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1 Introduction

In a previous paper [1] we derived the Cutkosky rules for superstring field theory under

the assumption that the action for string field theory is real. This assumption was proved

later [2]. Cutkosky rules derived in [1] establish that the T-matrix — related to the S-

matrix via the relation S = 1 − iT — satisfies the relation i(T − T †) = T †|n〉〈n|T , where

the sum over |n〉 runs over all states in the Siegel gauge. This would establish unitarity

of the theory if all states in the Siegel gauge were physical states, However since string

field theory is a gauge theory, Cutkosky rules do not automatically prove unitarity. A cut

propagator representing |n〉〈n|, besides propagating physical on-shell intermediate states,

also has unphysical and pure gauge states. Therefore in order to prove unitarity we need

to prove that the sum over intermediate states in a cut diagram receives contribution from

only the physical on-shell states, and the contribution from all other states cancel. This is

what we shall show in this paper.

Earlier attempts [3, 4] to prove unitarity of superstring theory in the covariant formu-

lation relied on proving equivalence to light-cone string field theory [5, 6]. However since

light-cone superstring field theory encounters contact term divergences [7–10], it is not

clear if this can be lifted to a valid proof after taking into account the various subtleties

of the covariant formulation described in [11]. Some recent attempts to circumvent this

difficulty can be found in [12]. Another systematic procedure for computing the imaginary

part of the string theory amplitude is the iǫ prescription of [13, 14], but it is not clear at

this stage how this can be used to prove unitarity of the amplitude.

The rest of the paper is organized as follows. In section 2 we derive some useful

properties of the quantum corrected propagator of string field theory and residues at its

poles. In section 3 we use the Ward identities of string field theory to show that only

physical states contribute in the sum over intermediate states in a cut diagram. In section 4

we discuss some open problems.
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2 The propagator

The main tool in our analysis will be the full propagator computed from the one particle

irreducible (1PI) effective action of superstring field theory. We shall follow the conventions

of [15], and begin by collecting some basic results in 1PI effective string field theory as

reviewed in [15]. This will be followed by a review of some basic results in Cutkosky rules

derived in [1]. Finally we shall combine these results to derive the general form of the

contribution from a cut propagator as given in (2.30).

We shall work with the heterotic string theory for simplicity and will describe the

generalization to type II string theories at the end of the section. We define HT to be the

subspace of GSO even states in the matter ghost conformal field theory satisfying

b−0 |s〉 = 0, L−
0 |s〉 = 0, for |s〉 ∈ HT . (2.1)

Here bn, b̄n, cn, c̄n are the modes of the usual b, b̄, c, c̄ ghost fields, Ln, L̄n are the total

Virasoro generators, and

b±0 = b0 ± b̄0, c±0 =
1

2
(c0 ± c̄0), L±

0 = L0 ± L̄0 . (2.2)

Hn will denote the subspace of states in HT carrying picture number n.

Even though we follow closely the formalism described in [15], there are two ways in

which the action that we consider differs from the one analyzed in [15]:

1. We shall implicitly assume that the 1PI effective action we use comes from the sum

of 1PI diagrams of the action described in [16] so that the Cutkosky rules hold [1].

This means that the class of actions we shall consider will be more restrictive than

the ones used in [15]. But this does not prevent us from using the results derived

in [15] since the latter describes a more general class of theories.

2. In the analysis of [15] we had restricted the interacting string field to carry ghost

number 2 and picture numbers −1 or −1/2.1 Here we shall keep the form of the

action unchanged but allow the string field to carry all possible ghost numbers since

we want to include in our analysis not only the matter fields but also the ghost

fields as external states.2 It is easy to verify that the results of [15] that we shall be

using, namely eq. (2.8) below for the propagator and eq. (3.1) below for the truncated

Green’s function, are valid for these more general string fields.

The kinetic operator Q̂B of 1PI effective string field theory around the quantum cor-

rected vacuum, and a related operator Q̃B introduced in [15] will play special roles in our

analysis. Q̂B and Q̃B are operators of ghost number 1, acting respectively on the states in

ĤT ≡ H−1 ⊕H−1/2 and H̃T ≡ H−1 ⊕H−3/2 , (2.3)

1The formulation of the theory given in [16] also requires us to introduce a free string field taking value

in H
−1 ⊕H

−3/2, but this will not play any role in our analysis.
2The corresponding action will describe the ‘1PI master action’ and will satisfy the classical master

equation like the classical master action [16, 17]. As in [16, 17], the master action is obtained from the

original action by relaxing the constraint on ghost number of the string field, but keeping the form of the

action the same.
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producing states in ĤT and H̃T respectively. Q̂B and Q̃B have the form

Q̂B = QB + GK, Q̃B = QB +K G . (2.4)

Here QB is the nilpotent BRST operator. K is some operator that acts on states in ĤT and

produces states in H̃T . It is related to the 1PI two point function and can be computed using

perturbation theory. G is the identity operator in the Neveu-Schwarz (NS) sector and the

zero mode of the picture changing operator (PCO) in the Ramond (R) sector, and satisfies

[G, b±0 ] = 0 , [G, L±
0 ] = 0, [G, QB] = 0 . (2.5)

Q̂B and Q̃B satisfy

Q̂2
B = 0, Q̃2

B = 0 , (2.6)

and

〈A|c−0 Q̂B = (−1)γA〈Q̃BA|c
−
0 for |A〉 ∈ H̃T ,

〈B|c−0 Q̃B = (−1)γB 〈Q̂BB|c−0 for |B〉 ∈ ĤT , (2.7)

where γA and γB are grassmannalities of A and B, and 〈Q̃BA| and 〈Q̂BB| are respectively

the BPZ conjugates of Q̃B|A〉 and Q̂B|B〉. It follows from (2.4) that Q̂BG = GQ̃B.

While the interacting string field takes value in ĤT , Siegel gauge condition further

restricts the string field to be annihilated by b+0 . The full Siegel gauge propagator ∆ for

the interacting string field of the 1PI effective action was constructed in [15]. It acts on

states in c−0 H̃T and produces states in ĤT , and has the form

∆ = β G(L+
0 + b+0 KG)−1b+0 b

−
0 = β G b+0 (L

+
0 +KG b+0 )

−1b−0 acting on states in c−0 H̃T .

(2.8)

Here β is a constant that depends on the normalization of the action and includes a factor

of i for Lorentzian signature space-time background. ∆ satisfies

b+0 ∆ = 0, ∆ b+0 = 0 , (2.9)

Q̂B∆c−0 +∆c−0 Q̃B = β G acting on states in H̃T . (2.10)

Construction of ∆ requires inverting the operator L+
0 + b+0 KG which is an infinite

dimensional matrix. At generic momentum we can evaluate ∆ using perturbation theory

in K leading to a sum over Feynman diagrams contributing to the off-shell two point

function. However when the momentum is close to a value where L+
0 vanishes for some

states, perturbation theory breaks down since diagrams of higher order will have poles of

higher order. In this case a systematic procedure for computing ∆ was described in [18].

The strategy is to work at some fixed mass2 level L (defined by the momentum independent

contribution to L+
0 ) and ‘integrate out’ the contribution to ∆ from fields in the other mass

levels. The latter operation can be carried out perturbatively. This generates a finite

dimensional matrix in the space of states at the mass2 level L which can then be inverted

explicitly. More explicitly, this corresponds to using the identity
(
A B

C D

)−1

=

(
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

)
(2.11)

– 3 –
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1PI 1PI
P1

P2

P3

Figure 1. A problematic cut diagram.

where A and D are square matrices and B and C are rectangular matrices. In our case A

denotes the kinetic operator at mass2 level L and is a finite dimensional matrix, D is the

kinetic operator for all mass2 levels other than L and B and C are the mixing matrices

between mass2 level L and mass2 level other than L. D−1 can be computed perturbatively

to any given order, and we compute (A−BD−1C)−1 by exact matrix inversion. This matrix

then can be used e.g. to find the poles of ∆ in the k2 plane for −k2 near mass2 level L.

We now briefly review the results of [1]. The analysis of [1] tells us that the string

field theory amplitudes obey the Cutkosky cutting rules. These rules may be summarized

as follows.3 If we draw a Feynman diagram with the incoming states on the left and the

outgoing states on the right, then the contribution to i(T − T †) is given by the sum over

all cuts of the diagram where a cut is a line through the diagram separating the incoming

states from the outgoing states. The rule for computing a cut diagram is to replace a cut

internal propagator −i(k2+m2
0)

−1 by 2πδ(k2+m2
0)θ(k

0). Herem0 is the tree level mass, k is

the momentum flowing through the cut propagator from the left to the right and θ denotes

step function. Furthermore, the amplitude to the right of the cut is hermitian conjugated.

However, naive application of this result will give divergent result from cut diagrams of the

form shown in figure 1. The cut passing through the propagator P2 forces the momentum

passing through this to be on-shell, but this also forces the momentum passing through the

uncut propagators P1 and P3 to be on-shell, making them diverge. The remedy suggested

in [19, 20] is to sum over all cuts of a propagator to express the result as the hermitian part

of the full propagator. It is simplest to illustrate this through a scalar field propagator.

Let us suppose that the full quantum corrected propagator has the form

∆ = −i (k2 +m2
0 + Γ(k)− iǫ)−1 , (2.12)

where m0 is the tree level mass, k is the momentum flowing from the left to the right, and

−iΓ(k) represents the contribution from the 1PI two point function. Then the sum over

3Here we are considering the Feynman diagrams of superstring field theory expanded around the shifted

background, and not that of 1PI effective string field theory. For this reason the vertices are hermitian, we

need to include loop diagrams, and Cutkosky rules hold. If we use the 1PI effective action to compute the

amplitude, then there are no loop diagrams, but the verices will be complex and part of the contribution

to the ant-hermitian part of an amplitude will arise from the anti-hermitian part of the vertices.
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Full Full 1PI Full +2πZδ(k2+m2)θ(k0)=

Figure 2. Diagrammatic representation of (2.13)–(2.15). The left hand side represents (2.13),

the first term on the right hand side represents (2.14) and the second term on the right hand side

represents (2.15).

all cuts of the propagator can be expressed as

− i
[
(k2 +m2

0 + Γ(k)− iǫ)−1 − (k2 +m2
0 + Γ(k)∗ + iǫ)−1

]
θ(k0) . (2.13)

There are three cases to be considered. If for the value of k of interest Γ(k) has an imaginary

part, then we can ignore the iǫ term and express (2.13) as

− i(k2 +m2
0 + Γ(k))−1 i(Γ(k)− Γ(k)∗) θ(k0) i(k2 +m2

0 + Γ(k)∗)−1 . (2.14)

If Γ(k) is real and k2 + m2
0 + Γ(k) is away from 0, then (2.13) vanishes. Finally if Γ(k)

is real and the full propagator has a pole on the real k2 axis at k2 +m2 = 0 with residue

−i Z, then (2.13) behaves as

2π Z δ(k2 +m2) θ(k0) , (2.15)

near k2+m2 = 0. Therefore (2.13) may be expressed as the sum of (2.14) and (2.15). This

can be represented diagrammatically as in figure 2.

For the full superstring field theory this has the following consequence. Let us suppose

that the full propagator ∆ has a pole at k2 +m2 = 0. Then near k2 = −m2 we have

∆ = −i (k2 +m2 − iǫ)−1∆0 + non-singular . (2.16)

The iǫ determines the side of the integration contour on which the pole lies [1]. Even

though ∆ is an infinite dimensional matrix, ∆0 is a matrix of finite rank since for given

momentum we expect only a finite number of states for which the propagator develops a

pole at k2 = −m2. The rules for computing the contribution from a cut propagator can be

summarized as follows:

1. If m2 is real then the corresponding cut propagator should be replaced by

2π δ(k2 +m2) θ(k0)∆0 , (2.17)

where k is the momentum carried by the cut propagator from the left side of the cut

to the right side. Furthermore we do not include any virtual self-energy corrections

on either side of a cut propagator, e.g. the diagrams of the type shown in figure 3(a)

are not allowed since their contribution has already been included in the ∆0 factor

– 5 –
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(a) (b)

Figure 3. Figure (a) shows the example of a disallowed cut diagram and figure (b) shows the

example of an allowed cut diagram. In both examples the thick vertical line denotes the cut.

in (2.17) and in the use of the renormalized mass m. However a cut can pass through

a self energy diagram, e.g. a diagram of the form shown in figure 3(b) is allowed.

These diagrams capture the imaginary part of the propagator other than the pole

contribution (2.17), as represented by (2.14).

2. If m2 has an imaginary part, i.e. if the pole corresponds to an unstable particle, then

we do not have the contribution (2.17). This is consistent with the fact that unstable

particles are not genuine asymptotic states and should not appear in the sum over

intermediate states in a unitarity relation. However cuts passing through the self

energy diagrams, like the ones shown in figure 3(b) are still allowed.

3. If the momentum k carried by a virtual uncut propagator is near a pole of the

propagator, we must use the resummed propagator that includes repeated insertion

of one particle irreducible (1PI) self-energy diagrams on the propagator. For our

analysis this means that near k2+m2 = 0 we should use the propagator ∆ constructed

using (2.8), (2.11) which already has resummation built into it.4

Therefore for analyzing cut diagrams we need to focus on the properties of ∆0 associ-

ated with the poles that occur at real momenta. Multiplying both sides of (2.9), (2.10) by

k2 +m2 and taking the limit k2 → −m2, we get

b+0 ∆0 = 0, ∆0b
+
0 = 0 , (2.18)

Q̂B∆0c
−
0 +∆0c

−
0 Q̃B = 0 . (2.19)

Multiplying (2.19) by b+0 from left/right and using (2.18) we get

b+0 Q̂B∆0c
−
0 = 0, ∆0c

−
0 Q̃Bb

+
0 = 0 . (2.20)

4This rule is particularly important for unstable particles as can be illustrated using the example of

figure 3(b). If the intermediate single particle state represented by the horizontal line corresponds to an

unstable particle, it is kinematically possible for momentum flowing through the horizontal line to be near

its classical on-shell value, and repeated insertion of self-energy diagrams on this will generate divergences

of arbitrarily high order. Therefore we must use the resummed propagator for which we only have first

order pole and the pole is shifted away from the real axis. In the limit of zero string coupling, the combined

contribution from the resummed propagators on two sides of the cut and the contribution from the cut 1PI

two point function approaches the delta function contribution given in (2.17).

– 6 –
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Let us now use a general ansatz

∆0 =
R∑

m=1

|Φm〉〈Ψm| (2.21)

where R is the rank of ∆0 and {|Φm〉} and {〈Ψm|} are a set of linearly independent states.

Since ∆0 acts on states in c−0 H̃T to produce states in ĤT , and BPZ inner product pairs

states in ĤT with states in c−0 H̃T , we have

|Φm〉 ∈ ĤT , |Ψm〉 ∈ ĤT . (2.22)

Eqs. (2.18), (2.20) now give

b+0 |Φm〉 = 0, 〈Ψm|b+0 = 0, b+0 Q̂B|Φm〉 = 0, 〈Ψm|c−0 Q̃Bb
+
0 = 0 ⇒ 〈Q̂BΨm|b+0 = 0 ,

(2.23)

where in the last step we have used (2.7) and the fact that b−0 Q̂B|Ψm〉 = 0. (2.23) is just a

reflection of the fact that the poles of ∆ are associated with zero eigenvalues of the kinetic

operator in the Siegel gauge.

We now classify the candidates for |Φm〉 satisfying these conditions near a particular

pole.

1. Unphysical states: these are linearly independent states |Ur〉 satisfying

b+0 |Ur〉 = 0, b+0 Q̂B|Ur〉 = 0, Q̂B

∑

r

ar|Ur〉 6= 0 , (2.24)

for any choice of {ar} other than ar = 0 for every r.

2. Physical states: these are states satisfying

b+0 |Pa〉 = 0, Q̂B|Pa〉 = 0,
∑

a

ca|Pa〉 6=
∑

r

dr Q̂B|Ur〉 (2.25)

for any choice of {ca}, {dr} other than ca = 0 for every a and dr = 0 for every r.

3. Pure gauge states: these are states of the form Q̂B|Ur〉. These are automatically

annihilated by Q̂B due to (2.6) and by b+0 due to (2.24).

Note that for any given momentum if there is an unphysical state |Ur〉, there is also a

pure gauge state Q̂B|Ur〉. Generically we expect no other degeneracy but we shall proceed

without making this assumption. A similar classification can be done for the candidates

for 〈Ψm|.

Let us now suppose that at some given momentum at which ∆ has pole, there are a

certain number of linearly independent physical states {|Pa〉}, unphysical states {|Ur〉} and

pure gauge states {Q̂B|Ur〉}. The normalization of these states is chosen arbitrarily. Then

the general form of ∆0 is given by

∆0 =
∑

a

|Pa〉〈Ba|+
∑

r

|Ur〉〈Cr|+
∑

r

Q̂B|Ur〉〈Dr| , (2.26)
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for some states |Ba〉, |Cr〉, |Dr〉 ∈ ĤT . Eq. (2.23) now gives

〈Ψ|b+0 = 0 , 〈Q̂BΨ|b+0 = 0 , for 〈Ψ| = 〈Ba|, 〈Cr| or 〈Dr| . (2.27)

Substituting (2.26) into (2.19) and using (2.24), (2.25) we also get

∑

r

Q̂B|Ur〉〈Cr|c
−
0 +

∑

a

|Pa〉〈Ba|c
−
0 Q̃B +

∑

r

|Ur〉〈Cr|c
−
0 Q̃B +

∑

r

Q̂B|Ur〉〈Dr|c
−
0 Q̃B = 0 .

(2.28)

Using this, and the fact that {|Pa〉}, {|Ur〉} and {Q̂B|Ur〉} are linearly independent, we get

〈Ba|c
−
0 Q̃B = 0 ⇒ 〈Q̂BBa| = 0,

〈Cr|c
−
0 = −〈Dr|c

−
0 Q̃B ⇒ 〈Cr| = −(−1)Dr〈Q̂BDr|,

〈Cr|c
−
0 Q̃B = 0 ⇒ 〈Q̂BCr| = 0 . (2.29)

(−1)Dr takes value 1 if Dr is grassmann even and −1 if Dr is grassmann odd. The last

equation in (2.29) in fact follows from the second equation and nilpotence of Q̃B. Using

the second equation in (2.29) we can rewrite (2.26) as

∆0 =
∑

a

|Pa〉〈Ba| −
∑

r

(−1)Dr |Ur〉〈Q̂BDr|+
∑

r

Q̂B|Ur〉〈Dr| . (2.30)

Since according to (2.8) ∆ carries total ghost number −2 and since the BPZ inner product

pairs states carrying total ghost number 6, we have

nPa + nBa = 4, nUr + nDr = 3 , (2.31)

where for any state |A〉, nA denotes its ghost number.

The generalization of this analysis to type II string theories is straightforward [15].

The string field will now have four sectors satisfying NSNS, NSR, RNS and RR boundary

conditions. G will be given by the identity operator in the NSNS sector, zero mode of the

right-handed PCO in the NSR sector, zero mode of the left-handed PCO in the RNS sector

and the product of the zero modes of the left-handed and right-handed PCO’s in the RR

sector. ĤT and H̃T will be defined as

ĤT = H−1,−1 ⊕H−1,−1/2 ⊕H−1/2.−1 ⊕H−1/2,−1/2,

H̃T = H−1,−1 ⊕H−1,−3/2 ⊕H−3/2,−1 ⊕H−3/2,−3/2, (2.32)

where Hm,n denotes the subspace of HT carrying left-handed picture number m and right-

handed picture number n. The rest of the analysis remains unchanged.

3 Unitarity

In this section we shall prove unitarity of the amplitudes of superstring field theory. This

analysis will be valid for both heterotic and type II string theories.

– 8 –
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Figure 4. A cut diagram in superstring field theory.

Let Γ(N)(|A1〉, · · · |AN 〉) denote the truncated Green’s function in which the external

leg propagators are removed. Γ(N) satisfies the following Ward identity [15]:

N∑

i=1

(−1)γ1+···γi−1Γ(N)(|A1〉, · · · |Ai−1〉, Q̂B|Ai〉, |Ai+1〉, · · · |AN 〉) = 0 , (3.1)

where γi is the grassmannality of Ai.

Now in a cut diagram like the one shown in figure 4, each cut propagator is replaced

by the right hand side of (2.30) together with a 2π δ(k2+m2) θ(k0) factor. Let us suppose

that we have a cut diagram with N cut propagators. Using the superscript (i) to label the

states associated with the i-th cut propagator and the operators acting on these states, we

have a net factor of

N∏

i=1

(∆0)
(i) =

N∏

i=1

[
∑

a

|P (i)
a 〉〈B(i)

a | −
∑

r

(−1)D
(i)
r |U (i)

r 〉〈Q̂
(i)
B D(i)

r | +
∑

r

Q̂
(i)
B |U (i)

r 〉〈D(i)
r |

]
,

(3.2)

associated with all the cut propagators.5 In this the ket states are inserted into the am-

plitude Γ(N1) on the left side of the cut and the bra states are inserted into the amplitude

Γ(N2) on the right side of the cut. Besides these Γ(N1) and Γ(N2) have insertions of external

incoming and outgoing states respectively, which are all annihilated by Q̂B.

We now expand (3.2) as a sum of 3N terms. There is one term given by

N∏

i=1

{
∑

a

|P (i)
a 〉〈B(i)

a |

}
. (3.3)

Each of the other terms has a certain number (say K < N) of factors of
∑

a |P
(i)
a 〉〈B

(i)
a |.

We group together all terms with the same factors of
∑

a |P
(i)
a 〉〈B

(i)
a |, and in any given

group we denote by S the set of labels i carried by the rest of the factors. S con-

tains N − K elements. We separate out from S one particular label which we call α.

For definiteness we can take α to be the lowest element of S. For any A ⊆ S − {α},

where S1 − S2 for S2 ⊆ S1 denotes the set S1 with the elements in S2 removed, let

us denote by FS(α;A) the amplitude associated with the cut diagram where the la-

bel α is carried by the factor −
∑

r(−1)D
(α)
r |U

(α)
r 〉〈Q̂

(α)
B D

(α)
r |, the labels i in A are car-

ried by −
∑

r(−1)D
(i)
r |U

(i)
r 〉〈Q̂

(i)
B D

(i)
r | and the labels i in S − {α} − A are carried by

5The range of a and r in (3.2) are in general different for different i.
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∑
r Q̂

(i)
B |U

(i)
r 〉〈D

(i)
r |. Similarly we denote byGS(α;A) the amplitude where the label α is car-

ried by
∑

r Q̂
(α)
B |U

(α)
r 〉〈D

(α)
r |, the labels i in A are carried by −

∑
r(−1)D

(i)
r |U

(i)
r 〉〈Q̂

(i)
B D

(i)
r |

and the labels i in S−{α}−A are carried by
∑

r Q̂
(i)
B |U

(i)
r 〉〈D

(i)
r |. Then the sum of all terms

in a given group, i.e. with a fixed set of labels i carrying
∑

a |P
(i)
a 〉〈B

(i)
a | factors, is given by

∑

A⊆S−{α}

[FS(α;A) +GS(α;A)] . (3.4)

Let us consider the amplitude FS(α;A). In this case the insertion associated with the

line α to the amplitude Γ(N2) on the right of the cut is −(−1)D
(α)
r 〈Q̂

(α)
B D

(α)
r |. The other

insertions involve the states 〈B
(i)
a | for i 6∈ S, the states −(−1)D

(i)
r 〈Q̂

(i)
B D

(i)
r | with i ∈ A, the

states 〈D
(i)
r | for i ∈ S−{α}−A and the external physical states which are all annihilated by

Q̂B. Now we can use (3.1) to express this amplitude as a sum of terms in which Q̂
(α)
B D

(α)
r is

replaced by D
(α)
r , but Q̂B acts in turn on the other states. Since the external states as well

as B
(i)
a and Q̂

(i)
B D(i) are all annihilated by Q̂B, the only non-vanishing contribution comes

from the terms where Q̂B acts on one of the states 〈D
(j)
r | for j ∈ S − {α} −A. This gives,

FS(α;A) =
∑

j∈S−{α}−A

s(α; j;A)HS(α; j;A) (3.5)

where s(α; j;A) takes value ±1 and HS(α; j;A) denotes an amplitude where the label α is

carried by
∑

r |U
(α)
r 〉〈D

(α)
r |, the label j is carried by −

∑
r(−1)D

(j)
r Q̂

(j)
B |U

(j)
r 〉〈Q̂

(j)
B D

(j)
r |, the

labels i in A are carried by −
∑

r(−1)D
(i)
r |U

(i)
r 〉〈Q̂

(i)
B D

(i)
r | and the labels i in S−{α}−A−{j}

are carried by
∑

r Q̂
(i)
B |U

(i)
r 〉〈D

(i)
r |. Carrying out a similar manipulation of the amplitude

Γ(N1) on the left of the cut, we get

GS(α;A) =
∑

j∈A

s′(α; j;A− {j})HS(α; j;A− {j}) . (3.6)

where s′(α; j;A− {j}) takes value ±1. This gives

∑

A⊆S−{α}

FS(α;A) =
∑

A⊆S−{α}

∑

j∈S−A−{α}

s(α; j;A)HS(α; j;A)

=
∑

j∈S−{α}

∑

A⊆S−{α,j}

s(α; j;A)HS(α; j;A) , (3.7)

and

∑

A⊆S−{α}

GS(α;A) =
∑

A⊆S−{α}

∑

j∈A

s′(α; j;A− {j})HS(α; j;A− {j})

=
∑

j∈S−{α}

∑

A⊆S−{α,j}

s′(α; j;A)HS(α; j;A) , (3.8)

where in the last step we have relabelled A − {j} as A. The right hand sides of (3.7)

and (3.8) are the same up to signs. We shall now show that the signs are such that these

terms cancel pairwise in (3.4).
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The manipulations in (3.7) involve the rearrangement

−(−1)D
(α)
r |U (α)

r 〉〈Q̂
(α)
B D(α)

r |





∏

i;α<i<j

(∆0)
(i)



 Q̂

(j)
B |U (j)

r 〉〈D(j)
r |

⇒ (−1)D
(j)
r |U (α)

r 〉〈D(α)
r |





∏

i;α<i<j

(∆0)
(i)



 Q̂

(j)
B |U (j)

r 〉〈Q̂
(j)
B D(j)

r | . (3.9)

The sign on the right hand side is fixed as follows. First there is a minus sign from having to

take all but one term from the left to the right hand side of (3.1). Second there is a factor of

(−1)D
(α)
r from having to take Q̂B through D

(α)
r . These two together cancel the −(−1)D

(α)
r

factor on the left. Moving Q̂B through
∏

i(∆0)
(i) does not generate a sign since the latter

operator is grassmann even.6 Finally moving Q̂B through Q̂
(j)
B |U

(j)
r 〉 generates a factor of

−(−1)U
(j)
r = (−1)D

(j)
r using (2.31). This is the factor we see on the right hand side of (3.9).

On the other hand manipulations in (3.8) involve the rearrangement

−(−1)D
(j)
r Q̂

(α)
B |U (α)

r 〉〈D(α)
r |





∏

i;α<i<j

(∆0)
(i)



 |U (j)

r 〉〈Q̂
(j)
B D(j)

r |

⇒ −(−1)D
(j)
r |U (α)

r 〉〈D(α)
r |





∏

i;α<i<j

(∆0)
(i)



 Q̂

(j)
B |U (j)

r 〉〈Q̂
(j)
B D(j)

r | . (3.10)

In this manipulation two minus signs cancel. First of all we get a minus sign from having

to take all but one term in (3.1) from the left to the right side. Since |U
(α)
r 〉〈D

(α)
r | is a

grassmann odd operator due to (2.31), passing Q̂B through this generates a second minus

sign. Therefore the right hand side of (3.10) has the same sign as the left hand side.

We now see that the the right hand sides of (3.9) and (3.10) cancel. This cancelation

works for every term in (3.7) and (3.8), making (3.4) vanish. This shows that the only

term that contributes is the one where (3.2) is replaced by (3.3).

This still does not prove that only physical states contribute since the only information

about 〈Ba| that we have is from (2.27) and the first equation in (2.29), and this allows

〈Ba| to be either a physical state or a pure gauge state of the form 〈Q̂BEa| for some 〈Ea|.

However since all other states entering in the argument of Γ(N2) are annihilated by Q̂B, the

amplitude with one or more 〈Ba| having the form 〈Q̂BEa| will vanish due to (3.1). This

shows that 〈Ba| must be a physical state. It now follows from (3.3) that only physical states

contribute to the cut propagators. This is the desired result that establishes unitarity of

the amplitude.

6Note that we are not actually commuting Q̂B through the operators ∆(i), — this would generate

additional terms due to (2.10). The transfer of Q̂B from one state to another takes place through the

amplitude Γ(N2). However the extra sign picked up due to the grassmannality of the operators can be

determined just from the relative position of the operators in an expression, and that is the way we are

determining the sign.
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4 Discussions

In this paper we have completed the proof of unitarity of covariant superstring field the-

ory. Therefore this theory represents a manifestly Lorentz invariant, ultraviolet finite and

unitary theory. Furthermore infrared divergences associated with tadpoles and mass renor-

malization can be dealt with using standard quantum field theory techniques.

We must note however that when the number of non-compact space-time dimensions

D is 4 or less, the S-matrix suffers from the usual infrared divergences and we have to carry

out the usual procedure of summing over final states and averaging over initial states to

get a finite result for physical cross section [21–24]. This has not yet been worked out in

superstring field theory. We hope to return to this problem in the future.
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