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1 Introduction

It has recently been noted that the classical dynamics of black holes simplifies in the limit

of a large number of dimensions. The key observation — first made by Emparan, Suzuki,

Tanabe and collaborators in [1–7] — is that black holes at large D have two effective length

scales. The first of these, r0, is the size of the black holes. The second is the thickness

of the black hole’s gravitational tail, i.e. the distance beyond the black hole event horizon

after which the gravitational potential rapidly decays to zero. In four dimensions the black

hole size and thickness are comparable. In the large D limit, however, the thickness of the

gravitational tail turns out to scale like r0/D [1] and so is much smaller than the the black

hole size.

This observation suggests the possibility of an effective ‘dimensional reduction’ of black

hole dynamics to the membrane region; a slab of spacetime of thickness 1/D centered

around the codimension one event horizon. In work done over the last year, this expec-

tation has been borne out in various contexts. In this paper we will focus on black holes

propagating in an otherwise unperturbed flat space. Assuming that r0 (see above) and

the length scale of variation along the horizon are both of order unity, the dimensional re-

duction described above was worked out to leading nontrivial order in the 1/D expansion

for the most general nonlinear dynamical context in [8, 9]; the special case of stationary

solutions and their small fluctuations has also been studied at higher orders in the 1/D

expansion in [10–13]. In addition the dimensional reduction of small horizon ripples at

length scale 1/
√
D about particular solutions (black strings or black branes in flat, AdS or

dS space) has been studied in [14–18]. Further developments were presented in [19–25].

In this paper we further develop the general nonlinear dynamical construction of [8, 9].

In particular we demonstrate that the reduction of black hole dynamics to membrane dy-

namics, worked out to leading nontrivial order in the 1/D expansion in [8, 9], can be

systematically generalized to every order in 1/D. As an application of this systematic

framework we explicitly work out the first subleading corrections to the membrane equa-

tions of motion in the 1/D expansion, and also determine the spacetimes dual to any

particular membrane solution at next subleading order in the 1/D expansion. In this

introduction we first review the leading order construction presented in [8, 9] and then

present our explicit higher order results.

1.1 Review of earlier work

Consider a class of D dimensional metrics of the form

gMN = ηMN +
(nM − uM )(nN − uN )

ψD−3
(1.1)
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The metrics (1.1) are parameterized by a smooth D dimensional function ψ and a smooth

oneform field uM . nM in (1.1) is the normal field to surfaces of constant ψ, (i.e. nM =
∂Mψ√

∂Pψ∂QψηPQ
). The oneform field uM is assumed to be unit normalized (i.e. uNuMηMN =

−1) and tangent to surfaces of constant ψ (i.e. uMnNη
MN = 0).

In order to gain intuition for spacetimes of the form (1.1) it is useful to first consider a

special case. Working with coordinates in which the metric on Minkowski space takes the

form

ds2 = −dt2 + dr2 + r2dΩ2
D−2,

the choice u = −dt and ψ = r
r0

turns (1.1) into the metric of a Schwarzschild black hole of

radius r0 in the so called Kerr Schild coordinates.

Note ψ = 1 is the event horizon of the Schwarzschild black hole. More generally the sur-

face ψ = 1 is easily verified to be a null submanifold of (1.1) for every choice of ψ and u. This

null manifold coincides with the event horizon of the (1.1) provided that ψ and u are chosen

such that the metric (1.1) settles down into a collection of stationary black holes at late

times. Following [8, 9] we refer to the submanifold ψ = 1 as the membrane world volume.1

Note that as ψ increases past unity 1
ψD−3 decays to zero very rapidly. This decay is

exponential in D once ψ−1 ≫ 1
D
. It follows that (1.1) represents a class of asymptotically

flat spacetimes with the following property; the spacetime outside the event horizon devi-

ates significantly from flat space only in a slab of thickness 1
D

around the event horizon.

We will refer to this as the membrane region. [8, 9] set out to characterize solutions of

the vacuum Einstein equations, RMN = 0, that reduce to metrics of the form (1.1) in

the large D limit, with corrections in a power series in 1
D
. As we have reviewed above,

when ψ − 1 ≫ 1
D

the spacetimes (1.1) reduce to flat space. Deviations from flatness are

nonperturbatively small in the 1
D

expansion. Thus Einstein’s equations are automatically

solved at all order in 1/D outside the membrane region. In order to obtain a true solution

of Einstein’s equations, the solution (1.1) needs to be corrected order by order in the 1
D

expansion only in the membrane region.

Consider a region of size 1
D

centered around any point x0 on the event horizon of (1.1).

It may be shown that the metric of this ball is closely approximated by the metric in

an equivalent small region centered around the appropriate event horizon point of some

boosted Schwarzschild black hole provided that

∇2

(

1

ψD−3

)

= 0, ∇.u = 0, (1.2)

(the contraction of all indices is achieved by use of the metric ηMN in the equations above).2

1Through this paper we assume that ψ in (1.1) is chosen to ensure that the membrane surface is a smooth

codimension one surface that is timelike when viewed as a submanifold of flat space (we have emphasized

above that this surface is a null submanifold of the metric (1.1)). We also assume that ψ is chosen to ensure

that 1
ψD−3 decays at spatial infinity.

2When an expression like ∇2 acts on 1
ψD−3 we get two distinct terms of order D2 in two ways. The first

term is ∝ (D− 3)(D− 2) (∇ψ)2

ψD−1 . The second term is ∝ (D− 3) ∇
2ψ

ψD−2 . Though the second term has one less

explicit factor of D than the first, it actually contributes at the same order in the 1/D expansion — i.e. at

– 2 –
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These equations need only be satisfied at leading order in D and can be violated at

subleading orders. As Schwarzschild black holes are exact solutions to Einstein’s equations,

it follows as a consequence that the spacetimes (1.1) almost solve Einstein’s equations in

the membrane region, provided that (1.2) is satisfied at every point on the membrane.

The statement that Einstein’s equations are ‘almost’ solved in the membrane region

has the following precise meaning. When evaluated in the membrane region the four

derivative scalar RABR
AB is in general of order D4. This estimate follows immediately

from the fact that the metric varies on a length scale of order 1/D in the membrane region.

Once we impose (1.2), on the other hand, RABR
AB turns out to be of order D2, i.e. In

a coordinate system in which all components of the metric are of order unity, RAB is of

order D; one order lower than the generic order suggested by a dimensional estimate. In

other words (1.2) ensures that Einstein’s equations are obeyed to leading order — but are

generically violated at first subleading order. Consequently the metrics (1.1) — with the

conditions (1.2) imposed at leading order- are plausible starting points for the construction

of true solutions of Einstein’s equations in a power series in 1
D
.

The authors of [8, 9] were able to carry out this perturbative expansion to first sub-

leading order in 1
D

(see below for a review). Interestingly they discovered that arbitrary

metrics of the form (1.1) could not be corrected to yield regular solutions to Einstein’s

equations at next order in 1
D
. It turns out to be possible to correct (1.1) at first order in

1/D only when the fields ψ and u obey an integrability constraint — a membrane equation

of motion — that we will describe in considerable detail below. Whenever this condition

is obeyed, a regular correction (of order 1/D) to the metric (1.1) was found in [8, 9]. The

corrected metric obeys RAB = O(1);3 i.e. once the corrections are taken into account,

Einstein’s equations are solved at leading and first subleading order in 1
D
.

We now turn to a description of the integrability constraints mentioned in the previous

paragraph. Consider the surface ψ = 1, viewed as a submanifold of flat space with metric

ηMN ; we refer to this submanifold as the membrane. Let KMN represent the extrinsic

curvature of this (generically timelike) submanifold. Recall also that the velocity oneform

field uM on the membrane surface is tangent to the membrane and so may be regarded

as a oneform field in the membrane world volume. The authors of [8, 9] found that the

metric (1.1) could be corrected to a regular4 solution of Einsteins equations at first order

leading order — because of the contraction of indices in ∇2. This is the reason that (1.1) solves the leading

order equations only if ∇2ψ takes the same value as it does in a Schwarzschild black hole, leading to the first

requirement listed in (1.2). In a similar manner worldvolume derivatives of the horizon shape and velocity

field — which are of order unity — compete with derivatives acting on 1
ψD−3 only if their order is enhanced

by the contraction of a worldvolume index. The only first derivative expression involving the black hole

velocity that has such a contraction is ∇.u. It follows that (1.1) satisfies the leading order equations only

if ∇.u takes the same value as it does on a Schwarzschild black hole. This leads to the second of (1.2).
3More precisely, RAB = O(1) in coordinates in which all metric components are of order unity. More

generally, RABR
AB is of order unity.

4By a regular solution we mean a solution with a smooth event horizon that is regular everywhere outside

the event horizon.
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if and only if the following constraints are obeyed

(

∇2uA
K − ∇AK

K + uCK
C
A − u.∇uA

)

PA
B = 0 (1.3)

where PA
B = δAB+uAuB is the projector orthogonal to the velocity vector on the membrane

world volume, and all covariant derivatives are taken with respect to the induced metric

on the membrane. The quantity K is the trace of the extrinsic curvature of the membrane

worldvolume.

The integrability conditions (1.3) have an interesting interpretation. They may be

thought of as a set of D − 2 equations for D − 2 variables (one of these variables is the

shape of the membrane, and the other D − 3 variables are the components of the unit

normalized, divergence free velocity field). In other words the equations (1.3) define an

initial value problem for membrane dynamics. As every configuration that obeys (1.3)

gives rise to a metric that obeys Einstein’s equations to the appropriate order in 1/D, it

follows that solutions of the membrane equations (1.3) are in one to one correspondence

with asymptotically flat dynamical black hole configurations that solve Einstein’s equations

to first subleading order in 1/D.

1.2 The membrane paradigm at higher orders in 1/D

In this paper we demonstrate that first order perturbative procedure outlined above extends

systematically to arbitrary orders in the expansion in 1
D
. We will now very briefly outline

our inductive argument. We assume that the perturbative procedure has been implemented

upto nth order, i.e. that corrections to the metric (1.1) have been determined upto nth order

in the 1/D expansion in such a manner that RMN evaluated on the corrected solution is

of order D1−n. We then add further corrections of order 1/Dn+1 to the metric (see (2.7)

and (2.10)). At order Dn−1 we demonstrate that the Einstein constraint equations are

independent of the new unknown correction functions when evaluated on the event horizon

ψ = 1. These equations determine the correction to the membrane equations (and the

divergence condition on the velocity) at order 1/Dn+1. Moving away from the horizon

we argue that the order D1−n part of RMN takes the form listed in table 2. Setting the

expressions in this table yields a set of inhomogeneous linear differential equations that

can be used to determine order 1/Dn+1 corrections to the metric. Explicit expressions for

the sources in these differential equations can only be obtained by grinding through the

perturbative procedure, but we use a contracted Bianchi identity to demonstrate that the

sources that occur in these equations are not all independent, but obey certain relations

(see (2.25)) at every order of perturbation theory. Using these relations we are able to

integrate the inhomogeneous differential equations for any source functions and obtain an

explicit and unique expressions for the metric corrections at order 1/Dn+1 (see section 3)

that are manifestly regular and obey all required boundary conditions.

As an illustration of the general method outlined above we explicitly implement the

perturbative procedure to second subleading order in 1
D
. We find that the modified mem-

– 4 –



J
H
E
P
1
2
(
2
0
1
6
)
1
1
3

brane equations take the form

[

∇2uA
K − ∇AK

K + uBKBA − u · ∇uA

]

PA
C (1.4)

+

[

(

−uCKCBK
B
A

K

)

+

(

∇2∇2uA
K3

− u · ∇K∇AK
K3

− ∇BK∇BuA
K2

− 2
KCD∇C∇DuA

K2

)

+

(

−∇A∇2K
K3

+
∇A

(

KBCK
BCK

)

K3

)

+ 3
(u ·K · u)(u · ∇uA)

K − 3
(u ·K · u)(uBKBA)

K

−6
(u·∇K)(u·∇uA)

K2
+6

(u·∇K)(uBKBA)

K2
+

3

(D−3)
u·∇uA−

3

(D − 3)
uBKBA

]

PA
C =0

while the divergence free condition on the velocity field is modified, at second subleading

order, to the equation

∇ · u =
1

2K
(

∇(AuB)∇(CuD)PBCPAD
)

(1.5)

Note that the first line in (1.4) is simply a rewriting of (1.3); the 2nd-4th lines of this

equations represent corrections to (1.3). There is a well defined sense (see below) in which

each of these correction terms is of order 1
D

relative to the leading order terms in the first

line. It follows that the equations (1.4) represent small corrections to the leading order

equations (1.3). The first order corrected membrane equation of motion (1.4) and (1.5) are

the main result of this paper.

We then present explicit expressions for the second order sources for all the inhomoge-

neous differential equations (see table 6). Plugging these sources into the general equations

for the metric corrections at any order we obtain explicit results for the second order cor-

rection to the spacetime metric dual to any particular solution of the membrane equations

of motion.

The second order corrected membrane equations (1.4) admit a simple solution; a spher-

ical membrane at rest. This solution is dual to the Schwarzschild black hole. As a check

of our second order corrections to the membrane equations we use (1.4) to compute the

spectrum of small fluctuations about this simple solutions. This spectrum is easy to ob-

tain, and turns out to be in perfect agreement with the second order corrected spectrum of

quasinormal modes obtained by Emparan Suzuki and Tanabe in [6], providing confidence

in the correctness of (1.4).

2 Perturbation theory: general structure

2.1 A more detailed description of the starting ansatz

As we have explained in the introduction, the starting point of our perturbative construc-

tion of large D solutions to Einstein’s equations is the metric (1.1). In the introduction we

noted that the metrics (1.1) are parameterized by the D dimensional function ψ and the

oneform field u. We assume these fields have a good large D limit, i.e. that the length scale

– 5 –
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of variation in ψ and u is of order unity. Following [8, 9], however, consider two different

functions ψ with the same membrane surface (i.e. with coincident zero sets for ψ−1). These

two functions define metrics (1.1) that coincide (outside the event horizon) at leading or-

der in 1/D but differ at subleading orders in 1/D. Similarly u functions that agree on the

membrane but differ off it lead to metrics (1.1) that differ only at subleading order in 1/D.

Any two metrics (1.1) that differ only at subleading orders in 1/D constitute equivalent

starting points for the perturbative construction of solutions in the following sense: the

end result of perturbation theory starting from the two different starting points will be the

same. In order to construct all distinct final metrics we need only consider one member

of each ‘equivalence class’ of metrics (1.1). As explained above the equivalence classes are

labeled by the zero set of the function ψ − 1 (the membrane world volume) and the value

of the velocity field on the membrane world volume. In order to pick a representative

from each equivalence class that we can use to set up our perturbation theory we invent an

arbitrary way of constructing the full function ψ from its zero set, and the full velocity field

u from its values on the membrane. Following [8, 9] we refer to the (essentially arbitrary)

rule for achieving this construction as a subsidiary condition on the functions ψ and u.

For technical reasons, in this paper we utilize the subsidiary conditions of [8] rather

than that of [9]. We now describe these conditions in detail.

Consider a given timelike membrane submanifold in flat space. At each point on

the manifold consider a geodesic that shoots outwards from the manifold along its normal

vector. The resultant collection of curves5 is a spacefilling congruence of spacelike geodesics;

caustics of this congruence, if any, only occur at distances of order unity (rather than 1/D)

away from the membrane.6 We define the scalar function B in the neighborhood of the

membrane as follows; B at any point is defined to be the signed proper distance, along the

geodesic that passes through it, to the membrane. This distance is defined to be positive

outside the membrane and negative inside the membrane. Note that B vanishes on the

membrane. We define

nM = ∇MB (2.1)

It follows from our construction above that

n.n = 1 (2.2)

nA is the normal oneform to surfaces of constant B. We use the symbol KMN denote the

extrinsic curvature of surfaces of constant B. Note of course that nAKAB = 0. We also

define K = KA
A . We then proceed to define the function ψ as

ψ = 1 +
KB

D − 3
(2.3)

5These ‘curves’ are actually straight lines as they are all geodesics in flat space. We use the term ‘curve’

to bring to mind the obvious generalization of this construction when the membrane is embedded in a

curved spacetime.
6The quantity D

K
gives a rough estimate for the distance away from the membrane at which the geodesics

caustic. Below we explain that K is of order D so that this caustic length scale is of order unity.

– 6 –
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In a similar manner we use the velocity function on the membrane to define a velocity

oneform field in spacetime simply by parallel transport along our congruence of geodesics.

It follows from our definitions above that

n.∇nA = 0

n.∇uA = 0
(2.4)

The first line of (2.4) follows upon differentiating 0 (2.2), using (2.1) and interchanging

derivatives. This equation is in fact simply the geodesic equations for the congruence of

geodesics that defines B. The equation on the second line of (2.4) follows from the fact

that u is defined off the membrane by parallel transport. It follows from (2.4) that

KAB = (ηCA − nAn
C) (∇CnD)

(

ηDB − nDnB
)

= (∇A − nA(n.∇))nB = ∇AnB = ∇A∇BB

(2.5)

Note that our definition of nA in this section, and the rest of this paper, differs slightly

from the definition given in the introduction. The two definitions agree at leading order

(which was all that was required in the discussion around (1.1) ) but differ at subleading

orders in 1/D. The vector nA defined in this section — rather than the normal vector

defined in the introduction — will be used through the rest of this paper.

Using (2.3) it is easily verified that on the submanifold B = 0

ψ∇2ψ =
K2

D − 3
+ 2

n.∇K
D − 3

(D − 2)∇ψ.∇ψ =
D − 2

D − 3

K2

D − 3

(2.6)

As we explain below, in the large D limit taken in this paper 2n.∇K

D−3 is of order unity while
K2

D−3 is order D. It follows that to leading order in D

(D − 2)∇ψ.∇ψ = ψ∇2ψ, i.e. ∇2

(

1

ψD−3

)

= 0

In other words our construction satisfies the first equation of (1.2). We satisfy the second

equation in (1.2) by construction; we simply choose our u oneform on the membrane such

that its divergence vanishes at leading order in D. The divergence of u will turn out not

to vanish at a subleading order.

2.2 Coordinate choice for the correction metric

In this paper we search for solutions of Einstein’s equations in a power series expansion in 1
D

GMN = ηMN + hMN ,

hMN =
∞
∑

n=0

h
(n)
MN

(D − 3)n
,

with, h
(0)
MN =

OMON

ψD−3
,

(2.7)

– 7 –
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Here

OM = nM − uM (2.8)

We fix coordinate redefinition ambiguities by demanding

hMNO
N = 0, (2.9)

Consider any point in the metric (1.1). The tangent space built about this point has two

special vectors; the vector n and the vector u. All the other D− 2 directions orthogonal to

n and u are equivalent and can be rotated into each other. It is thus useful to parameterize

the most general fluctuation field hMN (subject to the gauge condition (2.9)) in the form

h
(n)
MN = H(S,n)OMON +O(MH

(V,n)
N) +H

(T,n)
MN +

1

D − 3
H(Tr,n)PMN , (2.10)

where,

PMN = ηMN −OMnN −ONnM +OMON ,

ONH
(V,n)
N = 0, nNH

(V,n)
N = 0, OMH

(T,n)
MN = 0, nMH

(T,n)
MN = 0, PMNH

(T,n)
MN = 0,

The superscripts S, V and T stand for scalar, vector and tensor respectively, and denote

the transformation properties of the relevant symbol under the SO(D − 2) rotations in

tangent space that leave n and u fixed. The superscript Tr stands for trace, and labels a

second scalar.

2.3 Orders of D

As we have explained above, in this paper we solve Einstein’s equations in a systematic

expansion in 1
D
. In order for this process to be well defined, we need to be able to unam-

biguously estimate the scaling with D of various terms that appear in the metric and in the

membrane equation of motion. Such an estimation is only unambiguous within subclasses

of solutions, as we will now explain with an example.

Consider a membrane whose world volume is a D− 2 sphere (of radius R) times time.

The trace of extrinsic curvature, K, of this surface is easily shown to be D−2
R

and so is of

order D (assuming R is of order unity). On the other hand the surface Sp×RD−2−p times

time has K = p
R
. If p and R are both held fixed as D is taken to infinity, K is of order

unity for this surface. It follows that K cannot unambiguously be assigned a scaling with

D without making further assumptions. The same holds true of various other quantities

(e.g. ∇2uM ) that enter the metric and equation of motion.

In this paper we follow [8, 9] and estimate the D scalings of all terms as follows. We

assume that

• Our starting ansatz is constructed by sewing together bits of the event horizon of

black holes of radii R and timelike velocity uM where R and uM are everywhere

finite and of order unity.

• Our starting configuration (and so our full solution) preserves an SO(D − p − 2)

rotational invariance with p held fixed as D is taken to infinity

– 8 –
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As explained in [9], these assumptions unambiguously specify the scaling with D of all

quantities of interest (in particular they force K to be of order D).

We emphasize that in this paper we use the assumptions listed above only to estimate

the scalings of D of various quantities. When the assumptions listed in the previous

paragraph are obeyed, the membrane equations and metrics listed in this paper certainly

apply. However the formulae of this paper apply more generally to any spacetime whose

variables scale with D in the same manner in which they would if the assumptions above

were obeyed — a much larger class of configurations.

2.4 All orders definition of the membrane surface and velocity

As explained in subsection 2.1, the metric (1.1) — the starting point of our perturbative

expansion — is completely determined by the shape of a membrane and a velocity field on

the membrane. To what precision can this procedure be reversed? In other words if we

are given a solution to Einstein’s equations of the appropriate kind, how precisely can we

read off the corresponding ‘shape’ and ‘velocity’ of the membrane?

We could attempt to identify the membrane shape and velocity field by simply ex-

panding the exact solution in powers of 1/D and focusing attention on the leading order

term. By comparing with (1.1) we could then read off the membrane shape and velocity

field. While this procedure is simple, a moment’s thought will convince the reader that it

is ambiguous at all orders in 1/D save the leading order.7 In other words the requirement

that our solution reduce to (1.1) defines the membrane shape and velocity only at leading

order, leaving the subleading corrections to these quantities ambiguous. In this subsection

we will fix this ambiguity by adopting a more precise definition of the shape and velocity

field. This definition agrees with that of (1.1) at leading order, but is precise at all orders.

We use this precise definition in the computations presented in the rest of this paper.

We define the membrane shape to be the location of the event horizon of our spacetime,

and will choose higher order corrections to the metric (1.1) to ensure that this event horizon

coincides with the surface ψ = 1.

Turning to the velocity field, let GAB denote the full spacetime inverse metric. Let nA
be the oneform normal to the event horizon. We define the velocity field on the membrane

by the requirement that

uA = GABnB (2.11)

on the event horizon (i.e. at ψ = 1). In other words the velocity field is a tangent vector to

the generators of the event horizon. It is easily verified that (2.11) is a true equation for the

starting point of perturbation theory (1.1). We will choose corrections to the perturbative

ansatz to ensure that (2.11) holds at all orders in 1/D.

The requirement (2.11) together with the requirement that ψ = 1 is the exact event

horizon of our spacetime are easily seen to be satisfied provided that

H(S)(ψ = 1) = 0

H
(V )
M (ψ = 1) = 0

(2.12)

7For instance, the velocity redefinition uµ → uµ + δuµ/D does not change the metric at leading order

in 1/D.
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The first condition ensures that GMN∂Mψ∂Nψ = 0, i.e. dψ is null at ψ = 1 while the

second condition then ensures that the full spacetime metric on the event horizon takes

the form

ηMN +OMON +H
(T )
MN +

1

D − 3
HTrPMN

Let us write this metric in a the local basis of oneforms (n, u, Ya) where Ya is any D − 2

dimensional basis of oneforms chosen orthogonal to n and u. In this basis the metric takes

a block diagonal form with a 2×2 block (with basis n and u) and a D−2×D−2 block (with

basis Ya). It follows that the inverse metric also has this block diagonal structure. Note that

the 2× 2 block is universal, i.e. it is the same at every order in perturbation theory. This

block is the only one that contributes in (2.11). As (2.11) holds at leading order, it follows

that the conditions (2.12) ensure that (2.11) holds at every order in perturbation theory.

Recall that according to (1.2) the velocity field used in (1.1) is divergence free at

leading order in 1
D
. As we will see below, the divergence of the velocity field defined in this

subsection will not, in general, vanish at subleading orders in 1/D.

2.5 Structure of the equations of perturbation theory

Our perturbative procedure proceeds as follows. We assume that our solution takes the

form (2.7) together with (2.9) and (2.10). The Ricci tensor of this metric — evaluated in

a slab of spacetime of thickness 1/D around ψ = 1 — takes the schematic form

RMN =
∑

n

D2−nRn
MN (2.13)

Let us imagine that we have implemented our perturbative procedure to order n−1, i.e.

that we have determined h
(m)
MN for m = 1 . . . n− 1 in a manner that ensures that R

(m)
MN = 0

for m = 0 . . . n−1. In order to go to one higher order in perturbation theory we must solve

for h
(n)
MN to ensure that Rn

MN also vanishes.

Schematically

R
(n)
MN = CPQ

MNh
(n)
PQ + S(n)

MN

where CPQ
MN is a linear differential operator with derivatives only in the ψ direction and

S(n)
MN is a source function. As h

(n)
PQ is already of order n, the differential operator CPQ

MN is

built entirely out of the zero order background metric (1.1), and so is the same at every

order. On the other hand the source function S(n)
MN is proportional to expressions of nth

order in 1/D built out of derivatives of the membrane velocity and shape function, and is

different at every order.

At every point of the event horizon of the ansatz metric (1.1) there are two distinguished

vectors; nA and uA. Let

PAB = ηAB − nAnB + uAuB

denote the projector orthogonal to these two vectors (all dot products taken in flat space).

Instead of dealing directly with the components of RMN we find it more convenient to use

a basis adopted to uA and nA listed in table 1.
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Scalar sector Vector sector Tensor sector

RS1 = OMRMNO
N RV1

L = OMRMNPN
L RT

AB = PM
A RMNP

N
B − PAB

D−2P
MNRMN

RS2 = OMRMNu
N RV2

L = uMRMNPN
L

RS3 = uMRMNu
N

RS4 = RMNPMN

Table 1. Basis of components of RMN .

By explicit computation (plugging (2.7) into the formula for the Ricci tensor) we find

that the linear combinations listed in table 1 of the curvature components Rn
MN (see (2.13))

are given by the expressions listed in table 2.

In table 2, fluctuation fields HS , HTr HV
A and HT

MN are taken to be of nth order and

all source functions (e.g. SS1) also understood to be nth order sources. All appearances of

∇.u8 in the table 2 should also be understood as follows. Naively ∇.u is of order D. For

that reason we expand

∇.u = (D − 3)

(

∞
∑

n=0

(∇.u)n
(D − 3)n

)

(2.14)

Every appearance of ∇.u in table 2 should actually be replaced by (∇.u)n. We have already

seen in the introduction that (∇.u)0 = 0. We will see below that (∇.u)1 also vanishes, but

that (∇.u)2 is nonzero.

In order to obtain table 2 we have worked in the neighbourhood of the surface ψ = 1

and the variable R is defined by R = (D − 3)(ψ − 1).9

2.6 The Einstein constraint equations

In the process of solving for the fluctuation fields h
(n)
MN we will find the Einstein constraint

equations (relevant to the foliation of our spacetime in slices of constant ψ) particularly

useful. We will now provide a careful definition of these equations.

Let us define

EMN ≡ RMN − R̃
GMN

2
(2.16)

where R̃ is the Ricci scalar. The constraint equations are defined by the relations

E
(ec)
M = EMNG

NLnL (2.17)

We have a total of D constraint equations. These equations decompose into two scalars

and one vector under local SO(D − 2) rotations.

8∇.u is the divergence of the velocity field thought of as a vector field in RD−1,1. On the surface ψ = 1,

however, ∇.u coincides with the membrane worldvolume divergence of velocity field (this follows upon using

the second of (2.4)).
9We will explain below that the sources listed in table 2 are not completely independent, but are

constrained by the well known relation

∇
M

(

RMN −
R̃

2
GMN

)

= 0 . (2.15)
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Scalar sector

RS1 =
(

−K2

2(D−3)2

)

d2H(Tr)

dR2 + SS1(R)

RS2 =
(

K2

2(D−3)2

)

e−R d
dR

(

eR d
dR

H(S)
)

− K2

4(D−3)2
e−R d

dR
H(Tr) + K

2(D−3)∇
MH

(V )
M

+SS2(R) + K

2(D−3)e
−R ∇.u

RS3 =
(

K2

2(D−3)2

)

e−2R(1− eR) d
dR

(eR dH
(S)

dR
)

−
(

K2

4(D−3)2

)

e−2R(1− eR)dH
(Tr)

dR
− K

2(D−3)e
−R∇MH

(V )
M + SS3(R) + K

2(D−3) e−2R ∇.u

RS4 =
(

K2

(D−3)2

)

e−R d
dR

(eRH(S)) +
(

K2

2(D−3)2

)

e−2R(1− eR) d
dR

(

eR d
dR

H(Tr)
)

−
(

K2

2(D−3)2

)

dH(Tr)

dR
+ K

D−3∇
MH

(V )
M + 2K

D−3
d
dR

∇MH
(V )
M +∇M∇NH

(T )
MN+SS4(R)− K

(D−3)e
−R∇.u

Vector sector

RV1
M =

(

K2

2(D−3)2

)

e−R d
dR

(eR d
dR

H
(V )
M ) + 1

2
K

(D−3)
d
dR

(

∇NH
(T )
NM

)

+ SV1M (R)

RV2
M =

(

K2

2(D−3)2

)

e−2R(1− eR) d
dR

(eR d
dR

H
(V )
M ) + SV2M (R)

Tensor sector

RT
AB =

(

−K2

2(D−3)2

)

e−R d
dR

(

(

eR − 1
) dH

(T )
AB

dR

)

+ STAB(R)

Table 2. Expressions for basis of RMN .

Let us imagine we have solved for our membrane metric at (n−1)th order in perturba-

tion theory, and are now attempting to solve for the metric correction at nth order. If, in this

process, we evaluate the constraint equation (2.17) and retain terms only up to nth order

then we need use GNL on the r.h.s. of (2.17) only at zero order (i.e. from the metric (1.1)),

because EMN is already of nth order. It follows that the nth order scalar and vector con-

straint equations are simply linear combinations of the nth order scalars and vectors listed

in table 1. We will now determine the relevant linear combinations. In order to to this we

first determine the nth order Ricci scalar R̃ as a linear combination of the scalars in table 1.

R̃ = RABG
AB =

(

RABPAB +O.R.O(1− e−R) + 2O.R.u
)

= (RS4 + (1− e−R)RS1 + 2RS2)

(2.18)

Using this equation we find

E
(ec)
M =

(

RMN − R̃

2
GMN

)

GNLnL

= RMNO
N (1− e−R) +RMNu

N − 1

2
R̃ nM

(2.19)

By dotting (2.19) with n and u or by projecting it orthogonal to these vectors we finally

obtain the nth order constraint equations written as linear combinations of the scalars and

vectors in table 1.

ES1 = E
(ec)
M uM = (1− e−R)RS2 +RS3

ES2 = E
(ec)
M OM =

1

2

(

(1− e−R)RS1 −RS4
)

EV
L = E

(ec)
N PN

L = (1− e−R)RV 1
L +RV2

L

(2.20)
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Vector constraint

EV
M

= E
(ec)
N

PN
M

= (1− e−R)RV1

M
+RV2

M

= 1
2

K

(D−3) (1− e−R) d

dR

(

∇AH
(T )
AM

)

+ VV
M
(R)

Scalar constraint 1

ES1 = E
(ec)
M

uM = (1− e−R)RS2 +RS3

= K

2(D−3) (1− eR) d

dR

(

∇MH
(V )
M

)

− K

2(D−3)e
−R∇MH

(V )
M

+ VS1(R) + K

2(D−3) e−R ∇.u

Scalar constraint 2

ES2 = E
(ec)
M

OM = 1
2

(

(1− e−R)RS1 −RS4

)

= − K

2(D−3)
d

dR

(

∇MH
(V )
M

)

− K

(D−3)∇
MH

(V )
M

+ K
2

4(D−3)2 (2−e−R) d

dR
H(Tr)− K

2

2(D−3)2

(

d

dR
H(S)+H(S)

)

− 1
2∇M∇NH

(T )
MN

+VS2(R)+ K

2(D−3)e
−R ∇.u

Table 3. Listing of constraint equations.

The explicit form of the nth order constraint equations is listed in table 3 above.

As in table 1, all fluctuation fields in table 3 should be taken to be of nth order. The

source functions in table 3 are also of nth order and are given in terms of the sources in

table 1 and the as yet unknown quantity ∇.u by

VS1(R) = (1− e−R)SS2(R) + SS3(R)

VS2(R) =
1

2

[

(1− e−R)SS1(R)− SS4(R)
]

VVL (R) = (1− e−R)SV1L (R) + SV2L (R)

(2.21)

Now it is well known that the Einstein tensor obeys the identity

∇MEMN = 0 (2.22)

It is also well known (and easy to see) that this identity ensures that the ‘normal’ derivative

of the constraint equations is a linear combination of the ‘in plane’ derivatives of Einstein’s

equations.10 Within the perturbation theory of interest to this paper the equation (2.22)

may be evaluated and projected onto its scalar and vector sectors and shown to be equiv-

alent to the following relations

d

dR
EV
M + EV

M +
(D − 3)

K ∇NRT
NM = 0

d

dR
ES1 + ES1 +

(D − 3)

K ∇NRV2
N = 0

d

dR
ES2 + ES2 +

(

1

2
RS1 +RS2 +

1

2
RS4

)

+
(D − 3)

K ∇NRV1
N = 0

(2.23)

10This is the fact that ensures that if all Einstein constraint equations are solved on one ‘time’ slice then

they are automatically solved on the next ‘time’ slice. In other words, in order to solve Einstein’s equations

you need only solve the constraint equations on one time slice provided you solve the other equations —

lets call them the dynamical equations — everywhere.
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Using (2.20) the r.h.s. of these relations may be recast in the equivalent form

d

dR
EV
M + (1− e−R)RV1

M +RV2
M +

(D − 3)

K ∇NRT
NM = 0

d

dR
ES1 + (1− e−R)RS2 +RS3 +

(D − 3)

K ∇NRV2
N = 0

d

dR
ES2 +

1

2
e−RRS1 + (1− e−R)RS1 +RS2 +

(D − 3)

K ∇NRV1
N = 0

(2.24)

In either form these equations express the R derivatives of the Einstein constraint equa-

tions (2.20) in terms of linear combinations of the Einstein equations. Using the explicit

expressions in tables 2 and 3, it is possible to verify that the equations (2.23) are indeed

obeyed, provided that the scalar and vector sources in table 2 and 3 are not all independent

but are constrained by the following relations

d

dR
VVM + VVM +

(D − 3)

K ∇NSTNM = 0

d

dR
VS1 + VS1 +

(D − 3)

K ∇NSV2N = 0

d

dR
VS2 + VS2 +

[

1

2
SS1 +

(

SS2 +
K

2(D − 3)
e−R ∇.u

)

+
1

2

(

SS4 − K
(D − 3)

e−R∇.u

)]

+
(D − 3)

K ∇NSV1N = 0 (2.25)

Note that we have two relations between the four scalar sources and one relation

between the two vector sources in table 2. Note that the relations also involve the as yet

unknown quantity ∇.u. Later in this paper we will explicitly verify that the sources that

appear in the first and second order calculation obey the relations (2.25). However we

would like to emphasize here that these relations are necessarily obeyed at every order in

perturbation theory.

2.7 Choice of basis for the constraint and dynamical equations

Because we have the linear relationship between constraint and dynamical equations we

use the following basis for solving the scalar, vector and tensor fluctuations

Tensor: RT
AB

Vector: RV2
M , EV

M

Scalar: RS1 , RS2 , ES1 , ES2

(2.26)

From now on we write every expression in this basis. The expressions that we get from

Bianchi identities i.e. equations (2.23), (2.24) can be converted to the basis (2.26) as

d

dR
EV
M + EV

M +
(D − 3)

K ∇NRT
NM = 0

d

dR
ES1 + ES1 +

(D − 3)

K ∇NRV2
N = 0

d

dR
ES2 +

(

1− 1

2
e−R

)

RS1 +RS2 +
1

1− e−R
(D − 3)

K ∇M
(

EV
M −RV2

M

)

= 0

(2.27)
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Scalar sector

SS1(R) = 0

SS2(R) = K

2(D−3)e
−Ru.K.u− e−R(−1+R)

2
u.∇K

(D−3) −
K2

2(D−3)2
e−R(−3 + 2R)

SS3(R)= 1
2K(D−3)Re−R∇2K− e−2R(−2+2eR+R)

2
u.∇K

(D−3)+
K2

2(D−3)2
e−2R

(

3eR(R−1)−2R+3
)

SS4(R) = e−R(−1 +R) u.∇K

(D−3) +
K2

(D−3)2
e−R(−1 + 2R)

Vector sector

SV1A (R) = K

2(D−3)e
−R

(

uMKMN − uM∇MuN
)

PN
A

SV2A (R) = K

2(D−3)e
−2R

(

uMKMN − uM∇MuN
)

PN
A + e−R

2

(

∇2uA
(D−3) −

∇AK

(D−3)

)

Tensor sector

STAB(R) = 0

Table 4. Sources of RMN equations at 1st order.

The corresponding relationship between the sources is given by

d

dR
VVM + VVM +

(D − 3)

K ∇NSTNM = 0

d

dR
VS1 + VS1 +

(D − 3)

K ∇NSV2N = 0

d

dR
VS2 +

(

1− 1

2
e−R

)

SS1 + SS2 +
1

1− e−R
(D − 3)

K ∇N
(

VVN − SV2N
)

= 0

(2.28)

3 Perturbation theory at first order

In this section we will explicitly solve for the first order correction metric h
(1)
MN . However

we will perform our analysis in a manner that makes the generalization to higher orders

obvious.

3.1 Listing first order source functions

As we have explained in the previous section, the components of R1
MN are given in terms

of h
(1)
MN by the expressions in table 2 with particular values for the source functions in that

table. By explicit calculation at first order we find that these source functions are given

by the values listed in the table 4.

Moreover the constraint equations take the form listed in table 3 with first order source

functions listed in table 5. We list the corresponding sources to the constraint equations

at 1st order in table 5. We have verified that our explicit expressions for the sources obey

the constraints (2.25).

We now proceed to solve the metric corrections at 1st order i.e. h
(1)
MN . We impose the

conditions (2.12) as discussed in section 2.4.
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Vector constraint source

VVM (R) = e−R

2

(

∇2uM
(D−3) −

∇MK

(D−3) +
K

(D−3)(u
AKAM − u.∇uM )

)

Scalar constraint 1 source

VS1(R) = 1
2K(D−3)Re−R∇2K − −e−2R+e−R(1+R)

2
u.∇K

(D−3)

+ K

2(D−3)e
−R(1− e−R)u.K.u+Re−R K2

2(D−3)2

Scalar constraint 2 source

VS2(R) = e−R

2

(

K2

(D−3)2
(1− 2R) + u.∇K

(D−3)(1−R)
)

Table 5. Sources to constraint equations at 1st order.

3.2 Tensor sector

In this sector we have a single equation for the single variable H
(T )
MN . This equation is

obtained by equating the last line of table 2 to zero and takes the form

RT
AB = e−R

d

dR

(

(

eR − 1
) dH

(T )
AB

dR

)

(

−K2

2(D − 3)2

)

+ STAB(R) = 0 (3.1)

where STAB(R) is the source for the tensor sector. At first order it turns out that STAB(R) =

0 (see table 5). In order to facilitate generalizations to higher orders however, in this

subsection we will solve (3.1) for an arbitrary source function, and substitute STAB(R) = 0

only at the end of the calculation.

Integrating (3.1) once we find

d

dR
(H

(T )
AB ) =

(

−2(D − 3)2

K2

)

−1

eR − 1

∫ R

0
exSTAB(x)dx (3.2)

The condition that H
(T )
AB (and so r.h.s. of (3.2)) is regular at R = 0 fixes the lower limit of

the integral in (3.2). Integrating a second time we find

H
(T )
AB =

(

−2(D − 3)2

K2

)∫

∞

R

dy

ey − 1

∫ y

0
exSTAB(x)dx

=

(

2(D−3)2

K2

)[

log(1−e−R)

∫ R

0
exSTAB(x)dx+

∫

∞

R

log(1−e−x)exSTAB(x)

]
(3.3)

where the upper limit in the outer integral in (3.3) is fixed by the requirement that H
(T )
AB

decay at large R.

In summary, the tensor fluctuation H
(T )
AB is given at any order, in terms of the tensor

source function STAB(x) at that order, by the expression (3.3). Note that H
(T )
AB is uniquely

determined by its source function; requirements of regularity at R = 0 and decay at infinity

unambiguously fix all integration constants in (3.1).

As we have mentioned above, at first order ST,1AB(R) = 0. It follows from (3.3) that the

first order tensor fluctuation H
(T )
AB also vanishes and so

H
(T,1)
AB = 0 (3.4)
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3.3 Vector sector

3.3.1 Constraint equation and the membrane equation of motion

In the vector sector we have two equations for the single variable H
(V )
M . The two equations

may be chosen to be the vector constraint equation EV
M (see the first line of table 3) and

the equation RV2
L = 0 (see table 2).

One cannot, of course, solve two equations for a single variable unless one linear com-

bination of the two equations is an identity. Indeed the first equation of (2.27)

d

dR
EV
M + EV

M +
(D − 3)

K ∇NRT
NM = 0 (3.5)

asserts that the vector constraint equation is automatically solved at all values of R if its

solved at one value of R (we use here that we have already solved the tensor equation so

that RT
AB = 0).

We will find it convenient to solve the vector constraint equation at R = 0. From

table 3 we see that

EV
M =

1

2

K
(D − 3)

(1− e−R)
d

dR

(

∇MH
(T )
MN

(D − 3)

)

+ VVM (R)

At R = 0

EV
M = VVM (0)

It follows that the constraint equation is solved at R = 0 if and only if VVM (0) vanishes

(here we use the fact that H
(T )
MN is regular at R = 0; see the previous subsection). This

requirement is a statement of the membrane equations of motion.

We would like to reemphasize that the membrane equations of motion at nth order

are obtained simply by evaluating the nth order vector constraint equation at R = 0. At

R = 0 this equation is independent of all the unknown nth order fluctuation fields. As a

consequence the membrane equations of motion may be obtained at nth order before solving

for the fluctuation fields at nth order, as in studies of the fluid gravity correspondence.

The analysis presented in this subsection so far has been valid at every order in pertur-

bation theory. Specializing now to the first order, we read off the value of VVM (0) from ta-

ble 5. Equating this expression to zero we find the first order membrane equation of motion

(

∇2uA
K − ∇AK

K + uCK
C
A − u.∇uA

)

PA
B = 0 (3.6)

While all fields in (3.6) live in the full bulk spacetime RD−1,1, and all derivatives in that

equation are bulk spacetime derivatives, the equation (3.6) itself holds only on the mem-

brane surface ψ = 1. Using the subsidiary conditions (2.4) it is possible to rewrite (3.6) as

an equation restricted to the membrane. As demonstrated in [9] the equation of motion

of motion turns out to take exactly the same form as (3.6) in this language. In other

words (3.6) also holds true if we think of KMN and uM as membrane world volume fields,

and regard every derivative in that equation as a covariant derivative on the membrane

world volume.
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3.3.2 Solving for the vector fluctuation

As we have explained in the previous subsubsection, the constraint vector equation is

automatically solved at every R provided the membrane equation is obeyed. Assuming

this is the case, we have already solved one of the two vector equations.

In order to solve for the unknown function, H
(V )
M , in the vector sector, we now turn to

the second vector equation RV2
L = 0. This equation takes the form

(

−K2

2(D − 3)2

)

e−2R(−1 + eR)
d

dR

(

eR
d

dR
H

(V )
M

)

+ SV2M (R) = 0 (3.7)

As in the previous subsection we will proceed to solve (3.7) for an arbitrary source function,

plugging in the first order result for the source

SV2,1A (R) = − K
2(D − 3)

e−2R(−1 + eR)
(

uMKMN − uM∇MuN
)

PN
A (3.8)

only at the end of the computation.

Notice that the l.h.s. of (3.7) vanishes at R = 0. It follows that (3.7) admits regular

solutions if and only if SV2M (R) also vanishes at R = 0. It would naively seem that this

requirement imposes a new constraint on membrane data, independent of (3.6).11 However

it turns out that the vanishing of SV2M (R) is automatic; indeed it follows from (2.20) that

RV2
M is simply identical to the vector constraint equation EV

M at R = 0. It follows as a

consequence that SV2M (R) is proportional to the l.h.s. of (3.6) at R = 0.12

Using the fact that SV2,1M (0) vanishes, we integrate (3.7) once to find

eR
d

dR
H

(V )
M =

(

−2(D − 3)2

K2

)[∫ R

0

(

−ey

1− e−y

)

SV2M (y)dy + CV2
M

]

(3.9)

where CV2
M is an as yet undetermined integration constant. Integrating a second time we find

H
(V )
M =

(

2(D − 3)2

K2

)∫

∞

R

e−x
[∫ x

0

(

−ey

1− e−y

)

SV2M (y)dy

]

dx− CV2
M e−R (3.10)

The upper limit on the the outer integral of (3.10) has been determined from the re-

quirement that H
(V )
M vanishes at large R. The expression for HV

M may be simplified by

integrating by parts; we find

H
(V )
M (R) =

(

2(D − 3)2

K2

)

(

e−R
∫ R

0

(

−ex

1− e−x

)

SV2M (x)dx−
∫

∞

R

SV2M (x)

1− e−x

)

− CV2
M e−R

(3.11)

In particular that

H
(V )
M (0) = −

(

2(D − 3)2

K2

)∫

∞

0

SV2M (x)

1− e−x
− CV2

M (3.12)

11Had this step of the programme imposed a new constraint, we would have obtained a new membrane

equation — and so obtained more membrane equations than membrane variables, leading to an inconsistent

dynamical system.
12To see this we note that (3.7) reduces to SV2

M (R) at R = 0 while EVM reduces to the l.h.s. of (3.6) at R = 0.
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It follows (see (2.12)) that

CV2
M = −

(

2(D − 3)2

K2

)∫

∞

0

SV2M (x)

1− e−x
(3.13)

so that

H
(V )
M (R)=

(

2(D−3)2

K2

)

(

e−R
∫ R

0

(

−ex

1−e−x

)

SV2M (x)dx−
∫

∞

R

SV2M (x)

1−e−x
+e−R

∫

∞

0

SV2M (x)

1−e−x

)

(3.14)

The expression (3.14) is our final expression for H
(V )
M (R) at any order in perturbation

theory in terms of the source function at that order. Note that H
(V )
M (R) is uniquely

determined in terms of its source function; the integration constants in (3.7) are uniquely

determined by the requirement that H
(V )
M (R) vanish at infinity and that (2.12) is obeyed

at R = 0.

Plugging the first order expression for the source (3.8) into (3.14), at first order we find

H
(V,1)
M =

(D − 3)

K Re−R
(

uAKAN − uA∇AuN
)

PN
M (3.15)

3.4 Scalar sector

In the scalar sector we have four equations for the two variables H(Tr) and H(S). As a

basis for the four equations we find it convenient to use the two scalar constraint equations

ES1 and ES2 (see table 3) together with the two additional equations RS1 = 0 and RS2 = 0

(see table 1).

3.4.1 Constraint equations and ∇.u

As in the previous subsection it is consistent to have four equations for two variables only

if two of the four equations are identities. The last two equations in (2.27)

d

dR
ES1 + ES1 +

(D − 3)

K ∇NRV2
N = 0

d

dR
ES2 +

(

1− 1

2
e−R

)

RS1 +RS2 +
(D − 3)

K
1

1− e−R
∇M

(

EV
M −RV2

M

)

= 0
(3.16)

assert that this is indeed the case. As we have already solved the vector sector at nth order

RV2
N vanishes. It follows that the first equation in (3.16) asserts that if ES1 is solved at any

R it is automatically solved at every R. When evaluated at R = 0 this equation reduces

to the condition

VS1(0) +
K

2(D − 3)
∇.u = 0 (3.17)

Recall that at leading order ∇.u = 0. (3.17) determines the correction to this statement at

subleading orders.

As in the previous subsection we emphasize that the expression for ∇.u at nth order is

determined simply by evaluating the nth order constraint equation ES1 at R = 0. In order

to obtain this correction we do not need to solve for any of the nth order fluctuation fields,

all of which drop out in ES1 evaluated at R = 0.
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The analysis of this subsection has, so far, been valid at every order in perturbation

theory. Specializing to first order it is easily verified from table 5 that VS1(0) = 0. It

follows that the zero order relation ∇.u = 0 is uncorrected at first order (since (∇.u)0 =

VS1(0) = 0). As we will see in the next section, the situation is different at second order.

The constraint equation ES2 plays a distinct logical role from ES1 in our perturbative

programme. Once the tensor and vector equations had been solved, (3.16) assured us that

ES1(R) obeys a homogeneous differential equation inR (see (2.23) which makes no reference

to any of the other equations in the scalar sector. On the other hand the differential

equation obeyed by ES2 involves the other scalar equations (see the last equation in (2.24)).

The most useful way to view the last equation in (2.24) is as follows. It might, a priori,

have seemed that we have 4 equations in the scalar sector. We have already dealt with ES1

above leaving behind a three dimensional space of equations. A useful basis for this space is

given by ES2 , RS1 and RS2 . The last equation in (2.24) allows us to eliminate RS2 from this

basis. In order to complete solving in the scalar sector we need only solve the equations ES2 ,

RS1 . In other words the constraint equation ES2 does not constrain data: instead it may

be used to solve for the scalar fluctuation. We turn to this task in the next subsubsection.

3.4.2 Solving for the scalar fluctuations

The equation RS1

RS1 =

(

−K2

2(D − 3)2

)

d2H(Tr)

dR2
+ SS1(R) = 0 (3.18)

is easily solved. Integrating the above equation once we get

dH(Tr)

dR
=

(

−2(D − 3)2

K2

)∫

∞

R

dx SS1(x) (3.19)

Where we have fixed the boundary condition from the requirement that H(Tr) and so its

derivative dH(Tr)

dR
= 0 vanish at large R. Integrating this equation once again we have

H(Tr) =

(

2(D − 3)2

K2

)∫

∞

R

dy

∫

∞

y

dx SS1(x)

=

(

2(D − 3)2

K2

)[

−R

∫

∞

R

dx SS1(x) +

∫

∞

R

dx x SS1(x)

]
(3.20)

where, once again we have fixed the integration constant from the requirement thatH(Tr) =

0 at large R.

Specializing now to first order we note SS1,1 = 0 so that

H(Tr,1) = 0 (3.21)

The equation ES2 takes the form

d

dR
(H(S)eR)=

2(D − 3)2

K2
eRSS(R) where,

SS(R)=− K
2(D − 3)

d

dR

(

∇MH
(V )
M

)

− K
(D − 3)

∇MH
(V )
M (3.22)

+
K2

4(D−3)2
(2−e−R)

d

dR
H(Tr)− 1

2
∇M∇NH

(T )
MN+VS2(R)+

K
2(D−3)

e−R ∇.u
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Plugging in the already obtained expressions of H
(V )
M , H

(T )
MN , H(Tr) (see (3.14), (3.20)

and (3.3)) and using (2.28), the source function SS(R) can be rewritten as a linear func-

tional of the elementary sources SS1 , SS2 and VS1 .13 Upon simplifying (by integrating by

parts on several occasions) we find

SS(R) =

∫

∞

R

SS2(x)dx+
1

2

∫

∞

R

(2− e−x)SS1(x)dx− 1

2
(2− e−R)

∫

∞

R

SS1(x)dx

−
(

1− e−R
)

∫

∞

R





ex
(

VS1
′

(x) + VS1(x)
)

(ex − 1)
dx



 dy − VS1(R) + e−RVS1(0)

+ log(1− e−R)
(

VS1
′

(0) + VS1(0)
)

+ (∇ · u) Ke−R

2(D − 3)

(3.23)

We note that SS is analytic at R = 0 if and only if

VS1
′

(0) + VS1(0) = 0 (3.24)

This condition is, in fact, automatic. It follows from the second of (2.28) that the l.h.s.

of (3.24) is proportional to ∇NSV2N (0). We have already argued, however, that SV2N vanishes

at R = 0. Since this condition holds at every point on the membrane, it follows also that

∇NSV2N (0) = 0 establishing (3.24).14

Plugging (3.23) into (3.22), integrating (and simplifying using integration by parts) we

find

HS(R) =
2(D−3)2

K2
e−R

(

(K(∇·u))R
2(D−3)

+eR
∫

∞

R

SS2(x)dx−
∫

∞

0
SS2(x)dx+

∫ R

0
exSS2(x)dx

+
eR

2

∫

∞

R

(2−e−x)SS1(x)dx+
1

2

∫ R

0
ex(2−e−x)SS1(x)dx− 1

2

∫

∞

0
(2−e−x)SS1(x)dx

−1

2
(2eR −R)

∫

∞

R

SS1(x)dx+

∫

∞

0
SS1(x)dx− 1

2

∫ R

0
(2ey − y)SS1(x)dx

−
∫ R

0
(ey−1)

∫

∞

y





ex
(

VS1
′

(x)+VS1(x)
)

(ex − 1)
dx



dy−
∫ R

0
exVS1(x)dx+RVS1(0)

)

(3.25)

Explicitly at first order

H(S,1) =
D − 3

K Re−R
(

R

(

− K
D − 3

− u · ∇K
K +

u ·K · u
2

)

+

(

K
D − 3

+ u ·K · u
))

(3.26)

13It turns out that all dependence on the fourth independent scalar source, VS2 cancels.
14In studies of the fluid gravity correspondence a derivative of the equation of the nth order equation

contributes to sources only at (n+ 1)th order in the derivative expansion. In the large D expansion of this

paper, however, the suppression in order resulting from using an extra derivative can be compensated for

by an enhancement in order resulting from the contraction of a spacetime index. Consequently the equation

of motion and its contracted derivatives are of the same order in the large D expansion.
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3.5 Final result for the first order metric

After integrating the ordinary differential equations corresponding to Einstein’s equations

and imposing the condition that the metric is regular at the horizon, matches flat space at

the end of the membrane region and (2.12), we get the following solutions for the various

components of the metric correction.

H
(T,1)
MN = 0

H(Tr,1) = 0

H
(V,1)
M =

(D − 3)

K Re−R
(

uAKAL − uA∇AuL
)

PL
M

H(S,1) =
D−3

K Re−R
(

R

(

− K
D−3

−u · ∇K
K +

u ·K · u
2

)

+

(

K
D−3

+ u ·K · u
))

(3.27)

Thus we can write the 1st order corrected metric as

gMN = ηMN +
OMON

ψD−3

+
1

D−3

[

D−3

K Re−R
(

R

(

− K
D−3

−u · ∇K
K +

u ·K · u
2

)

+

(

K
D−3

+u ·K · u
))

OMON

+
(D − 3)

K Re−R
(

uAKAL − uA∇AuL
)

PL
(MON)

]

(3.28)

4 2nd order solution

The metric (3.28) solves Einstein equation to first subleading order. In this section we

implement the perturbative procedure to one higher order. In other words we determine

the correction H
(2)
MN in a way that ensures that RAB evaluated on the corrected metric is

of order 1/D (more precisely that RABR
AB is of order 1/D2).

The procedure we follow is exactly that of the previous section: in fact second order

corrections to the metric are given directly by the formulae of the previous subsection with

one modification: we need to use the second order rather than first order source functions.

In other words the computation at second order boils down entirely to determining the

second order sources.

In order to determine the sources at second order we plug the first order corrected

metric (3.28) together with an as yet undetermined second order correction h2MN into

Einstein’s equations. We use the fact that the shape and velocity functions in the first

order corrected metric obey the equation of motion

(

∇2uA
K − ∇AK

K + uCK
C
A − u.∇uA

)

PA
B +

1

D
EAPA

B = 0 (4.1)

where EB is an as yet undetermined ‘2nd order’ correction to the equations of motion.

As in the previous subsection we solve the equations in the neighbourhood of a particular

point on the event horizon. In our analysis, however, we use the fact that the membrane

equations of motion (4.1) are obeyed not just at the particular point we are expanding
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about but everywhere on the membrane. In other words we use the fact that the derivative

of (4.1) vanishes at the point of interest. Finally we also use the fact that ∇.u is an as yet

undetermined quantity of order 1/D.

We find by explicit computation that the curvature components listed table 1 do indeed

take the form listed in table 2, 3 once all metric fluctuation fields in that table are identified

with second order fluctuations. Our explicit computations also yield explicit expressions

for all the second order source functions. We present an explicit listing of these source

functions in tables 6 and 7 in the appendix.

In the rest of this section we obtain the second order correction to the metric by

inserting the second order sources into general integral formulae of the previous section

and performing all integrals.

4.1 Constraints on membrane data

4.1.1 Correction to the membrane equations from the vector sector

As in the previous subsection (3.5) guarantees that the vector constraint equation EV
M = 0

is solved at any R if the equation is obeyed at R = 0. As in the previous subsection the

constraint equation at R = 0 is independent of the second order fluctuation fields. From

table 7 we see that this constraint equation at R = 0 determines − 1
D
EAPA

B — the second

order correction to the membrane equation of motion — in terms of appropriate expressions

involving the membrane extrinsic curvature and velocity fields. Adding these correction

terms to the first order membrane equation (1.3) we recover the second order corrected

membrane equation

[

∇2u

K − ∇K
K + u ·K − (u · ∇)u

]

· P +

[

∇2∇2u

K3
− ∇(∇2K)

K3

+3
(u ·K · u)(u · ∇u)

K − 3
(u ·K · u)(u · ∇n)

K − 6
(u · (∇2n))(u · ∇u)

K2

+6
(u · (∇2n))(u · ∇n)

K2
+

3

D − 3
u · ∇u− 3

D − 3
u · ∇n

]

· P = 0 (4.2)

where

PAB = ηAB − nAnB + uAuB (4.3)

The 1st square bracket in (4.2) is simply the 1st order equation of motion while the 2nd

square bracket represents subleading corrections.15

We would like, however, to emphasize an important technical point. All the fields

in (4.2) are assumed to live in all of the embedding flat spacetime; they are extended off

15Note that we can write the equation (4.2) in a nicer looking form by using the subsidiary con-

ditions (2.4), divergence of first order membrane equation of motion (1.3) and divergence of velocity

condition (1.5). The form is

(

∇2O

∇.O
+O.∇O

)

· P +

(

∇2∇2O

(∇.O)3
+ 3

∇2(∇.O)

(∇.O)3
O.∇O

)

· P = 0 . (4.4)

– 23 –



J
H
E
P
1
2
(
2
0
1
6
)
1
1
3

the surface of the membrane by the subsidiary conditions listed earlier in this paper. While

all covariant derivatives listed in (4.2) are evaluated on the surface of the membrane, they

act on fields defined in all of spacetime.

As the membrane equations of motion are intrinsic to the membrane, it is clearly un-

natural to write them in terms of spacetime derivatives of an essentially arbitrary extension

of membrane fields into the embedding spacetime. The equation of motion (4.2) can be

rewritten so that all fields in that equation are purely membrane world volume fields, and

every derivative in the equation is a covariant derivative on the membrane world volume.

We now explain how this is done.

The relationship between the bulk covariant derivatives of tensors (e.g. uM ) and mem-

brane worldvolume derivatives of the same quantities is quite straightforward when no

more than one derivative acts on the same object. The spacetime covariant derivative is

obtained from the corresponding bulk quantity by projecting every index (not just the

derivative indices) onto the membrane world volume. However this relationship is more

complicated when we have two or more derivatives acting on the same object; the rea-

son for the additional complication is that the formula for multiple worldvolume covariant

derivatives involves inserting projectors at each step (when you define the first derivative

in terms of bulk derivatives, then again when you define the second derivative in terms of

bulk derivatives etc); when such expressions are opened out, outer derivatives act on pro-

jectors used to define the inner derivatives. Tracing through the required algebra we find

that the corrected second order membrane equation of motion, written in terms of fields

and covariant derivatives that live purely on the membrane world volume, takes the form
[

∇2uA
K − ∇AK

K + uBKBA − u · ∇uA

]

PA
C (4.5)

+

[

(

−uCKCBK
B
A

K

)

+

(

∇2∇2uA
K3

− u · ∇K∇AK
K3

− ∇BK∇BuA
K2

− 2
KCD∇C∇DuA

K2

)

+

(

−∇A∇2K
K3

+
∇A

(

KBCK
BCK

)

K3

)

+ 3
(u ·K · u)(u · ∇uA)

K − 3
(u ·K · u)(uBKBA)

K

−6
(u · ∇K)(u · ∇uA)

K2
+ 6

(u · ∇K)(uBKBA)

K2
+

3

D − 3
u · ∇uA − 3

D − 3
uBKBA

]

PA
C = 0

The projector PAB used in this equation

PAB = g̃AB + uAuB (4.6)

where g̃AB is the induced metric on the world volume of the membrane.

The equation (4.5) can be slightly simplified as follows. Let us first note that (4.5)

takes the schematic form

FA +
SA

K = 0 (4.7)

where FA is the first order contribution to the equation of motion (the first line of (4.5))

while SA

K
is the second order contribution (the second-fourth lines of (4.5)). FA and SA

are each vector fields of order unity.
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Let us now consider the modified equation of motion

FA +
SA

K +∇.F
ζA

K2
= 0 (4.8)

where ζA is any vector field of order unity. As ∇.F is naively of order D, the difference

between the equations (4.8) and (4.7) is naively of order 1
D

suggesting that (4.7) and (4.8)

differ at first subleading order. This is not the case. By taking a divergence of either (4.7)

or (4.8), the reader can easily convince herself that, onshell, ∇.F is of order unity (rather

than the naive estimate of order D). If follows that (4.8) and (4.7) actually differ only at

second subleading order ( 1
D2 ) and are equivalent at first subleading order. We are thus

allowed to simplify (4.5) by adding any expression of the form ∇.F ζA

K2 to it.

Now it was demonstrated in [9] that

∇.F

K =
∇2K
K2

− 2
u.∇K
K + u.K.u (4.9)

Using this relation and making the the choice

ζA = −3
(

(u.∇u)A − uBK
B
A

)

(4.10)

we find that (4.5) is equivalent to (4.8) whose explicit form is

[

∇2uA
K − ∇AK

K + uBKBA − u · ∇uA

]

PA
C

+

[

(

−uCKCBK
B
A

K

)

+

(

∇2∇2uA
K3

−u · ∇K∇AK
K3

−∇BK∇BuA
K2

−2
KCD∇C∇DuA

K2

)

+

(

−∇A∇2K
K3

+
∇A

(

KBCK
BCK

)

K3

)

− 3
∇2K u · ∇uA

K3
+ 3

∇2K uBKBA

K3

+
3

D − 3
u · ∇uA − 3

D − 3
uBKBA

]

PA
C = 0 (4.11)

4.1.2 Divergence of velocity from a scalar constraint

As we have explained in the previous section, the Einstein constraint equation ES1 is

satisfied at all R if it is satisfied at R = 0. As explained in the previous subsection, the

equation at R = 0 simply asserts that

∇.u2 = −2(D − 3)

K VS1(0)

Reading off the value of VS1(0) from the table 7 we find

∇ · u =
(∇.u)2
D − 3

=
1

2K
(

∇(AuB)∇(CuD)PBCPAD
)

(4.12)
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4.2 Second order corrections to the metric

4.2.1 Tensor sector

The metric correction in the tensor sector is given by (3.3)

H
(T )
AB =

(

−2(D − 3)2

K2

)∫

∞

R

dy

ey − 1

∫ y

0
exSTAB(x)dx

=

(

2(D−3)2

K2

)[

log(1−e−R)

∫ R

0
exSTAB(x)dx+

∫

∞

R

log(1−e−x)exSTAB(x)

]
(4.13)

where STAB is the second order source listed in table 6. All the integrals that appear in

the final answer can easily be performed analytically, but the final results (given in terms

of polylogs) are not very illuminating; we prefer to leave our final result in terms of an

explicit integral.

4.2.2 Vector sector

The solution for H
(V )
M (R) at second order is given by (3.14)

H
(V )
M (R)=

(

2(D−3)2

K2

)(

e−R
∫ R

0

(

−ex

1−e−x

)

SV 2
M (x)dx−

∫

∞

R

SV 2
M (x)

1−e−x
+e−R

∫

∞

0

SV 2
M (x)

1−e−x

)

(4.14)

with all sources read off at 2nd order from table 6. As in the tensor sector, all integrals

that appear in (4.14) can be explicitly performed in terms of polylogs, but we find the

expression (4.14) in terms of explicit integrals more illuminating.

4.2.3 Scalar sector

Equation RS1 is decoupled equation for H(Tr). The integrated form is given by (3.20)

which we write again

H(Tr) =

(

2(D − 3)2

K2

)∫

∞

R

dy

∫

∞

y

dx SS1(x)

=

(

2(D − 3)2

K2

)[

−R

∫

∞

R

dx SS1(x) +

∫

∞

R

dx x SS1(x)

]
(4.15)

The source SS1 for 2nd order is given in table 6. Substituting this we get the final

form of the metric correction

H(Tr,2) = −
(

2(D − 3)2

K2

)

e−R(1 +R) ((u ·K − u · ∇u) · P · (u ·K − u · ∇u)) (4.16)

In a similar manner the fluctuation HS can is given by (3.25) upon plugging in the

explicit values of the second order sources from tables 6, 7.
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5 The spectrum of small fluctuations around a spherical membrane

The simplest solution of the second order membrane equations of motion is a static spherical

membrane dual to a Schwarzschild Black hole. In this section we compute the spectrum of

small fluctuations about this solution. Our answers agree perfectly with earlier results for

the spectrum of light quasinormal modes obtained by direct gravitational analysis, in [6].

We regard this detailed agreement as a nontrivial consistency check of the second order

membrane equations of motion derived in this paper.

The computation presented in this section is a straightforward extension of the first

order computation presented in section 5 of [9]. We have kept the discussion of this section

brief. We refer the reader to section 5 of [9] for a fuller discussion of the logic behind our

computation.

We work in standard spherical polar coordinates (see eq. 5.1 of [9]). The static spherical

membrane is given by

r = 1, u = −dt, (5.1)

We study the small fluctuations

r = 1 + ǫ δr(t, θ),

u = −dt+ ǫ δuµ(t, θ)dx
µ.

(5.2)

about this solution and work to linear order in ǫ. As explained in [9], to linear order the

metric on membrane worldvolume is given by

ds2 = −dt2 + (1 + 2ǫδr) dΩ2
D−2 . (5.3)

As in [9] we find it convenient to work with covariant derivatives with respect to the

unperturbed spherical metric

ds2 = −dt2 + dΩ2
D−2 , (5.4)

The derivatives appearing from now on are all with respect to metric (5.4). We use the

following notation for the laplacian with respect to this fixed metric

∇2
= ∇µ∇µ = −∂2

t +∇a∇a = −∂2
t +∇2

5.1 The divergence condition

The r.h.s. of (1.5) is quadratic in ǫ, and so vanishes upon linearizing in ǫ. At linear order,

therefore, (1.5) reduces to ∇.u = 0 (where the divergence is taken along the dynamical

membrane world volume). As explained in [9], this equation can be rewritten as

∇µδu
µ = −(D − 2)∂tδr, (5.5)

where, the covariant derivatives (5.5) are now taken w.r.t. the fixed metric (5.4). u0 deviates

from unity only at quadratic order in ǫ. For the linearized considerations of this section,

therefore, the l.h.s. of (5.5) is simply the spatial divergence of the velocity

∇aδu
a = −(D − 2)∂tδr. (5.6)
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As in [9], (5.6) may be solved by separating u into its gradient and curl parts, i.e. by setting

δua = ∇aΦ+ δva, (5.7)

with

∇ · δv = 0. (5.8)

It follows from (5.6) that

∇2Φ = −(D − 2)∂tδr. (5.9)

5.2 Linearized equation of motion

In order to obtain the linearized membrane equations of motion we use eq. 5.7 of [9] together

with

uEKEBK
B
a

K = −ǫ
(∇a∂tδr − δua)

D − 2

∇2∇2ua
K3

= ǫ
∇̄2∇̄2δua + ∇̄2∇a∂tδr

(D − 2)3

KCD∇C∇Dua
K2

= ǫ
∇̄2δua −∇a∂tδr

(D − 3)(D − 2)

∇a∇2K
K3

= −ǫ
∇a∇̄2(∇̄2δr + δr(D − 2))

(D − 2)3

∇a(K
BCKBCK)

K3
= ǫ

3∇a(−∇̄2δr − δr(D − 2))

(D − 3)(D − 2)

(the equations above are accurate only to linear order in ǫ and all covariant derivatives are

taken with respect to (5.4)). The linearized membrane equation is given by
[(

1 +
∇2

D − 2

)

δua +∇a

(

1 +
∇2

D − 2

)

δr − ∂t∇aδr

(

1− 1

D − 2

)

− ∂tδua

]

+

[

∇a∂tδr−δua
D − 2

+
∇2∇2

δua+∇2∇a∂tδr

(D − 2)3
+2

−∇2
δua+∇a∂tδr

(D−3)(D−2)
+
∇a∇

2
(∇2

δr+(D−2)δr)

(D − 2)3

+3
∇a(−∇2

δr − (D − 2)δr)

(D − 3)(D − 2)
+ 3

∂tδua
(D − 3)

+ 3
∂t∇aδr − δua

(D − 3)

]

= 0. (5.10)

((5.10) generalizes equation (5.9) of [9]). Substituting (5.7) into (5.10) we find the gener-

alized version of of (5.15) of [9],
(

∇2

D − 2
+ 1− ∂t +

∇2∇2

(D − 2)3
− 2(∇2)

(D − 2)2
+

3∂t
(D − 3)

− 3

(D − 3)

)

δva =

−
(

∂t∇a

D − 2
+

∇a∇2

D − 2
+∇a −∇a∂t +

2∇a∂t
(D − 2)2

− ∇a∇
2
(∇2 + (D − 2))

(D − 2)3

− 9∇a((D − 2)2 − (D − 2)(9∇2 − ∂2
t ))

3(D − 2)3
+

3∂t∇a

(D − 3)

)

δr

−
(

∇2

D − 2
+ 1− ∂t +

∇2∇2

(D − 2)3
− 2(∇2)

(D − 2)2
+

3∂t
(D − 3)

− 3

(D − 3)

)

∇aΦ

(5.11)
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5.3 Scalar quasinormal modes

Using (5.6) and (5.9) we take the divergence of (5.11) to obtain

−(∇2
+D−3)∂tδr+

∂t∇2δr

D−2
+
∇2∇̄2δr

(D−2)
+∇2δr−∂t∇2δr−(D−2)∂tδr+(D−2)∂2

t δr

+
∇2∂tδr + (D − 2)∂tδr

D − 2
− (∇2

+D − 3)2(D − 2)∂tδr + (∇2
+D − 3)∇2∂tδr

(D − 2)3

+2
(∇2

+D − 3)(D − 2)∂tδr +∇2∂tδr

(D − 2)2
+

∇2∇̄2(∇̄2δr + δr(D − 2))

(D − 2)3
(5.12)

−∇2(3∇2δr−∂2
t δr+3δr(D−2))

(D − 2)2
−3

D−2

(D−3)
∂2
t δr+

3

(D−3)
(∂t∇2δr+(D−2)∂tδr)=0

As in [9] we expand

δr =
∑

l,m

almYlme
−iωrl t . (5.13)

where the spherical harmonics Ylm obey

−∇2
SD−2Ylm = l(D + l − 3)Ylm. (5.14)

Inserting (5.13) into (5.12) we obtain

ωrl = ±
√
l − 1− i(l − 1) +

1

D

(

±
√
l − 1

(

3l

2
− 2

)

− i(l − 1)(l − 2)

)

(5.15)

The result (5.15) is in perfect agreement with the result obtained by EST in Equations

(5.30) and (5.31) of [6].

As explained in [9], the modes with l = 0 and l = 1 are special. At l = 0 the

formula (5.15) yields ω = 0, 2i − 4i
D
. The second solution is, however, spurious (see [9]).

The first solution is the zero mode corresponding to rescaling the black hole; this is an

exact zero mode at all orders in 1/D.

At l = 1 (5.15) yields the frequencies ω = 0, 0. As explained in [9] these two modes

correspond to translations and boosts of the membrane.

5.4 Vector quasinormal modes

We expand the velocity fluctuations in a basis of vector spherical harmonic

δva =
∑

l,m

blmY
lm
a e−iω

v
l
t (5.16)

Where, l = 1, 2, 3, . . .. The vector spherical harmonics satisfy the property

∇2V = −[(D + l − 3)l − 1]V (5.17)

Plugging (5.16) into (5.11), using (5.17) and equating the coefficients of independent

vector spherical harmonics (see [9] for more discussion) we obtain

ωvl = −i(l − 1)− i

D
(l − 1)2. (5.18)
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(5.18) is in perfect agreement with the formula (5.22) of [6] derived earlier by EST

by purely gravitational analysis. Note that the mode with l = 1 has vanishing frequency.

As explained in [9] l = 1 is the exact zero mode corresponding to setting the black hole

spinning.

6 Discussion

In this paper we have worked out the duality between the dynamics of black holes in a large

number of dimensions and the motion of a non gravitational membrane in flat space to

second subleading order in 1/D. Our work generalizes the analysis of [8, 9]. The concrete

new results of this paper are

• The second order corrected membrane equations of motion listed in (1.4).

• The formula (1.5) for the divergence of the velocity field (which vanished at first

order).

• The explicit form of the second order corrected metric dual to any given membrane

motion (see subsection 4.2

In addition to obtaining the new results listed above we have also achieved an improved

understanding of the structure of the perturbative expansion in 1/D. We have demon-

strated that the perturbative programme, implemented to first nontrivial order in [8, 9],

can systematically be extended to every order in the 1/D expansion. In particular we

have shown that the algebraically nontrivial ‘integrability’ properties that allowed for the

existence of a first order solution in [8, 9] are actually automatic at all orders as as a

consequence of the well known equation (2.22).

We have also explained that the membrane equations may directly be obtained by eval-

uating the Einstein constraint equation on the event horizon. In particular the membrane

equations at (n + 1)th order in 1/D are obtained by evaluating the constraint equations

on nth order metric, without needing to solve for the (n+ 1)th order metric. We have also

explained that the assumption of SO(D − p − 2) isometry, made in [9], is not necessary;

the membrane equations can be derived under much more general conditions

The fact our membrane equations arise from the Einstein constraint equations at the

event horizon is strongly reminiscent of the ‘traditional’ membrane paradigm of black hole

physics. It would be very interesting to better understand the relationship between the the

large D membrane and the traditional membrane paradigm. [26–28].

As black holes are thermodynamical objects, the black hole membrane studied in [8,

9] and this paper should carry an entropy current. At leading order in 1/D it turns

out (see [29]) that this entropy current is given simply by a constant times uM . The

divergence of this entropy current is thus proportional to ∇.u. It follows that the r.h.s. of

the formula (1.5) gives an expression for the rate of entropy production on the membrane.

It would be interesting to further investigate this observation and its consequences.
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On a related note, it would be interesting to derive the most general stationary solution

of the second order corrected equations of motion derived in this paper and compare our

results with those of [11].

In this paper we have focused our attention on black holes propagating in an otherwise

perfectly flat spacetime. It would be interesting to generalize our study to the motion

of black holes propagating in any vacuum solution of Einstein’s equations, e.g. a gravity

wave. Such a generalization would allow us, for instance, to study the absorption of gravity

waves by black holes at large D. At first order in the derivative expansion we expect the

generalized effective membrane equation to be given simply by covariantizing first order

flat space equations of motion. At second order, however, the equations of motion could

receive genuinely new contributions from the background Riemann tensor of the space in

which the black hole propagates.16 It would be interesting to work this out in detail.

Finally, it would be interesting to put the membrane equations derived in this paper to

practical use to allow us to learn new things about black holes. One possible direction would

be to test out how well the large D expansion does in astrophysical contexts (i.e. when D =

4). Another direction would be to use the formalism developed herein to address interesting

unanswered structural questions about gravity, e.g. questions about the second law of

thermodynamics in higher derivative gravity. We leave such investigations for the future.
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A Method of calculation

In this appendix we outline the method we have employed to obtain the results quoted in

tables 2, 3, 4, 5, 6, 7.

As we have mentioned in the main text, our starting point is the metric listed

in (2.7), (2.8), (2.9), (2.10). In order to obtain the equations of motion listed in table 2 (see

also table 3) we simply plugged this metric into the vacuum Einstein equations. Assuming

these equations are already obeyed at n − 1 order we then obtained the form of the nth

16Something similar happens in the study of forced fluids in the fluid gravity correspondence [30].

– 31 –



J
H
E
P
1
2
(
2
0
1
6
)
1
1
3

order equations. As emphasized in table 2, each of these equations have a ‘homogeneous’

contribution and a ‘source’ contribution. The homogeneous contribution is linear in the

(as yet unknown) nth order fluctuation, and takes the same form at all orders. In order

to evaluate the homogeneous contribution to all equations of motion, consequently, it is

sufficient to work at first order.

While the first order computation is straightforward to perform analytically in princi-

ple, in practice the computations involved are rather lengthy.17 In order to guard against

error we employed Mathematica in our computations using the following device. Follow-

ing [8, 9] we specialized to the particular case of metrics that preserve an SO(D − p − 2)

isometry. Such special metrics effectively depend only on p+ 3 variables. For small values

of p, therefore, all computations can be effectively performed on Mathematica (see [9] for

a detailed explanation of how this is done). The first order computation performed in this

manner yields the homogeneous part of the differential equations listed in tables 2 and 3 in

a straightforward manner. Note that the homogeneous part of the equations are differential

operators only in the variable R. They are ‘ultra-local’ on the membrane. Consequently,

even though the assumption of isometry was used as a trick to facilitate the computation

of the homogeneous part of the equation, the final result obtained for the structure of the

equations listed in tables 2 and 3 is valid assuming only that all background quantities (e.g.

K) scale in the manner assumed in the text. In particular the homogeneous contribution

to these equations are independent of p. By repeating all of our computations for p = 2

and p = 3 we have explicitly checked that this is the case.

Apart from the homogeneous pieces, the equations listed in tables 2 and 3 also have

contributions from sources. Source terms are different at different orders in the compu-

tation. We obtained our explicit results for the first order sources listed in tables 4, 5

and second order sources listed in tables 6, 7 as follows. Working separately in the scalar,

vector and tensor channels we first explicitly listed all possible source structures that could

appear in any given equation both at first and second order in perturbation theory. The

source structures that appear in our classification are the analogues of the ‘geometrical’

quantities listed in the l.h.s. of table 4 in [9]. At any given order, it follows that the sources

that appear in the equations of tables 2 and 3 are linear combinations of these structures

with coefficients that are as yet unknown functions of R. We then worked out the analogue

of the r.h.s. of table 4 of [9], i.e. we explicitly evaluated each of these basis source terms in

terms of ‘reduced source data’ — the analogue of the expressions listed in table 1 of [9].

Using our explicit computations on Mathematica we read off the coefficients of all re-

duced sources in all of the equations listed in table 2 and 3. We then used our reduction

formulae for ‘geometrical sources in terms of reduced sources’ (analogue of table 4 in [9])

to determine the coefficients of all source terms in the original geometrical basis of pos-

sible source terms. The last step (determination of geometrical sources from the known

coefficients of reduced sources) is unambiguous provided the map between geometrical and

reduced sources in invertible, i.e. provided there does not exist a nontrivial linear com-

bination of geometrical sources that maps to zero when re expressed in terms of reduced

17These computations have, however, also been performed analytically in the upcoming paper [31].
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Scalar sector

SS1(R) = e−R(1−R) ((u ·K − u · ∇u) · P · (u ·K − u · ∇u))

SS2(R) = − 1
2
e−R(R− 2)

(

KMNKPQP
NPPMQ − K

2

D−3

)

+ 1
2
e−R(R+ 2)

(

∇MuN∇PuQP
NPPMQ

)

− e−R

2

(

∇[MuN ]∇[PuQ]P
NPPMQ

)

− e−RR

(

∇MuNKPQP
NPPMQ

)

+ 1
K

e−R(R−2)R
4

∇A
(

D−3
K

(

D−3
K3

(

∇∇2K −∇2∇2u
)

+ 8(u ·K − u · ∇u) + u ·K + ∇
2u
K

)

B
PBA

)

−
e−R(R−2)R

4
∇

2
∇

2
K

K3 + 1
4
e−2R

(

eR
(

R2 + 2R− 4
)

− 2(R− 2)R
)

(u.∇uM )(u.∇uN )PMN

+ 1
2
e−2R

(

2eR(R− 1)− (R− 2)R
)

(uAKAM )(uBKBN )PMN + e−2R(R− 2)R(u.∇uM )(uCKCN )PMN

+ 1
4
e−R(R− 2)R

(

∇
2uM

K

)(

∇
2uN

K

)

CPMN −
e−R(R−2)R

2

(

∇
2uM

K

)

(u.∇uN )PMN

+ 1
4
e−RR

(

2R2 − 3R− 6
) (u.∇K)2

K2 −
e−R(R3

−14R2+20R+4)
4

u.K.u K

(D−3)

+
e−R(3R3

−38R2+62R−4)
4

K

(D−3)
u.∇K

K
− 1

4
e−RR

(

R2 − 6
)

u.K.uu.∇K

K
+ e−R(R− 1) K

2

(D−3)2

− 1
4
e−R

(

∇(AuB)∇(CuD)P
BCPAD

)

SS3(R) = VS1(R)− (1− e−R)SS2(R)

SS4(R) = (1− e−R)SS1(R)− 2VS2(R)

Vector sector

S
V1

M (R) = 1
(1−e−R)

(

VVL (R)− S
V2

L (R)
)

S
V2

A (R) = K
2

2(D−3)2

[

− e−2R
(

eR − 1
) (

R2 − 2
)

3
2
D−3
K

(

1 + 2u·∇K (D−3)

K2 −
u·K·u (D−3)

K

)

(u · ∇u− u ·K)B

−e−2R
(

eR − 1
)

(R− 1) (D−3)
K

(

(D−3)

K3

(

∇∇2K −∇2∇2u
)

+ 8(u ·K − u · ∇u) + u ·K + ∇
2u
K

)

B

+Re−R
(

−2 (D−3)2

K2

(

∇MK

K
− uDKDM

)

PMN (∇NuB −KNB) +
(D−3)

K

(

uCKCB − ∇
2uB

K

))

]

PBA

− e−R

2
K

(D−3)

[

− EM +D∇
2
∇

2uM

K3 −D∇M (∇2
K)

K3 + 3D (u·K·u)(u·∇uM )
K

− 3D (u·K·u)(uAKAM )
K

−6D (u·∇K)(u·∇u)

K2 + 6D (u·∇K)(uAKAM )

K2 + 3u · ∇u− 3uAKAM

]

PML

Tensor sector

STLP (R) =

[

e−R K

(D−3)

(

(KMN −∇(MuN))−
PMN

D
(KAB −∇(AuB))P

AB
)

−e−R
(

(KMC −∇CuM )PCD(KDN −∇DuN )− PMN

D
(KAC −∇CuA)P

CD(KDB −∇DuB)P
AB

)

− 1
2
e−2R

(

R2 − 4R+ 2eR(R− 1) + 2
)

(

(uCK
C
M − u.∇uM )(uCK

C
N − u.∇uN )

−PMN

D
(uCK

C
A − u.∇uA)(uCK

C
B − u.∇uB)P

AB

)]

PML PNP

Table 6. Sources of RMN equations at 2nd order.

sources (i.e. vanishes under the the assumption of isometry). We have verified that this

condition is met at first order provided p ≥ 2 and at second order provided that p ≥ 3.18

This is the reason we performed our computations at p = 3.19

18It is easy to understand the inequalities listed here. When p = 1, for instance, a potential source term

proportional to the shear of the velocity field trivially vanishes just because fluids in one spatial dimension

do not have a transverse direction in which to shear.
19We also performed all computations in p = 2 and verified that we obtained the same results for all

sources from this computation — except in the case of a single second order source that vanished at p = 2

but not at p = 3. The coefficient of this term was left undetermined at p = 2 but we determined at p = 3.
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Vector constraint source

VVL (R) = 1
(D−3)

∇P

[

e−RRD
K

(

(KMC −∇CuM )PCD(KDN −∇DuN )

− PMN

(D−3)
(KAC −∇CuA)P

CD(KDB −∇DuB)P
AB

)

PML PNP

−Re−R
(

(KMN −∇(MuN))−
PMN

(D−3)
(KAB −∇(AuB))P

AB
)

PML PNP

+(e−2R
(

eR − 1
)

(R− 2)R) (D−3)
2K

(

(uCK
C
M − u.∇uM )(uCK

C
N − u.∇uN )

− PMN

(D−3)
(uCK

C
A − u.∇uA)(uCK

C
B − u.∇uB)P

AB

)

PML PNP

]

− e−R

2
K

(D−3)

[

− EM +D∇
2
∇

2uM

K3 −D∇M (∇2
K)

K3 + 3D (u·K·u)(u·∇uM )
K

− 3D (u·K·u)(uAKAM )
K

−6D (u·∇K)(u·∇u)

K2 + 6D (u·∇K)(uAKAM )

K2 + 3u · ∇u− 3uAKAM

]

PML

Scalar constraint 1 source

VS1(R)

=
(e−2RR(eR(R2

−6)+3(R+2)))K
6(D−3)

∇M
(

3
2

(D−3)
K

(

1 + 2u·∇K (D−3)

K2 −
u·K·u (D−3)

K

)

(u · ∇u− u ·K)B PBM

)

+
(e−2R(eR(R−2)+2)R)

4K
∇M

(

(D−3)
K

(

(D−3)

K3

(

∇∇2K −∇2∇2u
)

+ 8(u ·K − u · ∇u) + u ·K + ∇
2u
K

)

B
PBM

)

+
(−e−RR2)

4K
∇M

((

−2 (D−3)2

K2

(

∇MK

K
− uDKDM

)

PMN (∇NuB −KNB) +
(D−3)

K

(

uCKCB − ∇
2uB

K

))

PBM

)

− 1
4
e−R

(

∇(AuB)∇(CuD)P
BCPAD

)

+ Re−R

2
∇MEM

Scalar constraint 2 source

VS2(R) = − 1
2
e−R(R− 1)

(

KMNKPQP
NPPMQ − K

2

D−3

)

+ 1
2
e−R(3 +R)

(

∇MuN∇PuQP
NPPMQ

)

+ 1
2

(

−e−R
)

(

∇[MuN ]∇[PuQ]P
NPPMQ

)

− e−R(1 +R)

(

∇MuNKPQP
NPPMQ

)

+ 1
K

(e−R(R+2)R)
4

∇M
[

(D−3)
K

(

(D−3)

K3

(

∇∇2K −∇2∇2u
)

+ 8(u ·K − u · ∇u) + u ·K + ∇
2u
K

)

B
PBM

]

−
(e−RR2)

4
∇

2
∇

2
K

K3 + 1
4

(

e−2RR
(

2 +R(eR − 1)
))

(u.∇uM )(u.∇uN )PMN

− 1
4

(

e−2RR(R− 2)
)

(uAKAM )(uDKDN )PMN

+ 1
4
e−RR2 ∇

2uM

K

∇
2uN

K
PMN −

(e−RR2)
2

∇
2uM

K
u.∇uNPMN

+ 1
2

(

e−2RR(−2 + 4eR +R)
)

(u.∇uM )(uCKCN )PMN

+
(e−RR(2R2

−R−12))
4

(u.∇K)2

K2 −
(e−R(R3

−14R2
−8R+2))

4
u.K.u K

(D−3)

+
(e−RR(3R2

−32R−2))
4

u.∇K

(D−3)
−

(e−RR(R2
−2R−18))
4

u.∇K

K
u.K.u+ e−RR K

2

(D−3)2

− 1
4
e−R

(

∇(AuB)∇(CuD)P
BCPAD

)

Table 7. Sources to constraint equations at 2nd order.

B Sources at second order

In this appendix we present an explicit listing of all the sources that appear in the second

order computation. By explicit computation we find that the sources listed in tables 1

and 2 are given at second order by the expressions we list in table 6 above.
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