-scale inverse Seesaw scenarios [49–51]. NR
c and NR would form pseudo-

Dirac pairs and the light neutrino masses will be suppressed by a factor µLN/(λNYN )

with respect to those for the basic type I Seesaw in eq. (2.8).

The second limit leads to new phenomenology and will be the focus of the rest of the section.

The interplay between YE and YN will determine the spectrum and the phenomenology of

the flavour gauge bosons and will be discussed next.
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3.1 Fermion spectrum and interactions: YN � µLN case

It is possible to expect in this model measurable signals of lepton-flavour violation, precisely

because the LN parameter (µLN) and lepton flavour violation scale (‖YN‖) are independent

and the latter is not strongly constrained by the tiny value of light neutrino masses. By

the same token, the mirror neutral fermions — determined by ‖YN‖ — are now allowed to

be much lighter than in the gauged-flavour SM discussed in section 2, see eq. (2.13), and

close to those of the charged lepton mirror fermions. Indeed, in the µLN � YN limit the

singlet fermions NR and NR
c form Dirac pairs of mass

MN ' λNYN , (3.4)

where we neglected λνv contributions and the mass splitting in quasi-Dirac fields is given

by µLN, while the three light neutrinos acquire Majorana masses suppressed by the LN

scale, which does not carry flavour structure,9

mν =
v2

2

Cν
ΛLN

' v2

2

λν
2

λ2
N

1

YN
µLN

1

YTN
. (3.5)

The lightness of neutrino masses can be thus attributed to a small µLN instead of a very

large ‖YN‖ (needed in the previous section): this is a technically natural solution as µLN is

protected by the approximate U(1)LN symmetry. In consequence, ‖YN‖ can now be of the

order of the electroweak scale or even smaller, resulting in putatively observable signals of

lepton-flavour violation mediated by flavour gauge bosons of the SU(3)` × SO(3)N sector

(see further below) independently of the value of light neutrino masses.

Note that, as in the gauged-flavour SM in section 2, the mirror lepton mass matrices

are linearly proportional to the flavon vevs YE (eq. (2.9)) and YN (eq. (3.4)), and the mass

of the SM charged leptons is inversely proportional to YE (eq. (2.10)); in contrast, the light

neutrino masses exhibit now a quadratic inverse dependence on YN , eq. (3.5). From this

equation a parametrization equivalent to that of Casas-Ibarra [52] can be introduced:

YN =
v√
2

λν
λN

R

√
µLN

mdiag
ν

U † , (3.6)

where U is the PMNS matrix and mdiag
ν is the diagonal matrix of light neutrino masses mνi ,

mdiag
ν ≡ (mν1 ,mν2 ,mν3) , (3.7)

and R is an orthogonal complex matrix. The latter can be parametrized in general as the

exponential of the anti-symmetric Gell-Mann matrices with complex coefficients, although

in the case discussed an SO(3)N transformation allows to remove the imaginary part of

these coefficients,

R = eηiT
′i
, RRT = 1 , R = R† , (3.8)

where ηi are three real parameters and the matrices T ′i denote the set of three genera-

tors
{
T 2, T 5, T 7

}
.

9The effective LN scale here is thus ΛLN ∼ ‖MN‖2 /µLN, as usual in inverse Seesaw constructions, while

the scale suppressing flavour effects is ‖MN‖.
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In the rest of this section, and in analogy with eq. (2.27), we revert again to the notation

in which flavour eigenstates are denoted by primed fields while unprimed ones stand for

the mass eigenstates. In the limit of vanishing µLN, which will be assumed from now on,

the mass term for neutrinos coming from eq. (3.2) after symmetry breaking reduces to(
λν ν ′L v/

√
2 + λNN ′cR YN

)
N ′R + h.c. = −N c

RMNNR + h.c., (3.9)

and therefore a unitary rotation among only the νL and NR fields suffices to diagonalize

the mass matrix: (
ν ′L
N ′R

c

)
=

(
cΘν sΘν

−s
Θ†ν

c
Θ†ν

)(
νL
NR

c

)
, (3.10)

where Θν is as given in eq. (2.29) and we simultaneously define N ′R = −NR in order to

recover the usual sign for the Dirac mass term of the heavy states, and in accordance with

the definitions in the gauged-flavour SM, eqs. (2.27) and (2.34).

Interactions with SM gauge bosons. YN introduces new flavour non-conserving tran-

sitions, associated to the extra fermionic states and parameterized by Θν . The flavour

changing and light-heavy mixing effects can then be written in the mass basis as in

eq. (2.31), where now

Jµγ = −ēγµe−ĒγµE ,

J−µW = ν̄Lγ
µU †cΘν (cΘeL+sΘEL)+NR

cγµs†Θν (cΘeL+sΘEL), (3.11)

JµZ = ēγµ
(
−(c2W−sΘsΘ†)PL+2s2

WPR
)
e−Eγµ

(
sΘ†sΘPL−2s2

W

)
E−
(
ELγµsΘ†cΘeL+h.c.

)
+ν̄Lγ

µc2
ΘννL+NRγ

µs
Θ†ν
sΘνNR+(ν̄Lγ

µcΘνsΘνN
c
R+h.c.).

Note that the PMNS matrix appearing in W couplings is given by the product U †cΘνcΘ,

with U being its unitary part and Θν and Θ encoding deviations from unitarity. The

expressions for the mixing angles equal those in the previous section, eq. (2.29).

Scalar interactions. Using the definitions in eq. (2.7) for the scalar excitations, the

generalized Yukawa interactions read for vanishing µLN:

Lψ̄ψφ =
−1√

2

(
ēL
EL

)(
(λEcΘh− λEsΘφE)sΘR (λEcΘh− λ̃EsΘφE)cΘR

(λEcΘ†φE + λEsΘ†h)sΘR (λEcΘ†φE + λEsΘ†h)cΘR

)(
eR
ER

)

− λν√
2
h
(
ν̄L cΘν +NR

c s
Θ†ν

)
NR −

λN√
2

(
NR

c c
Θ†ν
− ν̄L sΘν

)
φN NR + h.c. . (3.12)

In this model there are 18 + 18 − 19 = 17 scalars φE and φN ,10 which are fluctuations

around the 6 mixing parameters, 6 masses, 3 variables in the orthogonal self-hermitian

matrix R and two phases in U(1)` and U(1)E . Their effects are strongly suppressed [15]

and will not be further discussed.
10Among the 36 real degrees of freedom of the two 3 × 3 complex matrices YE and YN , 19 become the

longitudinal components of the 19 flavour gauge bosons of the model.
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Were the extra neutral states N lighter than the Higgs boson, the following decay

channel would open:

Γ(h→ Nν) =
λ2
ν

16π
Mh

(
1− M2

N

M2
h

)
, (3.13)

where N stands here for the generic mass eigenstates. The N fields will in turn be unstable

and decay to lighter charged fermions and neutrinos via the interaction in eq. (3.11), with

a pattern that depends strongly on MN and Θν , potentially leading to new visible Higgs

decays, displaced vertices or contributions to the invisible decay. Additional bounds would

then apply; we will not further consider this case of heavy neutrinos lighter than the Higgs

particle.

Flavour gauge boson spectrum and interactions. Additional flavour non-conserving

effects can be induced by flavour gauge bosons, A`µ. Indeed, the theory contains nineteen

flavour gauge bosons whose Lagrangian reads∑
I

Tr
(
AIµ∂

2AI,µ
)

+ Tr
{(
gEA

E
µYE − g`YEA`µ

)(
gEY†EAE,µ − g`A`,µY

†
E

)}
+ Tr

{(
gNA

N
µ YN − g`YNA`µ

)(
gNY†NAN,µ − g`A`,µY

†
N

)}
−
∑
I

gITr
(
AIµJ

µ
AI

)
,

(3.14)

where cubic and quartic gauge boson interactions are not shown as they will play no role in

the phenomenological analysis below. In eq. (3.14) the ensemble of fields AIµ, I = `, E,N , is

treated as a traceless hermitian matrix and the currents are defined as matrices in flavour

space, with the currents Jµ
A`

and Jµ
AE

as defined in eq. (2.16) and the SO(3)N current

given by [
Jµ
AN

]
ij

=
1

2

(
N̄ j
Rγ

µN i
R −N

i
Rγ

µN j
R

)
. (3.15)

The EOM resulting from eq. (3.14) for AEµ is identical to that in eq. (2.18), while for A`µ
and ANµ they are given by

∂2A`µ−gEg`Y†EAEµYE−gNg`Y†νANµ YN+
g2`
2

{
Y†EYE+Y†NYN ,A`µ

}
−g`

2
JA

`

µ =
1

ng
Tr(L.H.S.)1,

∂2ANµ +
g2N
4

{
YNY†N+Y∗NYTN ,ANµ

}
−g`gN

2

(
YNA`µY†N−Y∗N (A`µ)TYTN

)
−gN

2
JA

N

µ = 0, (3.16)

where ng=3. Eq. (3.14) can be alternatively written in a compact matrix notation arranging

the flavour gauge bosons in an array χaµ=
(
A`,1µ , . . . , A`,8µ , AE,1µ , . . . , AE,8µ , AN,1µ , . . . , AN,3µ

)
:

Lgauge = −1

2

∑
I=`,E,N

Tr
(
F IµνF

µν
I

)
+

1

2

19∑
a,b=1

χaµ
(
M2
A

)
ab
χb,µ−

∑
I=`,E,N

gITr
(
AIµJ

µ
AI

)
, (3.17)

where the mass matrix M2
A can be written in blocks as

M2
A =

 M2
`` M2

`E M2
`N

M2
E` M

2
EE 08×3

M2
N` 03×8 M2

NN

 , (3.18)
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LUV and cLFV
µ ! eee, τ ! µee

Spectrum in Fig. 6

YE ⇠ YN

YE >kYNk

U(1)2`+E ⇥ SO(3)N
aµ, νµN ! νµµµN

Spectrum in Fig. 4

YN >kYEk
SU(3)E
LUV in µ− τ and
sub-leading cLFV
Spectrum in Fig. 5

Figure 3. Schematic diagram for the relevant phenomenology scenarios. Each box reports the

symmetry associated to the relevant gauge bosons and the expected dominant phenomenology.

with
(
M2
EE

)
ij

and
(
M2
`E

)
ij

=
(
M2
E`

)
ji

identical to those in eq. (2.22) for the gauged-flavour

SM case, while instead(
M2
``

)
ij

= g2
`

{
Tr
(
YE {Ti, Tj}Y†E

)
+ Tr

(
YN {Ti, Tj}Y†N

)}
,(

M2
`N

)
iĵ

=
(
M2
N`

)
ĵi

= −2g`gNTr
(
TiY†NT ′ĵYN

)
,(

M2
NN

)
îĵ

= g2
NTr

(
Y†N
{
T ′
î
, T ′

ĵ

}
YN
)
,

(3.19)

where T ′ ≡ {T2, T5, T7}, i, j = {1, . . . , 8} and î, ĵ = {1, . . . , 3}.
Notice that, contrary to the processes mediated by the exchange of SU(3)E gauge

bosons AEµ , those mediated by A`µ can indeed lead to observable flavour non-conserving

processes given the non-diagonal flavour structure of YN and the related low scales allowed

in this gauged-flavour type I Seesaw scenario.

Generally speaking, MA` will be determined by the largest value between ‖YE‖ and

‖YN‖. There are in general too many parameters to make definite predictions, though.

The most relevant consequences are briefly discussed next and illustrated in figure 3 for

three relevant limits: YE > ‖YN‖, YE ∼ YN and ‖YE‖ < YN , with the latter two cases

being of special phenomenological interest as they lead to putatively observable cLFV in

addition to LUV signals.

3.1.1 YE > ‖‖‖YN ‖‖‖ — vectorial flavour-preserving gauge bosons

The heaviest gauge bosons would be those whose mass is dominated by the vev of YE .

This applies to all SU(3)` and SU(3)E gauge bosons but two (see below), as YE transforms

under those two groups. The hierarchical structure of YE — with eigenvalues inversely

proportional to the SM charged lepton masses — results in a stratification of those heavier

gauge bosons in two layers, as illustrated by the two upper layers of the spectrum in

figure 4: the upper level contains the nine gauge bosons which couple to the electron, while
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Figure 4. Gauge and fermion heavy spectrum for the gauged lepton flavour type I Seesaw model,

with YE � ‖YN‖. Boxes correspond to flavour gauge fields and lines to mirror fermions. Neutrino

normal ordering was assumed and the parameter values taken are θ23 = 45◦, θ12 = 33◦, θ13 = 8.8◦,

Dirac CP phase δ = 3π/2, Majorana phases α1 = α2 = 0, R = 1. All g′s and all λ′s are 0.1 except

λN = 1 and µE = 1 TeV, µLN = 1 KeV, while mν1 = 0.03 eV.

the intermediate level corresponds to those gauge bosons coupling only to muons and taus.

The phenomenological impact of the upper level will be neglected in what follows.

The lightest gauge bosons would be those which acquire instead a mass only through

the vev of YN . There are five such states. Three of them are the SO(3)N gauge bosons,

depicted (in green) in the illustrative case in figure 4: they carry flavour, mediating tran-

sitions only in the Ni realm. Notice that they will only mix for complex YN , since the

mass cross-term that connects them to the other gauge bosons is Tr[T3,8Y†NT2,5,7YN ] =

−Tr[T3,8YTNT2,5,7Y∗N ], see eq. (3.19).

The presence of the other two light eigenstates — the lightest ones in figure 4 —

can be understood from the fact that YE can be made diagonal via a rotation in flavour

space. This corresponds to the three distinct vectorial and diagonal U(1) symmetries which

are preserved: LN which has not been gauged, plus two others which correspond to very

light gauge bosons, which acquire a mass only through the vev of YN . These states are

diagonal in flavour space and traceless — see figure 4 — and given by the linear combination

AVµ = (gEA
`
µ + g`A

E
µ )/(g2

` + g2
E)1/2, with mass matrix

M2
AV
≡ 2g2

`

(
Tr(T3Y†NYNT3) Tr(T3Y†NYNT8)

Tr(T8Y†NYNT3) Tr(T8Y†NYNT8)

)
. (3.20)

Those two gauge bosons generically couple to all flavours with similar strength, see

eq. (3.20), and thus the most stringent bound stems from LEP [53],

MAV1
≥ 2.1× 102 GeV , (3.21)

where AV1 denotes the lightest eigenstate of eq. (3.20). Those two vector bosons also

contribute constructively11 to the muon anomalous magnetic moment:

δaµ =
m2
µ

12π2
× g2

Eg
2
`

g2
` + g2

E

∑
ij

Tµµi

(
M−2
AV

)
ij
Tµµj . (3.22)

11As opposed to the contribution studied in eq. (2.49), in this case the sign is positive since the coupling

of the lightest flavour gauge boson to leptons is vectorial.
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Although they could potentially explain the existing anomaly, this is excluded by neutrino

trident production data, νµN → νµµµN with N denoting here a nucleus. Indeed, the

contributions from the flavour gauge bosons to this observable read [54]

σ(SM+A)

σ(SM)
=

1 +
(
1 + 4s2

W + 2δV
)2

1 +
(
1 + 4s2

W

)2 , δV = v2 g2
Eg

2
`

g2
` + g2

E

∑
ij

Tµµi

(
M−2
AV

)
ij
Tµµj , (3.23)

and are constrained by the CCFR [55] and CHARM-II [56] collaborations, implying the

indirect bound δaµ < 7.5× 10−10 , which precludes an explanation of the muon magnetic

moment anomaly via these gauge bosons.

Figure 4 also illustrates that the lightest exotic neutral fermions would be those mir-

roring the light neutrino sector, as expected since the mirror fermion masses are linearly

proportional to the flavon vevs. Therefore, the unitarity deviation Θν induced in the

PMNS matrix by the mirror neutrinos dominates over Θ (stemming from the mirror

charged leptons), see eq. (3.11). Analyses probing flavour non-conserving processes and

electroweak precision data [40, 57–81] can then be translated into constrains on the com-

bination ΘνΘ†ν [39] as follows:(
ΘνΘ†ν

)
ee
< 2.5× 10−3,

(
ΘνΘ†ν

)
eµ
< 2.4× 10−5,(

ΘνΘ†ν

)
µµ
< 4.0× 10−4,

(
ΘνΘ†ν

)
eτ
< 2.7× 10−3,(

ΘνΘ†ν

)
ττ
< 5.6× 10−3,

(
ΘνΘ†ν

)
µτ
< 1.2× 10−3,

(3.24)

at 95% CL.

3.1.2 YN > ‖‖‖YE‖‖‖ — LUV and subleading cLFV

In this limit, in which all entries of YN are larger than the largest one in YE , the lightest

gauge bosons correspond to the SU(3)E symmetry. Therefore, the leading phenomenology

described in section 2 when gauging only the SM leptonic flavour group SU(3)` × SU(3)E
will apply. In particular, as ‖YE‖ dominates, an effective low-energy SU(2)E symmetry is

at play and mediated by the three lightest gauge bosons, while transitions involving the

electron flavour will be additionally suppressed by (me/mµ)2 with respect to those in the

µ–τ sector. The lepton universality violation effects associated to the µ − τ sector and

dominated by fermionic τ̂ exchanges found in section 2 are also valid for this case.

As for the heavier states, since the leading contribution to the SU(3)` gauge boson

masses is given by YN no large hierarchies among the SU(3)` gauge boson masses are

expected for a generic R matrix and generic light neutrino mass spectrum. Therefore, the

importance of the lepton flavour violating processes mediated by these gauge bosons will

not be strongly correlated to the specific flavours involved. This is in contrast to the case

for AEµ shown in section 2.1. However, there are specific limiting cases with approximate

symmetries for which hierarchies are introduced and the number of relevant parameters is

reduced so that more definite predictions can be made. We briefly consider an example next.

– 25 –



J
H
E
P
1
2
(
2
0
1
6
)
1
1
9

Legend

103

104

105

106

107

108

109

103

104

105

106

107

108

109
M
!G
eV
"

e
!
Μ
!
Τ
!

e Μ Τ

Le LΜ LΤ

Le

LΜ

LΤ

eR ΜR ΤR

eR

ΜR

ΤR

N1 N2 N3

N1

N2

N3

Νe ΝΜ ΝΤ NLΝe NLΝΜNLΝΤ NRΝeNRΝΜNRΝΤ

Figure 5. Gauge and fermion heavy spectrum for the gauged lepton flavour type I Seesaw model,

with YN > ‖YE‖ and degenerate light neutrinos, CP-odd case. Boxes correspond to flavour gauge

fields and lines to mirror fermions. Neutrino normal ordering was assumed for neutrinos and the

parameter values taken are θ23 = 45◦, θ12 = 33◦, θ13 = 8.8◦, Dirac CP phase δ = 3π/2, Majorana

phases α21 = −π/2, α31 = −2π/3, R is a rotation in the 23 sector by angle −i times a 12 rotation

by angle i. All g′s and all λ′s are 1 except λN = 2, λν = 0.2, µE = 15 GeV, while µLN = 100 GeV

and mν1 = 0.03 eV.

Generic R and degenerate neutrino masses. As expected, the lightest states of the

spectrum will be similar to those discussed in section 2, as seen by comparing figure 2 and

figure 5, while the heavier states can be now much lighter and thus of phenomenological

interest, as explained earlier on.

In the limit of degenerate neutrinos, eqs. (3.6) and (3.8) lead to

YN =
v√
2

λν
√
µLN

λN
√
mν

RU † ≡ v√
2

λν
√
µLN

λN
√
mν

eηiT
′i
U † . (3.25)

This expression is invariant under a U(1) subgroup of SU(3)` × SO(3)N :

YN → eiα ηiT
′i

(YN )Ue−iα ηiT
′i
U † , (3.26)

where α is the (real) parameter of the transformation. Therefore, the gauge boson as-

sociated with this U(1) will only acquire mass through YE and will be lighter than the

rest. The generator of this residual U(1) symmetry in the SU(3)` sector is UηiT
′iU † and

therefore the induced cLFV four fermion operator mediated by that state is

g2
`

M2
AU(1)

(
¯̀
LγµUηiT

′iU †`L

)2
. (3.27)

That lighter state is illustrated by the first gauge boson on the second layer of figure 5, in

which generic values of the Dirac CP phase δ and a non-trivial R matrix have been used.

In this generic case, the most competitive bound on the operator in eq. (3.27) stems from

the µ→ eee decay.

In the case of a CP conserving PMNS matrix, the antisymmetry of T ′i would imply that

the combination UηiT
′iU † in eq. (3.27) would have vanishing flavour diagonal interactions.

The only expected decays would then be τ → µee and τ → µµe, determined by the specific

values of R. Nevertheless, the recent hints [82, 83] of a leptonic CP phase δ ∼ 270◦ would

discard this possibility, if confirmed. In this perspective, we refrain as well from detailing

other specific predictions that would follow for scenarios with δ = 0 or π.
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Figure 6. Gauge and fermion heavy spectrum for the gauged lepton flavour type I Seesaw model,

with YE ∼ ‖YN‖. Boxes correspond to flavour gauge fields and lines to mirror fermions. Neutrino

normal ordering was assumed and the parameter values taken are θ23 = 45◦, θ12 = 33◦, θ13 = 8.8◦,

Dirac CP phase δ = 3π/2, Majorana phases α1 = α2 = 0, R = 1, all λ’s and g’s are taken to be 0.1

except λN = 1 and µE = 15 GeV, µLN = 20 KeV and mν1 = 0.003eV.

3.1.3 YE ∼ ‖‖‖YN ‖‖‖ — LUV and cLFV

This case is involved given the interplay of several scales, although it can be described

qualitatively. As YE is intrinsically hierarchical (and determined by the inverse of the

charged lepton masses), in the example considered next it is assumed that the norm ‖YN‖
is heavier than the eigenstates of the approximate SU(2)E symmetry of the muon-tau sector

and lighter than the rest of the YE entries. In consequence, the lightest exotic fermion and

gauge boson masses are as in the SM gauged case discussed in section 2, as can be seen

by comparing figure 2 with the illustrative case in figure 6. The lightest fields in the

spectrum are again the mirror τ̂ lepton and the SU(2)E gauge bosons, leading to the µ− τ
phenomenology discussed in section 2.

Additionally, the gauge bosons which take their masses dominantly from YN may now

lead to observable cLFV signals, as discussed next. Electron number violation will be

suppressed by the largest of the two scales ‖YE‖ and ‖YN‖, while muon and tau violation

by the largest of ‖YE‖me/mµ and ‖YN‖. Therefore, the generic expectations for flavour

violating processes are:

Brµ→eee(A
`
µ) , Brτ→µe−e−(A`µ) , Brτ→µµe(A

`
µ) ∼

(
‖YE‖2 + ‖YN‖2

)−2
,

Brτ→µµµ(A`µ) , Brτ→µe+e−(A`µ) ∼
(
m2
e

m2
µ

‖YE‖2 + ‖YN‖2
)−2

.
(3.28)

The experimental bounds in table 3 can then be translated into limits on the combinations√
‖YE‖2 + ‖YN‖2 ≥ 3.5× 105 GeV , from µ→ eee ,√

m2
e

m2
µ

‖YE‖2 + ‖YN‖2 ≥ 1.9× 104 GeV , from τ → µe+e− .
(3.29)

When the two scales ‖YE‖ and ‖YN‖ are comparable, µ → eee sets a lower bound on

each of them of ∼ 2.5 × 105 GeV; when instead ‖YN‖ < ‖YE‖, τ → µe+e− leads to a

stronger bound on ‖YE‖ & 2.9 × 106 GeV. In both cases, flavour observables turn out to

be more sensitive to the scale of the flavour gauge bosons than present collider data, as
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Br(µ→ eγ) ≤ 5.7× 10−13 Br(τ → µγ) ≤ 4.4× 10−8

Br(τ → eγ) ≤ 3.3× 10−8 Br(µ→ eee) ≤ 1.0× 10−12

Br(τ → eee) ≤ 2.7× 10−8 Br(τ → µµµ) ≤ 2.1× 10−8

Br(τ → µ+µ−e) ≤ 2.7× 10−8 Br(τ → µµ−e+) ≤ 1.7× 10−8

Br(τ → µe+e−) ≤ 1.8× 10−8 Br(τ → µ+e−e) ≤ 1.5× 10−8

Table 3. 90% CL limits on flavour violating decays of a charged lepton into three other charged

leptons [24].

the bounds on ‖YE‖ are stronger than that extracted from direct searches in eq. (2.50),

‖YE‖ ≥ 7.4× 104 GeV.

4 Comparison with minimal lepton flavour violation, for YN � YE

We have gauged in the preceding sections the maximal non-abelian leptonic global flavour

symmetry of the SM and of the type I Seesaw Lagrangian. In doing so, we were inspired

by the phenomenological successes of the MFV ansatz in which the Yukawa couplings are

treated as scalar spurions. A pertinent question is then whether the resulting low-energy

phenomenology described above is compatible with that expected in the original formula-

tion of Minimal Lepton Flavour Violation (MLFV) [26] and subsequent works [27–30].

The low-energy effective Lagrangian of our gauged-flavour models will, by construction,

be formally invariant under the spurion analysis of MLFV; the question is whether the

analytic dependence on the scalar fields matches that in MLFV. It is shown below that

this is not always the case, due mainly to the presence of additional gauge bosons in the

gauged-flavour Lagrangians.

For definiteness, we focus here on the specific limit YN � YE , which applies both to

the gauged-flavour SM described in section 2 and to one scenario of the gauged-flavour

type I Seesaw model, see section 3.1.2. Integrating out the flavour gauge bosons and the

mirror fermion fields in eqs. (2.2)–(2.6), (3.1) and (3.2), and restricting the expansion to

order Y−2 in flavon fields vevs (YE and YN ), the low-energy Lagrangian reads12

L eff =

(
−`LH

λEµE
λEYE

eR − `TLH̃
Cν

ΛLN
H̃T `L + h.c.

)
+ ieR

1

λ2
E

µ2
E

YEY†E
/DeR + i¯̀LH

λ2
E

λ2
E

1

Y†EYE
/D
(
H†`L

)
+ i¯̀LH̃

λ2
ν

λ2
N

1

Y†NYN
/D
(
H̃†`L

)

− cE
2

Tr

[
1

Y†EYE

]
(eRγµeR)2 − 1

2
Tr

[
1

Y†NYN

](
¯̀
Lγµ`L

)[
c`
(
¯̀
Lγµ`L

)
+ 2c`E(eRγµeR)

]
,

(4.1)

12Recall that we are working on the convention in which µE and all λi coefficients are real; otherwise all

λ2
i should be traded by |λi|2.
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`αL

H

E
`βL

H

λ2E
M2
E

¯̀α
LH /DH†`βL

Figure 7. Example of effective operator induced via heavy fermion exchange.

where subleading contributions to the displayed operators have been neglected, e.g. 1/Y2
N

vs. 1/Y2
E , given that we assume YN � YE .

The first line in eq. (4.1) is in fact the general effective Lagrangian in eq. (1.4) which

describes the charged lepton and neutrino masses, with the charged lepton Yukawa coupling

given by YE = (λEµE)/(λEYE) in both gauged-flavour models considered, SM and type I

Seesaw scenario, as already found in eq. (2.10) and section 3. Cν is linear in Y−1
N for the

former scenario and quadratic for the latter, see respectively eqs. (2.10) and (3.5).

The second line in eq. (4.1) displays fermion-bilinear terms which are those resulting

from integrating out the mirror fermions, as illustrated in figure 7. Finally, the last line

stems from integrating out the heavy flavour gauge bosons resulting in effective four-fermion

operators only; a flavour non-conserving operator resulting from A`µ exchange is depicted

in figure 8 as illustration. The coefficient of the first four-fermion operator, cE , has been

given in eq. (2.45), whereas the explicit formulas for c` and c`E depend on the model under

consideration; they will be discussed further below for phenomenologically accessible cases.

Mirror lepton exchange. The first term on the second line of eq. (4.1) contributes to

the kinetic energy of the right-handed light charged leptons; the field redefinition

eR →
(

1− 1

2λ2
E

µ2
E

Y†EYE

)
eR , (4.2)

allows to recover canonically normalized kinetic energies and leaves the rest of the La-

grangian unchanged, at the order considered. This confirms the result found in section 2,

as the mixing ΘR among right-handed charged fermions does not affect the gauge interac-

tions.

The second term in that line is a dimension six (d = 6) effective operator with a

coefficient of order Y−2
E and therefore quadratic in the charged lepton Yukawa couplings

YE , see eq. (2.10). Were one to write the O(Y 2
E) coefficient for such operator with the

prescription of MLFV, it would read, in matrix notation,

MLFV:
i

Λ2
¯̀
LHYEY

†
E
/D
(
H†`L

)
, (4.3)

which indeed corresponds to our result in eq. (4.1) provided the associated scale is identified

as Λ = µE , see eq. (2.10). Note that Λ is then not the mass scale of any of the heavy

particles in the model and can actually be lower.13

13If instead the coefficient is written in terms of mass scales, e.g. the mass of the lightest mirror charged

lepton, Mτ , it would read λ2
E/M

2
τ × YEY †E/

∥∥Y 2
E

∥∥ to order mµ/mτ .
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`αL

`βL

A`

`δL

`γL

g2`
M2
A`

¯̀α
Lγ

µ`βL
¯̀γ
Lγ

µ`δL

Figure 8. Tree-level exchange of a flavour gauge boson resulting in a four-fermion effective operator.

The rest of operators produced by fermion exchange can be cast as well in standard

MLFV form; in particular the third operator in the second line of eq. (4.1) induces charged

flavour violation as was indeed already studied in the context of leptonic MFV in ref. [29].

A relevant difference between MLFV constructions and the flavour-gauged scenario

concerns CP violation. While a priori no symmetry principle prevents from assuming

a complex overall phase in non-hermitian MLFV operators, in the lepton gauged-flavour

models studied here such extra overall phases are absent. Therefore, the gauging of the lep-

ton flavour symmetries provides a mechanism to protect against CP violation, not present

in generic MLFV scenarios. In other words, the only source of CP violation are the scalar

vevs and thus the only physical CP-odd phases are those of the PMNS matrix in both

gauged-flavour scenarios, plus the usual extra phases of the minimal type I Seesaw model

in the gauged-flavour type I Seesaw case.

Flavoured gauge boson exchange. The effective couplings resulting from the exchange

of a heavy flavour gauge boson present a more complicated structure than those mediated

by heavy fermions. For instance, the first operator in the third line of eq. (4.1) involves

four right-handed charged lepton fields and a coefficient of order Y−2
E . Using eq. (2.45) and

eq. (2.10), the dependence on the charged lepton Yukawa coupling YE in the gauged-flavour

case reads, in matrix notation,

−1

2

∑
k

(−1)k eR
γµ(

Y †EYE

)k eR eRγµ (Y †EYE)k+1
eR +

1

4Tr
[
Y †EYE

] (eRγµY †EYEeR)2
, (4.4)

where 1/(1 + x) =
∑

(−x)n has been used. In contrast, within the MLFV prescription the

Lagrangian term would be given by

MFV:
1

Λ2

(
eRγµY

†
EYEeR

)
(eRγµeR) , (4.5)

at leading order. In consequence, the spurion dependences do not match even if formally

both are of order Y 2
E . Furthermore, only two leptons are involved in a non-trivial flavour

structure in the MLFV case instead of four in the gauged-flavour scenario. In both cases,

although this operator induces LUV, it does not induce LFV which is the distinctive feature

of MLFV to which we now turn.

The second term in the third line of the Lagrangian eq. (4.1) exhibits a combination

of two operators which induce LFV transitions — weighted down by Y−2
N — which can be
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compared to the operators O
(1)
4L , O

(2)
4L , O

(3)
4L of ref. [27]. Those two operators are strongly

suppressed in the gauged-flavour SM case as the YN scale is necessarily very high, while

they may lead to visible effects in the context of the gauged-flavour type I Seesaw model in

section 3.1.2, as the scale associated to YN can be low enough even if YN > ‖YE‖. In the

following, to allow a fair comparison with MLFV we will focus on flavour non-conserving

transitions and consider a CP-even limit of the gauged-flavour type I Seesaw model.

CP invariance (R = 1, δ = 0, α21 = α31 = 0). In the CP-even limit considered,

the combination of two operators appearing in the last term in eq. (4.1),

− 1

2
Tr

[
1

Y†NYN

](
¯̀α
Lγµ`

β
L

) [
cαβκρ`

(
¯̀κ
Lγ

µ`ρL
)

+ 2 cαβκρ`E

(
eκRγ

µeρR
)]
, (4.6)

is determined by the coefficients given by

cαβκρ` = U †αiUjβU
†
κrUsρ c

ijrs
` , cαβκρ`E = Uαi†U jβ cijκρ` , (4.7)

with

cijrs` =
1∑
kmνk

(
δisδjrmνimνr(m

2
νi +m2

νr)(
m2
νi −m2

νr

)
(mνi −mνr) + δir(2mνi)

3

−
2δirδjsm

2
νim

2
νj

(m2
νi −m2

νj )(mνi −mνj )− δij(2mνi)
3
− δijδrsmνimνr

2
∑

kmνk

)
,

(4.8)

cijκρ`E =
mκmρ

m2
κ +m2

ρ

1∑
kmνk

(
2UκjU

†
iρmνimνj (m

2
νi +m2

νj )

(m2
νi −m2

νj )(mνi −mνj ) + δij(2mνi)
3

−
4UκiU

†
jρm

2
νim

2
νj

(m2
νi −m2

νj )(mνi −mνj )− δij(2mνi)
3
−
∑

k UκγmνkU
†
γρ δijmνi∑

kmνk

)
,

(4.9)

where the c` coefficients correspond to transitions between purely left-handed leptons, while

c`E correspond to left-right mixed terms.14 Alike to the comparison between the operators

in eqs. (4.4) and (4.5), the Yukawa dependence of the gauged-flavour model cannot be

matched in this case to that in standard approaches to MLFV [26, 27]; we will compare

here for definiteness with the “extended” model in ref. [26] for which the MLFV ansatz

would suggest a coupling proportional to15

¯̀
LγµU m

diag
ν U †`L ¯̀

Lγ
µ`L . (4.10)

The differences in the operator coefficients in eqs. (4.6)–(4.9) versus eq. (4.10) translate

into distinctive phenomenological signals; as an illustration, the branching ratios for various

14The coefficients cijγδ`E appear suppressed with respect to cijkl` by a factor mγmδ/(m
2
γ+m2

δ). This implies

that left-right c`E contributions to transitions between leptons of neighbouring flavours (e.g. µ → eee and

τ → µµµ) are larger than between the third to the first generations (e.g., τ → eee or τ → µee).
15In the notation of our gauged-flavour type I Seesaw model in section 3, the coefficient in front of this

equation would read (v2 µLN)−1, see footnote 9.
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Figure 9. Comparison between the gauged-flavour type-I Seesaw scenario and MLFV in a CP-even

case: branching ratios for the different lepton rare decays over that for µ→ eee, for neutrino normal

ordering (NO) and inverted ordering (IO).

lα → lβl
+
ρ l
−
κ processes are compared in figure 9. A first clear difference is the absence of

processes that violate lepton flavour by two units in the MLFV case, e.g., τ → µe+e+ and

τ → eµ+µ+ (the dashed lines in the gauged-flavour case). These processes are suppressed in

MLFV by higher-order spurion insertions, while the more intricate dependence on Yukawa

couplings of the gauged-flavour case allows them at leading order.

A second prominent feature depicted in figure 9 is the strong hierarchy between two

different type of decays in the gauged-flavour scenario, for inverted neutrino hierarchy
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and also for normal ordering with large mν1 : transitions involving only one flavour in

the final state are much suppressed, see figures 9a and 9c, unlike in MLFV, figures 9b

and 9d. In consequence, the dominant channels for the gauged-flavour scenario are τ → µee

and τ → eµµ (in purple and orange). This hierarchy can be understood in terms of

symmetry. If the three light neutrinos are almost degenerate, an approximate SO(3)`+N
remains unbroken, as already pointed out in refs. [13, 14]. The three corresponding gauge

bosons would therefore be lighter than the rest with masses proportional to the neutrino

mass splittings and thus suppressed by a factor (mνi −mνj )/(mνi +mνj ). The lightest of

these gauge bosons corresponds to the smallest mass splitting (∆m2
sol ≈ 7.50 × 10−5 eV2)

between mν2 and mν1 , and dominates the contribution for inverted neutrino hierarchy as

well as for normal ordering with large mν1 . Because the couplings of this lightest flavour

gauge boson are given by the generator of SO(2) rotations, which is antisymmetric in

flavour, a selection rule for the decays follows. This can be seen explicitly in the limit

∆msol �
∑
mνi in which eqs. (4.6)–(4.8) simplify to

'−
∥∥Y−1

N

∥∥2

54

(
∑

kmνk)2

∆m2
sol

(
Uα1U

†
2β − Uα2U

†
1β

)(
Uγ1U

†
2δ − Uγ2U

†
1δ

)
¯̀α
Lγµ`

β
L

¯̀γ
Lγ

µ`δL ,

from which it follows that whenever two flavours coincide, given the assumption of CP in-

variance the corresponding operator coefficient vanishes an hence l→ l′l′l′ cancels, whereas

for more than two flavours involved

Br (τ → µee)

Br (τ → µµe)
=

sin2(θ23)

sin2(θ13)
∼ 20 . (4.11)

In contrast, in MLFV the τ → µµµ and τ → eee branching ratios are a factor two — due to

combinatorics — times those for τ → µe+e− and τ → eµ+µ−, respectively, see figures 9b

and 9d.

5 Conclusions

We have considered the gauging of leptonic global flavour symmetries that the SM La-

grangian or its fermionic Seesaw extension exhibit in the limit of negligible light lepton

masses. A remarkable consequence is that the gauge anomaly cancellation conditions point

to a universal underlying Seesaw pattern for both charged and neutral leptons:

- The gauging of the flavour symmetry SU(3)` × SU(3)E of the SM Lagrangian (that

is, without assuming right-handed neutrinos) leads to the minimal type I Seesaw

scenario as the simplest realization in terms of extra fields needed. In other words,

without assuming Majorana neutrino masses, the gauging procedure suggests them

directly.

- Starting instead from the maximal flavour symmetry of the type I Seesaw Lagrangian,

SU(3)` × SU(3)E × SO(3)N , leads to a double Seesaw and in particular an inverse

Seesaw pattern.
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This study extends previous work on gauging the flavour symmetries of the SM quark

sector, which had already shown the existence of a Seesaw-like pattern that protected the

model from the customary FCNC issues which tend to be the graveyard of attempts to

understand dynamically the flavour puzzle. Interesting signals and correlations have been

identified here as a result of gauging the maximal non-abelian flavour symmetries of the

SM and of the type I Seesaw Lagrangian. The main leptonic flavour signals expected tend

to involve the heavier SM leptons, whose interactions are less constrained by present data.

In the leptonic gauged-flavour SM case, the expected phenomenological signals are

flavour-conserving, and include charged-lepton universality violation and non-unitarity of

the PMNS matrix that follow from the (flavour diagonal) modifications of the couplings of

leptons to Z and W bosons, particularly prominent for τ -related observables. Furthermore,

the first particles awaiting discovery would be a tau mirror lepton and SU(3)E gauge bosons

which mediate µR − τR transitions.

Gauging instead the maximal lepton flavour symmetry of type I Seesaw may lead not

only to signals of lepton universality violation but also to putatively observable flavour

non-conserving transitions among charged leptons. The dominant signals expected depend

mainly on the relative hierarchy of the scalar vevs that generate the charged lepton masses

‖YE‖ versus those that generate the neutrino ones ‖YN‖ and the LN scale. When all

YE vevs are larger than ‖YN‖, the leading transitions are again flavour-conserving, while

the lightest states in the spectrum are mirror neutrinos and gauge bosons whose mass is

determined by ‖YN‖. In the opposite case, that is for ‖YN‖ > ‖YE‖, the lowest states are

again the mirror tau lepton and the three SU(3)E gauge bosons which mediate transitions

in the µR − τR sector. Of particular interest is the fact that Majorana masses within an

approximate U(1) lepton number symmetry setup are allowed, associated to the inverse

Seesaw structure that results naturally from the requirement of gauge anomaly cancellation;

it is precisely because the lepton scale is then distinct from the lepton number scale, that

the latter can be low enough to expect sizeable flavour-changing signals. The precise

phenomenology depends much on the CP pattern of the model. For the generic case of

CP violation and (almost degenerate) neutrinos, µ → eee is at present the most sensitive

flavour non-conserving channel.

The results have been also compared with the phenomenological predictions of leptonic

minimal flavour violation. We have shown that the presence of additional flavour gauge

bosons may provide distinct low-energy transitions among the SM fields. It is also remark-

able that the gauging of the lepton flavour symmetries provides a mechanism to protect

against extra sources of CP violation beyond those in the SM (and Seesaw type I), which is

absent in generic minimal lepton flavour violation scenarios. In addition, flavour changing

transitions among charged leptons involving more than two distinct leptons tend to be

stronger than those in which a tau or muon decays into three equal leptons, in contrast

again with generic minimal flavour violation. The impact of scalar flavour excitations is

model-dependent and remains to be studied in detail, although it is expected to abide by

the same flavour protection than the rest of the theory.

The necessary mediation of at least one BSM field is at the basis of the Seesaw mech-

anism for the generation of light neutrino Majorana masses; it is very suggestive that the

– 34 –
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mass mechanism for light fermions — quarks and leptons — which results from gaug-

ing the flavour symmetries corresponds qualitatively to the same pattern. Interestingly,

other theoretical constructions such as “partial compositeness” lead as well to a universal

Seesaw-like pattern behind fermion masses; if new flavour signals are indeed observed, an

extended and detailed study of many flavour channels will be needed to disentangle a possi-

ble flavoured-gauge origin. The main drawback of our construction is our ignorance about

the absolute value of the scales involved, that could render the predictions of these models

out of reach in the foreseeable future. Yet, the quest to identify a dynamical origin to the

flavour puzzle is a fundamental and fascinating endeavour plausibly awaiting discovery.
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