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1 Introduction

Several recent works have investigated the relationship between parity odd transport coef-

ficients and anomalies in even dimensions [1–11]. Among these relations, the ones relating

the mixed gravitational anomalies or the pure gravitational anomalies to the appropriate

parity odd transport coefficients are the harder to establish. This is because these anoma-

lies influence transport coefficients which occur at lower order in the derivative expansion

when compared to the order they occur in the anomalous conservation law. There are

three methods used to establish the relationship between the gravitational anomalies and

the corresponding transport coefficients

1. Direct perturbative evaluation of the Kubo formula of the transport coefficients using

finite temperature field theory methods [12–16].

2. Using the method of consistency of the Euclidean vacuum [17, 18].
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3. Evaluating the one loop thermal partition functions of the theory on a spatial slice

to obtain an effective Chern-Simons terms which are in turn related to the transport

coefficients [15, 19].

Recently a new method has been proposed by [20] which relies on matching anomalies

of large diffeomorphisms or large gauge transformations to fix the Chern-Simons terms in

the thermal effective action. One of the goals of this paper is study this approach in more

detail, extend the method to d = 6 and study the situations in which there are gravitinos

and self dual tensors in the theory. A second aim of the paper is to evaluate the contribution

of self dual tensors to parity odd transport coefficient in d = 6 perturbatively using the

Feynman rules for these fields put forward by [21]. This calculation will also check the

consistency of the result obtained using the matching global anomalies.

Let us briefly summarize the method of global anomaly matching to determine the

thermal effective action. Consider a 2n dimensional manifold torus T 2n. We will identify

one of the directions of the torus to play the role of Euclidean time. Let the metric on the

torus be gµν on which there exists a global diffeomorphism

gµν → gTµν . (1.1)

If there exists a global anomaly, the partition function of the theory changes by

Z[gµν ]→ Z
[
gTµν
]

= e−iπηZ[gµν ], (1.2)

where η is the η-invariant1 corresponding to the global diffeomorphism. We will consider

the T -symmetry of the torus. After evaluating the η-invariant, one then writes down a

thermal effective action involving the components of the metric which transforms identical

to (1.2). The thermal effective action is in general a Chern-Simons type action considered

in all the remaining 2n−1 directions excluding time. It is clear from (1.2) that coefficients

in any action determined this way will be ambiguous up to mod 2. Once the effective

action is obtained, we can take the decompactification limit in the 2n − 1 directions and

use it to obtain response functions corresponding to the transport coefficients.

The contributions of chiral gravitinos to parity odd transport coefficients in the theory

are particularly tricky to determine. As noted in [17] the method of consistency of the

Euclidean vacuum cannot be applied to determine the contribution of chiral gravitinos to

parity odd transport. It was argued in [17] that this can be attributed to the difference in

the number of zero modes for the gravitinos on the plane versus the cone. This was con-

firmed by evaluating the expectation of the thermal helicity [24] for theories with gravitinos

and later in [16], by the direct perturbative evaluation of the contribution of gravitinos to

the transport coefficient using the Kubo formula. To highlight this fact, let us naively apply

the method of consistency of the Euclidean vacuum [17, 18] to determine the contribution

of gravitinos to transport coefficients. A naive application of the method, predicts that

the transport coefficients of gravitinos are directly related to the gravitational anomaly by

a multiplicative constant. For example consider the case of d = 2, and let λ(2) = c̃2dT
2 be

1The details of how the topological η-invariant is defined and evaluated will be discussed subsequently.
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the parity odd coefficient due to the presence of chiral gravitinos, then a naive application

of the method of consistency of the Euclidean vacuum predicts the relation

c̃2d = −8π2cg, (1.3)

where cg is the gravitational anomaly due to chiral gravitinos. However, direct pertur-

bative calculations [16] and the expectation value of thermal helicity [24] reveal that the

the contribution of chiral gravitinos in d dimensions to transport is equal to that of d− 1

chiral fermions. In this paper we use the method of matching global anomalies to deter-

mine the contribution of chiral gravitinos to transport. We see that result from matching

global anomalies is consistent with the direct perturbative calculation up to mod 2. This

phenomenon is consistently seen for gravitino like theories in d = 2 and gravitinos in d = 6.

Let us now examine another aspect of the replacement rule put forward in [17, 18] and

the observations in the works of [22–24]. For theories in which the replacement rule can be

applied, namely theories without gravitinos but can contain chiral fermions and self dual

tensors, it is seen that second or higher Pontryagin classes in the anomaly polynomial of a

chiral field does not contribute to the transport coefficient. This was summarized succinctly

by the ‘replacement’ rule. Lets recall the rule for the transport coefficient which is sensitive

to pure gravitation anomalies in d = 6. Now we restrict our arguments to theories which

contain only chiral fermions and self dual tensors. Consider the anomaly polynomial for

pure gravitational anomalies in d = 6,

Pd=6 = cγ

(
Tr
(
R̂
)2
)2

+ cδ

(
1

4
Tr
(
R̂4
)
− 1

8
Tr
(
R̂2
)2
)
, (1.4)

R̂ab =
1

2
Rabcddx

c ∧ dxd.

Note cγ is the coefficient which occurs with the square of the first Pontryagin class while

the cδ occurs with the second Pontryagin class. Now let the parity odd transport coefficient

determined by the three point function of the stress tensor be parametrised as

λ
(6)
3 = 9c̃6d

g T
4. (1.5)

Then ‘replacement rule’ predicts the relation

c̃6d
g = −

(
8π2
)2
cγ . (1.6)

To summarize the replacement rule predicts that second Pontryagin class does not con-

tribute. Using the method of global anomalies to determine the thermal effective action

and λ
(6)
3 , we see the η-invariant corresponding to the T -symmetry of the torus for Weyl

fermions, and self dual-tensors do not receive any topological contribution form the second

Pontryagin class for theories in d = 6 and therefore they do not contribute to transport.

Thus the method of global anomaly matching provides a topological explanation for this

observation in the replacement rule. We show that the prediction (1.6) is consistent with

global anomaly matching for Weyl fermions, self-dual tensors. We will also explicitly verify

the prediction in (1.6) by performing a direct perturbative evaluation of the relevant Kubo
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formula using Feynman rules for the self dual tensor given in [21]. We show that indeed the

contribution of the self dual tensor indeed agrees with that predicted by replacement rule.

Though our paper focuses on contributions to transport coefficients occuring from

pure gravitational anomalies, the analysis can be generalized to case of mixed anomalies.

In fact [20] studies the case of mixed anomalies in d = 4.

The organization of the paper is as follows. In section 2 we briefly review the method

put forward by [20] to set our notations. In section 3 we study the d = 2 case in detail

for all the chiral fields. Since the partition function and modular properties under the T

symmetry of free chiral fields in d = 2 are known exactly we also compare the calculation

of the η-invariant to these results. We pay particular attention to the spin structure

which is picked up by the η-invariant. We extend the analysis to d = 6 in section 4.

We then proceed to evaluate the transport coefficient λ
(6)
3 for self dual tensors using the

propagator of [21] in section 5. Section 6 contains our conclusions. Appendix A contains

the details involved in evaluating the η-invariants and appendix B contains the details of

Wick contractions manipulations and simplification of the correlators in the evaluation

of the the Kubo formula for λ(6) for the self dual tensor in d = 6. Finally appendix C

summarises the η invariants corresponding to the T 2 transformation for chiral matter in

d = 2, 6, 10.

2 Global anomalies and thermal effective action

In this section we will review the method introduced by [20] to constrain thermal effective

actions using global anomalies. This section will provide the outline of the logic of the

method using chiral fermions in d = 2 as an example. This method will be implemented in

detail in section 3. We will also generalize this method to theories which contain self dual

and gravitinos tensors in d = 2, d = 6

Consider a theory of complex Weyl fermions in d = 2 on a torus T̂ 2. Let the co-

ordinates on the torus be given by (t, x), with the identifications

(t, x) ∼ (t+ 2πn, x+ 2πm). (2.1)

Let the metric on the torus be given by

g : ds2 = (dt+ a(x)dx)2 + dx2. (2.2)

Lets now consider the large diffeomorphism of the torus generated by the transformation(
t

x

)
→

(
1 2

0 1

)(
t

x

)
. (2.3)

This diffeomorphism is the T 2-transformation of the torus. From (2.3) we see that the

transformed metric is given by

gT
2

: ds2 = (dt+ (a+ 2)dx)2 + dx2. (2.4)
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Thus under T 2 transformation of the torus we have a(x)→ a(x) + 2. This large diffeomor-

phism of the torus will be the focus of our attention.

Consider the partition function of the theory obtained by integrating out the fermions

defined as

Z[g] =

∫
DψDψ̄ exp

(
−S

(
ψ, ψ̄, g

))
. (2.5)

If the theory has a global anomaly, the partition function picks up a phase under the T 2

transformation [25] which is given by

Z
[
gT

2
]

= exp(−iπη1/2)Z[g]. (2.6)

The η1/2 invariant is defined as following. Consider the 3-dimensional manifold Σ which

maps the metric g to gT
2

through a coordinate y. This 3-dimensional manifold is called

the mapping torus. The metric is given by

ds2
Σ = dy2 + [dt+ (a+ 2y)dx]2 + dx2. (2.7)

This metric interpolates between the metric g and gT
2

as y is dialed from 0 to 1. Further

more from the metric it is clear that we have the identifications

(t, x, y) ∼ (t− 2x, x, y + 1). (2.8)

Thus the torus at y = 0 is identified with its image at gT
2

. We will choose anti-periodic

boundary conditions for the fermions along the time circle t which will eventually be the

thermal circle. Then η1/2 is obtained by solving the Dirac equation in Σ the 3 dimensional

manifold with this boundary condition that y = 0 and y = 1 are glued together. Let λ

denote the eigen value of the Dirac operator

/D1/2ψ = λ1/2ψ. (2.9)

Note that ψ is a Dirac fermion in Σ. Then the η1/2 invariant is defined by

η1/2 =
∑
λ1/2

sign(λ). (2.10)

The subscript 1/2 in these definitions refer to the fact that we are dealing with the spin-1/2

fermions.

Evaluating the coefficient η1/2 by solving the Dirac equation on Σ is not easy because

of the boundary conditions. For the situation in which Σ arises as a boundary of a manifold

B we can appeal to the Atiyah-Patodi-Singer index theorem to obtain η1/2. Let B be a

4-dimensional manifold such that ∂B = Σ. The metric on this manifold is given by

ds2
B = dr2 + dy2 + f(r)2 [dt+ (a+ 2y)dx]2 + dx2. (2.11)

Here r takes values from 0 to 1. f(r) is a filling function which has the property

lim
r→0

f(r) = r. (2.12)
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Note the above limiting behaviour of f(r) together with the fact that that t is periodic

with period 2π ensures that this metric does not have a conical singularity at r = 0. At

the boundary r = 1, the metric reduces to that of Σ. This metric is essentially that of the

solid mapping torus obtained by filling up the t circle. The APS theorem then states that

the index of the Dirac operator on B is related to the geometric properties of B by

index
(
/D1/2

)
(B) =

1

24× 8π2

∫
B

Tr(R ∧R) + I∂B=Σ −
1

2
η1/2. (2.13)

Here R is the curvature 2-form on B and IΣ is an integral over the boundary of B which will

be explained in detail in the subsequent section. At present it is sufficient to mention that

IΣ are corrections to the APS index theorem for manifolds with boundaries. Essentially

the APS theorem offers a geometric means to evaluate η1/2.

Now that one has η1/2 we can go back and write down an effective action which

reproduces the change in (2.6). Let

Z[g] = e−Seff . (2.14)

The metric in (2.2) has an isometry under t→ t+ ε. Assuming a gap in the spectrum due

to the thermal boundary conditions in the t-direction we expect the the low lying effective

action to be independent of t and will be a functional of only a. An effective action which

reproduces the change in (2.6) is given by

Seff =
iη1/2

4

∫
a(x)dx. (2.15)

Note that under the T 2 transformation a(x) → a(x) + 2. This will ensure that we obtain

the change given in (2.6) for the partition function. Recall that the integral over x runs

from 0 to 2π. It is clear that this method determines the coefficient in the effective action

upto an integer. That is if η1/2 is shifted by an even integer we would still be able to

satisfy (2.6).

We will implement this method systematically for chiral fermions, gravitinos and self

dual tensors in d = 2, 6. Our goal is to use the effective action to evaluate the parity odd

transport and compare them with perturbative calculations done in [16]. To do this we

need to introduce further scalings in the metric given in (2.2) so that periodicities in t

become β the inverse temperature. We must also verify that it is consistent for fermions

to satisfy thermal boundary conditions in the geometry we are evaluating the η-invariant.

The periodicity in x should also be scaled to L. We will then have to take the L → ∞
limit. Finally the result for the transport correlator should be analytically continued to

Minkowski signature. We will implement all these steps in detail in the subsequent sections.

3 Global anomalies and transport in d = 2

Before we proceed to use the APS theorem to evaluate the η invariant for the geometry

Σ given in (2.7) we first illustrate the simple fact that the partition function of a theory

defined on a 2-torus which contains Weyl fermions picks up phase under the T symmetry
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of the torus. Consider free Weyl fermions on a torus with modular parameter τ = iβ/L.

The modular parameter is the ratio of the lengths along the time and the spatial direction

of the torus. Let the fermions obey the following boundary conditions on this torus

(A,A) : ψ(z + 1) = −ψ(z), ψ(z + τ) = −ψ(z), (3.1)

(P,A) : ψ(z + 1) = ψ(z), ψ(z + τ) = −ψ(z).

Both these boundary conditions result in thermal partition functions. For free Weyl

fermions, these are easily evaluated and we obtain

ZAA(τ) =
θ3(τ)

η(τ)
, ZPA(τ) =

θ2(τ)

η(τ)
. (3.2)

The properties of these partition function under T and S are given by

T 2 : ZAA(τ + 2) = e−i
π
6ZAA(τ + 2), S : ZAA

(
−1

τ

)
= ZAA(τ), (3.3)

T : ZPA(τ + 1) = e+iπ
3ZPA(τ), S : ZPA

(
−1

τ

)
= ZAP (τ) =

θ4(τ)

η(τ)
.

Note that it is only the partition function ZAA which is modular invariant. This partition

function has anti-periodic boundary conditions on both the circles. It returns to itself

after a T 2 : τ → τ + 2 with a phase e−i
π
6 . We will see that the method of evaluating the

phase picked up by the T diffeomorphism of the torus using the η invariant chooses this

boundary conditions. We then will decompactify the theory along the spatial x direction

and write down an effective action which ensures that the partition function picks up that

required phase.

Let us now determine the change in the partition function by computing the η invariant

of the T 2 transformation. Let the change in the partition function for a theory containing

Weyl fermions on the 2-torus under the T 2 transformation be given by

Z
[
gT

2
]

= e−iπη1/2Z[g]. (3.4)

The APS index theorem relates the η invariant to the following geometric quantity on the

manifold B.

Ind
(
/D 1

2

)
=

1

24× 8π2

∫
B

Tr(R ∧R)− 1

24× 8π2

∫
Σ

Tr(θ ∧R)−
η 1

2

2
. (3.5)

We have used the expression for the index theorem in [26] which results in opposite sign

for η compared to that in [25], however this is taken care of by introducing the negative

sign for the phase shift in (3.4) . Let us recall the metric on B is given by

ds2
B = dr2 + dy2 + f(r)2(dt+ [a(x) + 2y] dx)2 + dx2. (3.6)

In (3.5), θaµb is the second fundamental form defined as the difference of spin connection

ωaµb derived from the metric (3.6) and the spin connection derived from the product metric

at the boundary which is given by

ds2
P = dr2 + dy2 + f(1)2(dt+ [a(x) + 2y] dx)2 + dx2. (3.7)

– 7 –
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Then

θaµb = ωaµb(B)− ωaµb(B). (3.8)

Note that if the manifold B does not have any boundary (3.5) reduces to the usual index

theorem one is familiar with.

Before we proceed to evaluate the integrals in the r.h.s. of (3.5) we will discuss the

boundary conditions on the fermions. To begin, the boundary conditions in the t direction

are anti-periodic due to the topology of B. Note that the (r, t) plane has the topology

of a disc, since the t-circle is filled. Therefore, the fermions obey anti-periodic boundary

conditions along the t-circle. This is because in the (r, t) plane t → t + 2π is just a

rotation. This is identical to the argument by which the fermions in AdS3 obey anti-

periodic boundary conditions along the angular directions. Constant time slices in AdS3

have the topology of a disc.2 The Dirac fermion in Σ is periodic in y under y → y + 1 as

the metric g is identified with gT
2

under this shift. y parametrises the direction along with

the torus is mapped on to itself. This implies that we must have anti-periodic boundary

conditions in x because if there are 2 or more directions in which fermions have periodic

boundary conditions, the partition function vanishes due to the presence of of fermionic

zero modes. Thus the partition function is evaluated with (A,A) boundary conditions in

the (x, t) directions.

We now evaluate the integrals on the l.h.s. of (3.5). Evaluating the curvature compo-

nents of the metric we obtain∫
B

Tr(R ∧R) = −8

∫
dydrdxdtf ′(r)

(
f ′′(r) + f(r)3

)
, (3.9)

= 2(2π)2
[
2
(
f ′(0)

)2 − 2
(
f ′(1)

)2
+ (f(0))4 − f(1)4

]
.

In evaluating this trace we choose the orientation of the coordinates such that the epsilon

tensor is given by εtxyr = 1. Using (2.12) we have f(0) = 0, f ′(0) = 1. Substituting these

values we obtain

1

24× 8π2

∫
B

Tr(R ∧R) =
1

12
− (f ′(1))2

12
− f(1)4

24
. (3.10)

Let us evaluate the boundary term

1

24× 8π2

∫
Σ

Tr(θ ∧R) = −(f ′(1))2

12
. (3.11)

Thus putting together the integrals on the l.h.s. of the index theorem (3.5) we obtain

1

24× 8π2

(∫
B

Tr(R ∧R)−
∫

Σ
Tr(θ ∧R)

)
=

1

12
− f(1)4

24
. (3.12)

Substituting in (3.5) we obtain

η 1
2

=
1

6
− f4(1)

12
+ 2Ind

(
/D 1

2

)
. (3.13)

2See [27] below equation (2.1).
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However this equation indicates that η1/2 depends on the filling function f which clearly is

not true since η is a topological invariant. The reason is because the theory of Weyl fermions

contains a perturbative anomaly which results in the following gravitational Chern-Simons

term on Σ
1

12× 8π2

∫
Σ
ω ∧ dω +

2

3
ω ∧ ω ∧ ω = −f

4(1)

12
. (3.14)

Here ω is the spin connection in the bulk B but evaluated at the boundary. The original

applications of the η-invariant by [25] involved theories which were free of perturbative

anomalies, the anomalies were canceled by the Green-Schwarz mechanism. Here we isolate

the topological invariant η1/2 by subtracting the contribution of the gravitational Chern-

Simons term [20]. The manifold B has the topology of a solid torus, the index the Dirac

operator in (3.13) is an integer. The reason is that the the η-invariant is defined to take

into account all the terms mod 2 when the manifold B has a boundary. Therefore this term

contributes to a trivial phase shift of the partition function under the T diffeomorphism.

Taking all this into account we obtain

η 1
2

=
1

6
. (3.15)

Thus the phase picked up by the T 2 transformation is given by

Z
[
gT

2
]

= e−iπη1/2Z[g] = e−i
π
6Z[g]. (3.16)

This is precisely the phase picked up the T 2 transformation for fermions with the (A,A)

boundary conditions which we evaluated by the direct calculation in (3.3).

3.1 Fermions

To obtain the thermal effective action we first need to decompactify the spatial direction.

Note that so far we have worked in dimensionless units for the metric say in (2.2). We first

introduce dimensions by rescaling the co-ordinates and the metric as

x̃ =
Lx

2π
, t̃ =

βt

2π
, d̃s2 =

β2

(2π)2
ds2. (3.17)

Then the metric in (2.2) becomes

ds̃2 =
(
dt̃+ ã(x̃)dx̃

)2
+ dx̃2, (3.18)

where ã(x̃) is defined as

ã(x̃) =
β

L
a(x). (3.19)

Note now the periodicities x̃ are β and L respectively. Now under the T 2 transformation

we have

T :
(
t̃, x̃
)
→
(
t̃+

2βx̃

L
, x̃

)
, ã→ ã+

2β

L
. (3.20)

We now decompactify the x̃ direction by taking L to be large. The modes in the x direction

then become a continuum, but we expect the effective action to still retain the shift by

– 9 –
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the phase e−i
π
6 under the T 2 diffeomorphisms. The metric in (2.2) is flat, there is no

background curvature, therefore the effective action can only depend on ã. An action

which satisfies the required condition of the phase shift is given by

Seff =
iπ

12β

∫
ã(x̃)dx̃ Z[g] = e−Seff . (3.21)

Writing this partition function in momentum space we obtain

Z = exp

(
− iπ

12
â(0)

)
. (3.22)

Here â(0) is the Fourier transform at k = 0.3 We can now obtain the one point function of

the stress tensor 〈T τ̃ x̃〉. Note that since â is the g̃t̃x̃ component, the one point function of

the stress tensor by4

〈T t̃x̃(p)〉 =
1
√
g

δ lnZ

δgt̃x̃
=
δ lnZ

δâ(p)
. (3.23)

Evaluating this for the partition function given in (3.22) we obtain

〈T t̃x̃(p)〉 = − iπ

β12
2πδ(p),

= − iπ

β212
2πβδ(p). (3.24)

Note that due the definition of the Fourier transform functional differentiation in Fourier

space picks up a factor 2πδ(p). We can now go over to Minkowski space by analytical

continuation of t′ = −it̃. This results in

〈T t′x̃′(p)〉 =
〈T t̃x̃(p)〉

i
,

= − π

β212
2πβδ(p). (3.25)

The transport coefficient λ(2) which occurs in the constitutive relation for the stress tensor

is obtained by evaluating the one point function −〈T t′x̃′(p)〉 and then stripping out the

2πβδ(0) which occurs in the overall momentum conservation of the correlators in the Kubo

formula, see [16] for a discussion. We therefore get

λ(2) =
π

12β2
. (3.26)

This coincides with the expression obtained using perturbative calculations in [16] as well

as the result using the replacement rule [17].

3The Fourier transform is defined by ã(x) =
∫
dk
2π
â(k)e−ikx.

4This definition of stress tensor is in accordance with [6] for the mostly positive signature.
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3.2 Chiral bosons

The chiral boson or the self dual tensor in d = 2 is dual to the Weyl fermion by bosonization.

Therefore we expect the same result for the transport coefficient. Lets verify this by

evaluating the ηS for the self dual tensor in d = 2. The η invariant for the self dual tensor

can be determined using the APS index formula for self dual tensors. To be general and

also relate it to the expressions in [25] we quote the result for arbitrary dimensions.

σ(B)

8
=

1

8
L(R)− IΣ(R) +

ηS
2
. (3.27)

Here L is the Hirzebruch polynomial constructed out of the curvature tensor, σ the Hirze-

bruch signature of B. I is a boundary term which will be defined later. Note that our

definition of ηS is 1/4 the definition used in [25]. The change in the partition function is

given by Z[gT ] = e−iπηSZ[g]. Recently the expression in (3.27) has been refined by [28, 29].

The term σ(B)
8 on the l.h.s. of the equation in (3.27) is replaced by a λ ∧ λ where λ is a

2k + 2 form for a self dual field in 4k + 2 dimensions.5 Below we will carry our arguments

for the version of the index theorem for self dual tensors in [25] as well as provide the

arguments for the refined formula for the η invariant given in [28]. Let us now substitute

the appropriate polynomials for B of dimension 4 in the APS index theorem. We obtain

σ(B)

8
= − 1

24× 8π2

∫
B

Tr(R ∧R) +
1

24× 8π2

∫
Σ

Tr(θ ∧R) +
ηS
2
. (3.28)

The evaluation of the integrals proceeds exactly as in the case of the fermions. We obtain

the relation

ηS =
1

6
− f4(1)

12
+
σ(B)

4
. (3.29)

Note that again there is a contribution to ηS which is removed by subtracting the grav-

itational Chern-Simons term in (3.14). We now use the fact that for a solid torus B the

Hirzebruch signature is a multiple of 8, again this is because the η invariant is defined to

take in account of all terms mod 2. For the refined global anomaly formula [28], it is in fact

not necessary to make assumptions regarding the Hirzebruch signature of B. The term

σ(B)/8 is replaced by λ ∧ λ where λ is a 2-form. Since in d = 2 the manifold is a spin

manifold we can take the manifold B to have a spin structure compatible with T 2. In this

situation one can show that λ can be chosen to vanish.6 Therefore to mod 2 we write

ηS =
1

6
. (3.30)

This result is identical to that obtained in (3.15) for Weyl fermions. Therefore the result

for the transport coefficient λ(2) in theories with a single self dual tensor is identical to that

of a single Weyl fermion.

5We thank Samuel Monnier for bringing the references [28, 29] to our attention and for explaining the

refined formula for the η invariant to us. See section 4.3 of [28] for the index theorem without gauge fields

and [29] for the index theorem with gauge fields.
6We thank Samuel Monnier for this explanation.
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3.3 Gravitinos

Though there are no physical gravitinos in d = 2, we can study the ‘gravitino like’ theory.

The gravitino action consists essentially of the spin 3/2 operator acting on the gravitino,

the ghosts in the gauge fixing procedure are taken into account by subtracting the contri-

bution of a Weyl fermion Transport coefficient for this theory is evaluated perturbatively

in [16]. The results are inconsistent with that obtained using the argument involving the

consistency of the Euclidean vacuum. We will show the method of global anomaly matching

is consistent with the perturbative evaluation in [16] to mod 2.

The index theorem for gravitinos on closed manifolds is given by [21, 30]

Index
(
/D3/2(B)

)
=

∫
B
Â(B)

(
TreiR/2π − 1

)
. (3.31)

Expanding the curvature polynomials Â(B) for the case when the manifold is of 4 dimen-

sions we obtain

Ind
(
/D 3

2
(B)

)
= − 23

24× 8π2

∫
B

Tr(R ∧R). (3.32)

Therefore following [25],7 the index theorem for manifolds with boundary is given by

Ind
(
/D 3

2
(B)

)
= − 23

24× 8π2

∫
B

Tr(R ∧R) +
23

24× 8π2

∫
Σ

Tr(θ ∧R)−
η 3

2

2
. (3.33)

Again our definition of η3/2 is of opposite sign compared to that in [25] since in our notation

the change in the effective action is given by Z[gT ]→ e−iη3/2Z[g]. The integrals are identical

to the case of the Weyl fermions and proceeding From (3.5), we see that the only difference

between the index theorem for gravitinos is the pre factor in front of Tr(R∧R) and Tr(θ∧R).

Proceeding similarly as before we obtain

η3/2 =
−23

6
− 23f4(1)

12
+ 2Ind

(
/D 3

2
(B)

)
. (3.34)

Again the dependence on the filling function f(1) can be removed by adding a Chern-

Simons term. The index of the spin 3/2 operator on B is an integer since the manifold B

has the topology of the solid torus. The η invariant takes into account of all terms mod 2.

Therefore we obtain that the η invariant for gravitinos to be

η3/2 =
−23

6
mod 2, (3.35)

=
1

6
mod 2.

We see that upto mod 2 the η invariant for Weyl gravitinos is identical to that of the Weyl

fermions. This result is consistent with the direct perturbative calculations of the transport

coefficients for gravitinos done in [16]. The perturbative calculations also show that λ(2)

for gravitinos is identical to that of Weyl fermions in d = 2. Therefore we conclude that in

d = 2, the transport coefficient for gravitinos obtained from matching global anomalies is

consistent with perturbative calculations to mod 2.

7In [25] the index theorem for gravitinos is written as the difference of curvature polynomial appro-

priate for only the spin 3/2 field and the curvature polynomial for fermions. We have combined the two

polynomials, so that the end result is that for the ‘physical’ gravitino.

– 12 –



J
H
E
P
1
2
(
2
0
1
6
)
1
1
6

4 Global anomalies and transport in d = 6

In d = 6 we start with the following metric g on T̂ 6.

ds2 = (dt+ a1(a)da+ a2(b)dz + a3(y)dx)2 + dx2 + dz2 + da2 + db2 + dy2. (4.1)

Note that now the co-ordinate a will play the role of x in the previous section, this con-

vention has been chosen so that it agrees with that in [16]. The co-ordinates satisfy the

periodicity

t ∼ t+ 2π, a ∼ a+ 2π, b ∼ b+ 2π, (4.2)

x ∼ x+ 2π, y ∼ y + 2π, z ∼ z + 2π.

We choose anti-periodic boundary conditions for the fermions in all the directions along

the torus. Consider the (x, y) plane: since we have (A,A) boundary conditions on this

plane, an allowed non-trivial field configuration for the metric component a3 is given by

a3(y) = 2n
y

2π
, n ∈ Z. (4.3)

This ensures that the a3 → a3 +2n under y → y+2π. Thus we have a T 2 transformation in

the torus along the (x, y) plane. Therefore the boundary conditions (A,A) remain invariant

in these directions. Similarly in the (z, y) plane, to preserve the (A,A) boundary conditions

in these directions we consider the non-trivial field configuration

a2(b) = 2m
b

2π
, m ∈ Z. (4.4)

Thus the fields a3(y) and a2(b) have non-trivial windings along the compact direction. The

metric component a1(a) will play the role of field a(x) for the d = 4 case discussed in

the previous sections. We wish to consider the metric related to the one in 4.1 by the T 2

diffeomorphism given by

ds2 = (dt+ (a1(a) + 2)da+ a2(b)dz + a3(y)dx)2 (4.5)

+dx2 + dz2 + da2 + db2 + dy2.

The 7-dimensional mapping torus Σ which interpolates between (4.1) and (4.5) is given by

ds2
Σ = du2 + (dt+ [a1(a) + 2u] da+ a2(b)dz + a3(y)dx)2 (4.6)

+dx2 + dz2 + da2 + db2 + dy2.

Here the coordinate u interpolates between the torus (4.1) and the one related to it by T 2

diffeomorphism in (4.5) as u runs from 0 to 1. Therefore we have the identifications

(t, a, u, b, z, x, y) ∼ (t− 2a, a, u+ 1, b, z, x, y). (4.7)

Filling up the time circle we get,

ds2
B = dr2 + du2 + f(r)2(dt+ [a1(a) + 2u] da+ a2(b)dz + a3(y)dx)2 (4.8)

+dx2 + dz2 + da2 + db2 + dy2.
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The filling function satisfies the condition

lim
r→0

f(r) = r, (4.9)

for the absence of conical singularities. The product metric at the boundary r = 1 is

defined to be,

ds2
P = dr2 + du2 + f(1)2(dt+ [a1(a) + 2u] da+ a2(b)dz + a3(y)dx)2 (4.10)

+dx2 + dz2 + da2 + db2 + dy2.

The metric on B given in (4.8) can now be used to evaluate the η invariant for the T 2

diffeomorphism using the APS index theorem.

The index theorem for the Dirac operator on B is given by

Ind
(
/D 1

2
(B)

)
=
−1

6!

∫
B

(
p2(R)

2
− 7

8
p1(R)2

)
− 1

6!× (2π)4

∫
Σ

(
1

8
Tr(θ ∧R ∧R ∧R)

− 1

16
Tr(θ ∧R)Tr(R ∧R) +

7

32
Tr(θ ∧R)Tr(R ∧R)

)
−
η1/2

2
. (4.11)

where the Pontryagin classes are defined by

p2(R) =
−1

(2π)4

(
1

4
Tr(R ∧R ∧R ∧R)− 1

8
Tr(R ∧R)Tr(R ∧R)

)
,

p1(R) =
−1

(2π)2

Tr(R ∧R)

2
, (4.12)

and θ is the difference of the spin connections of B and the product metric P .

θaµb = ωaµb(B)− ωaµb(P ). (4.13)

Essentially the index theorem in (4.11) is for a closed 8-manifold with the corrections due

to the presence of a boundary. These corrections are obtained by replacing a single R in the

anomaly polynomial by θ [25]. Once η1/2 is obtained the change in the partition function

is given by

Z
[
gT

2
]

= e−iη1/2Z[g]. (4.14)

We proceed to evaluate the integrals occurring on the r.h.s. of (4.11).

Contribution from the second Pontryagin class. We first show that all the contri-

butions from the second Pontryagin class to the index theorem in (4.11) is identical to a

Chern-Simons term on the boundary Σ. Consider the term involving the second Pontryagin

class in (4.11) along with the associated boundary term which is given by

Ip2 =
−1

6!

∫
B

(
p2(R)

2

)
+

−1

6!× (2π)4

∫
Σ

(
1

8
Tr(θ ∧R ∧R ∧R)

− 1

16
Tr(θ ∧R)Tr(R ∧R)

)
.
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Substituting the definition of the second Pontryagin class we obtain

Ip2 =
1

6!(2π)4

∫
B

(
1

8
Tr(R ∧R ∧R ∧R)− 1

16
Tr(R ∧R)Tr(R ∧R)

)
+

−1

6!× (2π)4

∫
Σ

(
1

8
Tr(θ ∧R ∧R ∧R)− 1

16
Tr(θ ∧R)Tr(R ∧R)

)
. (4.15)

Each of these integrals have been evaluated in (A.6). On substituting the results for the

integrals we obtain

Ip2 =
−1

4× 6!

∫
dbdya′2(b)a′3(y)

{
3f(1)8

[
a′2(b)2 + a′3(y)2 + a′2(b)2

(
1 + a′3(y)2

)]
+4f(1)4f ′(1)2

(
1 + a′2(b)2 + a′3(y)2

)}
. (4.16)

Note that in the integral Ip2 , all terms depend on the filling function f , therefore we expect

the entire contribution not to contribute to the topological η invariant. We will now show

that the entire contribution of Ip2 can be be accounted by a Chern-Simons term on the

boundary Σ. Let us define the Chern-Simons form on Σ

ICS1 =
1

(2π)4

1

8

[
Tr(ω ∧ dω ∧ dω ∧ dω) +

8

5
Tr(dω ∧ dω ∧ ω ∧ ω ∧ ω) (4.17)

+
4

5
Tr(dω ∧ ω ∧ dω ∧ ω ∧ ω) +

+
4

7
Tr(ω ∧ ω ∧ ω ∧ ω ∧ ω ∧ ω ∧ ω) + 2Tr(dω ∧ ω ∧ ω ∧ ω ∧ ω ∧ ω)

− 1

16
Tr(ω ∧ dω +

2

3
ω ∧ ω ∧ ω)Tr(R ∧R)

]
. (4.18)

It is can be verified that

− 1

6!
p2(R) =

1

6!
d (ICS1) . (4.19)

We now integrate the Chern-Simons form I on the boundary Σ. The integrals of each of

the terms occurring in I is given in (A.13). Putting all the terms together we obtain

ICS1 =
1

6!

∫
Σ
ICS1 ,

=
−1

4× 6!

∫
dbdya′2(b)a′3(y)

{
3f(1)8

[
a′2(b)2 + a′3(y)2 + a′2(b)2

(
1 + a′3(y)2

)]
+4f(1)4f ′(1)2

(
1 + a′2(b)2 + a′3(y)2

)}
. (4.20)

In performing this integrals note that the spin connection ω, dω is evaluated at the boundary

r = 1, The curvature forms in the last term of (4.17) is the curvature of the bulk metric

evaluated at the boundary.

It is indeed remarkable that the contribution of the second Pontryagin class to the APS

index theorem given in (4.16) coincides precisely with the value of the Chern-Simons form

in (4.20). Therefore we can completely remove the contribution of the second Pontryagin

class by subtracting out the Chern-Simons term (4.20) at the boundary. As in the case of
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d = 2 studied in the earlier section, this operation ensures that we pick up only the purely

topological terms in the η invariant. Thus we conclude the the second Pontryagin class

does not contribute to the purely topological terms in the η invariant and therefore will

not contribute to transport. This was observed in the ‘replacement rule’ [17, 18, 24] as well

as the holographic calculations of [31].

Contributions from square of the first Pontryagin class. On the r.h.s. of the index

theorem (4.11) the contributions due to p2
1 is given by

Ip1 =
7

8× 6!

∫
X

(
p1(R)2

)
+

−7

32× 6!× (2π)4

∫
Σ

(Tr(θ ∧R)Tr(R ∧R)) ,

=
7

32×6!×(2π)4

∫
X

(Tr(R ∧R)Tr(R ∧R))− 7

32×6!×(2π)4

∫
Σ

(Tr(θ ∧R)Tr(R ∧R)) .

(4.21)

Substituting from (A.6) for the curvature integrals we obtain

Ip1 =
−7

32× 6!
f(1)4a′2(b)a′3(y)

{
− 16f ′(1)2

(
a′2(b)2 + a′3(y)2 + 1

)
(4.22)

−f(1)4
[
11a′2(b)2

(
a′3(y)2 + 1

)
+ 5a′2(b)4 + 5a′3(y)4 + 11a′3(y)2 + 5

]
+ 48

}
.

Note that this integral contains terms which depend on the filling function f as well as

the pure topological term which arises from the last term in (4.22). We will again show

that all terms that depend on the filling function can be canceled by a Chern-Simons term

evaluate at the boundary Σ. From the appendix we have the identity

p2
1(R) =

1

4(2π)4
d

(
Tr

(
ω ∧ dω +

2

3
ω ∧ ω ∧ ω

)
Tr(R ∧R)

)
. (4.23)

Therefore we consider the Chern-Simons term

ICS2 =
7

32× 6!× (2π)4

∫
Σ

Tr

(
ω ∧ dω +

2

3
ω ∧ ω ∧ ωTr(R ∧R)

)
. (4.24)

Substituting for the spin connection at the boundary and the bulk curvature, but evaluated

at the boundary we obtain

ICS2 =
−7

32× 6!
f(1)4a′2(b)a′3(y)

{
− 16f ′(1)2

(
a′2(b)2 + a′3(y)2 + 1

)
(4.25)

−f(1)4
[
11a′2(b)2

(
a′3(y)2 + 1

)
+ 5a′2(b)4 + 5a′3(y)4 + 11a′3(y)2 + 5

] }
.

Note the absence of the last term of (4.22) in (4.25).

Now using the results in (4.16), (4.20), (4.22) and (4.25) we can write the index theorem

in (4.11) as

η1/2

2
= − 7

480(2π)2

∫
dbdydadza′2(b)a′3(y) + ICS1 + ICS2 − Ind

(
/D1/2(B)

)
. (4.26)

Again note that removing the Chern-Simons terms we obtain a purely topological η in-

variant, also the index of the Dirac operator is an integer. Therefore we obtain that the
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shift of the phase in the path integral under the T 2 transformation, a1(a) → a1(a) + 2 is

given by

η1/2 = − 7

240(2π)2

∫
dbdydxdza′2(b)a′3(y) mod 2. (4.27)

Due to the quantization conditions (4.3) and (4.4) we obtain

η1/2 = −7nm

60
mod 2. (4.28)

An effective action which reproduces this phase shift is given by

Seff = − i7π

480(2π)3

∫
dadbdxdydza1(a)a′2(b)a′3(y). (4.29)

Note that under a1 → a1 + 2 the phase shift from this effective action is given by e−iπη1/2 .

This effective action can formally be written as a Chern-Simons form by introducing the

graviphoton field A = Aµdx
µ as

Seff = − i7π

960(2π)3

∫
A ∧ dA ∧ dA. (4.30)

4.1 Fermions

To take the decompactification limit and to introduce the temperature we resale the coor-

dinates as

ã =
Laa

2π
, t̃ =

βt

2π
, z̃ =

Lza

2π
,

x̃ =
Lxx

2π
, ỹ =

Lya

2π
, b̃ =

Lbb

2π
. (4.31)

After introducing dimensions by rescaling the metric using

d̃s2 =

(
β

2π

)2

, (4.32)

the metric in (4.1) becomes

ds̃2 =
(
dt̃+ ã1 (ã) dã+ ã2

(
b̃
)
dz̃ + ã3 (ỹ) dx̃

)2
(4.33)

+

(
β

Lx

)2

dx̃2 +

(
β

Lz

)2

dz̃2 +

(
β

La

)2

dã2 +

(
β

Lb

)2

db̃2 +

(
β

Ly

)2

dỹ2,

where ã1, ã2, ã3 are defined as,

ã1 =
β

La
a1, ã2 =

β

Lz
a2, ã3 =

β

Lx
a3. (4.34)

After these change of variables, the effective action in (4.29) becomes

Seff =
−i7π
β3480

∫
db̃dỹdãdz̃dx̃ã1(ã) ã′2

(
b̃
)
ã′3(ỹ) . (4.35)
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We decompactify the spatial directions and then write the action in Fourier space, we

obtain

Seff =
−i7π
β3480

∫
d5pd5k

((2π)5)2

(
ikbipy

)
ã1(−p− k)ã2(k)ã3(p). (4.36)

The transport coefficient λ
(6)
3 which is sensitive to the pure gravitational anomaly is defined

by the following Kubo formula [16]

λ6
3 = −3〈T ta(−p− k)T tx(p)T tz(k)〉

2(ipy)(ikb)
,

= −3i〈T τa(−p− k)T τx(p)T τz(k)〉
2(ipy)(ikb)

,

= − 3i

(2ipy)(ikb)

δ3 lnZ

δgτaδgτxδgτz
. (4.37)

In the second line of the above equation we have analytically continued to Euclidean correla-

tors using t = −iτ . In the last line we have written the correlator in terms of derivatives on

the partition function. Using lnZ = −Seff and identifying δgτa = δa1, δgτz = δa2, δgτx =

δa3 we obtain

λ6
3 = − 3i

2(ipy)(ikb)

(i7π)(ipy)
(
ikb
)

β4480
(2π)5βδ(0),

=
7π

320β4
× (2π)5βδ(0). (4.38)

In the last line we have factored out the terms which are due to the overall momentum

conservation. Therefore we obtain

λ6
3(1/2) =

7π

320β4
. (4.39)

This result coincides with the one obtained in [16] using perturbation theory at one loop.8

4.2 Gravitinos

We will now show that the constraints obtained for the thermal effective action for grav-

itinos using global anomalies is consistent with the result for the transport coefficient

λ
(6)
3 obtained using perturbation theory in [16]. The APS index theorem for gravitinos is

given by

Ind( /D 3
2
) =

−1

6!

∫
B

(
245p2(R)

2
− 275

8
p1(R)2

)
− 1

6!× (2π)4

∫
Σ

(
245

8
Tr(θ ∧R ∧R ∧R)

−245

16
Tr(θ ∧R)Tr(R ∧R) +

275

32
Tr(θ ∧R)Tr(R ∧R)

)
−
η 3

2

2
.

(4.40)

The coefficients in front of the curvature polynomials take care of the subtraction of the

ghosts and therefore the result for the η is for the ‘physical gravitino’.

8Note the first term in equation (4.39) of [16].

– 18 –



J
H
E
P
1
2
(
2
0
1
6
)
1
1
6

Evaluating the curvature polynomials just as in the spin 1/2 case we obtain

η3/2 = − 1

(2π)2

275

240

∫
dbdydxdza′2(b)a′3(y) +

450

7
ICS2 + 490ICS1 . (4.41)

Here we have dropped the contribution of the index of the spin 3/2 operator since it is an

integer for the solid torus. Now the pure topological term in η3/2 is extracted by removing

the Chern-Simon terms. Finally we also substitute the possible winding configurations

given in (4.3) and (4.4) for the graviphoton fields a2, a3. This reduces (4.41) to

η3/2 = −275

60
nm, (4.42)

= −35

60
nm− 4nm = −35

60
mod 2.

Therefore up to mod 2 we can write η3/2 as

η3/2 = − 1

(2π)2

35

480

∫
dbdydxdza′2(b)a′3(y). (4.43)

The effective action which reproduces this phase shift under a1 → a1 + 2 is given by

Seff = − i35π

480(2π)3

∫
dbdydxdadza1(a)a′2(b)a′3(y). (4.44)

Note that this is 5 times the result obtained for the Weyl fermion in (4.29). Therefore on

decompactifying the spatial directions and extracting out the transport coefficient for the

gravitinos we obtain

λ
(6)
3(3/2) =

35π

320β4
. (4.45)

The above result coincides with that obtained using perturbation theory at one loop [16].

The general pattern seen for the contribution of the gravitino to the transport coeffi-

cient in 2d dimensions is that its value is 2d− 1 times that the result for the Weyl fermion.

It is remarkable that mod 2 ambiguity in determining the thermal effective action using

global anomalies is consistent with this value of the transport coefficient for the gravitino.

4.3 Self-dual tensors

The APS index theorem for self-dual tensors in d = 6 is given by

σS(B)

8
=
−1

6!

∫
B

(
28p2(R)

2
− 16

8
p1(R)2

)
− 1

6!× (2π)4

∫
Σ

(
28

8
Tr(θ ∧R ∧R ∧R)

−28

16
Tr(θ ∧R)Tr(R ∧R) +

16

32
Tr(θ ∧R)Tr(R ∧R)

)
− ηA

2
.

(4.46)

Going through the same steps of evaluating the curvature polynomial and using the fact

that the Hirzebruch index for a solid torus vanishes we obtain

ηA =
−16

240(2π)2

∫
dbdydadza′2(b)a′3(y) + 56ICS1 +

32

7
ICS2. (4.47)

– 19 –



J
H
E
P
1
2
(
2
0
1
6
)
1
1
6

For the refined global anomaly expression of [28] the term σ(B)/8 is replaced by λ ∧ λ
where λ is a 4-form. Now for the solid torus B which is a disc times a torus, D2×T 6. The

relative cohomology of the disc has a unique generator of degree 2. This ensures that the

intersection pairing in degree 4 of the relative cohomology of D2 × T 6 vanishes. For this

situation we can take λ = 0.9 For the refined global anomaly formula again there is no

need to make an assumption regarding the Hirzebruch index of B and we obtain the same

result as in (4.47). Extracting out the topological term by dropping the Chern-Simons

contribution we obtain

ηA =
−16

240(2π)2

∫
dbdydxdza′2(b)a′3(y). (4.48)

The thermal effective action which reproduces this phase shift under a1 → a1+2 is given by

Seff =
−i16π

480(2π)3

∫
dbdydxdadza1(a)a′2(b)a′3(y). (4.49)

Now going through the same steps of decompactifying the spatial directions and extracting

out the transport coefficient we obtain the following result for self-dual tensors

λ
(6)
3(S) =

16π

320β4
=

π

20β4
. (4.50)

In the next section we will verify this result by an explicit perturbative calculation for the

self dual tensors.

5 Transport for self dual tensors in d = 6 at one loop

Self dual tensors in 4k + 2 dimensions have no Lorentz invariant action though they have

Lorentz covariant equations of motion. Pure gravitational anomalies exhibited by these

theories were studied in perturbation theory by [21]. They proposed Feynman rules and

the propagator for these fields by which gravitational anomalies in these theories were

evaluated. In this section we use these rules at finite temperature to evaluate the transport

coefficient λ
(6)
3 in d = 6. The field strength of the self dual anti symmetric tensor is

defined by

Fµ1µ2µ3 = ∂µ1Aµ2µ3 + (cyclic permutations), (5.1)

where Aµ1µ2 is the 2nd rank anti-symmetric gauge potential. The self dual condition in

Euclidean space is given by

Fµ1µ2µ3 =
i

3!
√
g
εµ1µ2µ3ν1ν2ν3Fν1ν2ν3 ≡ iF̃µν , (5.2)

where the orientation is chosen by setting

ετazxyb = 1. (5.3)

9We again thank Samuel Monnier for explaining this to us.
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Let us consider the theory of self dual tensors coupled to metric fluctuations. We

work in Euclidean space with the signature ηµν = diag(−1,−1,−1,−1,−1,−1) The Kubo

formula for the transport coefficient of interest in Euclidean space is given by

λ̃
(6)
3 = −3

2
lim

pb,ky→0

〈T τa(k + p)T τx(−k)T τz(−p)〉
ipbiky

. (5.4)

where p, k are the external momenta. They are chosen such that

p =
{

0, 0, 0, 0, 0, pb
}
, k = {0, 0, 0, 0, ky, 0} . (5.5)

The correlator in Minkowski space is related to that in (5.4) by

λ̃
(6)
3 = −iλ(6)

3 . (5.6)

Note that in (5.4) we have taken all the external frequencies to zero first. The stress tensor

for the self dual boson is defined as follows [21].10 First consider

Tµν(F ) = −1

2
FµαβF

αβ
ν +

1

12
gµνFαβγF

αβγ . (5.7)

Now we impose the self dual condition by considering

Tµν(F+) = Tµν

(
1

2

(
F + iF̃

))
. (5.8)

The hydrodynamic correlation function in (5.4) includes the following expectation values

〈TµαT νβT ρσ〉E = 〈Tµαfl T
νβ
fl T

ρσ
fl 〉E (5.9)

−2〈 δT
µα

√
gδgνβ

T ρσ〉E − 2〈 δT
µα

√
gδgρβ

T νσ〉E

−2〈Tµα δT νβ
√
gδgρσ

〉E + 4〈 δ2Tµα
√
gδgναδgρσ

〉E .

All these expectation values are taken in the Euclidean vacuum. The first term on the

r.h.s. is the stress tensor evaluated in flat space. All the rest of the terms are contact terms

which need to be evaluated carefully. Note that in each of the stress tensor insertions we

need to impose the self dual condition by using (5.8).

Before we discuss the contact terms, we will present the propagator to evaluate these

correlators. The thermal 2-point function of the gauge invariant fields is given by

SB(ωn, p) = 〈Fµ1µ2µ3(ωn, p)F
ν1ν2ν3(−ωn′ ,−p3)〉,

=

(
pµ1pν1gµ2ν2gµ3ν3

ω2
n + p2

+ Permutations

)
βδn,n′(2π)5δ5(p− p3), (5.10)

10We have fixed the over all sign in the stress tensor by demanding that it agrees with the 2 dimensional

conformal field theory definition of the stress tensor for the chiral boson when applied to d = 2. The reason

the sign differs from that in [21] is due to our choice of mostly negative signature of space time.
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where, the frequencies for the bosons in the Euclidean theory are even multiples of πT and

are given by

ωn = 2nπT, n ∈ Z. (5.11)

Lets now discuss how we proceed to evaluate each of the terms in (5.9). The first term

is obtained by evaluating the Wick contractions of the flat space stress tensor written in

momentum space. To be explicit we write down the (τx) component of the stress tensor

T τxfl (−k) = − 1

β
Σωm

∫
d5p2

(2π)5

{
F τab(−p2 − k)F xab(p2) + F τay(−p2 − k)F xay(p2)

+F τaz(−p2 − k)F xaz(p2) + F τby(−p2 − k)F xby(p2)

+F τbz(−p2 − k)F xbz(p2) + F τyz(−p2 − k)F xyz(p2)
}
. (5.12)

Here the dependence on the Matsubara frequency in the integrand is present in p2 whose

time component is ωm, which we have not been explicit. Note that though we need to

impose the self dual projection on the field strength at every insertion of the stress tensor

it is sufficient to work with the self dual insertion on one of the insertions of the stress in

the Wick contractions [21]. The details of all the Wick contractions are performed in the

appendix (B). To evaluate the contact terms in (5.9) we expand the stress tensor in (5.7)

by considering only metric fluctuations hτx(k) and hτz(p). Here we write down an example

of the action of the derivative with respect to hτz on T τx

δT τx(−k)

δhτz(p)
= −

∑
ωm

∫
d5p3

(2π)5

{
F zab(−p3 − p− k)F xab(p3) + F zay(−p3 − p− k)F xay(p3)

+F zby(−p3 − p− k)F xby(p3)
}
. (5.13)

Here again we have suppressed the dependence of the Matsubara frequency in the time

component of p3. We have to Wick contract the above expression with T τa(k + p) on

which the self dual projection is inserted. Similar terms are written down for these class of

contact terms. In the appendix B, it is shown in detail how all these contact terms yield

vanishing contribution to the transport coefficient. Finally we have the last contact term

in (5.9) resulting from two derivatives of the metric on the stress tensor. It is shown in the

appendix that this term also vanishes. In summary we do not have any contribution from

the contact terms.

The analysis of all possible Wick contractions is tedious and has to be done very

methodically. This is also performed in detail in the appendix B. After the Wick contrac-

tions there are angular integrals over the internal momenta to be performed. We perform

these integrals using the method developed in [16]. Essentially we take the zero external

frequency limit first and then take the external momenta to zero before the integration.

The integrands then simplify considerably and the integrals are easily performed. Finally

all the finite terms resulting from the Wick contractions in the zero momentum limit of

the correlator (5.4) are given in (B.1). The end result of this long calculation yields the

following result for the transport coefficient

λ
(6)
3(S) =

πT 4

20
. (5.14)

This agrees with (4.50), the result obtained using global anomaly matching.
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6 Conclusions

We have used the method of global anomaly matching put forward in [20] for theories

with chiral gravitinos and self dual tensors to determine thermal effective actions and

therefore parity odd transport coefficients. For the case of gravitinos, we obtain results for

transport coefficients which are consistent with perturbative calculations of [16] up to mod

2. Our analysis in d = 6 shows that the second Pontryagin class does not contribute to

the topological η invariant and therefore does not contribute to transport. This provides a

topological explanation for this observation in the replacement rule of [22]. Finally we have

evaluated the transport coefficients of self dual tensors in d = 6 using the Feynman rules

put forward in [21]. As far as we are aware this is the first instance where the Feynman

rules proposed by [21] for the self dual tensor has been used at finite temperature. It is

indeed satisfying that the result agrees with the expectation from global anomaly matching

as well as the ‘replacement rule’ of [22].

From the study in this paper it is clear that these transport coefficients are not pertur-

batively renormalized11 since they are related to global anomalies up to mod 2. However it

will be interesting to figure out the reason which can invoked to fix the mod 2 ambiguity in

the method of global anomalies. One thing we have roughly checked that is this ambiguity

persists also for gravitinos in d = 10. It is also of interest to note that it is more easy to

determined the η invariant using the replacement rule of [22] that the direct calculation of

various curvature invariants. There are no holographic checks for the transport coefficients

of self dual tensors and gravitinos since these fields usually do not occur as dynamic fields

in boundary theories. But, it will be interesting to devise other situations where contribu-

tion to transport coefficients from these fields can be checked. Lastly, we claim that the

η invariant calculated by using the index theorem can be verified by the computation of

various correlators in weak coupling regime. This provides an easier alternative way to

compute the η-invariant upto a factor of mod 2. In appendix C we have evaluated the η in-

variant for the T 2 transformation for various chiral matter in d = 10 using the replacement

rule of [22].12 It is easy to repeat this exercise for arbitrary even dimensions.
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A Curvature integrals and Chern-Simons terms

It is useful to list both the vielbeins used in evaluating the difference between the spin

connections of the bulk and the product metric which is defined by

θ = ωaµb(B)− ωaµb(P ). (A.1)

2d vielbeins. The vielbein which was used for evaluating the spin connection ωaµb(B) for

the metric in (3.6) are given by

er̂r(B) = 1, eŷy(B) = 1, (A.2)

et̂t(B) = f(r), et̂x(B) = f(r) (a(x) + 2y) , ex̂x(B) = 1.

The vielbein used of evaluating the spin connection ωaµb(P ) for the metric in (3.7) are

given by

er̂r(P ) = 1, eŷy(P ) = 1, (A.3)

et̂t(P ) = f(1), et̂x(P ) = f(1) (a(x) + 2y) , ex̂x(P ) = 1.

6d vielbeins. To study the global anomalies in 6d we evaluate θaµ(B) for the metric

in (4.8) using the following vielbeins

er̂r(B) = 1, eŷy(B) = 1, ex̂x(B) = 1, eẑz(B) = 1

eĉc(B) = 1, eb̂b(B) = 1, eêe(B) = 1, et̂t(B) = f(r),

et̂x(B) = f(r) (a1(a) + 2u) , et̂z(B) = f(r)a2(b), et̂b = f(r)a3(y). (A.4)

For the product metric at the boundary given in (4.10) the vielbeins are

er̂r(P ) = 1, eŷy(P ) = 1, ex̂x(P ) = 1, eẑz(P ) = 1,

eĉc(P ) = 1, eb̂b(P ) = 1, eêe(P ) = 1, et̂t(P ) = f(1),

et̂x(P ) = f(1) (a1(a) + 2u) , et̂z(P ) = f(1)a2(b), et̂b(P ) = f(1)a3(y). (A.5)

Curvature integrals. To evaluate the η invariant in d = 6 we require the following

curvature integrals of the metric in (4.8) as well as boundary terms associated with the
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metric in (4.10)

I1 =

∫
B

TrR ∧R ∧R ∧R

=

∫
B

2a′2(b)a′3(y)f ′(r)
{
f(r)7

[
5 + 5a′2(b)4 − a′3(y)2 + 5a′3(y)4 − a′2(b)2

(
1 + a′3(y)2

)]
+24f ′(r)2f ′′(r)

}
,

=

∫
dtdadbdxdydz ×

4

{
a′2(b)a′3(y)

[
f(1)8

8

(
5 + 5a′2(b)4 − a′3(y)2 + 5a′3(y)4

−a′2(b)2
(
1 + a′3(y)2

))
+ 6f ′(1)4 − 6

]}
,

Iθ1 =

∫
Σ

Trθ ∧R ∧R ∧R,= 24

∫
dtdadbdxdydzf ′(1)4a′2(b)a′3(y),

I2 =

∫
TrR ∧R ∧ TrR ∧R,

=

∫
B

4a′2(b)a′3(y)f ′(r)
{
f(r)7

[
5+5a′2(b)4+11a′3(y)2+5a′3(y)4+11a′2(b)2

(
1+a′3(y)2

)]
+16f(r)3

(
1+a′2(b)2+a′3(y)2

)
f ′(r)2+8

[
f(r)4

(
1+a′2(b)2+a′3(y)2

)
+ 3f ′(r)2

]
f ′′(r)

}
,

=

∫
dtdadbdxdydz8a′2(b)a′3(y)×{
f(1)8

8

[
5 + 5a′2(b)4 + 11a′3(y)2 + 5a′3(y)4 + 11a′2(b)2

(
1 + a′3(y)2

)]
+4f(1)4f ′(1)2

(
1 + a′2(b)2 + a′3(y)2

)
+ 6f ′(1)4 − 6

}
,

Iθ2 =

∫
Σ

Trθ ∧RTrR ∧R,=
∫
dtdadbdxdydz ×{

−1

2
a′2(b)a′3(y)

[
−32f(1)4f ′(1)2

(
1 + a′2(b)2 + a′3(y)2

)
− 96f ′(1)4

]}
, (A.6)

where the orientation is decided by εtaxybur = 1.

Chern Simons terms. We obtain identities that relate the terms in the anomaly poly-

nomial p2
1 and p2

2 to exterior derivatives of Chern-Simons terms. We then evaluate these

Chern-Simons terms for the metric (4.10).

From the definition of the curvature form we have the identity

Tr(R ∧R ∧R ∧R) = Tr(dω ∧ dω ∧ dω ∧ dω + 4dω ∧ dω ∧ dω ∧ ω ∧ ω
+4dω ∧ dω ∧ ω ∧ ω ∧ ω ∧ ω + 2dω ∧ ω ∧ ∧ωdω ∧ ω ∧ ω ∧ ω
+4dω ∧ ω ∧ ω ∧ ω ∧ ω ∧ ω ∧ ω). (A.7)
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We observe that each term in the r.h.s. of the above equation can be written as an exact

form using the following identities

d[Tr(ω ∧ dω ∧ dω ∧ dω)] = Trdω ∧ dω ∧ dω ∧ dω),

d[Tr(dω ∧ ω ∧ ω ∧ ω ∧ ω ∧ ω)] = 2Tr(dω ∧ dω ∧ ω ∧ ω ∧ ω ∧ ω)

+Tr(dω ∧ ω ∧ ω ∧ dω ∧ ω ∧ ω),

2

5
d

[
Tr(dω∧dω∧ω ∧ ω ∧ ω)+

1

2
Tr(dω ∧ ω ∧ dω ∧ ω ∧ ω)

]
= Tr(dω ∧ dω ∧ dω ∧ ω ∧ ω),

1

7
d[Tr(ω ∧ ω ∧ ω ∧ ω ∧ ω ∧ ω ∧ ω)] = Tr(dω ∧ ω ∧ ω ∧ ω ∧ ω ∧ ω ∧ ω).

(A.8)

Combining all these identities we obtain

Tr(R ∧R ∧R ∧R) = d

[
Tr(ω ∧ dω ∧ dω ∧ dω) +

8

5
Tr(dω ∧ dω ∧ ω ∧ ω ∧ ω)

+
4

5
Tr(dω ∧ ω ∧ dω ∧ ω ∧ ω) +

4

7
Tr(ω ∧ ω ∧ ω ∧ ω ∧ ω ∧ ω ∧ ω)

+2Tr(dω ∧ ω ∧ ω ∧ ω ∧ ω ∧ ω)

]
. (A.9)

Similarly,

Tr(R ∧R)Tr(R ∧R) = d[Tr(ω ∧ dω +
2

3
ω ∧ ω ∧ ω) ∧ Tr(R ∧R)]. (A.10)

Finally we can write down the anomaly polynomials as exterior derivatives of Chern-

Simons terms.

p1(R)2 =
1

4(2π)4

Tr(R ∧R)2

4
,

=
1

(2π)4
d

[
Tr(ω ∧ dω +

2

3
ω ∧ ω ∧ ω) ∧ Tr(R ∧R)

]
. (A.11)

p2(R) =
−1

(2π)4

(
1

4
Tr(R ∧R ∧R ∧R)− 1

8
Tr(R ∧R)Tr(R ∧R)

)
,

=
−1

4(2π)4
d

[
Tr(ω ∧ dω ∧ dω ∧ dω) +

8

5
Tr(dω ∧ dω ∧ ω ∧ ω ∧ ω)

+
4

5
Tr(dω ∧ ω ∧ dω ∧ ω ∧ ω) + +

4

7
Tr(ω ∧ ω ∧ ω ∧ ω ∧ ω ∧ ω ∧ ω)

+2Tr(dω ∧ ω ∧ ω ∧ ω ∧ ω ∧ ω)− 1

2
Tr(ω ∧ dω +

2

3
ω ∧ ω ∧ ω) ∧ Tr(R ∧R)

]
.

(A.12)
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Chern Simons integrals. We will require integrals of the various Chern Simons forms
over the boundary of the metric given in (4.8). These are given by∫

Σ

Trω ∧ dω ∧ dω ∧ dω = −3(2π)4

2

∫
dbdyf(1)8a′2(b)a′3(y)

[(
a′2(b)4 + a′3(y)4

)
+ 1
]
,∫

Σ

Trdω ∧ dω ∧ ω ∧ ω ∧ ω = − (2π)4

2

∫
dbdyf(1)8a′2(b)a′3(y)

[(
a′2(b)4 + a′3(y)4

)
+ 1
]
,∫

Σ

Trdω ∧ ω ∧ dω ∧ ω ∧ ω = − (2π)4

4

∫
dbdyf(1)8a′2(b)a′3(y)

[(
a′2(b)4 + a′3(y)4

)
+ 1
]
,∫

Σ

Trdω ∧ ω ∧ ω ∧ ω ∧ ω ∧ ω =
(2π)4

4

∫
dbdyf(1)8a′2(b)a′3(y)

[
a′2(b)2

(
a′3(y)2+1

)
+a′3(y)2

]
,∫

Σ

Trω ∧ ω ∧ ω ∧ ω ∧ ω ∧ ω ∧ ω = 0, (A.13)∫
Σ

Tr(ω ∧ dω +
2

3
ω ∧ ω ∧ ω)Tr(R ∧R) = (2π)4f(1)4

∫
dbdya′2(b)a′3(y)×{

−16f ′(1)2
(
a′2(b)2 + a′3(y)2 + 1

)
−f(1)4

[
11a′2(b)2

(
a′3(y)2 + 1

)
+ 5a′2(b)4

+5a′3(y)4 + 11a′3(y)2 + 5
]}
.

In the last integral it is important to note that the curvature form Tr(R∧R) is evaluated

from the metric (4.8) but at the boundary.

B Correlators of self dual tensors in d = 6

In this appendix we present the details involved in evaluating the Kubo formula (5.4)

to obtain the transport coefficient λ
(6)
3(S) We first write down the components of the flat

space stress tensors we will use explicitly. This will facilitate the discussion of the Wick

contractions.

T τafl (p+ k) =
−1

β

∑
ωm

∫
d5p1

(2π)5

[
1

2

(
F τbx + iF ayz

)
(−p1 + p+ k)

(
F abx − iF τyz

)
(p1)

+
1

2

(
F τby − iF axz

)
(−p1 + p+ k)

(
F aby + iF τxz

)
(p1)

+
1

2

(
F τbz − iF ayx

)
(−p1 + p+ k)

(
F abz + iF τyx

)
(p1)

]
,

T τxfl (−k) =
−1

β

∑
ωm

∫
d5p2

(2π)5

[
(F τab(−p2 − k)F xab(p2) + F τay(−p2 − k)F xay(p2)

+F τaz(−p2 − k)F xaz(p2) + F τby(−p2 − k)F xby(p2)

+F τbz(−p2 − k)F xbz(p2) + F τyz(−p2 − k)F xyz(p2)
]
,

T τzfl (−p) =
−1

β

∑
ωm

∫
d5p3

(2π)5

[
F τab(−p3 − p)F zab(p3) + F τay(−p3 − p)F zay(p3)

+F τax(−p3 − p)F zax(p3) + F τby(−p3 − p)F zby(p3)

+F τbx(−p3 − p)F zbx(p3) + F τyx(−p3 − p)F zyx(p3)
]
. (B.1)
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We have imposed the self dual projection on T τa, also note that after summing over the

indices involved in F we obtain an overall factor of 1/2. Again in writing down T τx and

T τz, the indices in F has been summed over.

The kinematic configurations is same as the one used in [16] for d = 6. The two

external momenta are labelled as p, k. The momentum p has non-zero component only

in the b direction, while k has non-zero momentum only in the y direction. The one loop

internal momenta is labelled by p3. To perform the integration over p3, we will parametrize

its components in terms of angular variables

pb3 = |p3| cosφ1, py3 = |p3| sinφ1 cosφ2, px3 = |p3| sinφ1 sinφ2 cosφ3, (B.2)

pz3 = sinφ1 sinφ2 sinφ3 cosφ4, pa3 = sinφ1 sinφ2 sinφ3 sinφ4.

With this kinematic configuration, we write down the expression for the energies which

will occur in the expression for the propagators.

Ep3+p =
(
|p3|2 + |p|2 + 2|p||p3| cosφ1

) 1
2
, (B.3)

Ep3+k =
(
|p3|2 + |k|2 + 2|k||p3| sinφ1 cosφ2

) 1
2
,

Ep3−k =
(
|p3|2 + |k|2 − 2|k||p3| sinφ1 cosφ2

) 1
2
,

Ep3+p+k =
(
|p3|2 + |k|2 + |p|2 + 2|k||p3| sinφ1 cosφ2 + 2|p||p3| cosφ1

) 1
2
.

In order to keep track of the Wick contractions, we adopt the following convention. We

will denote the ith term in the expression for the stress tensor as, Tµνi . For example,

T τx2 =
−1

β

∑
ωn

∫
d5p2

(2π)5
F τay(−p2 − k)F xay(p2). (B.4)

From (5.12) and (5.4), we see that the general Wick contraction structure looks like,

I = T τai T τxj T τzk , (B.5)

where i, j, k denote the respective terms in the expression for the stress tensor.

Contractions with odd number of τ ’s vanish. There is one important simplifica-

tion when we consider the Wick contractions before a detailed evaluation. Note that the

Matsubara sums run from negative infinity to positive infinity. Applying (5.10) to such a

generic contraction, it is easy to see that the Matsubara sum gives non zero contribution

only when the terms involved in the Wick contraction have even number of τ indices. Let
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us illustrate this claim with the help of an example,

〈T τa1 T τx3 T τz1 〉=
−1

β

∑
ω1
n

∫
d5p1

(2π)5

−1

β

∑
ω2
n

∫
d5p2

(2π)5

−1

β

∑
ω3
n

∫
d5p3

(2π)5
〈1
2
F τbx(−p1+p+k)F τyz(p1)

F τaz(−p2 − k)F xaz(p2)F τab(−p3 − p)F zab(p3)〉,

=
−1

β

∑
ω3
n

∫
d5p3

(2π)5
〈F abx(p3 − k)F azx(−p3 + k)〉〈F τaz(p3)F azb(−p3)〉

〈F τbx(p3 + p)F τba(−p3 − p)〉,

=
−1

β

∑
ω3
n

∫
d5p3

(2π)5

−i
2

(pb3)2pz3p
x
3p
a
3(iω3

n)

((iω3
n)2 − E2

p3−k)((iω
3
n)2 − E2

p3
)((iω3

n)2 − E2
p3+p)

.

(B.6)

The sum over the Matsubara frequencies in the above expression is from negative infinity

to positive infinity. Note that the sum runs over an odd function of ω3. Therefore the

result vanishes.

Therefore using the observation in the previous paragraph we can conclude that the

terms in the stress tensor T τa that result in non-zero wick contractions are,

T τa(p+ k) =
−1

β

∑
ωm

∫
d5p1

(2π)5

(
− i

2
F τbx(−p1+p+k)F τyz(p1)+

i

2
F ayz(−p1+p+k)F abx(p1)

+
i

2
F τby(−p1 + p+ k)F τxz(p1)− i

2
F axz(−p1 + p+ k)F aby(p1)

+
i

2
F τbz(−p1 + p+ k)F τyx(p1)− i

2
F ayx(−p1 + p+ k)F abz(p1)

)
.

(B.7)

This is because the expansion of the stress tensor T τx and T τz contains a single τ in each

of its terms.
The resulting Wick contractions even after this simplification, are numerous. We have

developed a Mathematica code to perform the Wick contractions. These Wick contractions
can be broadly classified into two types depending on the denominators. We illustrate this
fact with the following examples.

〈T τa1 T τx1 T τz2 〉 =
−1

β

∑
ω1

n

∫
d5p1

(2π)5

1

β

∑
ω2

n

∫
d5p2

(2π)5

1

β

∑
ω3

n

∫
d5p3

(2π)5
〈− i

2
F τbx(−p1 + p+ k)F τyz(p1)

×F τab(−p2 − k)F xab(p2)F τay(−p3 − p)F zay(p3)〉,

=
1

β

∑
ω3

n

∫
d5p3

(2π)5

i

2

{−p3}a{−p3}τ{p+ p3}b{p+ p3}y{k + p+ p3}a{k + p+ p3}τ(
iω2 − E(p3)2

) (
iω2 − E(p+p3)2

) (
iω2 − E(k+p+p3)2

) .

(B.8)

〈T τa5 T τx1 T τz5 〉 =
−1

β

∑
ω1

n

∫
d5p1

(2π)5

1

β

∑
ω2

n

∫
d5p2

(2π)5

1

β

∑
ω3

n

∫
d5p3

(2π)5
〈 i
2
F τbz(−p1 + p+ k)F τyx(p1)

×F τab(−p2 − k)F xab(p2)F τbx(−p3 − p)F zbx(p3)〉,

=
1

β

∑
ω3

n

∫
d5p3

(2π)5

i

2

{−p3}a{−p3}z{k − p3}a{p+ p3}b{k − p3}z{p+ p3}y(
iω2 − E(−p3)2

) (
iω2 − E(k−p3)2

) (
iω2 − E(p+p3)2

) . (B.9)
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Result of the Wick contractions. All the Wick contractions fall into two classes

depending on the denominator. They are given by terms of the kind

WA =
1

β

∑
ω3
n

∫
d5p3

(2π)5
cA,

cA =
{[
− i(ky)2

(
(pa3)2 pb3p

y
3 + pb3(pτ3)2 py3 + pb3(px3)2 py3 + pb3p

y
3(pz3)2

+
(
pb3

)3
py3 + pb3(py3)

3
)
− ipb3ky

(
(pa3)2 +

(
pb3

)2
−(pτ3)2 +(px3)2 +(py3)

2
+(pz3)2

)
(

(pa3)2 +
(
pb3

)2
+(pτ3)2 +(px3)2 +(py3)

2
+(pz3)2

)]
+
[
− iky

(
(pa3)2

(
4
(
pb3

)2
− 3(pτ3)2

+2
(
(px3)2 +(pz3)2

))
+(pa3)4 +

(
pb3

)2(
−(pτ3)2 + 4(px3)2 + 2(py3)

2
+ 4(pz3)2

)
+ 3
(
pb3

)4

−
(
(px3)2 +(py3)

2
+(pz3)2

)(
3(pτ3)2 −(px3)2 +(py3)

2 −(pz3)2
))

+ ipy3

(
(pa3)2 +

(
pb3

)2

+(px3)2 +(py3)
2

+(pz3)2
)(

(pa3)2 +
(
pb3

)2
+(pτ3)2 +(px3)2 +(py3)

2
+(pz3)2

)
−i(ky)2

((
pb3

)2
py3 −(pτ3)2 py3 + py3(pz3)2

)]
pb +

[
ky
(
− 3i(pa3)2 pb3 + ipb3(pτ3)2

−2ipb3(px3)2 − 3ipb3(pz3)2 − 3i
(
pb3

)3 )
+
(

3i(pa3)2 pb3p
y
3 + ipb3(pτ3)2 py3

+3ipb3(px3)2 py3 + 3ipb3p
y
3(pz3)2 + 3i

(
pb3

)3
py3 + 3ipb3(py3)

3
)](

pb
)2

+
[
ky
(
−i(pa3)2 − i

(
pb3

)2
− i(pz3)2

)
+
(
i(pa3)2 py3 + 3i

(
pb3

)2
py3 + i(px3)2 py3

+ipy3(pz3)2 + i(py3)
3
)](

pb
)3

+ i
(
pb
)4
pb3p

y
3

}
× −1

2
(
iω2 − E2

−p3

)(
iω2 − E2

p+p3

)(
iω2 − E2

k+p+p3

) . (B.10)

WB =
1

β

∑
ω3
n

∫
d5p3

(2π)5
cB,

cB =

{[
i(ky)2

(
(pa3)2 pb3p

y
3 + pb3(pτ3)2 py3 + pb3(px3)2 py3 + pb3p

y
3(pz3)2 +

(
pb3

)3
py3

+pb3(py3)
3
)
− ipb3ky

(
(pa3)2 +

(
pb3

)2
−(pτ3)2 +(px3)2 +(py3)

2
+(pz3)2

)(
(pa3)2 +

(
pb3

)2

+(pτ3)2 +(px3)2 +(py3)
2

+(pz3)2
)]

+

[
−iky

(
3(pa3)2

(
pb3

)2
− 3(pa3)2(pτ3)2 + 2(pa3)2(px3)2

+3(pa3)2(py3)
2

+ 2(pa3)2(pz3)2 +(pa3)4 − 2
(
pb3

)2
(pτ3)2 + 3

(
pb3

)2
(px3)2 + 4

(
pb3

)2
(py3)

2

+3
(
pb3

)2
(pz3)2 + 2

(
pb3

)4
− 3(pτ3)2(px3)2 − 3(pτ3)2(pz3)2 + 3(px3)2(py3)

2

+2(px3)2(pz3)2 +(px3)4 + 3(py3)
2
(pz3)2 + 2(py3)

4
+(pz3)4

)
+ i(ky)2

(
(pa3)2 py3

+2
(
pb3

)2
py3 +(px3)2 py3 + 2py3(pz3)2 +(py3)

3
)

+ ipy3

(
(pa3)2
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+
(
pb3

)2
+(px3)2 +(py3)

2
+(pz3)2

)(
(pa3)2 +

(
pb3

)2
+(pτ3)2 +(px3)2 +(py3)

2
+(pz3)2

)]
pb

+
[
− iky

(
(pa3)2 pb3 − pb3(pτ3)2 + 2pb3(px3)2 + 2pb3(py3)

2
+ pb3(pz3)2 +

(
pb3

)3

+ipb3p
y
3

(
(pa3)2 +

(
pb3

)2
+(pτ3)2 +(px3)2 +(py3)

2
+(pz3)2

)
+ ipb3(ky)2 py3

](
pb
)2
}

× −1

2
(
iω2 − E2

k−p3

)(
iω2 − E2

−p3

)(
iω2 − E2

p+p3

) . (B.11)

From the analysis it is evident that Wick contractions in (B.8) belongs to class (B.10)

while the contractions in (B.9) belongs to Class (B.11)

Contractions organised as powers of the external momenta. We will show that the

contact terms in (5.9) result in vanishing contributions and therefore the entire contribution

to λ
(6)
3(S) arise from the Wick contractions of the first term in (5.9). We now systematically

proceed to evaluate the terms in (B.10) and (B.11) to obtain the contributions to the

transport coefficient. The terms in (B.10) and (B.11) can be arranged in polynomials in

p, k according to the powers of the external momenta in the numerator of these expressions.
Examining the the terms in (B.10) and (B.11) can be arranged according to decreasing

powers of the external momenta in the numerator as follows. The orders in external
momenta are also indicated alongside the terms

M1 =
−i(pb)4pb3p

y
3

2
(
iω2 − E2

−p3
) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

) , O(p4),

M2 = − (−i(pa3)2 − i(pb3)2 − i(pz3)2)ky(pb)3

2
(
iω2 − E2

−p3
) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

) , O(p3k),

M3 =
−ipb3p

y
3(ky)2pb

2

2
(
iω2 − E2

k−p3

) (
iω2 − E2

−p3
) (
iω2 − E2

p+p3

) , O(p2k2),

M4 = −
(
i(pa3)2py3 + 3i(pb3)2py3 + i(px3)2py3 + i(py3)3 + ipy3(pz3)2

)
2
(
iω2 − E2

−p3
) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

) (pb)
3
, O(p3),

M5 = −
(
−3i(pa3)2pb3 − 3i(pb3)3 + ipb3(pτ3)2 − 2ipb3(px3)2 − 3ipb3(pz3)2

)
2
(
iω2 − E2

−p3
) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

) ky(pb)
2

+
i
(
(pa3)2pb3 + (pb3)3 − pb3(pτ3)2 + 2pb3(px3)2 + 2pb3(py3)2 + pb3(pz3)2

)
2
(
iω2 − E2

k−p3

) (
iω2 − E2

−p3
) (
iω2 − E2

p+p3

) ky(pb)
2
, O(p2k),

M6 =
i
(
(pb3)2py3 − (pτ3)2py3 + py3(pz3)2

)
2
(
iω2 − E2

−p3
) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

) (ky)
2
pb

+
i
(
(pa3)2py3 + 2(pb3)2py3 + (px3)2py3 + (py3)3 + 2py3(pz3)2

)
2
(
iω2 − E2

k−p3

) (
iω2 − E2

−p3
) (
iω2 − E2

p+p3

) (ky)2pb, O(pk2),

M7 = −
(
3i(pa3)2pb3p

y
3 + 3i(pb3)3py3 + ipb3(pτ3)2py3 + 3ipb3(px3)2py3 + 3ipb3(py3)3 + 3ipb3p

y
3(pz3)2

)
2
(
iω2 − E2

−p3
) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

) (pb)
2

−
ipb3p

y
3

(
(pa3)2 + (pb3)2 + (pτ3)2 + (px3)2 + (py3)2 + (pz3)2

)
2
(
iω2 − E2

k−p3

) (
iω2 − E2

−p3
) (
iω2 − E2

p+p3

) (pb)
2
, O(p2), (B.12)
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MA
8 = i

[
(pa3)4 + 3(pb3)4 − (3(pτ3)2 − (px3)2 + (py3)2 − (pz3)2)((px3)2 + (py3)2 + (pz3)2) + (pb3)2

×(−(pτ3)2 + 4(px3)2 + 2(py3)2 + 4(pz3)2) + (pa3)2(4(pb3)2 − 3(pτ3)2 + 2((px3)2 + (pz3)2)))
]
kypb

× 1

2
(
iω2 − E2

−p3
) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

) , O(pk),

MB
8 = i

(
(pa3)4 + 3(pa3)2(pb3)2 + 2(pb3)4 − 3(pa3)2(pτ3)2 − 2(pb3)2(pτ3)2 + 2(pa3)2(px3)2

+3(pb3)2(px3)2 − 3(pτ3)2(px3)2 + (px3)4 + 3(pa3)2(py3)2 + 4(pb3)2(py3)2 + 3(px3)2(py3)2 + 2(py3)4

+2(pa3)2(pz3)2 + 3(pb3)2(pz3)2 − 3(pτ3)2(pz3)2 + 2(px3)2(pz3)2 + 3(py3)2(pz3)2 + (pz3)4
)
pbky

× 1

2
(
iω2 − E2

k−p3

) (
iω2 − E2

−p3
) (
iω2 − E2

p+p3

) , O(pk),

M9 =
i
(
(pa3)2pb3p

y
3 + (pb3)3py3 + pb3(pτ3)2py3 + pb3(px3)2py3 + pb3(py3)3 + pb3p

y
3(pz3)2

)
ky2

2
(
iω2 − E2

−p3
) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

)
−
ky2i

(
(pa3)2pb3p

y
3 + (pb3)3py3 + pb3(pτ3)2py3 + pb3(px3)2py3 + pb3(py3)3 + pb3p

y
3(pz3)2

)
2
(
iω2 − E2

k−p3

) (
iω2 − E2

−p3
) (
iω2 − E2

p+p3

) , O(k2),

M10 = ipb3
[
(pa3)2 + (pb3)2 − (pτ3)2 + (px3)2 + (py3)2 + (pz3)2

] [
(pa3)2 + (pb3)2 + (pτ3)2 + (px3)2

+(py3)2 + (pz3)2
] 1

2
(
iω2 − E2

−p3
) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

)ky
+ipb3

[
(pa3)2 + (pb3)2 − (pτ3)2 + (px3)2 + (py3)2 + (pz3)2

] [
(pa3)2 + (pb3)2 + (pτ3)2 + (px3)2

+(py3)2 + (pz3)2
] 1

2
(
iω2 − E2

k−p3

) (
iω2 − E2

−p3
) (
iω2 − E2

p+p3

)ky, O(k),

M11 = −
ipy3
(
(pa3)2+(pb3)2+(px3)2+(py3)2+(pz3)2

) (
(pa3)2+(pb3)2+(pτ3)2+(px3)2+(py3)2+(pz3)2

)
2
(
iω2 − E2

−p3
) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

) pb

−
ipy3
(
(pa3)2+(pb3)2+(px3)2+(py3)2+(pz3)2

) (
(pa3)2+(pb3)2+(pτ3)2+(px3)2+(py3)2+(pz3)2

)
2
(
iω2 − E2

k−p3

) (
iω2 − E2

−p3
) (
iω2 − E2

p+p3

) pb,

O(p),

(B.13)

Terms which do not contribute. We now show that all contributions from M1 to

M7 vanish on dividing by pbky, summing over the Matsubara frequencies, performing the

angular integrals and then taking the zero momentum limit.

Vanishing of M1.

IM1 =
−1

pbky

∑
ωm

∫
d5p3

(2π)5

i(pb)4pb3p
y
3

2
(
iω2 − E2

−p3

) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

) ,
=

∫
d5p3

(2π)5

−i(pb)3pb3p
y
3

2ky
M. (B.14)
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where we have performed the Matsubara sum using

M≡ 1

β

∑
m

1(
iω2
m−E2

−p3

)(
iω2
m−E2

p+p3

)(
iω2
m−E2

k+p+p3

) , (B.15)

=
−b(Ep3+p+k)

Ep3+p+k

(
E2
p3+p+k−E2

p3

)(
E2
p3+p+k−E2

p3+p

)+
−b(Ep3+p)

Ep3+p

(
E2
p3+p−E2

p3+p+k

)(
E2
p3+p−E2

p3

)
+

−b(Ep3)

Ep3

(
E2
p3
−E2

p3+p+k

)(
E2
p3
−E2

p3+p

) .
We apply the shift of variables p3 → −p3 − p, p3 → −p3 − p− k, in IM1 to obtain,

IM1 =
−1

pbky

∫
d5p3

(2π)5

−i(pb)4pb3p
y
3b(Ep3)

2Ep3

 1(
E2
p3
− E2

p3+p+k

)(
E2
p3
− E2

p3+p

)
1(

E2
p3
− E2

p3+p

) (
E2
p3
− E2

p3−k

) +
1(

E2
p3
− E2

p3+k

)(
E2
p3
− E2

p3+p+k

)


−
∫

d5p3

(2π)5

 −i(pb)4py3b(Ep3)

2kyEp3

(
E2
p3
− E2

p3+p

) (
E2
p3
− E2

p3−k

)
+

−i(pb)3
(
pbpy3 + kypb3 + pk

)
b(Ep3)

2kEp3

(
E2
p3
− E2

p3+k

)(
E2
p3
− E2

p3+p+k

)
 . (B.16)

Here b(p) is the Bose-Einstein distribution which is given by

b(p) =
1

epβ − 1
. (B.17)

Subsequently we will require the following moment of the Bose-Einstein distribution at

several instances ∫ ∞
0

dp
p3

eβp − 1
=
∞∑
n=1

1

n4β4

∫ ∞
0

dzz3e−z,

=
T 4π4

15
. (B.18)

Let us now take the limit pb → 0, ky → 0 systematically in (B.16). We have verified

in all situations the results are independent of the order of limits. For the case of IM1 we

will demonstrate this explicitly. First we take k → 0. We obtain the expansion

lim
k→0

IM1 =
f1(p)

k
+ f2(p) + f3(p)k +O(k2) · · · (B.19)
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We denote pb by p and ky by k for convenience. f1(p) and f3(p) are given by

f1(p) =

∫
d5p3

(2π)5
ib(Ep3)

(
−Ep3p

2 cosφ1

4
(
E2
p3

sinφ1 cosφ2(p+ 2Ep3 cosφ1)
)

+
p3 cosφ1 + 2p2Ep3 cosφ2

1 − 2p2Ep3 sinφ1 cosφ2
2

2Ep3 sinφ1 cosφ2(p+ 2Ep3 cosφ1)2

)
,

f2(p) =

∫
d5p3

(2π)5

ib(Ep3)

4E3
p3

sinφ1 cosφ2
2(p+ 2Ep3 cosφ1)3

×
[
− p5 − 5p4Ep3 cosφ1 − 8p3E2

p3
cosφ2

1

−4p3E2
p3

sinφ1 cosφ2
2 − 4p2E3

p3
cosφ3

1 − 12p2E3
p3

cosφ1 sinφ1 cosφ2
2

−8pE4
p3

cosφ2
1 sinφ1 cosφ2

2 + 8pE4
p3

sinφ1 cosφ4
2

]
. (B.20)

Recall that the integration measure is given by

d5p3 = |p3|4 sinφ3
1 sinφ2

2 sinφ3dp3. (B.21)

Note that f1(p) are odd in cosφ2 where the limits on φ2 run from 0 → π. The angular

integral over φ2 in f1(p) is of two types. The first one is given by

I
(1)
f1(p) =

∫ π

0

sinφ2
2

cosφ2
=

∫ 1

−1

√
1− z2

z
= 0, (B.22)

where we have used the iε prescription developed in [16] for evaluating the integral. The

second one is given by

I
(2)
f1(p) =

∫ π

0
sinφ2

2 cosφ2 = 0. (B.23)

The singular term in k given by f1(p) vanished on performing the angular integration. Lets

examine f2(p), here we can take the limit p→ 0 and see that it vanishes.

Let us now examine the limit when we first take p→ 0 and then k → 0. We obtain an

expression of the form

lim
p→0

IM1 = g1(k)p2 + g2(k)p4 + · · · (B.24)

The series has no singular or constant terms in p. Thus in this sequence of limits we see

IM1 tends to zero on taking the first limit. As expected the final result that IM1 vanishes

is independent of the order of limits. We have verified that this property is true for all the

terms in the correlators Similar analysis shows that

lim
p→0,k→0

IM2 = lim
p→0,k→0

IM3 = 0. (B.25)

Vanishing of M4. We show that the integral MM4 also vanishes on take the external

momenta to zero. Here the mechanism by which it vanishes is different from that of IM1

so we discuss it in detail.

IM4 =
−1

pbky

∑
ωm

1

β

∫
d5p3

(2π)5

(
i(pa3)2py3 + 3i(pb3)2py3 + i(px3)2py3 + i(py3)3 + ipy3(pz3)2

)
2
(
iω2 − E2

−p3

) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

) (
pb
)3
.

(B.26)
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Lets examine the integral term by term. Consider the second term

IM4,2 = −
(
pb
)2

ky

∑
ωm

1

β

∫
d5p3

(2π)5

3i
(
pb3
)2
py3

2
(
iω2 − E2

−p3

) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

) ,
= −

∫
d5p3

(2π)5

3ipb3
2
py3
(
pb
)2

ky
M. (B.27)

We shift the variables to get,

IM4,2 =

∫
d5p3

(2π)5

3i(pb3)
2
py3b(p3)(pb)2

Ep3k
(

−1(
E2
p3
− E2

p3+p

) (
E2
p3
− E2

p3−k

)
+

−1(
E2
p3
− E2

p3+k

)(
E2
p3
− E2

p3+p+k

) +
1(

E2
p3
− E2

p3+p

) (
E2
p3
− E2

p3+p+k

))

−
∫

d5p3

(2π)5

−ib(p3)p2

Ep3k

(
−6pb3p

y
3p− 3p2py3

)(
E2
p3
− E2

p3+p

) (
E2
p3
− E2

p3−k

)
−
−ib(p3)

(
pb
)2

Ep3k

(
−3ky(p3)b

2 − 6pb3p
y
3p
b − 3(pb)2py3 − 6pb3p

bky + 3ky(pb)2
)

(
E2
p3
− E2

p3+k

)(
E2
p3
− E2

p3+p+k

) .

(B.28)

We now take k → 0 first and then p→ 0. There are no singular terms, but there is a finite

term which is given by

lim
pb,ky→0

IM4,2 =

∫
d5p3

(2π)5

3ib(Ep3) sin2 φ1 cos2 φ2

4Ep3 cos2 φ1
+

3ib(Ep3)

4Ep3

,

= 0. (B.29)

Thus the putative finite term vanishes on performing the angular integral. Similarly lets

examine the other terms in IM4 .

IM4,1 =
−1

pbky

∑
ωm

1

β

∫
d5p3

(2π)5

(
i(pa3)2py3

)
2
(
iω2 − E2

−p3

) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

)(pb)
3
,

lim
pb,ky→0

IM4,1 = −
∫

d5p3

(2π)5

−3ipa3
2 sin2 φ1 cos2 φ2

4Ep3 cos4 φ1
+

−3ipa3
2

4Ep3 cos2 φ1
,

= 0. (B.30)

Again we have

IM4,4 =
−1

pbky

∑
ωm

1

β

∫
d5p3

(2π)5

(
i(py3)3

)
2
(
iω2 − E2

−p3

) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

)(pb)
3
,

lim
pb,ky→0

IM4,4 = −
∫

d5p3

(2π)5

−3ib(Ep3) sin2 φ1 cos2 φ2

4Ep3 cos2 φ1
+
−3ib(Ep3) sin4 φ1 cos4 φ2

4Ep3 cos4 φ1
,

= 0. (B.31)
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Therefore we conclude that

IM4 = 0. (B.32)

Vanishing of M6. Writing out M6 we have

M6 =
−1

pbky

∑
ωm

1

β

∫
d5p3

(2π)5
−

i
(
(pb3)2py3 − (pτ3)2py3 + py3(pz3)2

)
2
(
iω2 − E2

−p3

) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

)(ky)2pb

−
i
(
(pa3)2py3 + 2(pb3)2py3 + (px3)2py3 + (py3)3 + 2py3(pz3)2

)
2
(
iω2 − E2

k−p3

) (
iω2 − E2

−p3

) (
iω2 − E2

p+p3

) (ky)2pb. (B.33)

Lets examine the first term

IM6,1 =

∑
ωm

β

∫
d5p3

(2π)5

i
(
ky(pb3)2py3

)
2
(
iω2 − E2

−p3

) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

) ,
=

∫
d5p3

(2π)5

−iky(pb3)2py3b(Ep3)

2Ep3

 1(
E2
p3
− E2

p3+p+k

) (
E2
p3
− E2

p3+p

)
− 1(

E2
p3
− E2

p3+p

) (
E2
p3
− E2

p3−k

) − 1(
E2
p3
− E2

p3+k

)(
E2
p3
− E2

p3+p+k

)


−
∫

d5p3

(2π)5

ikyb(Ep3)

2Ep3

 (
−2pb3p

y
3p− p2py3

)(
E2
p3
− E2

p3+p

) (
E2
p3
− E2

p3−k

)
+

(
−2pb3p

y
3p− p2py3 − kpb3

2 − 2pkpb3 − kp2
)

(
E2
p3
− E2

p3+k

)(
E2
p3
− E2

p3+p+k

)
 . (B.34)

lim
ky→0

IM6,1 = g1(p)k + g2(p)O(k2) · · · (B.35)

Hence in the sequence of limits where we take k → 0 first, there are no finite terms. This

occurs for rest of the terms in IM6 . In order to establish that this result is independent of

the order of limits, we look at the other sequence of limits (p→ 0 first).

lim
ky ,pb→0

IM6,1 = −
∫

d5p3

(2π)5

ib(Ep3)

2

(
1

4Ep3

+
cos2 φ1

4Ep3 sin2 φ1 cos2 φ2

)
,

= 0. (B.36)

similarly,

IM6,2 =
−1

pbky

∑
ωm

β

∫
d5p3

(2π)5

i
(
(pτ3)2py3

)
2
(
iω2 − E2

−p3

) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

)ky2pb,

lim
ky ,pb→0

IM6,2 =

∫
d5p3

(2π)5

ib(Ep3)

2

(
1

4Ep3 cos2 φ1
− 1

4Ep3 sin2 φ1 cos2 φ2

)
,

= 0,

= − lim
ky ,pb→0

IM6,3 . (B.37)
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The last term in IM6 is given by

IM6,4 =
−1

pbky

∑
ωm

β

∫
d5p3

(2π)5

i
(
(pa3)2py3

)
2
(
iω2 − E2

k−p3

) (
iω2 − E2

−p3

) (
iω2 − E2

p+p3

)(ky)2pb,

lim
ky ,pb→0

IM6,4 = −
∫

d5p3

(2π)5

(
pa3

2

4p3
3 cos2 φ1

− pa3
2

4p3
3 sin2 φ1 cos2 φ2

)
,

= 0. (B.38)

Therefore we conclude that

IM6 = 0. (B.39)

IM5 exhibits and similar mechanism for cancellation, performing the same analy-

sis shows

IM5 = 0. (B.40)

Vanishing of M7. Again we analyse IM7 term by term to show that it vanishes on taking

the external momenta to zero.

IM7 =
−1

pbky

∑
ωm

1

β

∫
d5p3

(2π)5

[
3i(pa3)2pb3p

y
3 + 3i(pb3)3py3 + ipb3(pτ3)2py3 + 3ipb3(px3)2py3 + 3ipb3(py3)3

+3ipb3p
y
3(pz3)2

]
(pb)

2 × 1

2
(
iω2 − E2

−p3

) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

)
+
−1

pbky

∑
ωm

1

β

∫
d5p3

(2π)5

ipb3p
y
3

(
(pa3)2 + (pb3)2 + (pτ3)2 + (px3)2 + (py3)2 + (pz3)2

)
2
(
iω2 − E2

k−p3

) (
iω2 − E2

−p3

) (
iω2 − E2

p+p3

) (pb)
2
.

(B.41)

Lets consider the first term

IM7,1 =
−1

pbky

∑
ωm

1

β

∫
d5p3

(2π)5

(
3i(pa3)2pb3p

y
3

) (
pb
)2

2
(
iω2 − E2

−p3

) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

) ,
=

∫
d5p3

(2π)5

ipa3
2pb3p

y
3p
b(p3)

2kEp3

 1(
E2
p3
− E2

p3+p+k

) (
E2
p3
− E2

p3+p

)
+

1(
E2
p3
− E2

p3+p

) (
E2
p3
− E2

p3−k

) +
1(

E2
p3
− E2

p3+k

)(
E2
p3
− E2

p3+p+k

)


+

∫
d5p3

(2π)5

ip2pa3
2py3b(p3)

2kEp3

1(
E2
p3
− E2

p3+p

) (
E2
p3
− E2

p3−k

)
+
ipa3

2b(p3)

2Ep3

(
(pb)2py3
ky + pbpb3 + (pb)2

)
(
E2
p3
− E2

p3+k

)(
E2
p3
− E2

p3+p+k

) ,
lim

pb,ky→0
IM7,1 =

∫
d5p3

(2π)5

ipa3
2b(p3)

2

(
− 1

8E3
p3

sin2 φ1 cos2 φ2
− 3 sin2 φ1 cos2 φ2

8E3
p3

cos4 φ1

)
,

= 0. (B.42)
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As a check we also evaluate the alternative sequence of limits, k → 0, p→ 0. We find that,

lim
ky ,pb→0

IM7,1 =
g3(p)

k
+O(p) +O(k) · · · (B.43)

Where the angular integral in g3(p) vanishes in a similar mechanism to B.20. Thus this

term vanishes irrespective of the order of limits.

Similarly we have analysed all terms in IM7 to conclude

IM7 = 0. (B.44)

B.1 Evaluating the non-vanishing contributions

We now evaluate the finite contribution to the transport coefficient which are given by

MA
8 ,M

B
8 ,M10 and M11.

Evaluation of MA
8 and MB

8 .

IAM8
=

i

pbky

∑
ωm

1

β

∫
d5p3

(2π)5

[
(pa3)4 + 3(pb3)4 −

(
3(pτ3)2 − (px3)2 + (py3)2 − (pz3)2

) (
(px3)2 + (py3)2

+(pz3)2
)

+ (pb3)2
(
−(pτ3)2 + 4(px3)2 + 2(py3)2 + 4(pz3)2

)
+ (pa3)2

(
4(pb3)2 − 3(pτ3)2

+2
(
(px3)2 + (pz3)2

) )]
kypb × 1

2
(
iω2 − E2

−p3

) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

) .
(B.45)

We now analyse the integral term by term. We label the terms by the monomial of the

internal momentum in the numerator

IApa32pτ3
2 =

−1

pbky

∑
ωm

β

∫
d5p3

(2π)5

ipa3
2pτ3

2pbky

2
(
iω2 − E2

−p3

) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

) ,
=

i

2

∫
d5p3

(2π)5
pa3

2 (iω)2(
iω2 − E2

−p3

) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

) ,
=
−i
2

∫
d5p3

(2π)5
pa3

2

 Ep3b(Ep3)(
E2
p3
− E2

p3+p+k

) (
E2
p3
− E2

p3+p

)
+

Ep3+pb(Ep3+p)(
E2
p3+p − E2

p3+p+k

) (
E2
p3+p − E2

p3

) +
Ep3+p+kb(Ep3+p+k)(

E2
p3+p+k − E2

p3

)(
E2
p3+p+k − E2

p3+p

)
 .

(B.46)

We perform the usual shift of variables to get,

lim
pb,ky→0

IApa32pτ3
2 =
−i
2

∫
dp3

(2π)5

p3
3b(p3) sin5 φ1 sin4 φ2 sin3 φ3 sin2 φ4

8 cos2 φ1 sin2 φ1 cos2 φ2
. (B.47)
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After a change of variables z = cos θ, the required integrals are of the form

J1 =

∫ π

0

sin3 θdθ

cos2 θ
=

∫ 1

−1

(1− z2)dz

z2
, J2 =

∫ π

0

sin4 θdθ

cos2 θ
=

∫ 1

−1

(1− z2)
3
2dz

z2
.

(B.48)

The integrals are all on the real line, we make these integrals well defined by slightly

deforming the contour to avoid the singularity at z = 0. This prescription was developed

and tested in [16]. Then we obtain

J1 = −4, J2 = −3π

2
. (B.49)

and using these results for the integrals we get

lim
p→0,k→0

IApa32pτ3
2 =

−iπT 4

2× 15× 32
. (B.50)

Proceeding similarly we arrive at the following relations

IApa32pτ3
2 = IApx32pτ3

2 = IApz32pτ3
2 . (B.51)

Now consider IA−px32pa3
2 and the rest of the terms

IA−px32pa3
2 =

−1

pbky

∑
ωm

1

β

∫
d5p3

(2π)5

−ipa32pτ3
2pbky

2
(
iω2 − E2

−p3

) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

) .
(B.52)

lim
pb,ky0

IA−px32pa3
2 =

−i
2

∫
dp3

(2π)5

p3
3b(p3) sin5 φ1 sin6 φ2 sin3 φ3 cos2 φ3 sin2 φ4

8 cos2 φ1 cos2 φ2
,

=
−iπT 4

2× 3× 15× 32
. (B.53)

where we have used,

J3 =

∫ π

0

sin5 θdθ

cos2 θ
=

∫ 1

−1

(
1− z2

)2
dz

z2
=
−16

3
, (B.54)

J4 =

∫ π

0

sin6 θdθ

cos2 θ
=

∫ 1

−1

(
1− z2

) 5
2 dz

z2
=
−15

8
.

Similarly in the zero external momenta limit we get

IA−px32pa3
2 = IA−px32pz3

2 = IA−pz32pa3
2 = IA−px32py3

2 = IA
−px32pb3

2 ,

= IA−pa32py3
2 = IA

−pa32pb3
2 = IA

−pb3
2
py3

2 = IA−pz32py3
2 = IA

−pz32pb3
2 . (B.55)

We then evaluate terms corresponding to MB
8 . We obtain the following results in the zero

external momenta limit

IApa32pτ3
2 = IBpa32pτ3

2 = IBpx32pτ3
2 = IBpz32pτ3

2 =
−iπT 4

2× 15× 32
. (B.56)

IA−px32pa3
2 = IB−px32pa3

2 = IB−px32pz3
2 = IB−pz32pa3

2 = IB−px32py3
2 = IB

−px32pb3
2 ,

= IB−pa32py3
2 = IB

−pa32pb3
2 = IB

−pb3
2
py3

2 = IB−pz32py3
2 = IB

−pz32pb3
2 =

−iπT 4

2× 3× 15× 32
.

(B.57)
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Substituting these values into the terms of IA9 and MB
M9

, we obtain

lim
pb,ky→0

(IAM9
+ IBM9

) =
−18iπT 4

15× 32
+
−48iπT 4

6× 15× 32
. (B.58)

Evaluation of M10 and M11. Lets first write down the integrals involving M10 and M11

IM10
=
−1

pbky

∑
ωm

1

β

∫
d5p3

(2π)5

 (−ipb3) [(pa3)2 + (pb3)2 − (pτ3)2 + (px3)2 + (py3)2 + (pz3)2
]

×
[
(pa3)2+(pb3)2+(pτ3)2+(px3)2+(py3)2+(pz3)2

] ky

2
(
iω2−E2

−p3
)(
iω2 − E2

p+p3

)(
iω2 − E2

k+p+p3

)
−ipb3

[
(pa3)2+(pb3)2−(pτ3)2+(px3)2+(py3)2+(pz3)2

][
(pa3)2+(pb3)2+(pτ3)2+(px3)2+(py3)2+(pz3)2

]
× ky

2
(
iω2 − E2

k−p3

) (
iω2 − E2

−p3
) (
iω2 − E2

p+p3

)
 . (B.59)

IM11
=
−1

pbky

∑
ωm

1

β

∫
d5p3

(2π)5

ipy3 [(pa3)2 + (pb3)2 + (px3)2 + (py3)2 + (pz3)2
]

×
[
(pa3)2+(pb3)2+(pτ3)2+(px3)2+(py3)2+(pz3)2

] pb

2
(
iω2−E2

−p3
)(
iω2−E2

p+p3

)(
iω2−E2

k+p+p3

)
+
ipy3p

b
[
(pa3)2+(pb3)2+(px3)2+(py3)2+(pz3)2

][
(pa3)2+(pb3)2+(pτ3)2+(px3)2+(py3)2+(pz3)2

]
2
(
iω2 − E2

k−p3

) (
iω2 − E2

−p3
) (
iω2 − E2

p+p3

)
 .

(B.60)

We evaluate these contributions in a similar manner as before, summing over Matsubara

frequencies and shifting momenta as required. We take the zero momentum limit to get the

finite contribution. Lets detail some of the steps by considering generic terms. Consider

the integral

Î
pa3

2pb3
2 =

−1

pbky

∑
ωm

1

β

∫
d5p3

(2π)5
pa3

2pb3
2
(
−pb3ky + py3p

b
)

×

 1

2
(
iω2 − E2

−p3

) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

)
+

1

2
(
iω2 − E2

k−p3

) (
iω2 − E2

−p3

) (
iω2 − E2

p+p3

)
 ,

= Î ′C
pa3

2pb3
2 + Î ′D

pa3
2pb3

2 . (B.61)

Note we have labelled the integral by the common directions of the internal momenta

(pa3p
b
3)2, of the integrand. We have suppressed by the dependence (−pb3ky + py3p

b). This

will be understood in the remaining integrals of this section which have the superscript ˆ .
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We now define

Î ′C
pa3

2pb3
2 =

−1

pbky

∑
ωm

1

β

∫
d5p3

(2π)5
(pa3)2(pb3)

2
(
−pb3ky

)

×

 1

2
(
iω2 − E2

−p3

) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

)
+

1

2
(
iω2 − E2

k−p3

) (
iω2 − E2

−p3

) (
iω2 − E2

p+p3

)
 ,

=

∫
d5p3

(2π)5

ipa3
2pb3

3

2pb
(
M+M′

)
,

Î ′D
pa3

2pb3
2 =

∫
d5p3

(2π)5

−ipa32pb3
2
py3

2ky
(
M+M′

)
. (B.62)

We have used the following formulae to perform the Matsubara sums,

M =
1

β

∑
m

1(
iω2
m − E2

−p3

) (
iω2
m − E2

p+p3

) (
iω2
m − E2

k+p+p3

) ,
=

−b(Ep3+p+k)

Ep3+p+k

(
E2
p3+p+k − E2

p3

)(
E2
p3+p+k − E2

p3+p

)
+

−b(Ep3+p)

Ep3+p

(
E2
p3+p − E2

p3+p+k

) (
E2
p3+p − E2

p3

)
+

−b(Ep3)

Ep3

(
E2
p3
− E2

p3+p+k

) (
E2
p3
− E2

p3+p

) . (B.63)

and

M′ =
1

β

∑
m

1(
iω2
m − E2

k−p3

) (
iω2
m − E2

p3

) (
iω2
m − E2

p+p3

) ,
=

−b(Ep3)

Ep3

(
E2
p3
− E2

p3−k

) (
E2
p3
− E2

p3+p

) +
−b(Ep3+p)

Ep3+p

(
E2
p3+p − E2

p3−k

) (
E2
p3+p − E2

p3

)
+

−b(Ep3−k)

Ep3−k

(
E2
p3−k − E

2
p3+p

)(
E2
p3−k − E

2
p3

) . (B.64)

We shift the variables such that numerator in the each of the terms in the Matsubara sums

is a function of Ep3 . For example we shift the variables p3 → −p3 − p− k in the first term
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of M and so on. Applying such shifts we are left with,

Î ′C
pa3

2pb3
2 =

∫
d5p3

(2π)5

−ipa32pb3
3
b(p3)

2pbEp3

 1(
E2
p3
− E2

p3−p−k

)(
E2
p3
− E2

p3−k

)
− 1(

E2
p3
− E2

p3+p

) (
E2
p3
− E2

p3−k

)


+

∫
d5p3

(2π)5

pa3
2

pEp3

(
3pb3

2
p+ 3pb3p

2 + p3
) 1(

E2
p3
− E2

p3+p+k

) (
E2
p3
− E2

p3+p

)
+

1(
E2
p3
− E2

p3+p

) (
E2
p3
− E2

p3−k

) +
1(

E2
p3
− E2

p3+k

)(
E2
p3
− E2

p3+p+k

)
 ,

lim
pb,ky→0

Î ′C
pa3

2pb3
2 =

∫
d5p3

(2π)5

−3ipa3
2b(p3)

8p3
3 sin2 φ1 cos2 φ2

,

=
iπT 4

2× 15× 32
. (B.65)

Following similar steps as done for the above integral we have

lim
pb,ky→0

Î ′D
pa3

2pb3
2 = −

∫
d5p3

(2π)5

ipa3
2b(p3)

2

(
1

4p3
3 cos2 φ1

− 1

4p3
3 sin2 φ1 cos2 φ2

)
,

= 0. (B.66)

From (B.61), (B.65) and (B.66) we have,

Î
pa3

2pb3
2 =

iπT 4

2× 15× 32
. (B.67)

Using similar manipulations, it can be shown that

Î
pa3

2pb3
2 = Î

px3
2pb3

2 = Î
py3

2
pb3

2 = Î
pz3

2pb3
2 . (B.68)

Îpa32px3
2 =

iπT 4

2× 3× 15× 32
. (B.69)

Î
pa3

2py3
2 = Îpa32pz3

2 = Î
py3

2
px3

2 = Î
py3

2
pz3

2 = Îpx32pz3
2 = Î

pa3
2pb3

2 . (B.70)

I ′pτ34 =
−1

pbky

∑
ωm

1

β

∫
d5p3

(2π)5

(
(pτ3)4pb3k

y + (pτ3)2
(

(pa3)2 + (pb3)
2

+ (py3)
2

+ (px3)2 + (pz3)2
)
py3p

b
)

×

(
1

2(iω2 − E2
−p3

)(iω2 − E2
p+p3

)(iω2 − E2
k+p+p3

)

+
1

2
(
iω2 − E2

k−p3

) (
iω2 − E2

−p3

) (
iω2 − E2

p+p3

)
 ,

= I ′pτ34C + I ′pτ32D. (B.71)
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where,

I ′pτ34C =
−1

pbky

∑
ωm

1

β

∫
d5p3

(2π)5

(
pb3(p3)τ 4ky

)
×

(
1

2
(
iω2 − E2

−p3

) (
iω2 − E2

p+p3

)
(iω2 − E2

k+p+p3
)

+
1

2
(
iω2 − E2

k−p3

) (
iω2 − E2

−p3

) (
iω2 − E2

p+p3

)
 ,

=

∫
d5p3

(2π)5

ipb3
2pb

(M1 +M2)

I ′pτ32D =

∫
d5p3

(2π)5

−ipy3(pτ3)2
(
pa3

2 + pb3
2

+ py3
2

+ px3
2 + pz3

2
)

2ky

×

 1

2
(
iω2 − E2

−p3

) (
iω2 − E2

p+p3

) (
iω2 − E2

k+p+p3

)
+

1

2
(
iω2 − E2

k−p3

) (
iω2 − E2

−p3

) (
iω2 − E2

p+p3

)
 ,

=

∫
d5p3

(2π)5

ipy3

(
pa3

2 + pb3
2

+ py3
2

+ px3
2 + pz3

2
)

4ky
(M3 +M4) . (B.72)

The Matsubara sums can be performed by the following formulae

M1 =
1

β

∑
m

(iω)4(
iω2
m − E2

−p3

) (
iω2
m − E2

p+p3

) (
iω2
m − E2

k+p+p3

) ,
=

−E3
p3+p+kb (Ep3+p+k)(

E2
p3+p+k − E2

p3

)(
E2
p3+p+k − E2

p3+p

) +
−E3

p3+pb(Ep3+p)(
E2
p3+p − E2

p3+p+k

) (
E2
p3+p − E2

p3

)
+

−E3
p3
b(Ep3)(

E2
p3
− E2

p3+p+k

) (
E2
p3
− E2

p3+p

) . (B.73)

M2 =
1

β

∑
m

(iω)4(
iω2
m − E2

k−p3

) (
iω2
m − E2

p3

) (
iω2
m − E2

p+p3

) ,
=

−E3
p3b(Ep3)(

E2
p3
− E2

p3−k

) (
E2
p3
− E2

p3+p

) +
−E3

p3+pb(Ep3+p)(
E2
p3+p − E2

p3−k

) (
E2
p3+p − E2

p3

)
+

−E3
p3−kb(Ep3−k)(

E2
p3−k − E

2
p3+p

)(
E2
p3−k − E

2
p3

) . (B.74)
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M3 =
1

β

∑
m

(iω)2(
iω2
m − E2

−p3

) (
iω2
m − E2

p+p3

) (
iω2
m − E2

k+p+p3

) ,
=

−Ep3+p+kb(Ep3+p+k)(
E2
p3+p+k − E2

p3

)(
E2
p3+p+k − E2

p3+p

) +
−Ep3+pb(Ep3+p)(

E2
p3+p − E2

p3+p+k

) (
E2
p3+p − E2

p3

)
+

−Ep3b(Ep3)(
E2
p3
− E2

p3+p+k

) (
E2
p3
− E2

p3+p

) . (B.75)

M4 =
1

β

∑
m

(iω)2(
iω2
m − E2

k−p3

) (
iω2
m − E2

p3

) (
iω2
m − E2

p+p3

) ,
=

−Ep3b(Ep3)(
E2
p3
− E2

p3−k

) (
E2
p3
− E2

p3+p

) +
−Ep3+pb(Ep3+p)(

E2
p3+p − E2

p3−k

) (
E2
p3+p − E2

p3

)
+

−Ep3−kb(Ep3−k)(
E2
p3−k − E

2
p3+p

)(
E2
p3−k − E

2
p3

) . (B.76)

Performing the usual manipulations we obtain

lim
pb,ky→0

(I ′pτ34C + I ′pτ32D) =

∫
d5p3

(2π)5

−i
2

E3
p3
b(Ep3)

8E4
p3

sin2 φ1 cos2 φ2 sin2 φ1
,

=
iπT 4

2× 32× 15
. (B.77)

Similarly we have,

Îpa34 = Î
py3

4 = Îpz34 =
iπT 4

2× 32× 15
. (B.78)

Î
pb3

4 =
5iπT 4

2× 32× 15
. (B.79)

Summing up all contributions of M10 and M11) we obtain

lim
pb,ky→0

(IM10 + IM11) =
10iπT 4

15× 32
. (B.80)

Finally let put all the finite contributions together, from (B.58) and (B.80),

lim
pb,ky→0

(IM10 + IM11 + IM8A
+ IM8B

) =
−16iπT 4

15× 32
. (B.81)

From (5.4) and (5.6) we have

λ
(6)
3 =

3

64

16πT 4

15
. (B.82)

Vanishing of contact terms. We show that the contribution of contact terms in

the (5.9) to the transport coefficient vanish. We have 4 sets of contact terms

C1 =

〈
T τa(p+ k)

δT τx(−k)
√
gδhτz(p)

〉
E

, C2 =

〈
δT τa(p+ k)
√
gδhτz(p)

T τx(−k)

〉
E

C3 =

〈
δT τa(p+ k)
√
gδhτx(k)

T τz(−p)
〉
E

, C4 =

〈
δ2T τa(p+ k)

√
gδhτz(p)

√
gδhτx(p)

〉
E

.

(B.83)
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We show that the contact terms do not contribute to the three point function. We

begin our analysis with the term C1. It is sufficient to impose the self dual condition on

just one of the vertices in the diagram. To obtain the relevant contact terms we expand

the stress tensors to first order in metric perturbations. We evaluate contact term C1 first.

We impose the self dual condition in the stress tensor T τa and expand T τx to first order

in metric perturbations.

T τa(p+ k) =
∑
ωm

−1

β

∫
d5p1

(2π)5

1

2

(
F τbx + iF ayz

)
(−p1 + p+ k)

(
F abx − iF τyz

)
(p1)

+
1

2

(
F τby − iF axz

)
(−p1 + p+ k)

(
F aby + iF τxz

)
(p1)

+
1

2

(
F τbz − iF ayx

)
(−p1 + p+ k)

(
F abz + iF τyx

)
(p1). (B.84)

To extract the derivative of T τx with respect to the metric perturbation, let us write it as

T τx = −1

2
F τabF xab,

=
−1

2
gτα1gaα2gbα3gxα4Fα1α2α3Fα4ab. (B.85)

where we expand gµν upto 2nd order in metric perturbations using the expansion

gµν = −δµν + hµν . (B.86)

The metric perturbations we turn on are hτx, hτz, hτa only. Fourier transforming the re-

sulting expression and taking the derivative with the metric perturbations yields

δT τx(−k)

δhτz(p)
= −

∫
d5p3

(2π)5

[
F zab(−p3 − p− k)F xab(p3) + F zay(−p3 − p− k)F xay(p3)

+F zby(−p3 − p− k)F xby(p3)
]
. (B.87)

After performing the Wick contractions from (5.12) and (B.87) we get,

C1 =
[
ipb3k

y((pa3)2 + (pb3)2 − (pτ3)2 + (px3)2 + (py3)2 + (pz3)2) + ipb3(ky)2py3

]
+
[
−i(pa3)2py3 − i(p

b
3)2py3 + i(pτ3)2py3 − i(p

x
3)2py3 − ip

y
3(pz3)2

−i(py3)3 + ky(i(pb3)2 − i(py3)2)
]
pb − i(pb)2pb3p

y
3

× −1(
iω2 − E2

p3

) (
iω2 − E2

k+p+p3

) . (B.88)

Let us first analyse the terms which are linear in pbky.

C1,14 + C1,15 =
−i
2β

∑
m

∫
d5p3

(2π)5

(pb3)2 − (py3)2(
iω2 − E2

p3

) (
iω2 − E2

k+p+p3

) . (B.89)
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Here we have labelled the terms using the order they occur in (B.88) and also divided by

pbky. The sum over Matsubara frequencies is done by the following formula

1

β

∑
m

1(
iω2−E2

p3

)(
iω2−E2

k+p+p3

) = −

 b(p3)

Ep3

(
E2
p3
− E2

p3+p+k

)+
b(p3+p+k)

Ep3+p+k

(
E2
p3+p+k−E2

p3

)
.

(B.90)

Therefore we have

C1,14 + C1,15 =
−i
2

∫
d5p3

(2π)5

((
pb3

)2
− (py3)

2
)(
− b(p3)

Ep3(E2
p3
− E2

p3+p+k)

− b(p3 + p+ k)

Ep3+p+k(E
2
p3+p+k − E2

p3
)

)
. (B.91)

We proceed to shift the variables so that both the numerators in the Matsubara sum are

functions of the internal momentum p3. This implies the shift of variables p3 → −p3−p−k
in the second term of the matsubara sum.

C1,14 + C1,15 =
−i
2

∫
d5p3

(2π)5

(−2(pb3)2 − 2pb3p
b − (pb)2

)
b(p3)

Ep3

(
E2
p3
− E2

p3+p+k

)
+

(
2(py3)2 + 2py3k

y + (ky)2
)
b(p3)

Ep3

(
E2
p3
− E2

p3+p+k

)
 . (B.92)

We proceed to take the limit pb, ky → 0. The result is independent of the order in which

the limits are taken,

lim
pb,ky→0

(I1,14 + I1,15) =
i

2

∫
d5p3

(2π)5

b(p3)

2p3

(
−1− sin2 φ1 cos2 φ2

cos2 φ1

)
. (B.93)

The angular integrals are performed using the iε prescription, which yields∫ π

0

sin5 φ

cos2 φ
= −16

3
. (B.94)

Therefore we obtain

C1,14 + C1,15 = 0. (B.95)

By an analysis similar to the cancellation in B.91, we can show that, in the limit pb, ky → 0

C1,7 + C1,16 =
−1

pbky
i

2β

∑
m

∫
d5p3

(2π)5

pb3(ky)2py3 − pb3(pb)2py3(
iω2 − E2

p3

) (
iω2 − E2

k+p+p3

) ,
lim

pb,ky→0
(C1,7 + C1,16) = 0. (B.96)

Let us now proceed to analyse the rest of the terms in C1. Consider the terms

C1,1 + C1,8 =
−1

pbky
i

2β

∑
m

∫
d5p3

2π5

(kypb3(pa3)2 − pbpy3(pa3)2)(
iω2 − E2

p3

) (
iω2 − E2

k+p+p3

) . (B.97)
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Performing the Matsubara sum we have,

C1,1 + C1,8 =
−1

pbky
i

2

∫
d5p3

2π5

(
kypb3 (pa3)2 − pbpy3 (pa3)2

)− b(p3)

Ep3

(
E2
p3
− E2

p3+p+k

)
− b(p3 + p+ k)

Ep3+p+k

(
E2
p3+p+k − E2

p3

)
 . (B.98)

Shifting the internal momentum results in

C1,1 + C1,8 =
−i
2

∫
d5p3

(2π)5

(
(pa3)2(−pb)
−pb

− (pa3)2(−ky)
−ky

)
b(p3)(

E2
p3
− E2

p3+p+k

) ,
= 0. (B.99)

This pattern of cancellation occurs for the following terms in C1

C1,3 + C1,10 = C1,4 + C1,11 = C1,6 + C1,12 = 0. (B.100)

Similar analysis show that,

C1,2+C1,5+C1,9+C1,13 =
−1

pbky
i

2β

∑
m

∫
d5p3

(2π)5

ky(pb3)3+ky(pb3)2py3−pb(p
y
3)3−pb(py3)2pb3(

iω2−E2
p3

) (
iω2−E2

k+p+p3

) ,

lim
pb,ky→0

C1,2+C1,5+C1,9+C1,13 = 0. (B.101)

Therefore from all of the above results we conclude that the contact term C1 vanishes.

C1 = 0. (B.102)

We examine the term C2. We impose the self dual condition in T τx and expand T τa to

first order in metric perturbations.

T τx(−k) =
−1

2

∑
m

1

β

∫
d5p3

(2π)5

(
F τba − iF xyz

)
(−p3 − k)

(
F xba + iF τyz

)
+
(
F τby + iF xaz

)
(−p3 − k)

(
F xby − iF τaz

)
+
(
F τbz + iF xya

)
(−p3 − k)

(
F xbz − iF τya

)
. (B.103)

δT τa(p+ k)

δhτz(p)
= −

∑
m

β

∫
d5p3

(2π)5

(
F zbx(−p1 + k)F abx(p1) + F zby(−p1 + k)F aby(p1)

F zxy(−p1 + k)F axy(p1)
)
. (B.104)

From (B.83), we have

C2 =
−1

pk

−i
β

∑
m

d5p3

(2π)5

(
(pa3)2pb3 − (pz3)2pb3

)
k(

iω2 − E2
p3

) (
iω2 − E2

k+p3

) . (B.105)
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Performing the same analysis as done for C1 we find that,

C2 = 0. (B.106)

Similarly we get

C3 = 0. (B.107)

The cancellation of the C4 term is more easy to see

C4 =

〈
δ2T τa(p+ k)

√
gδhτz(p)

√
gδhτx(p)

〉
E

. (B.108)

We have to expand the stress tensor to second order in metric perturbations and extract

out the hτxhτz coefficient. The component of stress tensor of interest is given by

T τa =
−1

β

∑
ωn

∫
d5p1

(2π)5

(
F̃ τbx(−p1 + p+ k)F abx(p1) + F̃ τxy(−p1 + p+ k)F axy(p1)

F̃ τyz(−p1 + p+ k)F ayz(p1) + F̃ τbz(−p1 + p+ k)F abz(p1) + F̃ τxz(−p1 + p+ k)F axz(p1)

+F̃ τby(−p1 + p+ k)F aby(p1)

)
. (B.109)

Here we have written down the stress tensor with the self dual projection on one of the

fields strengths. Since the contractions involved are all self contractions with the stress

tensor, this is sufficient.13 Only the terms which are quadratic in hµν , more specifically

hτxhτz contribute to the correlator.

F̃ τbx =
1

2

(
gτα1gbα2gxα3Fα1α2α3 − iFyza

)
,

=
1

2
(−Fτbx − iFyza − hτzFzbx) + O(h3)

F abx = −Fabx + O(h3). (B.110)

Therefore we see that there are no terms of the kind hτxhτz in the metric expansion of

T τa. Thus we obtain

C4 = 0. (B.111)

This concludes our analysis which shows that the contribution to the transport coeffi-

cient from the contact terms vanish.

C Summary of η invariants in various dimensions

We have seen that the η invariant corresponding to the T 2 transformation determines the

contribution of the chiral matter to the parity odd transport coefficient. Since evaluation

of the η invariant is an involved exercise it is convenient to turn the problem around

and evaluate the η invariant using the data provided by the transport coefficient. In this

13We have also carried out the analysis with the self dual condition imposed on both the field strength

that occurs in the stress tensor. The final result is C4 = 0

– 48 –



J
H
E
P
1
2
(
2
0
1
6
)
1
1
6

Dimension Species η invariant (upto mod 2)

d = 2 Fermions 1
6

Gravitinos 1
6

Chiral Bosons 1
6

d = 6 Fermions − 7
60nm

Gravitinos −35
60nm

Self Dual Tensors −16
60nm

d = 10 Fermions 31
126mnop

Gravitinos 279
126mnop

Self Dual Tensors 256
126mnop

Table 1. η invariants in various dimensions.

appendix we first summarise the η invariants of fermions, gravitinos and self dual tensors

in d = 2, 6 dimensions. We then use the knowledge of anomalous transport given in [22] to

obtain the η invariants for various species in d = 10. Our starting point is the metric g2d

of the torus T̂ 2d.

ds2
2d =

(
dt+ a1(x1)dx1 + a2(x3)dx2 · · · a2d−2(x2d−1)dx2d−2

)2
+ dx2

1 + dx2
2 · · · dx2

2d−1

(C.1)

where the coordinates are periodic with period 2π. Fermionic matter along the torus

directions have anti-periodic boundary conditions. This results in a non trivial field con-

figuration for the metric components ai for i = 2, 4, · · · (2d− 2)

xj ∼ xj + 2π, j = 3, 5, · · · 2d− 1, (C.2)

ai(x
j) = 2n

xj

2π
, n ∈ Z

Such a winding configuration ensures that under a T 2 transformation in the (xi, xj) plane,

as xj → xj + 2π, ai → ai + 2n. Thus the boundary conditions (A,A) remain invariant

along these directions. We wish to evaluate the η invariant corresponding to the T 2 trans-

formation under which a1 → a1 + 2. The effective action that one gets from computing the

η invariant in such a set up must reproduce the correct value for the parity odd transport

coefficients in the de-compactification limit. Using the values of anomalous transport coef-

ficients determined by the pure gravitational anomaly in arbitrary dimensions given in [22]

we have calculated the η invariants of various species of matter in various dimensions. They

are summarized in table 1, where m,n, o, p ∈ Z, denote the non-trivial winding number of

the metric components. Note that all these η invariants are determined to mod 2.
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