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abilities in matter of a constant density. A useful definition of the η-gauge neutrino

mass-squared difference ∆∗ ≡ η∆31 + (1 − η)∆32 is introduced, where ∆ji ≡ m2
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i

for ji = 21, 31, 32 are the ordinary neutrino mass-squared differences and 0 ≤ η ≤ 1 is

a real and positive parameter. Expanding neutrino oscillation probabilities in terms of

α ≡ ∆21/∆∗, we demonstrate that the analytical formulas can be remarkably simplified

for η = cos2 θ12, with θ12 being the solar mixing angle. As a by-product, the mapping from

neutrino oscillation parameters in vacuum to their counterparts in matter is obtained at

the order of O(α2). Finally, we show that our approximate formulas are not only valid

for an arbitrary neutrino energy and any baseline length, but also still maintaining a high

level of accuracy.
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1 Introduction

Thanks to a number of elegant neutrino oscillation experiments in the past few decades, it

has been well established that neutrinos are massive and lepton flavors are mixed [1]. In the

framework of three-flavor neutrino oscillations, the lepton flavor mixing is described by a

3× 3 unitary matrix U , i.e., the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [2, 3],

which is conventionally parametrized in terms of three mixing angles {θ12, θ13, θ23} and one

Dirac CP-violating phase δ, namely,

U =




cθ12
cθ13

sθ12
cθ13

sθ13
e−iδ

−sθ12cθ23 − cθ12sθ13sθ23e
iδ cθ12

cθ23
− sθ12sθ13sθ23e

iδ cθ13
sθ23

sθ12
sθ23
− cθ12sθ13cθ23e

iδ − cθ12sθ23 − sθ12sθ13cθ23e
iδ cθ13

cθ23


 , (1.1)

where sθij
≡ sin θij and cθij

≡ cos θij for ij = 12, 13, 23 have been defined.1 The global-fit

analysis of solar, atmospheric, reactor and accelerator neutrino oscillation experiments [4–6]

yields three mixing angles θ12 ≈ 33◦, θ13 ≈ 8.4◦, θ23 ≈ 41◦ and two neutrino mass-squared

differences ∆21 ≡ m2
2 − m2

1 ≈ 7.4 × 10−5 eV2 and ∆31 ≡ m2
3 − m2

1 ≈ 2.5 × 10−3 eV2 in

the case of normal mass ordering m1 < m2 < m3 (NMO), while θ12 ≈ 33◦, θ13 ≈ 8.5◦,

1If massive neutrinos are Majorana particles, two extra CP-violating phases are needed to parameterize

the PMNS matrix, but they are irrelevant for neutrino oscillations.
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Normal mass ordering (NMO) Inverted mass ordering (IMO)

best-fit 3σ range best-fit 3σ range

θ12 33.02◦ 30◦–36.51◦ 33.02◦ 30◦–36.51◦

θ13 8.41◦ 7.82◦–9.02◦ 8.49◦ 7.84◦–9.06◦

θ23 41.38◦ 38◦–51.71◦ 48.97◦ 38.23◦–52.95◦

δ 243◦ 0◦–360◦ 237.6◦ 0◦–360◦

∆21

10−5 eV2 7.37 6.93–7.97 7.37 6.93–7.97

∆31

10−3 eV2 2.537 2.405–2.67 −2.423 −2.565–−2.29

Table 1. The best-fit values and 3σ ranges of two neutrino mass-squared differences ∆21 and

∆31, three mixing angles {θ12, θ13, θ23} and the CP-violating phase δ from a global fit of current

experimental data [6].

θ23 ≈ 49◦ and ∆21 ≈ 7.4 × 10−5 eV2, ∆31 ≈ −2.4 × 10−3 eV2 in the case of inverted mass

ordering m3 < m1 < m2 (IMO). See table 1 for a summary of the latest global-fit results

from ref. [6].

Besides precision measurements of the known mixing parameters, the primary goals of

ongoing and forthcoming oscillation experiments are to pin down neutrino mass ordering

(i.e., the sign of ∆31), to measure the leptonic CP-violating phase δ, and to determine

the octant of θ23 (i.e., θ23 < 45◦ or θ23 > 45◦). In order to study the experimental

sensitivities and better understand future experimental results, we should pay particular

attention to the Mikheyev-Smirnov-Wolfenstein (MSW) matter effects on the propagation

of neutrino beams in a medium [7, 8]. Roughly speaking, current and future neutrino

oscillation experiments can be categorized into three different types, in which terrestrial

matter effects on neutrino oscillations always play an important role.

• Medium-baseline Reactor Neutrino Experiments. The reactor experiments with a

baseline length L ≈ 50 km and a neutrino-beam energy E ≈ 4 MeV, such as JUNO [9]

and RENO-50 [10], are sensitive to the oscillations driven by both ∆21 and ∆31.

Hence, they will be able to determine neutrino mass ordering and precisely measure

oscillation parameters. It has been found [11] that the Earth matter effects for JUNO

are as large as 1%, significantly affecting the determination of sin2 θ12 and ∆21, whose

precisions are estimated to be 0.54% and 0.24%, respectively [12].

• Long-baseline Accelerator Neutrino Experiments. For the long-basline accelerator

experiments T2K [13] (L = 295 km and E ≈ 0.6 GeV), NOνA [14] (L = 810 km and

E ≈ 2 GeV) and LBNF-DUNE [15] (L = 1300 km and E ≈ 3 GeV), it is the relative

sign between the matter potential for electron neutrinos (or antineutrinos) and ∆31

that changes the oscillation probability of νµ → νe (or νµ → νe), opening another

possibility to pin down neutrino mass ordering. The difference between oscillation

probabilities of neutrinos and those of antineutrinos implies leptonic CP violation,

which however suffers from a contamination induced by the CP-asymmetric Earth

– 2 –
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matter. In addition, the neutrino super-beam experiments ESSνSB (L ≈ 500 km

and 0.2 GeV . E . 0.6 GeV) and MOMENT (L ≈ 150 km and 0.15 GeV . E .
0.20 GeV) have also been proposed to measure the CP-violating phase with relatively

low energy neutrinos and short baseline lengths [16–18].

• Huge Atmospheric Neutrino Experiments. The experiments PINGU [19], ORCA [20],

and Hyper-Kamiokande [21] will implement huge ice or water Cherenkov detec-

tors to precisely measure atmospheric neutrinos, for which a wide range of energies

(0.1 GeV . E . 100 GeV) and baseline lengths (10 km . L . 104 km) should be

considered. Though neutrinos and antineutrinos cannot be distinguished in these

experiments, the MSW resonance in the Earth matter occurs either in neutrino os-

cillations for NMO or in antineutrino oscillations for IMO. Therefore, matter effects

help determine neutrino mass ordering. A 3σ significance can be reached at the ICAL

detector of INO, which can also discriminate between νµ and νµ events [22].

In principle, for any neutrino energy and baseline length, one can exactly calculate neu-

trino and antineutrino oscillation probabilities in the Earth matter by numerical methods.

However, it is obviously difficult in this way to reveal the underlying physics for neutrino

oscillations and to fully understand the numerical results.

For this reason, two theoretical approaches have been suggested to study the Earth

matter effects. First, one can establish an exact relation between the effective parameters

in matter, i.e., the mixing matrix Ũ (parametrized in terms of three mixing angles θ̃ij
and one CP-violating phase δ̃) and three neutrino masses m̃i (or mass-squared differences

∆̃ji ≡ m̃2
j − m̃2

i ), and the intrinsic parameters in vacuum. For example, J̃ ∆̃21∆̃31∆̃32 =

J∆21∆31∆32 holds exactly for a constant matter density [23–25], where the Jarlskog invari-

ant in vacuum [26, 27] is defined by J ∑γ,k εαβγεijk ≡ Im
[
UαiU

∗
αjU

∗
βiUβj

]
with the Greek

and Latin letters running over (e, µ, τ) and (1, 2, 3), respectively, and likewise for J̃ and Ũ .

Another example is the Toshev relation sin 2θ̃23 sin δ̃ = sin 2θ23 sin δ [28] in the standard

parametrization. In addition, the notion of unitarity triangles has also been introduced to

describe leptonic CP violation [29–32], and the exact and approximate relations between

the unitarity triangles in matter and those in vacuum have been found in refs. [33–37]. Al-

though these exact relations are interesting in themselves, they are in practice not useful to

directly explain experimental observations and extract fundamental oscillation parameters.

The second approach is to expand the oscillation probabilities in terms of small pertur-

bation parameters, which can be α ≡ ∆21/∆∗ ≈ 0.03 [where ∆∗ ≡ η∆31 + (1− η)∆32 with

0 ≤ η ≤ 1, cf. eq. (2.6)] and the smallest mixing angle sin θ13 ≈ 0.147 [38–45]. Another

choice is Â ≡ A/∆∗, where A is the matter potential from the coherent forward scattering

of neutrinos on the background particles and defined as A ≡ 2
√

2GFNeE, with GF being

the Fermi constant, Ne the number density of background electrons, and E the neutrino

energy. In the case of low neutrino energies or low matter densities, an expansion in Â is

useful to show the corrections of matter potential to the oscillation probabilities in vacuum.

In the seminal paper by Freund [39], the analytical approximations for three-flavor

neutrino oscillation probabilities have been systematically studied, and the formulas are
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valid as long as the oscillation driven by ∆21 has not developed and the corresponding

MSW resonance is not reached. The latter condition corresponds to Â & α [39], namely,

E & 0.34 GeV

(
∆21

7.5× 10−5 eV2

)
·
(

2.8 g cm−3

ρ

)
, (1.2)

where ρ is the matter density. For the Earth matter, the electron fraction is Ye ≈ 0.5

and Ne = YeNA[ρ/(1 g cm−3)] with NA being the Avogadro’s number. Although Freund’s

formulas actually work even for E < 0.34 GeV, it has been shown in ref. [41] and ref. [46]

that the series expansion of ε̂ ≡ (α2 + Â2 cos4 θ13 − 2Âα cos 2θ12 cos2 θ13)1/2 in terms of

α is problematic in the region of low energies or small matter densities, where Â → 0.

More accurate approximate formulas for low energies E < 1 GeV have been derived in

ref. [46] by retaining ε̂. However, the analytical results in refs. [41, 46] are not applicable

for large matter effects and higher neutrino energies. Furthermore, a critical problem for

the sin θ13 expansion is related to the atmospheric resonance Â → 1, where the function

Ĉ ≡ [(1− Â)2 + 4Â sin2 θ13]1/2 cannot be expanded correctly. As we will show later, ε̂ and

Ĉ are two key parameters to avoid any difficulties associated with the low-energy solar

resonance and the high-energy atmospheric resonance, respectively. In fact, analytical

formulas for arbitrary neutrino energies and baseline lengths are derived in refs. [42, 43],

where the resonances related to ∆21 and ∆31 have been treated carefully by introducing

a few intermediate rotation angles for basis transformations. Thus, the analytical results

can be cast into a simple and compact form, in which the eigenvalues of the zeroth-order

Hamiltonian and rotation angles, instead of intrinsic mixing parameters, are involved.

Since all the existing analytical approximations are not fully satisfactory, we are well

motivated to derive a new set of analytical formulas for neutrino oscillation probabilities,

which fulfills the following three criteria:

1. They are valid for arbitrary neutrino energies and any baseline length. Such formulas

are applicable to atmospheric neutrino experiments.

2. They are expressed in terms of intrinsic oscillation parameters, and in a simple and

compact form. Any complicated formulas are not very useful in practice.

3. They give accurate values of oscillation probabilities, under the condition that the

first two criteria are met at the same time.

For this purpose, we expand the oscillation probabilities in terms of α, but retain the param-

eter that corresponds to ε̂ (Ĉ) in the case of low (high) energies or small (large) matter den-

sities. In addition, an η-gauge neutrino mass-squared difference ∆∗ ≡ η∆31 + (1− η)∆32 is

introduced so as to seek an optimal value of η that greatly simplifies approximate formulas.

The remaining part of this paper is organized as follows. In section 2, we briefly review

the basic strategy to derive analytical formulas of neutrino oscillation probabilities. We

introduce ∆∗ ≡ η∆31 +(1−η)∆32 and demonstrate that it is suggestive of simple analytical

formulas for η = cos2 θ12. The oscillation probabilities in the special case of η = cos2 θ12 are

presented in section 3, where the mapping between effective and intrinsic mixing parameters

is also obtained as a by-product. The accuracies of the analytical formulas are examined

– 4 –
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and compared with previous ones. Finally, we summarize our main results in section 4.

Some useful formulas are listed in three appendices.

2 General formalism

In the framework of three-flavor neutrino oscillations, the effective Hamiltonian responsible

for the evolution of neutrino flavor eigenstates in matter is given by

H̃f =
1

2E


U



m2

1 0 0

0 m2
2 0

0 0 m2
3


U † +



A 0 0

0 0 0

0 0 0





 . (2.1)

In the case of a constant matter density, i.e., a constant value of A, we then have two

distinct ways to derive the exact oscillation probabilities. First, one can diagonalize the

effective Hamiltonian by using a unitary transformation

H̃f =
1

2E
Ũ



m̃2

1 0 0

0 m̃2
2 0

0 0 m̃2
3


 Ũ † , (2.2)

where m̃i for i = 1, 2, 3 are effective neutrino masses in matter, and Ũ is the effective PMNS

matrix, which can also be parametrized in terms of three mixing angles {θ̃12, θ̃13, θ̃23} and

one CP-violating phase δ̃. In terms of these effective parameters, it is straightforward to

write down the oscillation probabilities P̃αβ ≡ P̃ (να → νβ) as follows

P̃αβ = δαβ − 4

3∑

i<j

Re
[
ŨαiŨ

∗
αjŨ

∗
βiŨβj

]
sin2 F̃ji + 8J̃

∑

γ

εαβγ sin F̃21 sin F̃31 sin F̃32 , (2.3)

where J̃ ≡ ∑γ,k εαβγεijkIm
[
ŨαiŨ

∗
αjŨ

∗
βiŨβj

]
and F̃ji ≡ ∆̃jiL/(4E) with ∆̃ji ≡ m̃2

j − m̃2
i

have been defined in the same manner as for neutrino oscillations in vacuum, and L is the

baseline length. The probabilities for antineutrino oscillations να → νβ can be obtained

by replacing J̃ → −J̃ in eq. (2.3) and A→ −A everywhere in the effective parameters.

Second, according to the Cayley-Hamilton theorem, the evolution matrix S = e−iH̃fL of

neutrino flavor eigenstates is determined by three eigenvalues of the effective Hamiltonian

H̃f and the matrix elements of H̃f [47–49], namely,

Sβα = s0Iβα + s1

(
H̃f

)
βα

+ s2

(
H̃2

f

)
βα

, (2.4)

where I denotes the 3× 3 unit matrix and the relevant coefficients are

s0 = − ω1ω2e
−iω3L

(ω2 − ω3)(ω3 − ω1)
− ω2ω3e

−iω1L

(ω1 − ω2)(ω3 − ω1)
− ω1ω3e

−iω2L

(ω1 − ω2)(ω2 − ω3)
,

s1 = +
(ω1 + ω2)e−iω3L

(ω2 − ω3)(ω3 − ω1)
+

(ω2 + ω3)e−iω1L

(ω1 − ω2)(ω3 − ω1)
+

(ω1 + ω3)e−iω2L

(ω1 − ω2)(ω2 − ω3)
,

s2 = − e−iω3L

(ω2 − ω3)(ω3 − ω1)
− e−iω1L

(ω1 − ω2)(ω3 − ω1)
− e−iω2L

(ω1 − ω2)(ω2 − ω3)
, (2.5)
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with ωi ≡ m̃2
i /(2E) being the eigenvalues of H̃f . The neutrino oscillation probabilities are

simply given by P̃αβ = |Sβα|2, while the results for antineutrino oscillations can be derived

by changing U → U∗ and A→ −A in the effective Hamiltonian.

2.1 η-gauge mass-squared difference

In order to simplify the analytical formulas as much as possible, we tentatively introduce

a generic definition of neutrino mass-squared difference

∆∗ ≡ η∆31 + (1− η)∆32 , (2.6)

where 0 ≤ η ≤ 1 is a real and positive parameter. It is evident that ∆∗ reduces to the

conventional definitions of atmospheric neutrino mass-squared differnce ∆32 for η = 0,

∆31 for η = 1, and (∆31 + ∆32)/2 for η = 1/2. In the global-fit analysis of neutrino

oscillation data, the first two definitions have been used in refs. [4, 5] in the IMO and

NMO cases, respectively, while the last one has been implemented in ref. [6] for either

neutrino mass ordering. Another definition ∆ee ≡ cos2 θ12∆31 +sin2 θ12∆32, corresponding

to η = cos2 θ12, has been advocated by Parke [50] and demonstrated to be advantageous

to reactor antineutrino experiments. Although for quite a different reason, as we will show

later, the introduction of ∆∗ in eq. (2.6) with η = cos2 θ12 turns out to be very useful in

simplifying the approximate formulas of oscillation probabilities.

With the help of ∆∗, the effective Hamiltonian H̃f can be rewritten as

H̃f =
m2

2 − η∆21

2E
I +

∆∗
2E

Mf , (2.7)

where I is the identity matrix of rank three and

Mf = U




(η − 1)α 0 0

0 ηα 0

0 0 1


U † +



Â 0 0

0 0 0

0 0 0


 , (2.8)

with α ≡ ∆21/∆∗ and Â = A/∆∗. Note that the first term on the right-hand side of

eq. (2.7) is flavor-independent and thus irrelevant for neutrino oscillations. In the formalism

shown in eqs. (2.4) and (2.5), the evolution matrix is now S = e−i∆∗MfL/(2E) and only the

eigenvalues of Mf need to be calculated.

To find out the eigenvalues of Mf , it is more convenient to convert into the mass basis

in vacuum via Mv = U †MfU , where the neutrino mass term, i.e., the first term on the

right-hand side of eq. (2.8), becomes diagonal. More explicitly, we have [51]

Mv =




(η − 1)α 0 0

0 ηα 0

0 0 1


+ Â



|Ue1|2 U∗e1Ue2 U

∗
e1Ue3

U∗e2Ue1 |Ue2|2 U∗e2Ue3
U∗e3Ue1 U

∗
e3Ue2 |Ue3|2


 , (2.9)

where Uei for i = 1, 2, 3 are three elements in the first row of the PMNS matrix. Therefore,

it is expected that a proper choice of η will be helpful in reducing the complexity of three

eigenvalues, and thus the final oscillation probabilities. Furthermore, it is interesting to

notice that only the matrix elements Uei for i = 1, 2, 3 are involved in Mv and |Ue3| � 1,

so a suitable value of η is anticipated to be mainly associated with Ue1 and Ue2, or θ12 in

the standard parametrization.
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2.2 η-gauge oscillation probabilities

Now it is time to derive the oscillation probabilities by using eqs. (2.4) and (2.5). First of

all, the eigenvalues λi (for i = 1, 2, 3) of Mf or equivalently Mv can be obtained by solving

the following eigen-equation

λ3 + bλ2 + cλ+ d = 0 , (2.10)

where the relevant coefficients are

b = −1− α (2η − 1)− Â ,
c =

(
1− |Ue3|2

)
Â− α

{
1 + Â|Ue2|2 + Â|Ue3|2 − η

[
2 + α (η − 1) + Â+ Â|Ue3|2

]}
,

d = −α
[
Âη|Ue1|2 + Â (η − 1) |Ue2|2 + αη(η − 1)

(
1 + Â|Ue3|2

)]
. (2.11)

The eigenvalues of the effective Hamiltonian have been known for a long time [51–53], but

it has recently been noticed that the results depend also on neutrino mass ordering [46].

To be explicit, taking λ1 < λ2 < λ3, we have

λ1 = − b
3
− 1

3∆∗

√
x2 − 3y

[
z +

√
3(1− z2)

]
,

λ2 = − b
3
− 1

3∆∗

√
x2 − 3y

[
z −

√
3(1− z2)

]
,

λ3 = − b
3

+
2

3∆∗
z
√
x2 − 3y , (2.12)

for the NMO; or

λ1 = − b
3

+
1

3∆∗

√
x2 − 3y

[
z +

√
3(1− z2)

]
,

λ2 = − b
3

+
1

3∆∗

√
x2 − 3y

[
z −

√
3(1− z2)

]
,

λ3 = − b
3
− 2

3∆∗
z
√
x2 − 3y , (2.13)

for the IMO, where we have defined

x = ∆∗
[
1 + (2− η)α+ Â

]
,

y = ∆2
∗

{
Â(1− |Ue3|2) + α

[
1 + Â− Â(1− |Ue3|2)

(
η − |Ue1|2

1− |Ue3|2
)]

+ α2(1− η)

}
,

z = cos





1

3
arccos

∆∗
[
2x3 − 9xy + 27∆3

∗αÂ(1 + α− ηα)|Ue1|2
]

2|∆∗|
√

(x2 − 3y)3



 . (2.14)

Note that λi’s are the eigenvalues of Mf , and (λ1, λ2, λ3) correspond to (m̃2
1, m̃

2
2, m̃

2
3) in

the NMO case with ∆∗ > 0, but to (m̃2
2, m̃

2
1, m̃

2
3) in the IMO case with ∆∗ < 0. In the

latter case, though λ3 is the largest eigenvalue, ∆∗λ3 becomes negative and thus m̃2
3 is the

smallest one. In addition, it is easy to verify that λ2 − λ1 > 0 holds for either neutrino

mass ordering.

– 7 –
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According to eqs. (2.4) and (2.5), it is straightforward to compute the evolution matrix

S = e−2iF∗Mf with F∗ ≡ ∆∗L/(4E) and thus the oscillation probabilities

P̃αβ =

∣∣∣∣∣ξ
αβ
1 e−iF∗(2λ3−λ1−λ2) + ξαβ2 cos

[
F∗(λ2 − λ1)

]
+ 2iξαβ3

sin
[
F∗(λ2 − λ1)

]

λ2 − λ1

∣∣∣∣∣

2

, (2.15)

where the flavor-dependent coefficients ξαβi (for i = 1, 2, 3) with α and β running over e, µ

and τ can readily be identified from similar equations for Mf to those for H̃f in eqs. (2.4)

and (2.5). A further exploration of the right-hand side of eq. (2.15) gives rise to

P̃αβ = |ξαβ1 |2 + |ξαβ2 |2 +
{

4|ξαβ3 |2 − (λ2 − λ1)2|ξαβ2 |2
} sin2

[
F∗(λ2 − λ1)

]

(λ2 − λ1)2

+ 2
{

Re[ξαβ1 ξαβ∗2 ] cos
[
F∗(3λ3+b)

]
+ Im[ξαβ1 ξαβ∗2 ] sin

[
F∗(3λ3+b)

]}
cos
[
F∗(λ2−λ1)

]

+ 4
{

Im[ξαβ1 ξαβ∗3 ] cos
[
F∗(3λ3+b)

]
− Re[ξαβ1 ξαβ∗3 ] sin

[
F∗(3λ3+b)

]} sin
[
F∗(λ2−λ1)

]

λ2 − λ1

+ 4Im[ξαβ2 ξαβ∗3 ] cos
[
F∗(λ2 − λ1)

]sin
[
F∗(λ2 − λ1)

]

λ2 − λ1

, (2.16)

where the identity λ1 + λ2 = −(b + λ3) has been implemented. Although we will not

show the exact expressions of ξαβi ’s, some useful properties of them can be implemented to

further simplify the oscillation probabilities and the series expansions of ξαβi ’s with respect

to the small parameter α have been collected in appendix A.

In the appearance channel να → νβ with α 6= β, the identity ξαβ1 = −ξαβ2 holds exactly.

Therefore, it is easy to verify that Im[ξαβ∗1 ξαβ2 ] = 0, Re[ξαβ∗1 ξαβ2 ] = −|ξαβ1 |2 = −|ξαβ2 |2 and

Im[ξαβ∗2 ξαβ3 ] = −Im[ξαβ∗1 ξαβ3 ]. Under these conditions, eq. (2.16) will be reduced to

P̃αβ =
{

4|ξαβ3 |2 − (λ2 − λ1)2|ξαβ1 |2
} sin2

[
F∗(λ2 − λ1)

]

(λ2 − λ1)2

+ 2|ξαβ1 |2
{

1− cos
[
F∗(3λ3 + b)

]
cos
[
F∗(λ2 − λ1)

]}

− 4Re[ξαβ1 ξαβ∗3 ] sin
[
F∗(3λ3 + b)

]sin
[
F∗(λ2 − λ1)

]

λ2 − λ1

+ 4Im[ξαβ1 ξαβ∗3 ]
{

cos
[
F∗(3λ3+b)

]
−cos

[
F∗(λ2−λ1)

]} sin
[
F∗(λ2−λ1)

]

λ2 − λ1

, (2.17)

where one can observe four different types of oscillation terms. In the disappearance channel

να → να, we have ξαβ1 + ξαβ2 = 1 and ξαβ∗i = ξαβi , and thus arrive at

P̃αβ = 1 +
{

4|ξαβ3 |2 − (λ2 − λ1)2|ξαβ2 |2
} sin2

[
F∗(λ2 − λ1)

]

(λ2 − λ1)2

− 2ξαβ1 ξαβ2

{
1− cos

[
F∗(3λ3 + b)

]
cos
[
F∗(λ2 − λ1)

]}

− 4ξαβ1 ξαβ3 sin
[
F∗(3λ3 + b)

]sin
[
F∗(λ2 − λ1)

]

λ2 − λ1

, (2.18)

in which only three oscillation terms survive. In order for the oscillation probabilities to

be valid for arbitrary neutrino energies and baseline lengths, as we shall see later, it is

important to always keep those oscillation terms not expanded at all.
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NMO

λ1

λ2

λ3

E (GeV)

IMO

−λ1

−λ2

λ3

E (GeV)

Figure 1. Three eigenvalues λi (i = 1, 2, 3) of the matrix Mf in eq. (2.8) shown as functions of

the neutrino energy E, where the matter density ρ ≈ 2.8 g cm−3, the electron fraction Ye ≈ 0.5

and η = 1 have been taken for illustration. The best-fit values of neutrino oscillation parameters

from table 1 have been adopted. The left panel is for the case of NMO while the right panel for

IMO. Note that λ1 and λ2 are negative in the IMO case, so their absolute values have been plotted

together with λ3 in the right panel.

3 Analytical and numerical results

So far, all the analytical results in the previous section are exact. In this section, we will

first expand the eigenvalues λi’s in terms of α and derive the approximate formulas of

neutrino oscillation probabilities in the general η-gauge. Simple and compact formulas in

the special case of η = cos2 θ12 then emerge in an obvious way. As a by-product, the

mapping between effective and fundamental mixing parameters is also obtained. Finally,

numerical verifications are carried out to show high precisions of our analytical formulas,

in comparison with the exact ones.

3.1 Approximate formulas

Let us begin with the series expansion of three eigenvalues. First, to clearly see the relative

sizes of λi’s, we have shown their exact values as functions of the neutrino energy E in

figure 1, where the matter density ρ = 2.8 g cm−3, the electron fraction Ye ≈ 0.5 and η = 1

have been taken for illustration. In addition, the best-fit values of neutrino oscillation

parameters from table 1 are adopted. In the left panel, the results for the NMO are given,

where one can observe a potential level crossing at E ∼ 0.3 GeV for the solar resonance, and

another one around E ∼ 10 GeV for the atmospheric resonance, if a poor approximation

to λi is adopted. In the right panel, since both λ1 and λ2 in the IMO case are actually

negative, their absolute values are shown together with λ3. It is obvious that there is no

level crossing in this case between λ3 and λ2, but the level crossing at E ∼ 0.3 GeV for

the solar resonance still exists. For antineutrino oscillations in matter, as is well known,

the atmospheric resonance will be present in the IMO case, while absent in the NMO

case. A correct treatment of these eigenvalues in the regions of resonances is crucial to get

well-behaved analytical results.
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In this work we shall use α as the only expansion parameter and deal carefully with

the would-be divergences in the neighborhood of resonances and in the limiting cases (e.g.,

the vacuum oscillations with Â→ 0). Looking at the analytical results of λi’s in eqs. (2.12)

and (2.13), one should first expand
√
x2 − 3y and z in terms of α, and then insert their

approximate expressions back into eqs. (2.12) and (2.13). After a straightforward but

tedious calculation, we finally get

z ≈ 1 + Â+ 3Ĉ

4Ĉ ′
+

α

4ĈĈ ′

[
2Ĉ(1− 2η)− 3(η − c2

θ12
)(1− Âc2θ13

− Ĉ)
]

+
α(1 + Â+ 3Ĉ)

8(Ĉ ′)3

[
(2η − 1)(1 + Â)− 3Âc2

θ13
(η − c2

θ12
)
]

−
3α2Âs2

2θ12
c2
θ13

(1− Â− Ĉ)

4ĈĈ ′(1 + Â+ Ĉ)2
+

3α2Â2s2
2θ13

(η − c2
θ12

)2

8Ĉ3(Ĉ ′)

− α2

8Ĉ(Ĉ ′)3

[
2Ĉ(1− 2η)− 3(η − c2

θ12
)(1− Âc2θ13

− Ĉ)
]

×
[
(1− 2η)(1 + Â) + 3Âc2

θ13
(η − c2

θ12
)
]
− α2(1 + Â+ 3Ĉ)

32(Ĉ ′)5

×
{

4̂(Ĉ ′)2(1− η + η2)− 3
[
(1− 2η)(1 + Â) + 3Âc2

θ13
(η − c2

θ12
)
]2
}
, (3.1)

and

√
x2 − 3y ≈ |∆∗|

{
Ĉ ′ +

α

2Ĉ ′

[
(1− 2η)(1 + Â) + 3Âc2

θ13
(η − c2

θ12
)
]

+
3α2

8(Ĉ ′)3

[
Ĉ2 + Âc2

θ13

[
s2

2θ12
− 2c2θ12

(η − c2
θ12

)(1− Â)

+ Â(4− 3c2
θ13

)(η − c2
θ12

)2
]]}

, (3.2)

where cφ ≡ cosφ and sφ ≡ sinφ have been introduced also for φ = 2θij . In addition, we

have defined a regulator for the atmospheric resonance [39]

Ĉ =
√

(1− Â)2 + 4Âs2
θ13
, (3.3)

and Ĉ ′ ≡ (Ĉ2 + Âc2
θ13

)1/2. Note that Ĉ appears in the denominators and will cause

divergences in the further expansions in terms of sin2 θ13 when Â = 1. Therefore, we shall

keep the exact form of Ĉ in eq. (3.3) in our calculations of the oscillation probabilities.

On the other hand, in the low-energy or vacuum limit with Â → 0, we have learned

from refs. [41] and [46] that one cannot expand the function ε̂ mentioned in section 1 in

terms of α. A further study shows that this function arises from the difference between two

eigenvalues λ2 and λ1, namely, the terms proportional to
√

1− z2 in eqs. (2.12) and (2.13).

Therefore, we define ε ≡ λ2−λ1 and expand λ3 up to the second order of α. Then, λ1 and
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λ2 can be obtained from the identity λ1 + λ2 = −(b+ λ3) and the definition of ε, namely,

λ1 ≈ −
1

2
(b+ ρ1 + ρ2α+ ρ3α

2 + ε) ,

λ2 ≈ −
1

2
(b+ ρ1 + ρ2α+ ρ3α

2 − ε) ,

λ3 ≈ ρ1 + ρ2α+ ρ3α
2 , (3.4)

where the higher-order terms of O(α3) have been omitted. Note that eq. (3.4) is valid for

both NMO and IMO. The corresponding coefficients ρi (for i = 1, 2, 3) in eq. (3.4) can be

directly computed by making use of eqs. (2.11), (3.1) and (3.2). More explicitly, we have

ρ1 =
1 + Â+ Ĉ

2
,

ρ2 =
(η − c2

θ12
)
(
−1 + Ĉ + Âc2θ13

)

2Ĉ
,

ρ3 = (η − c2
θ12

)2s2
2θ13

Â2

4Ĉ3
−
s2

2θ12
(1− Â− Ĉ)(1 + Â− Ĉ)

8Ĉ(1 + Â+ Ĉ)
, (3.5)

where one can clearly observe that the above coefficients will be greatly simplified for

η = cos2 θ12. In particular, ρ2 = 0 implies that the first order correction to λ3 is vanishing,

so the leading-order results are already very precise. Additionally, at the second order, only

one term is left in λ3. However, this is not the case for λ1 and λ2, as extra contributions

come from ε, which can be determined from

ε2 ≈ 1

4

{
1 + Â− Ĉ + 2α

[
2η − 1 +

(η − c2
θ12

)(1− Âc2θ13
− Ĉ)

2Ĉ

]}2

− 2α(1 + Â− Ĉ)(η + c2
θ12
− 1) +

2α2Â2(1− Â− Ĉ)

Ĉ(1 + Â+ Ĉ)3
c4
θ13
s2

2θ12

−
8α2(1 + Âs2

θ13
)(η − 1)η

1 + Â+ Ĉ
−

4α2Â3(η − c2
θ12

)2

Ĉ3(1 + Â+ Ĉ)
c4
θ13
s2
θ13

−
8α2Â(η − c2

θ12
)

Ĉ(1 + Â+ Ĉ)2
(η + c2

θ12
− 1)(1− Âc2θ13

− Ĉ)c2
θ13
. (3.6)

In the derivation of eq. (3.6), the identities λ1 + λ2 = −(b + λ3) and λ1λ2 = −dλ−1
3 have

been used, where both b and d have been given in eq. (2.11). Note that, instead of ε itself, ε2

has been expanded in α in eq. (3.6) where high-order terms of O(α3) have been neglected.

As we will show in the next subsection, ε reduces to ε̂ in the case of η = cos2 θ12 and in the

limit of Â→ 0. Therefore, ε is the parameter that we should retain in the series expansion.

Having obtained λi’s, we can calculate ξαβi ’s according to eqs. (2.4) and (2.5). Their

analytical expressions have been collected in appendix A. After inserting ξαβi ’s and λi’s into
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eqs. (2.17) and (2.18), we finally obtain the approximate formulas of oscillation probabilities

P̃ee ≈ 1− 2

[
s2

2θ13

4Ĉ2
−
αÂ(η − c2

θ12
)(Â− c2θ13

)

2Ĉ4
s2

2θ13

]
(1− cos F̃+ cos F̃−)

+

[
1 + Â− Ĉ − 2αc2θ12

4εĈ2
s2

2θ13
−

2αÂ(η − c2
θ12

)

εĈ4(1 + Â+ Ĉ)

× (1− 6Âc2θ13
− Ĉ + ÂĈ + 5Â2)c4

θ13
s2
θ13

]
sin F̃+ sin F̃−

− 4α2(1− Â+ Ĉ)

ε2Ĉ(1 + Â+ Ĉ)3
s2

2θ12
c4
θ13

sin2 F̃− , (3.7)

P̃µe ≈
[
s2

2θ13
s2
θ23

2Ĉ2
− 4α(1− Â− Ĉ)

Ĉ2(1 + Â+ Ĉ)
J cot δ −

αÂ(η − c2
θ12

)(Â− c2θ13
)

Ĉ4
s2

2θ13
s2
θ23

]

× (1− cos F̃+ cos F̃−)− 2

ε

[
(1 + Â− Ĉ − 2αc2θ12

)

8Ĉ2
s2

2θ13
s2
θ23
− α(1− Â+ Ĉ)

Ĉ2
J cot δ

−
αÂ(η − c2

θ12
)

Ĉ4(1 + Â+ Ĉ)
(1− 6Âc2θ13

− Ĉ + ÂĈ + 5Â2)c4
θ13
s2
θ13
s2
θ23

]

× sin F̃+ sin F̃− +

{
α2(1− Â+ Ĉ)

Ĉ(1 + Â+ Ĉ)
s2

2θ12
c2
θ13
c2
θ23

+
16αJ cot δ

Ĉ(1 + Â+ Ĉ)2

[
αc2θ12

× (Ĉ + Âc2
θ13

)− Âc2
θ13

]
− α2(1 + Â)

Ĉ(1 + Â+ Ĉ)2
s2

2θ12
s2

2θ13
s2
θ23

+
16α2Â(η − c2

θ12
)

Ĉ3(1 + Â+ Ĉ)2
(1− 3Âc2θ13

− Ĉ + ÂĈ + 2Â2)c2
θ13
J cot δ

}
sin2 F̃−
ε2

+
8αJ

εĈ(1 + Â+ Ĉ)
(cos F̃+ − cos F̃−) sin F̃− , (3.8)

where

F̃− = εF∗ ,

F̃+ =
F∗
2

[
1 + Â+ 3Ĉ − 2α(2η − 1)−

3α(η − c2
θ12

)(1− Âc2θ13
− Ĉ)

Ĉ

]
. (3.9)

The expansion of F̃+ is given to O(α), but a few terms proportional to α2 are kept in the

coefficients in front of oscillation terms, as they may become important in some cases. For

completeness, we also present the complete expression for P̃τµ in eq. (B.1) in appendix B.

As is proved in ref. [40], only two oscillation probabilities are independent, say, P̃µe and

P̃τµ. The other probabilities can be constructed by making use of unitarity condition∑
α P̃αβ =

∑
β P̃αβ = 1 and the time-reversal transformation P̃αβ = P̃βα(δ → −δ) for

a constant matter density. Furthermore, considering that the rotation matrix in the 2-

3 sector commutes with the matter potential term in the effective Hamiltonian, we can

establish the relations P̃eτ = P̃eµ(θ23 → θ23 + π/2) and P̃µµ = P̃ττ (θ23 → θ23 + π/2).
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For this reason, only two independent appearance probabilities P̃µe and P̃τµ are shown in

this work, while P̃ee is given as an example in the disappearance channel. Note that the

oscillation probabilities are for NMO, and we can get the corresponding results by replacing

ε with −ε for IMO.

Given the above approximate formulas for oscillation probabilities, we also verify that

these expansions indeed reduce to those that already exist in the literature. For example, in

the low energy range, α, Â and ε are of the same order and can be expanded simultaneously,

from which one can arrive at eq. (4.6) in ref. [46]. On the other hand, for the high energy

region with Â ∼ ε � α, one can safely expand ε in terms of α and restore the familiar

results of Freund [39] and Akhmedov et al. [40].

As we have mentioned, the analytical expressions can be substantially simplified when

η = cos2 θ12 is adopted, where all the terms proportional to (η − cos2 θ12) automatically

disappear. The resultant simplified formulas will be presented and discussed in the next

subsection. Here we show that the choice of η = cos2 θ12 is not only advantageous for the

analytical simplicity, but also for numerical accuracy. To examine the influence of η on the

accuracy of analytical approximations in the oscillation probabilities, we have adopted the

best-fit values of neutrino oscillation parameters in table 1. In addition, the matter density

ρ ≈ 2.8 g cm−3 for the Earth’s crust and Ye ≈ 0.5 are taken for illustration. In order to

test the numerical accuracy, we define the absolute error of the analytical approximations

of P̃ (να → νβ) as ∆P̃αβ for α, β = e, µ, τ , i.e.,

∆P̃αβ = |(P̃αβ)Exact − (P̃αβ)Approximate| , (3.10)

where (P̃αβ)Exact is calculated by a fully numerical evolution of the neutrino flavor states.

Note that an unusual baseline of L = 6500 km is employed in order to make the fine

structure of oscillations more prominent. The oscillation probabilities and their absolute

errors are given in figure 2, where we can observe that the case of η = cos2 θ12 is the most

accurate one for almost the entire range of neutrino energies.2

Comparing with previous analytical approximations of the oscillation probabilities,

our results are advantageous in several aspects. First, we have included all the possible

leading terms of the whole energy region. Taking the expansion terms α2/ε2 and α for

instance, although α2/ε2 is a higher-order term than α near the atmospheric resonance, it

is significantly enhanced in the low energy range where ε is small. Thus both are maintained

in the expansion. Second, our analytical results keep ε and Ĉ as independent parameters in

order to avoid any divergence in the low-energy limit and near the atmospheric resonance,

respectively. Third, for the first time, we have presented the analytical results with a generic

η value, which is convenient to make a comparison with previous results. We further show

that η = cos2 θ12 is the best choice in terms of both simplicity and numerical accuracy.3

2Note that the spikes along the curves for ∆P̃αβ in figure 2 do not mean the best precision but the

intersection points of exact and approximate oscillation probabilities, which are caused by the modifications

of oscillation frequency and amplitude in the approximate formulas.
3Although we demonstrate that η = cos2 θ12 leads to simpler and more accurate oscillation probabilities,

the underlying physical reason is not clear and deserves further studies [54]. We notice that the same

mass-squared difference ∆m2
ee ≡ cos2 θ12∆31 + sin2 θ12∆32 has been shown in ref. [50] to be advantageous

for νe disappearance experiments without matter effects. This observation may provide a clue to better

understand the choice of η = cos2 θ12.
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P̃
ee

∆
P̃
ee

P̃
µ
e

∆
P̃
µ
e

P̃
τ
µ

∆
P̃
τ
µ

νe → νe νe → νe

νµ → νe νµ → νe

ντ → νµ ντ → νµ

E (GeV) E (GeV)

NMO IMO

η = 0 η = s2θ12 η = 0.5 η = c2θ12 η = 1

Figure 2. Accuracy tests of the analytical approximations of neutrino oscillation probabilities P̃αβ
for different choices of η. The best-fit values of neutrino oscillation parameters in table 1 have been

adopted and a baseline of L = 6500 km is employed. The left panel is for NMO and the right panel

is for IMO.
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3.2 Special case of η = cos2 θ12

If η = cos2 θ12 is fixed, we can obtain much simpler formulas for relevant oscillation param-

eters in matter and those for the oscillation probabilities as well. First, let us focus on the

two regulators for eliminating possible divergences. As indicated in eq. (3.3), Ĉ depends

on η implicitly through Â and ∆∗, so its expression is not modified. The other one is

ε ≈

√√√√(1 + Â− Ĉ − 2αc2θ12
)2

4
+

2α2(1 + Âs2
θ13

)s2
2θ12

1 + Â+ Ĉ
+

2α2Â2(1− Â− Ĉ)c4
θ13
s2

2θ12

Ĉ(1 + Â+ Ĉ)3
,

(3.11)

where eq. (3.6) with η = cos2 θ12 has been used.

In the low-energy limit, Â will also be a small parameter, just like α. In this case, it

is easy to verify

ε ≈ ε̂ ≡
√
α2 + Â2c4

θ13
− 2αÂc2θ12

c2
θ13
, (3.12)

where higher-order terms of O(α2Â) are omitted. It has been found in ref. [46] that one can

keep ε in the oscillation probabilities, whose low-energy behaviors will then be remarkably

improved. In the high-energy limit, it is safe to expand ε in terms of α, and thus we get

ε ≈
1+Â−Ĉ−2αc2θ12

2
+
α2(1−Â+Ĉ)(1+Â+Ĉ)

8Ĉ(1 + Â− Ĉ)
s2

2θ12
+
α2(1 + Âs2

θ13
)

4c2
θ13
Â

s2
2θ12

. (3.13)

Note that ε in this case is not a small parameter, as the matter effects become important

or even dominant, e.g., Â & 1. For an arbitrary neutrino energy, it is necessary to make

use of the full result of ε in eq. (3.11).

Second, as it is useful to define the oscillation phases F− ≡ ∆21L/(4E) and F+ ≡
(∆31 + ∆32)L/(4E) in vacuum, we obtain the following analytical approximations of their

counterparts in matter with the help of eq. (3.9), namely,

F̃− = εF∗ , F̃+ =
F∗
2

(1 + Â− 2αc2θ12
+ 3Ĉ) , (3.14)

reflecting the corrections induced by the Earth matter to neutrino mass-squared differences.

Given the above parameters, the oscillation probabilities for the special case of η = c2
θ12

turn out to be

P̃ee ' 1−
s2

2θ13

2Ĉ2
(1− cos F̃+ cos F̃−) +

s2
2θ13

4εĈ2
(1 + Â− Ĉ − 2αc2θ12

) sin F̃+ sin F̃−

− 4α2(1− Â+ Ĉ)

ε2Ĉ(1 + Â+ Ĉ)3
s2

2θ12
c4
θ13

sin2 F̃− , (3.15)
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and

P̃µe '
[
s2

2θ13
s2
θ23

2Ĉ2
− 4α(1− Â− Ĉ)

Ĉ2(1 + Â+ Ĉ)
J cot δ

]
(1− cos F̃+ cos F̃−)

−
[
s2

2θ13
s2
θ23

4εĈ2
(1 + Â− Ĉ − 2αc2θ12

)− 2α(1− Â+ Ĉ)

εĈ2
J cot δ

]
sin F̃+ sin F̃−

+

{
α2(1− Â+ Ĉ)

Ĉ(1 + Â+ Ĉ)
s2

2θ12
c2
θ13
c2
θ23
− α2(1 + Â)

Ĉ(1 + Â+ Ĉ)2
s2

2θ12
s2

2θ13
s2
θ23

+
16αJ cot δ

Ĉ(1 + Â+ Ĉ)2

[
αc2θ12

(Ĉ + Âc2
θ13

)− Âc2
θ13

]}sin2 F̃−
ε2

− 8αJ
εĈ(1 + Â+ Ĉ)

(cos F̃− − cos F̃+) sin F̃− , (3.16)

which are much simpler than the general formulas in eqs. (3.7) and (3.8). See also the

results of P̃τµ in eq. (B.2) in appendix B.

To carry out a systematic test of numerical accuracy of analytical approximations, we

consider the absolute errors ∆P̃αβ defined in eq. (3.10) and the approximate results are now

obtained by using the simplified formulas in the case of η = cos2 θ12. The numerical results

of ∆P̃αβ for a wide range of neutrino energies and baseline lengths have been shown in

figure 3, where the sizes of absolute errors are denoted by different colors. Some comments

on the numerical calculations are in order:

• In figure 3, the matter density of ρ ≈ 2.8 g cm−3 with Ye ≈ 0.5 and the best-fit

values of neutrino oscillation parameters from table 1 have been used in numerical

calculations. In addition, to avoid fast oscillations at low energies, we have averaged

the oscillation probabilities over a Gaussian energy resolution of 1%. The baseline

lengths and neutrino energies have been set to be 0.1 km ≤ L ≤ 104 km and 1 MeV ≤
E ≤ 100 GeV, respectively. Hence, both current and future oscillation experiments

as mentioned in the introduction are essentially covered. As for the atmospheric

neutrinos, our assumption of a constant matter density renders it impossible to reveal

the structure of parametric resonances [55–59]. However, it suffices to illustrate

the numerical difference between our analytical formulas and the exact oscillation

probabilities.

• In the lower part of each plot in figure 3, i.e., for L ≤ 1 km, one can observe that

the errors are always far below the level of 10−8. This can be understood by noticing

that the oscillations driven by ∆21 have not yet developed for a short baseline. The

∆31-driven oscillations indeed take place for short baseline lengths and low neutrino

energies, however, the amplitudes will be suppressed by the smallest mixing angle

θ13. For higher neutrino energies, we need longer baseline lengths for the ∆31-driven

oscillations to develop. The errors in the entire range of baseline lengths and ener-

gies are below 10−3, demonstrating an excellent agreement between our approximate

formulas and the exact ones.
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< 10−8 10−8 − 10−7 10−7 − 10−6

10−6 − 10−5 10−5 − 10−4 10−4 − 10−3
L
(k
m
)

L
(k
m
)

L
(k
m
)

E (GeV) E (GeV)

∆P̃τµ

(NMO)

∆P̃µe

(NMO)

∆P̃ee

(NMO)

∆P̃ee

(IMO)

∆P̃τµ

(IMO)

∆P̃µe

(IMO)

Figure 3. The accuracy tests of analytical approximations to neutrino oscillation probabilities for

η = c2θ12
, where the matter density of ρ ≈ 2.8 g cm−3 with the electron fraction Ye ≈ 0.5 and the

best-fit values of neutrino oscillation parameters in table 1 have been used. The absolute errors

∆P̃αβ (for αβ = ee, µe, τµ) have been defined in eq. (3.10), and the probabilities are averaged over

a Gaussian energy resolution of 1%.

– 17 –



J
H
E
P
1
2
(
2
0
1
6
)
1
0
9

• For IMO on the right column of figure 3, one can observe that the discrepancy is

at most 10−5 ∼ 10−4, as a consequence of the absence of resonances in this case.

For NMO, the region of largest errors always appears around E ≈ 10 GeV and L ≈
5000 km, where the atmospheric resonance is encountered, while around the region

of the solar resonance relatively smaller errors are observed. Such a difference on the

size of error at two different resonances may be attributed to the fact that λ2 and

λ3 are more close to each other at the atmospheric resonance than λ1 and λ2 at the

solar resonance.

Notice that the approximate formulas of P̃ee and P̃µe in eqs. (3.15) and (3.16), together

with that of P̃τµ in eq. (B.2) in appendix B, are the main results of this work. Given their

simplicity and high level of numerical accuracy, one may directly employ them to perform

both analytical and numerical studies on neutrino oscillation phenomena in current and

upcoming oscillation experiments. We leave such applications for a future work.

3.3 Parameter mapping

With those newly obtained approximate formulas for oscillation probabilities, a more ac-

curate mapping of the intrinsic mixing parameters to the effective mixing parameters in

matter can actually be established as a by-product. To see this clearly, we first re-express

the exact formulas of neutrino oscillation probabilities in eq. (2.3) in terms of effective

parameters in matter. Starting with the disappearance channel νe → νe, we have

P̃ee = 1− 2c2
θ̃13
s2
θ̃13

[
1− cos

(∆̃31 + ∆̃32)L

4E
cos

(
∆̃21L

4E

)]

− 2c
2θ̃12

c2
θ̃13
s2
θ̃13

sin
(∆̃31 + ∆̃32)L

4E
sin

(
∆̃21L

4E

)

− 4c2
θ̃12
s2
θ̃12
c4
θ̃13

sin2

(
∆̃21L

4E

)
, (3.17)

where c
θ̃ij
≡ cos θ̃ij and s

θ̃ij
≡ sin θ̃ij have been defined as before. Comparing between P̃ee

in eq. (3.17) and P̃αβ with α = β = e in eq. (2.18), one can immediately realize

c2
θ̃13
s2
θ̃13

= ξee1 ξ
ee
2 , c

2θ̃12
c2
θ̃13
s2
θ̃13

= 2ξee1 ξ
ee
3 /ε, c2

θ̃12
s2
θ̃12
c4
θ̃13

= (ξee2 )2/4−(ξee3 )2/ε2, (3.18)

by identifying the oscillation terms of the same kind. In the derivation of eq. (3.18), we

have implemented the following relations

(∆̃31 + ∆̃32)L

4E
= F∗(3λ3 + b) ,

∆̃21L

4E
= F∗ε , (3.19)

which are verified by using λi = [m̃2
i − (m2

2 − η∆21)]/∆∗ and ∆̃ji ≡ m̃2
j − m̃2

i . Thus far,

the results are exact and no approximations have been made. To get more useful results

for effective mixing angles θ̃12 and θ̃13, we have to expand ξeei (for i = 1, 2, 3) with respect

to α but keep ε unchanged as before.
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Since P̃ee is independent of θ̃23 and the CP-violating phase δ̃, one should further con-

sider the oscillations in the appearance channels. As an example, we study the oscillation

probability in the appearance channel νµ → νe, namely,

P̃µe = 2c2
θ̃13
s2
θ̃13
s2
θ̃23

[
1− cos

(∆̃31 + ∆̃32)L

4E
cos

(
∆̃21L

4E

)]

+ 2
(
c

2θ̃12
c2
θ̃13
s2
θ̃13
s2
θ̃23

+ 2J̃ cot δ̃
)

sin
(∆̃31 + ∆̃32)L

4E
sin

(
∆̃21L

4E

)

+ 4
[
c2
θ̃12
s2
θ̃12
c2
θ̃13

(
c2
θ̃23
− s2

θ̃13
s2
θ̃23

)
+ c

2θ̃12
J̃ cot δ̃

]
sin2

(
∆̃21L

4E

)

+ 4J̃
[

cos
(∆̃31 + ∆̃32)L

4E
− cos

(
∆̃21L

4E

)]
sin

(
∆̃21L

4E

)
, (3.20)

from which additional relations between {θ̃23, J̃ } and the parameters {ξαβi , ε}, similar to

those in eq. (3.18) can be found. Using the series expansions of ξαβi listed in appendix A

and setting η = cos2 θ12, we finally arrive at the mapping for three mixing angles

s2
θ̃13
≈
s2
θ13

(1 + Â+ Ĉ)

Ĉ(1− Â+ Ĉ)
− α2(1− Â− Ĉ)(1− Â2 + 3Ĉ − ÂĈ)

4Ĉ3(1 + Â+ Ĉ)2
s2

2θ12
c2
θ13
,

s2
θ̃12
≈

1+2ε+Â−Ĉ−2αc2θ12

4ε
−
α2Â(2+3Â−6c2

θ13
Â+Â2+6Ĉ−ÂĈ)

2εĈ(1− Â+ Ĉ)2(1 + Â+ Ĉ)
s2

2θ12
s2
θ13
, (3.21)

s2
θ̃23
≈ s2

θ23
−

8αJ (1− Â− Ĉ)(1 + Â+ Ĉ + 2αc2θ12
) cot δ

s2
2θ13

(1 + Â+ Ĉ)2
+

α2(1− Â− Ĉ)2

4s2
θ13

(1 + Â+ Ĉ)2
s2

2θ12
c2θ23

,

and that for the Jarlskog invariant

J̃ ' 2αJ
εĈ(1 + Â+ Ĉ)

[
1 +

αc2θ12
(1− Â− Ĉ)

1 + Â+ Ĉ

]
. (3.22)

Note that the leptonic CP violation is now described by the Jarlskog invariant, and the

direct relation between δ̃ and the vacuum mixing parameters can be easily obtained using

eqs. (3.21) and (3.22). In appendix C we also list the mapping of the three mixing angles

and the Jarlskog invariant for a generic value of η.
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As a cross check, we further use the relations derived in eqs. (3.21) and (3.22) to

calculate the following oscillation probability of P̃τµ

P̃τµ = 2c4
θ̃13
c2
θ̃23
s2
θ̃23

[
1− cos

(∆̃31 + ∆̃32)L

4E
cos

(
∆̃21L

4E

)]

− 2
[
c

2θ̃12
c2
θ̃13
c2
θ̃23
s2
θ̃23

(
1 + s2

θ̃13

)
+ 2c

2θ̃23
J̃ cot δ̃

]
sin

(∆̃31 + ∆̃32)L

4E
sin

(
∆̃21L

4E

)

+ 4

[
c2
θ̃12
s2
θ̃12
s2
θ̃13

+ s2
θ̃13
c2
θ̃23
s2
θ̃23
− c2

θ̃12
s2
θ̃12
c2
θ̃23
s2
θ̃23

(
1 + 4s2

θ̃13
+ s4

θ̃13

)

+ c
θ̃12
s
θ̃12
s
θ̃13
c
θ̃23
s
θ̃23
c

2θ̃12
c

2θ̃23

(
1+s2

θ̃13

)
cos δ̃−2c2

θ̃12
s2
θ̃12
s2
θ̃13
c2
θ̃23
s2
θ̃23

cos 2δ̃

]
sin2

(
∆̃21L

4E

)

+ 4J̃
[

cos
(∆̃31 + ∆̃32)L

4E
− cos

(
∆̃21L

4E

)]
sin

(
∆̃21L

4E

)
. (3.23)

It turns out that the expression in eq. (B.2) can be exactly reproduced, when both of them

are matched to the same order of α.

It is worth mentioning that the mapping relations for mixing angles and the Jarlskog

invariant have been truncated at the second order of α and serve as excellent approxima-

tions to the exact results. For illustration, we have calculated the effective mixing angles

{sin2 θ̃12, sin
2 θ̃13, sin

2 θ̃23} and the effective Jarlskog invariant J̃ for different neutrino en-

ergies. As depicted in figure 4, the exact results are denoted as solid curves (red), while

the approximate results based on eqs. (3.21) and (3.22) are represented by dashed curves

(blue). One can see that our approximate results are in perfect agreement with the exact

ones, and the differences between them are invisible from the plots. For comparison, the

numerical results according to the mapping relations found by Freund in ref. [39] are given

as dotted curves (green). Significant deviations can be observed in the figures for sin2 θ̃12

and J̃ , which can be explained by the divergence encountered in the low-energy region.

Moreover, given the approximate expressions of effective mixing parameters in

eqs. (3.21) and (3.22), one can insert them back into eqs. (3.17), (3.20) and (3.23) and

obtain a new set of oscillation probabilities, which we call P̃
′
ee, P̃

′
µe and P̃

′
τµ, respectively.

As the effective mixing parameters are expanded up to O(α2), these new oscillation proba-

bilities will be more accurate in the sense that part of higher-order terms are now included.

To illustrate this point, we compute the absolute errors ∆P̃
′
αβ according to eq. (3.10) and

compare it with ∆P̃αβ from figure 2 in the case of η = cos2 θ12. The results are shown in

figure 5, where one can find ∆P̃
′
αβ (blue solid curves) are almost always one or two orders

of magnitude smaller than ∆P̃αβ (red dashed curves).

4 Summary

In this work we have taken a deep look into analytical approximations for three-flavor neu-

trino oscillation probabilities in matter of a constant density and presented a new set of

simple and compact formulas. A useful definition of the η-gauge neutrino mass-squared dif-

ference ∆∗ ≡ η∆31+(1−η)∆32 is introduced and the calculations are performed in the series
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s̃2θ12

s̃2θ13

s̃2θ23

J̃

E (GeV) E (GeV)

NMO IMO

Exact Approximate Freund

Figure 4. Three effective mixing angles {sin2 θ̃12, sin
2 θ̃13, sin

2 θ̃23} and the effective Jarlskog in-

variant J̃ shown as functions of neutrino energies, where η = cos2 θ12, a constant matter density

of ρ ≈ 2.8 g cm−3 with the electron fraction Ye ≈ 0.5, and the best-fit values of neutrino oscillation

parameters in table 1 have been used.

expansions of α (i.e., α ≡ ∆21/∆∗). The approximate oscillation probabilities are valid for

arbitrary neutrino energies and any baseline length. Among different choices of η, it turns

out that the case of η = cos2 θ12 is the best one in terms of both simplicity and numerical

accuracy. These formulas are particularly useful for the future long baseline accelerator
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∆
P̃
ee

or
∆
P̃

′ ee
∆
P̃
µ
e
or

∆
P̃

′ µ
e

∆
P̃
τ
µ
or

∆
P̃

′ τ
µ

νe → νe νe → νe

νµ → νe νµ → νe

ντ → νµ ντ → νµ

E (GeV) E (GeV)

NMO IMO

∆P̃αβ ∆P̃
′
αβ

Figure 5. Numerical comparison between ∆P̃
′

αβ and ∆P̃αβ , where η = cos2 θ12 is fixed and the

other input parameters are the same as in figure 2.

neutrino experiments and the atmospheric neutrino experiments with the baseline lengths

from 10 km to 104 km and a wide range of neutrino energies (0.1 GeV . E . 100 GeV).

The main features of our results can be summarized as follows.

• Our calculations are based on the Cayley-Hamilton theorem, where only the effective

Hamiltonian and its three eigenvalues are needed in order to derive the oscillation

probabilities. The series expansions of α are applied to the exact expressions of

the eigenvalues in eq. (2.12) or eq. (2.13). However, the ε parameter in the ex-

pansions of λ1 and λ2 in eq. (3.4) behaves as the function ε̂ ≡ (α2 + Â2 cos4 θ13 −
2Âα cos 2θ12 cos2 θ13)1/2 and cannot be expanded in terms of α in the low energy

range with Â . α. Thus, we keep ε intact in the calculations.

• Our calculations employ a generic η-gauge neutrino mass-squared difference ∆∗ and

derive the η-gauge oscillation probabilities as shown in eqs. (3.7), (3.8) and (B.1) for
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P̃ee, P̃µe and P̃τµ respectively. Given the expressions of ρi (i = 1, 2, 3) in eq. (3.5) and

ε2 in eq. (3.6), the analytical results of oscillation probabilities are greatly simplified

for η = cos2 θ12, where all the terms proportional to (η − cos2 θ12) automatically

disappear. Moreover, as demonstrated in figure 2 for different values of η, the choice of

η = cos2 θ12 is the most accurate one for almost the entire range of neutrino energies.

• Fixing the gauge at η = cos2 θ12, the oscillation probabilities are presented in

eqs. (3.15), (3.16) and (B.2) for P̃ee, P̃µe and P̃τµ respectively, constituting the main

results of this work. Regarding the accuracy of these analytical approximations, a

careful study is performed in figure 3 for the neutrino energies from 10−3 GeV to

102 GeV and the baseline length range 10−1 km ≤ L ≤ 104 km. One can observe that

in the NMO case the errors in the entire range of baseline lengths and neutrino en-

ergies are below 10−3, while for IMO below 10−4. The largest errors appear in NMO

around E ≈ 10 GeV and L ≈ 5000 km, where the atmospheric resonance is encoun-

tered and the small energy splitting between λ2 and λ3 slows down the convergence

of the series expansions.

• As a by-product a more accurate mapping of the intrinsic mixing parameters to the

effective mixing parameters in matter is established in eqs. (3.21) and (3.22) for three

mixing angles and the Jarlskog invariant, respectively. With the effective mixing

parameters, one can obtain a new set of oscillation probabilities in eqs. (3.17), (3.20)

and (3.23) for P̃
′
ee, P̃

′
µe and P̃

′
τµ, respectively. The accuracy of the effective mixing

parameters is proved in figure 4 for the whole energy range including the regions of

the solar and atmospheric resonances. For the new set of oscillation probabilities, one

can find from figure 5 that the accuracy of P̃
′
αβ will be one or two orders of magnitude

better than P̃αβ because some higher-order terms are also properly included.

• Finally, in the low energy range, α, Â and ε are of the same order and can be expanded

simultaneously, from which one can arrive at eq. (4.6) in ref. [46]. On the other hand,

for the high energy region with Â ∼ ε � α, one can safely expand ε in terms of α

and restore the familiar results of Freund [39] and Akhmedov et al. [40]

For future long-baseline accelerator and atmospheric neutrino experiments, with the

goals of determining the neutrino mass ordering and measuring the leptonic CP violating

phase, a set of compact and simple analytical approximations of oscillation probabilities

in matter is very helpful. These analytical oscillation probabilities should be directly

connected with the fundamental oscillation parameters and be valid for arbitrary neutrino

energies and any baseline length. In this sense, our analytical approximations in this

work meet all the afore-mentioned criteria and can be readily applied to future oscillation

experiments. We leave such applications for a separate work in the near future.

A Expressions for the ξαβi terms

In this appendix, we present expressions for the ξαβi terms, which are coefficients in front

of various oscillation terms in eq. (2.15). For this purpose, we employ the Cayley-Hamilton

theorem to express the evolution matrix S = e−2iF∗Mf into a form similar to eq. (2.4) with
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H̃f replaced by Mf . Correspondingly, ωi in eq. (2.5) are now the eigenvalues of Mf , i.e., λi,

and e−iωiL read as e−2iF∗λi . Then, with the explicit form of Mf given in eq. (2.8), we are

able to obtain the expressions of various ξαβi for various oscillation channels P̃αβ , according

to the definitions of ξαβi in eq. (2.15).

As shown in eq. (2.16), the final oscillation probabilities P̃αβ only depend on certain

combinations of ξαβi , we therefore just show the analytical expansions for those relevant

ones. For P̃ee, we have ξee1 + ξee2 = 1, ξeei = ξee∗i and

ξee1 ξ
ee
2 ≈

s2
2θ13

4Ĉ2
−
αÂ(η − c2

θ12
)(Â− c2θ13

)

2Ĉ4
s2

2θ13
, (A.1)

ξee1 ξ
ee
3 ≈

−Âc4
θ13
s2
θ13

Ĉ2(1 + Â+ Ĉ)
+
αc2θ12

s2
2θ13

8Ĉ2
+

αÂ(η − c2
θ12

)

2Ĉ4(1 + Â+ Ĉ)

× (1− 6Âc2θ13
− Ĉ + ÂĈ + 5Â2)c4

θ13
s2
θ13
, (A.2)

(ξee3 )2 − ε2

4
(ξee2 )2 ≈ −α

2(1− Â+ Ĉ)

Ĉ(1 + Â+ Ĉ)3
s2

2θ12
c4
θ13
. (A.3)

For P̃µe, we have ξµe1 = −ξµe2 and

ξµe1 ξµe∗1 ≈
s2

2θ13
s2
θ23

4Ĉ2
− 2α(1− Â− Ĉ)

Ĉ2(1 + Â+ Ĉ)
J cot δ

−
αÂ(η − c2

θ12
)(Â− c2θ13

)

2Ĉ4
s2

2θ13
s2
θ23
, (A.4)

ξµe1 ξµe∗3 + ξµe∗1 ξµe3 ≈
(1 + Â− Ĉ)

8Ĉ2
s2

2θ13
s2
θ23
− α(1− Â+ Ĉ)

Ĉ2
J cot δ

− α

4Ĉ2
c2θ12

s2
2θ13

s2
θ23
−

αÂ(η − c2
θ12

)

Ĉ4(1 + Â+ Ĉ)
(1− 6Âc2θ13

− Ĉ + ÂĈ + 5Â2)c4
θ13
s2
θ13
s2
θ23
, (A.5)

ξµe1 ξµe∗3 − ξµe∗1 ξµe3 ≈
4iαJ

Ĉ(1 + Â+ Ĉ)
, (A.6)

ξµe3 ξµe∗3 − ε2

4
ξµe1 ξµe∗1 ≈ α2(1− Â+ Ĉ)

4Ĉ(1 + Â+ Ĉ)
s2

2θ12
c2
θ13
c2
θ23

− α2(1 + Â)

4Ĉ(1 + Â+ Ĉ)2
s2

2θ12
s2

2θ13
s2
θ23

+
4αJ cot δ

Ĉ(1 + Â+ Ĉ)2

[
αc2θ12

(Ĉ + Âc2
θ13

)− Âc2
θ13

]

+
4α2Â(η − c2

θ12
)

Ĉ3(1 + Â+ Ĉ)2
(1− 3Âc2θ13

− Ĉ + ÂĈ + 2Â2)c2
θ13
J cot δ . (A.7)
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For P̃τµ, we have ξτµ1 = −ξτµ2 and

ξτµ1 ξτµ∗1 ≈ (1− Â+ Ĉ)2

4Ĉ2(1 + Â+ Ĉ)2
c4
θ13
s2

2θ23

+
8αÂ(1− Â+ Ĉ)

Ĉ2(1 + Â+ Ĉ)3
c2
θ13
c2θ23
J cot δ

−
αÂ(η − c2

θ12
)(1− Â+ Ĉ)

Ĉ4(1 + Â+ Ĉ)
c4
θ13
s2
θ13
s2

2θ23
, (A.8)

ξτµ1 ξτµ∗3 + ξτµ∗1 ξτµ3 ≈
(1− Â+ Ĉ)

16Ĉ2(1 + Â+ Ĉ)
(1 + Â− Ĉ − 2αc2θ12

)

× (c2θ13
− Â− 3Ĉ)c2

θ13
s2

2θ23
+ αc2θ23

J cot δ

×
[

1 + Â+ Ĉ

Ĉ2
−

8Â(Âc2
θ13

+ Ĉ + ÂĈ)

Ĉ2(1 + Â+ Ĉ)2

]

+
αÂ2(η − c2

θ12
)

2Ĉ4(1 + Â+ Ĉ)2

[
(1 + Â)(7 + 7Â+ 5Ĉ)

− 2c2
θ13

(2 + 12Â+ 3Ĉ)

]
c4
θ13
s2
θ13
s2

2θ23
, (A.9)

ξτµ1 ξτµ∗3 − ξτµ∗1 ξτµ3 ≈
4iαJ

Ĉ(1 + Â+ Ĉ)
, (A.10)

ξτµ3 ξτµ∗3 − ε2

4
ξτµ1 ξτµ∗1 ≈ − Â(1− Â− Ĉ)

4Ĉ(1 + Â+ Ĉ)
c4
θ13
s2

2θ23
+
α(1− Â− Ĉ)

4Ĉ
c2θ12

c2
θ13
s2

2θ23

+
αÂ(η − c2

θ12
)(1− Â− Ĉ)

4Ĉ3(1 + Â+ Ĉ)
(1− 3Âc2θ13

− Ĉ + 2Â2)

× c4
θ13
s2

2θ23
+
α(1− Â− Ĉ − 2Â2 − 2ÂĈ)

Ĉ(1 + Â+ Ĉ)
J c2θ23

cot δ

+ α2c2θ12
c2θ23
J cot δ

[
4

c2
θ13

(1− Â+ Ĉ)
− 2

Ĉ(1 + Â+ Ĉ)

−
(1− Â− Ĉ)2(1 + 2c2

θ13
+ Â+ 3Ĉ)

2Ĉs2
θ13

(1 + Â+ Ĉ)2

]

− α2(1 + Â)

8Ĉ
s2

2θ12
s2
θ13
s2

2θ23
cos 2δ

+
α2(η − c2

θ12
)

Ĉ3(1 + Â+ Ĉ)

[
2(Ĉ − 1)− 5Â− 2Â2 + 3ÂĈ

+ Â2(Â+ Ĉ)(3 + 2Â)− 2Âc2
θ13

(−5 + Â+ 2Â2

+ 3Ĉ + 2ÂĈ)
]
c2θ23
J cot δ

+
α2(1 + Â)

4Ĉ
s2

2θ12
s2
θ13

+
α2(1 + Â+ Ĉ)

4Ĉ(1− Â+ Ĉ)
s2
θ13
s2

2θ23
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− 1

4
α2s2

2θ12
s2

2θ23
(T )−

α2(η − c2
θ12

)

8Ĉ3
(1− Â− Ĉ)

× (1− Ĉ − 4Âc2θ13
+ 3Â2 − ÂĈ)c2θ12

c2
θ13
s2

2θ23

+
α2Â(η − c2

θ12
)2

4Ĉ5(1 + Â+ Ĉ)

{
−(1 + Â)2

[
1 + 2Â+ Â2(3− Â)

]

+ Ĉ + ÂĈ(3 + Â+ Â3)− 2Â2c4
θ13

(13− 3Â− 3Ĉ)

− Âc2
θ13

[
− 9 + 7Ĉ − 24Â+ ÂĈ

+ Â2(−11 + 4Â+ 4Ĉ)
] }

c4
θ13
s2

2θ23
, (A.11)

where

T =
1−s4

θ13

Ĉ(1+Â+Ĉ)2

[
1+Â−Ĉ−2Âc2

θ13
(2+Â)+Â2(1+Â+Ĉ)

]
+

1 + Â

4Ĉ
(1 + 4s2

θ13
+ s4

θ13
)

+
c4
θ13

Ĉ3(1 + Â+ Ĉ)3

{
−Âc2

θ13
(3− Â)(1− Â)3(1− Â− Ĉ)

+ Â2s2
2θ13

(3− 3Ĉ + 6Â− 3Â2 − ÂĈ)

− Âs2
θ13

(1 + Â)
[
6(1 + Â− Ĉ) + Â2(2− Â)(1 + Â+ Ĉ)

] }
. (A.12)

B Expressions for P̃τµ

In this appendix, we show the expression for the oscillation probability P̃τµ with an arbi-

trary value of η for completeness:

P̃τµ ≈
[

(1− Â+ Ĉ)2

2Ĉ2(1 + Â+ Ĉ)2
c4
θ13
s2

2θ23
+

16αÂ(1− Â+ Ĉ)

Ĉ2(1 + Â+ Ĉ)3
c2
θ13
c2θ23
J cot δ

−
2αÂ(η − c2

θ12
)(1− Â+ Ĉ)

Ĉ4(1 + Â+ Ĉ)
c4
θ13
s2
θ13
s2

2θ23

]
(1− cos F̃+ cos F̃−)

− 2

ε

{
(1− Â+ Ĉ)

16Ĉ2(1 + Â+ Ĉ)
(1 + Â− Ĉ − 2αc2θ12

)(c2θ13
− Â− 3Ĉ)c2

θ13
s2

2θ23

+ αc2θ23
J cot δ

[
1 + Â+ Ĉ

Ĉ2
−

8Â(Âc2
θ13

+ Ĉ + ÂĈ)

Ĉ2(1 + Â+ Ĉ)2

]
+

αÂ2(η − c2
θ12

)

2Ĉ4(1 + Â+ Ĉ)2

×
[
(1 + Â)(7 + 7Â+ 5Ĉ)− 2c2

θ13
(2 + 12Â+ 3Ĉ)

]
c4
θ13
s2
θ13
s2

2θ23

}
sin F̃+ sin F̃−

+

{
− Â(1− Â− Ĉ)

Ĉ(1 + Â+ Ĉ)
c4
θ13
s2

2θ23
+
α(1− Â− Ĉ)

Ĉ
c2θ12

c2
θ13
s2

2θ23

+
αÂ(η − c2

θ12
)(1− Â− Ĉ)

Ĉ3(1 + Â+ Ĉ)
(1− 3Âc2θ13

− Ĉ + 2Â2)c4
θ13
s2

2θ23

+
4α(1− Â− Ĉ − 2Â2 − 2ÂĈ)

Ĉ(1 + Â+ Ĉ)
J c2θ23

cot δ
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+ 4α2c2θ12
c2θ23
J cot δ

[
4

c2
θ13

(1− Â+ Ĉ)
− 2

Ĉ(1 + Â+ Ĉ)
.

−
(1− Â− Ĉ)2(1 + 2c2

θ13
+ Â+ 3Ĉ)

2Ĉs2
θ13

(1 + Â+ Ĉ)2

]
− α2(1 + Â)

2Ĉ
s2

2θ12
s2
θ13
s2

2θ23
cos 2δ

+
4α2(η − c2

θ12
)

Ĉ3(1 + Â+ Ĉ)

[
2(Ĉ − 1)− 5Â− 2Â2 + 3ÂĈ + Â2(Â+ Ĉ)(3 + 2Â)

− 2Âc2
θ13

(−5 + Â+ 2Â2 + 3Ĉ + 2ÂĈ)
]
c2θ23
J cot δ

+
α2(1 + Â)

Ĉ
s2

2θ12
s2
θ13

+
α2(1 + Â+ Ĉ)

Ĉ(1− Â+ Ĉ)
s2
θ13
s2

2θ23
− α2s2

2θ12
s2

2θ23
(T )

−
α2(η − c2

θ12
)

2Ĉ3
(1− Â− Ĉ)(1− Ĉ − 4Âc2θ13

+ 3Â2 − ÂĈ)c2θ12
c2
θ13
s2

2θ23

+
α2Â(η − c2

θ12
)2

Ĉ5(1 + Â+ Ĉ)

{
−(1 + Â)2

[
1 + 2Â+ Â2(3− Â)

]
+ Ĉ + ÂĈ(3 + Â+ Â3)

− 2Â2c4
θ13

(13− 3Â− 3Ĉ)− Âc2
θ13

[
− 9 + 7Ĉ − 24Â+ ÂĈ + Â2(−11 + 4Â

+ 4Ĉ)
] }

c4
θ13
s2

2θ23

}
sin2 F̃−
ε2

+
8αJ

εĈ(1 + Â+ Ĉ)
(cos F̃+ − cos F̃−) sin F̃− , (B.1)

where the expressions of F̃± and T are shown in eqs. (3.9) and (A.12), respectively. Taking

η = cos2 θ12 in eq. (B.1), the form of P̃τµ reduces to

P̃τµ ≈
[

(1− Â+ Ĉ)2

2Ĉ2(1 + Â+ Ĉ)2
c4
θ13
s2

2θ23
+

16αÂ(1− Â+ Ĉ)

Ĉ2(1 + Â+ Ĉ)3
c2
θ13
c2θ23
J cot δ

]
(1− cos F̃+ cos F̃−)

−
{

(1− Â+ Ĉ)

8εĈ2(1 + Â+ Ĉ)
(1 + Â− Ĉ − 2αc2θ12

)(c2θ13
− Â− 3Ĉ)c2

θ13
s2

2θ23

+ 2αc2θ23
J cot δ

[
1 + Â+ Ĉ

εĈ2
−

8Â(Âc2
θ13

+ Ĉ + ÂĈ)

εĈ2(1 + Â+ Ĉ)2

]}
sin F̃+ sin F̃−

+

{
− Â(1− Â− Ĉ)

Ĉ(1 + Â+ Ĉ)
c4
θ13
s2

2θ23
+
α(1− Â− Ĉ)

Ĉ
c2θ12

c2
θ13
s2

2θ23
+
α2(1 + Â)

Ĉ
s2

2θ12
s2
θ13

+ s2
θ13
s2

2θ23

α2(1+Â+Ĉ)

Ĉ(1−Â+Ĉ)
− α2s2

2θ12
s2

2θ23
T +

4α(1−Â−Ĉ−2Â2−2ÂĈ)

Ĉ(1 + Â+ Ĉ)
J c2θ23

cot δ

+ 4α2c2θ12
c2θ23
J cot δ

[
4

c2
θ13

(1− Â+ Ĉ)
−

(1− Â− Ĉ)2(1 + 2c2
θ13

+ Â+ 3Ĉ)

2Ĉs2
θ13

(1 + Â+ Ĉ)2

− 2

Ĉ(1 + Â+ Ĉ)

]
− α2(1 + Â)

2Ĉ
s2

2θ12
s2
θ13
s2

2θ23
c2δ

}
sin2 F̃−
ε2

− 8αJ
εĈ(1 + Â+ Ĉ)

(cos F̃− − cos F̃+) sin F̃− . (B.2)
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The aboslute error of the above P̃τµ for a wide range of neutrino energies and baseline

lengths has been shown in figure 3.

C Mappings of θ̃ij and J̃ for a generic η

Now we show the mapping of three mixing angles and the Jarlskog invariant with an

arbitrary η. Comparing between eq. (2.18) with α = β = e and eq. (3.7), or similarly

between eq. (2.17) with (α, β) = (µ, e) and eq. (3.8), one can obtain relations similar

to eq. (3.18) but for an arbitrary η. Then, based on the expressions for ξeei and ξµei in

appendix A, we can get

s2
θ̃13
≈ (1 + Â+ Ĉ)

Ĉ(1− Â+ Ĉ)
s2
θ13

+
αÂ(η − c2

θ12
)

2Ĉ3
s2

2θ13
+
α2Â(η − c2

θ12
)2(2− Âc2θ13

− Â2)

4Ĉ5
s2

2θ13

− α2(1− Â− Ĉ)(1− Â2 + 3Ĉ − ÂĈ)

4Ĉ3(1 + Â+ Ĉ)2
s2

2θ12
c2
θ13
, (C.1)

s2
θ̃12
≈

1 + 2ε+ Â− Ĉ − 2αc2θ12

4ε
+
α(η − c2

θ12
)(1 + Â− Ĉ)(1− Â− Ĉ)

8εĈ

−
α2Â(2 + 3Â− 6c2

θ13
Â+ Â2 + 6Ĉ − ÂĈ)

2εĈ(1− Â+ Ĉ)2(1 + Â+ Ĉ)
s2

2θ12
s2
θ13
−
α2Â2(η − c2

θ12
)2

8εĈ3
s2

2θ13
, (C.2)

s2
θ̃23
≈ s2

θ23
−

8α(1− Â− Ĉ)(1 + Â+ Ĉ + 2αc2θ12
)

s2
2θ13

(1 + Â+ Ĉ)2
J cot δ +

α2(1− Â− Ĉ)2

4s2
θ13

(1 + Â+ Ĉ)2
s2

2θ12
c2θ23

−
8α2(η − c2

θ12
)(1 + Ĉ)(1− Â− Ĉ)

s2
2θ13

Ĉ(1 + Â+ Ĉ)
J cot δ , (C.3)

J̃ ≈ 2αJ
εĈ(1 + Â+ Ĉ)

+
2α2(1− Â− Ĉ)

εĈ(1 + Â+ Ĉ)2
J c2θ12

−
α2(η − c2

θ12
)J

εĈ3(1 + Â+ Ĉ)
(1− 4Âc2θ13

+ 3Â2 − Ĉ + ÂĈ) , (C.4)

which reduce to the results given in eqs. (3.21) and (3.22) if η = cos2 θ12 is taken.
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