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Piazzale Aldo Moro 5, 00185, Rome, Italy
bINFN Sezione di Roma, Piazzale Aldo Moro 2, 00185, Rome, Italy
cETH Zurich, Institut fur theoretische Physik, Wolfgang-Paulistr. 27, 8093, Zurich, Switzerland
dINFN Laboratori Nazionali di Frascati, 00044 Frascati, Roma, Italy
eInstitute of Nuclear and Particle Physics, NCSR Demokritos, Agia Paraskevi, 15310, Greece
fPRISMA Cluster of Excellence, Johannes Gutenberg University, 55099 Mainz, Germany
gSkobeltsyn Inst. of Nuclear Physics of Moscow State University, 119991 Moscow, Russia

E-mail: roberto.bonciani@roma1.infn.it, delducav@itp.phys.ethz.ch,

frellesvig@inp.demokritos.gr, henn@uni-mainz.de,

fmoriell@phys.ethz.ch, smirnov@theory.sinp.msu.ru

Abstract: We present the analytic computation of all the planar master integrals which

contribute to the two-loop scattering amplitudes for Higgs→ 3 partons, with full heavy-

quark mass dependence. These are relevant for the NNLO corrections to fully inclusive

Higgs production and to the NLO corrections to Higgs production in association with a jet,

in the full theory. The computation is performed using the differential equations method.

Whenever possible, a basis of master integrals that are pure functions of uniform weight is

used. The result is expressed in terms of one-fold integrals of polylogarithms and elementary

functions up to transcendental weight four. Two integral sectors are expressed in terms

of elliptic integrals. We show that by introducing a one-dimensional parametrization of

the integrals the relevant second order differential equation can be readily solved, and

the solution can be expressed to all orders of the dimensional regularization parameter in

terms of iterated integrals over elliptic kernels. We express the result for the elliptic sectors

in terms of two and three-fold iterated integrals, which we find suitable for numerical

evaluations. This is the first time that four-point multiscale Feynman integrals have been

computed in a fully analytic way in terms of elliptic integrals.
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1 Introduction

At the Large Hadron Collider (LHC), the main production mode of the Standard Model

(SM) Higgs boson is via gluon-gluon fusion. The Higgs boson does not couple directly

to the gluons, the interaction being mediated by a heavy-quark loop. That makes the

evaluation of the radiative corrections to Higgs boson production via gluon-gluon fusion

challenging, since the Born process is computed through one-loop diagrams, the next-to-

leading order (NLO) QCD corrections involve the computation of two-loop diagrams, the

next-to-next-to-leading order (NNLO) corrections the computation of three-loop diagrams,

and so on. In fact, fully inclusive Higgs production is known up to NLO [1, 2], while Higgs
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production in association with one jet [3] and the Higgs pT distribution [4] are known only

at leading order.

The evaluation of the radiative corrections simplifies considerably in the Higgs effective

field theory (HEFT), where the heavy quark is integrated out and the Higgs boson couples

directly to the gluons, effectively reducing the computation by one loop. For fully inclusive

Higgs production, the HEFT is valid when the Higgs mass is smaller than the heavy-quark

mass, mH . mQ. Thus it is expected to be a good approximation to the full theory

(FT), which gets corrections from the top-mass contribution and from the top-bottom

interference. In fact, using the FT NLO computation as a benchmark, one can see that

the HEFT NLO computation approximates very well the FT NLO computation, since the

top-bottom interference and the top-mass corrections are about the same size although

with opposite sign [5]. At NNLO, the FT mass corrections are expected to be in the

percent range, which is though competitive with the precision of the HEFT computation

at next-to-next-to-next-to-leading order (N3LO) [6, 7].

For Higgs production in association with one jet or for the Higgs pT distribution, using

the leading-order results [3, 4] as a benchmark one can show that the HEFT is valid when

mH . mQ and the jet or Higgs transverse momenta are smaller than the heavy-quark

mass, pT . mQ [8, 9]. In the HEFT, Higgs production in association with one jet [10, 11]

and the Higgs pT distribution [12] are known at NNLO. No complete FT results are known

beyond the leading order. Approximate NLO top-mass effects have been computed, and

shown to be small and to agree well with the HEFT for pT . mtop [13–15] and up to

pT ∼ 300GeV [16]. However, they are expected to be non-negligible in the high pT tail.

Finally, it is worth noting that in many New Physics (NP) models, the high pT tail of the

Higgs pT distribution is sensitive to modifications of the Higgs-top coupling [17–19].

In this paper, we report on the analytic computation of all the planar master integrals

which are needed to compute the two-loop scattering amplitudes for Higgs→ 3 partons,

with full heavy-quark mass dependence. These are relevant to compute the FT NNLO

corrections to fully inclusive Higgs production and the FT NLO corrections to Higgs pro-

duction in association with one jet or to the Higgs pT distribution.

The differential equations method [20–24] has proven to be one of the most powerful

tools to compute (dimensionally regularized) loop Feynman integrals. In particular, the

reduction of the Feynman integrals to a set of linearly independent integrals, dubbed master

integrals [25–28], through integration-by-parts identities, the exploration of new classes of

special functions such as multiple polylogarithms [29, 30], and a better understanding of

their functional properties [31–33], have made the technique increasingly efficient. However,

until recently the method was mostly applied in relatively simple kinematic situations, with

the Feynman integrals depending on few scales, while complicated integrals needed a case-

by-case analysis.

A major breakthrough was made in [34], where a canonical form of the differential

equations for Feynman integrals was proposed. A key idea is that the canonical basis can

be found by inspecting the singularity structure of the loop integrand. More precisely,

one computes the leading singularities, i.e. maximal multidimensional residues of the loop

integrand [35, 36]. The fact that this can be done before the differential equations are set up
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renders this technique extremely efficient.1 When considering differential equations for a set

of integrals defined to be pure functions of uniform weight, all relevant information about

the analytic properties of the result is manifest at the level of the equations. Moreover,

it is possible to find an analytic expression for the master integrals in terms of iterated

integrals over algebraic kernels in a fully algorithmic way, up to any order of the dimensional

regularization parameter (see [39–55] for many applications of these ideas). It is important

to note that these ideas also streamline calculations whose output cannot be immediately

written in terms of multiple polylogarithms, but where Chen iterated integrals [56] are the

appropriate special functions, see e.g. [51, 57]. This class of functions will also be important

in this paper.

Beyond Chen iterated integrals, there are cases where elliptic integrals appear. This is

typically related to several equations being coupled in four dimensions, see e.g. [57, 58]. The

appearance of elliptic integrals can be also anticipated by inspecting the maximal cuts of

the corresponding loop integrands [59]. In this case the precise form of the canonical basis

is not yet known, and presumably finding it will involve a generalization of the concept of

leading singularities.

Over the last two decades a lot of effort has been made to understand the analytic

properties of Feynman integrals which go beyond the multiple polylogarithms case, mostly

related to the so-called sunrise diagram [38, 60–69]. However, to the best of our knowledge,

such a generalized class of Feynman integrals has not been used so far in a fully analytic

computation of a four-point multiscale scattering amplitude. In this paper, we compute

in the Euclidean region all the planar master integrals relevant for Higgs→ 3 partons,

retaining the full heavy-quark mass dependence, which include two elliptic integral sectors.

We write down the differential equations following the approach of [34]. We find that

most integrals can be expressed in terms of Chen iterated integrals [56]. The correspond-

ing function alphabet depends on three dimensionless variables and contains 49 letters,

underlining the complexity of the problem. Having a fast and reliable numerical evalu-

ation in mind, we derive a representation of all functions up to weight two in terms of

logarithms and dilogarithms. Following [57], this allows us to write the weight-three and

four functions in terms of one-fold integral representations. We find the latter suitable

for numerical evaluation. We show that the two remaining integral sectors involve elliptic

integrals. We analyze the corresponding system of coupled equations, and solve them in a

suitable variable. An important tool is to reduce the problem to a one-variable problem (a

similar strategy has been used in [70] to effectively rationalize the alphabet of multiscale

processes). The solution at any order in ǫ can be expressed in terms of iterated integrals in-

volving elliptic kernels. We then show that using auxiliary bases and basis shifts, the result

for the elliptic sectors can be expressed in terms of two and three-fold iterated integrals,

which we find suitable for numerical evaluation.

1An alternative approach to finding a canonical basis was proposed in [37–39]. It is based on the idea

of transforming the system of differential equations such that the order of all singularities is manifest. In

their current form, the ensuing algorithms require that the integrals depend in a rational way on a single

variable, and usually yield rather complicated transformation matrices.
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Figure 1. Four-denominator topology for the LO contribution to the cross section of Higgs boson

production in association with a jet. Thick lines represent heavy quarks propagators. Thin lines

represent massless external particles and propagators. The dashed external line represents the

Higgs boson.

The outline of the paper is as follows. In section 2 we briefly discuss the reduction to

the master integrals and the kinematics of the processes under consideration. In section 3

we review the differential equations method in the context of pure functions of uniform

weight, i.e. the canonical basis approach. In section 3.2 we show that when a canonical

basis exists the solution can be expressed to all orders of the dimensional regularization

parameter in terms of multiple polylogarithms, also when a rational parametrization of the

alphabet is not possible. We derive a one-fold integral representation of the result up to

weight four which is suitable for fast and reliable numerical evaluation. In section 4 we

discuss in detail how to analytically solve the elliptic sectors in terms of iterated integrals

over elliptic kernels. In section 5 we discuss the class of functions used to represent the

elliptic sectors. In section 6 we conclude and discuss future directions. We also provide

six appendices in which we collect more details about the calculation. In appendix A we

write the explicit expressions for the canonical form of the master integrals, or conversely

for the basis choice in the elliptic case. In appendix B we show the 125 master integrals in

the pre-canonical form. In appendix C, we give the alphabet for the master integrals. In

appendix D we list the dilogarithms we used to express the master integrals at weight two.

In appendix E we give more details about the one-fold integral representation in terms

of which we express the master integrals not depending on elliptic integrals. Finally in

appendix F we show that the maximal cut of the six-denominator elliptic sector provides

useful information about the class of functions which characterise the sector.

2 Notations and conventions

The leading order QCD contribution to Higgs decay to three partons, or alternatively to

Higgs production in hadronic collisions, is a process mediated by a loop of heavy quarks.

This is due to the fact that the SM Higgs boson does not couple directly to massless

particles. The decay channels are H → ggg and H → gqq̄; the production channels are

gg → gH, gq → qH and qq̄ → gH. The one-loop Feynman diagrams for all these processes

can be described using the four-denominator topology2 (or sector) depicted in figure 1.

At NLO in αS , Feynman diagrams with up to seven propagators contribute to the pro-

cesses above. They can all be described using the eight different planar seven-propagator

2A topology is composed of the integrals for which the same set of propagators have positive powers,

while a subtopology (or subsector) is a set of integrals for which the propagators with positive powers are a

subset of the ones of a given topology.
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Figure 2. Planar seven-denominator topologies for the NLO contribution to the cross section of

Higgs boson production in association with a jet in proton collisions, with full heavy-quark mass

dependence.

topologies (and their subtopologies) depicted in figure 2. We parametrized all eight topolo-

gies into nine-propagator integral families and we reduced the corresponding dimensionally

regularized integrals to a minimal set of independent integrals, dubbed master integrals,

using the computer program FIRE [71–73] combined with LiteRed [74]. The list of denomi-

nators defining the integral families and additional details about this part of the calculation

are provided in appendix A.

The most general integral is defined in D = 4− 2ǫ space-time dimensions as,

Iia1,a2,a3,a4,a5,a6,a7,a8,a9 =

∫

dDk1d
Dk2

iπD/2iπD/2

[di8]
−a8 [di9]

−a9

[di1]
a1 [di2]

a2 [di3]
a3 [di4]

a4 [di5]
a5 [di6]

a6 [di7]
a7

, (2.1)

where i is the family index, and ai are integers. The reduction process leads to a set of 125

master integrals, shown in figure 3, that may be of relevance to more than one physical

process. We shall focus here on a Higgs boson decaying to three partons and on Higgs+jet

production. These processes differ by the physical phase-space region. Defining,

s = (p1 + p2)
2, t = (p1 + p3)

2, u = (p2 + p3)
2, p24 = s+ t+ u, (2.2)

where p21 = p22 = p23 = 0, the relevant physical regions are

H decay : s > 0, t > 0, u > 0, H + jet : s > p24 > 0, t < 0, u < 0 , (2.3)

both with the internal quark mass m2 > 0. The integrals are functions of three dimension-

less invariants,

x = {x1, x2, x3} , (2.4)

with

x1 =
s

m2
, x2 =

p24
m2

, x3 =
t

m2
. (2.5)

In this paper we evaluate the integrals in the Euclidean region where no branch cuts

are present, or rather in the subset there-of which has,

x3 < x2 < x1 < 0. (2.6)
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p2 p2 p2 p2 q2 q2 s t q2 q2 s

t

r2 r2

r2 r2 r2 r2
(k2+p1)

2
−m2

r2 s s

s s s

(k2+p1)
2
−m2

s r2
(k1+p1+p2)

2

t

(k1 − p3)
2

s
s, t

s s

s
t

q2 s s

t

t t

s s s s s s r2 r2 r2 s

(k2

2
)

s, t

s

(k1−p3)
2

t

(k1+p1+p2)
2 (k1−p3)

2 (k2+p1)
2

(k2+p1)
2 (k2+p1)

2

(k1−p3)
2 (k2+p1)

2

s
s, t s, t

(k2+p1)
2 (k1−p3)

2 (k2+p1)
2(k1−p3)

2 (k2+p1)
2 (k1−p3)

2 (k2+p1)
2(k1−p3)

2

Figure 3. Master integrals in pre-canonical form. Internal plain thin lines represent massless

propagators, while thick lines represent the top propagator. External plain thin lines represent

massless particles on their mass-shell. External dashed thin lines represent the dependence on s,

t, or m2
H . The external dashed thick line represents the Higgs on its mass-shell. The squared

momentum p2 can assume the values p2 = s, t,m2
H . The squared momentum q2 can assume the

values q2 = s,m2
H . The squared momentum r2 can assume the values r2 = s, t.
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It is then possible to analytically continue the result to the physical region using the

Feynman prescription, by assigning a positive infinitesimal imaginary part to the external

invariants and a negative infinitesimal imaginary part to the internal masses. The analytic

continuation of the master integrals will be provided elsewhere.

The full basis of master integrals we evaluated in this paper is listed in appendix A.

The explicit results for the master integrals require about 200 MB to be stored in

electronic form, and can be obtained upon request to the authors.

3 Differential equations

In order to analytically compute the master integrals we rely on the differential equations

method [20–24]. All the integrals discussed in this paper can be expressed in terms of

multiple polylogarithms except eight of them, which involve elliptic integrals. In the poly-

logarithmic case we find a modified basis of integrals that are pure functions of uniform

weight [34]. In this basis the differential equations take a canonical form and can be readily

solved. This basis is found by choosing integrals with constant leading singularities. In the

elliptic case the appropriate generalization of the notion of leading singularity has not yet

been worked out. It is nevertheless possible to choose a basis where the elliptic nature of

the integrals is manifest and the problem can be reduced to the solution of second order

differential equations, as we discuss in section 4.

3.1 General features of differential equations for Feynman integrals

Denoting a set of N basis integrals by f , the set of kinematical variables by x, and working

in D = 4− 2ǫ dimensions, it is possible to define a system of first order linear differential

equations for the integrals, that can be written in total generality as,

∂mf(x, ǫ) = Am(x, ǫ)f(x, ǫ) , (3.1)

where we used the shorthand ∂m = ∂/∂xm, and Am(x, ǫ) is an N ×N matrix with rational

entries of its variables. The matrix Am(x, ǫ) satisfies the integrability condition,

∂nAm − ∂mAn − [An, Am] = 0 , (3.2)

where [An, Am] = AnAm −AmAn .

The choice of the basis is not unique. Performing a basis change f → Bf the system

of differential equations transforms according to

Am → B−1∂xmB −B−1AmB . (3.3)

In [34] it was conjectured that performing a basis change with algebraic coefficients, for

integral sectors expressible in terms of multiple polylogarithms, it is possible to factorize

out the ǫ dependence of the differential equations,

∂mf(x, ǫ) = ǫAm(x)f(x, ǫ) . (3.4)
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Such a system of differential equations is said to be in canonical form. In order to dis-

cuss the properties of the solution it is convenient to write the differential equations in

differential form,

df(x, ǫ) = ǫ dÃ(x)f(x, ǫ), (3.5)

where Ã is a matrix such that,
∂Ã(x)

∂xm
= Am(x). (3.6)

The matrix elements of Ã(x) are Q-linear combinations of logarithms. The arguments of

the logarithms are known as letters, while the set of linearly independent letters is known

as alphabet. The main virtue of the canonical system of differential equations is that its

solution is elementary, and it can be written for general ǫ in terms of a path-ordered

exponential,

f(x, ǫ) = Peǫ
∫
C
dÃf(0, ǫ) , (3.7)

where P is the path ordering operator along the integration path C, connecting the bound-

ary point to x, while f(0, ǫ) are boundary conditions for f(x, ǫ). The solution can be ex-

pressed as a power series around ǫ = 0. Denoting with f (i)(x) the coefficient of ǫi, we have,

f(x) =
∑

i

f (i)(x)ǫi, (3.8)

and the different orders of the solution are related by the following recursive relation,

f (i)(x) =

∫

C
dÃ(x)f (i−1) + f (i)(0). (3.9)

The previous relation shows that the solution is expressed to all orders of ǫ in terms of Chen

iterated integrals [56]. The solution is a pure function of uniform weight corresponding to

the order of the ǫ expansion.

The specific choice of the integral basis leading to the canonical form was achieved

using the ideas outlined in [34]. In particular, it is expected that integrals with constant

leading singularities [36] satisfy canonical differential equations. Using generalized cuts we

look for combinations of integrals with simple leading singularities, that can be normalized

to unity rescaling the candidate integrals. This typically leads to a form close to the

canonical form. The remaining unwanted terms can be then algorithmically removed from

the differential equations shifting the integral basis [42, 44, 57].

3.2 Polylogarithmic representation for algebraic alphabets

The alphabet (see appendix C for the explicit alphabet of the integral families) of the

canonical integrals discussed in this paper contains 8 independent square roots that cannot

be simultaneously rationalized via a variable change. This means that it is not possible to

directly integrate (3.9) in terms of multiple polylogarithms.

However we can find an expression in terms of these functions by making a suitable

ansatz in terms of polylogarithms of a given weight. The main task is to find suitable func-

tion arguments, as we discuss presently. This strategy is streamlined using the concept
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of symbol [29, 31, 75] of an iterated integral. The symbol corresponds to the integration

kernels defining the iterated integrals. Since the integral basis is chosen to be of uniform

weight, the symbol of the solution is completely manifest in our differential equations ap-

proach. Denoting by f
(i)
n the nth component of the basis at O(ǫi), and by Ãnm the nth-row,

mth-column entry of matrix Ã, we have the following expression for the symbol of f
(i)
n ,

S(f (i)
n (x)) =

∑

m

S(f (i−1)
m (x))⊗ S(Ãnm(x)) . (3.10)

The corresponding polylogarithmic functions can be found proceeding in the following

algorithmic steps (see also [31, 32]).

1. One generates a list of function arguments as monomials in the letters appearing in

the alphabet of eq. (3.10). For the classical polylogarithms Lin(x), one requires that

1 − x factorizes over the alphabet. (A caveat is that in principle spurious letters

might be needed [32].) For Li2,2(x, y), the condition is that 1 − x, 1 − y, 1 − xy

factorize over the alphabet. Similar factorization properties are required for higher

weight functions.

When square roots are present it might be difficult to directly check factorization

over the alphabet. In practice we can proceed as follows. We consider the logarithm

of the function argument whose factorization we want to check, and we equate it to

a generic linear combination of the logarithms of the alphabet letters (ansatz). Since

additive constants are irrelevant at the symbol level, we derive the identity with

respect to each variable. We then specialize the resulting linear system of equations

for the free coefficients of the ansatz to many numeric values of the variables. If a

solution to the equations exists the argument factorizes as desired over the alphabet

and the solution defines the factorized form.

2. For each weight, one chooses a maximal set of linearly independent functions from

the set of functions generated at the previous step. The linear independence can

be verified using the symbol. One then writes down the most general ansatz for

a Q-linear combination of these functions and products thereof, of weight i. The

coefficients of the ansatz are then fixed imposing that the symbol of the ansatz equals

the symbol (3.10).

3. We determine the terms in the kernel of the symbol at weight i by writing the most

general ansatz in terms of the lower weight functions, and solving the differential

equations at O(ǫi) for the free coefficients of the ansatz.

4. We recover transcendental additive constants imposing boundary conditions.

Note that no assumptions were made on the rationality of the alphabet letters, so that the

above steps generalize the algorithm of [32] to algebraic cases. Note also that, as opposed

to a purely symbol-based approach, using the knowledge of the differential equations and

of the boundary conditions, the solution is fully determined.
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In practice the alphabet under consideration is quite large, and a reasonably fast

computer implementation of the algorithm above up to weight four is challenging. We can

nevertheless use the algorithm to reconstruct polylogarithmic functions up to weight two,

for which the alphabet letters contributing to the result are a relatively small subset of

the full alphabet. The full set of linearly independent dilogarithms for the four families is

listed in appendix D.

Having a representation of the weight-two functions in terms of classical polylogarithms

at hand is in fact very useful. As was shown in ref. [57], this can be used to write down

useful one-dimensional integral representations for the remaining weight-three and weight-

four functions.

Following [57], we use the Chen integral representation of the solution to write down

a one-fold integral representation at weight three and four. Parametrizing the integration

path C with α ∈ [0, 1], (3.9) translates to an iterated integral,

f (i)(x) =

∫ 1

0
(∂αÃ(α))f

(i−1)(α)dα+ f (i)(0) . (3.11)

In this language when the weight-two functions are known analytically, the weight-three

functions are one-fold integrals. Initially, the weight-four functions are two-fold iterated

integrals of differentials of logarithms, and they can be converted to one-fold integrals

integrating by parts (see appendix E for a detailed discussion). In particular, the weight-

three functions are one-fold integrals over linear combinations of weight-two functions with

algebraic coefficients, while the weight-four functions are expressed in two ways. The

first consists of logarithms times one-fold integrals over linear combinations of weight-two

functions, therefore a function of weight one times one of weight three. The other consists of

a one-fold integral of weight-three functions, that are expressed as a product of weight-two

functions times logarithms, with algebraic coefficients.

The boundary conditions required to fix the solution are determined using the regu-

larity of the pre-canonical integrals and the behavior of the algebraic factors defining the

canonical basis in the boundary point. We find it convenient to use the boundary point

x1 = x2 = x3 = 0. The values of our integrals at this point correspond to the large heavy-

quark limit so that one can apply the corresponding well-known graph theoretical prescrip-

tions [76–78]. In the limit all the canonical integrals vanish except those that factor into

products of one-loop integrals (these integrals are known analytically to all orders [24, 79]).

With this choice of the boundary point we can parametrize the integration path as,

x(α) = {x1 α, x2 α, x3 α} , (3.12)

with α ∈ [0, 1].

We have validated the analytic expressions performing numerical checks against

the computer program FIESTA [80–82] for randomly selected points in the Euclidean

region (2.6).
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(k2+p1)
2

Figure 4. The four master integrals of the elliptic sector IA1,1,0,1,1,1,1,0,0.

4 Elliptic integral sectors

The last two integral sectors of Family A (see appendix A), integrals fA
66− fA

73, turn out to

be expressed in terms of elliptic integrals. Using the language of the differential equations,

the homogeneous part for sector IA1,1,0,1,1,1,1,0,0 is not cast in canonical form, as the solution

is expressed in terms of complete elliptic integrals. In appendix F we show that these

properties can be verified a priori analyzing the maximal cut of the integrals. In section 4.1

we show that we can reduce the problem to the solution of a second order differential

equation. In section 4.2 we show that using a proper unidimensional parametrization of

the integrals the relevant second order differential equation can be solved with elementary

techniques. In section 4.3 we show that employing two auxiliary bases we obtain a two-fold

iterated integral representation of the integral sector.

The highest sector of Family A is IA1,1,1,1,1,1,1,0,0. In this case the homogeneous part

of the differential equations can be cast in canonical form, however they depend via in-

homogeneous terms on the lower elliptic sector. In section 4.4 we write the result as a

three-fold integral. We found these integral representations to be suitable for precise and

reliable numerical evaluations. When implemented in Mathematica the evaluation of both

the elliptic sectors in one Euclidean point takes about 10 minutes using one CPU, with

about eight-digit accuracy. On the other hand the numerical evaluation of the full set of

planar master integrals takes about 20 minutes.

4.1 Sector I
A
1,1,0,1,1,1,1,0,0

The integral sector IA1,1,0,1,1,1,1,0,0 has four master integrals, shown in figure 4, which are

expressed in terms of elliptic integrals, although its subtopologies do not involve them. We

start by considering the following basis of finite integrals,

h1(x, ǫ) = ǫ4(−x1)
3/2IA1,1,0,1,1,1,1,0,0 ,

h2(x, ǫ) = ǫ4IA2,1,0,1,1,1,1,0,0 ,

h3(x, ǫ) = ǫ3IA1,1,0,1,1,1,2,0,0 ,

h4(x, ǫ) = ǫ4IA1,1,0,1,1,1,1,0,−1 .

(4.1)

We parametrize the integrals through the linear parametrization (3.12), and we define the

differential equations with respect to the new parameter using the chain rule,

∂αh(x(α), ǫ) =
3

∑

i=1

xi ∂xi
h(x(α), ǫ) , (4.2)
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where h is a vector, whose components are given in eq. (4.1). The differential equations

have the following form,

∂αh(α, ǫ) = C(0)(α)h(α, ǫ) + ǫC(1)(α)h(α, ǫ) + ǫD(1)(α) g(α, ǫ) +O(ǫ2) , (4.3)

where g(α, ǫ) is the vector of the subtopologies, C(0)(α) and C(1)(α) are 4×4 matrices and

D(1)(α) is a 4× 65 matrix. In particular, the matrix C(0)(α) has the form,

C(0)(α) =











a1,1 a1,2 0 0

a2,1 a2,2 0 0

a3,1 a3,2 a3,3 0

a4,1 a4,2 0 a4,4











. (4.4)

The last two integrals are decoupled from each other, but this is not required for the

applicability of the method described here. It is manifest that the equations for the first

two integrals are coupled.

We look for a solution in power series around ǫ = 0,

h(α, ǫ) =
∑

i

h(i)(α)ǫi. (4.5)

The coefficients of the power series satisfy the following first order differential equations,

∂αh
(i)(α) = C(0)(α)h(i)(α) + C(1)(α)h(i−1)(α) +D(1)(α) g(i−1)(α) + . . . , (4.6)

where h(i)(α) is the unknown and the other terms define the inhomogeneous part. A two-

by-two system of first order differential equations for the first two components of h(α)

defines a second order differential equation for the first component,

∂2
αh

(i)
1 (α) + p1(α) ∂αh

(i)
1 (α) + q1(α)h

(i)
1 (α) = r

(i)
1 (α) , (4.7)

where p1(α) and q1(α) depend on the matrix elements of C(0)(α), and are the same for every

i, while r
(i)
1 (α) is a function of the inhomogeneous part of (4.6). Once two homogeneous

solutions of (4.7), y1(α) and y2(α), have been found, a particular solution can be determined

using the method of the variation of constants. In general we get,

h
(i)
1 (α) = c1 y1(α)+c2 y2(α)−y1(α)

∫ α

0
dz

r
(i)
1 (z)

w(z)
y2(z)+y2(α)

∫ α

0
dz

r
(i)
1 (z)

w(z)
y1(z) , (4.8)

where the arbitrary constants ci are fixed by the boundary conditions, and where w(α) is

the Wronskian of the homogeneous solutions,

w(α) = y2(α) ∂αy1(α)− y1(α) ∂αy2(α) . (4.9)

Once h
(i)
1 (α) is solved, we can determine the remaining components of h(i)(α).

From (4.4) it follows that h
(i)
2 (α) can be obtained from h

(i)
1 (α) and its first derivative.

In this way the expression of h
(i)
2 (α) involves the same number of repeated integrations as

h
(i)
1 (α). In order to solve the last two integrals we solve the respective first order differential
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equations, which depend on h
(i)
1 (α) and h

(i)
2 (α) via the inhomogeneous terms. This shows

that, when computed in this way, h
(i)
3 (α) and h

(i)
4 (α) involve one more repeated integration

than h
(i)
1 (α) and h

(i)
2 (α). In order to optimize the numerical evaluation it is important

to get rid of the extra integration. Furthermore, since at O(ǫ4) these integrals would be

expressed in terms of five iterated integrations, one integration must be spurious. In the

non-elliptic case one is able to remove extra integrations using integration by parts. How-

ever in the elliptic case in order to perform an integration by parts one needs to integrate

over elliptic integrals, which is in general not possible analytically. We show how this is

done in section 4.3.

4.2 Solution of the second order differential equation

The possibility of solving algorithmically a second order differential equation is related to

the number of its singular points, including the point at infinity. If there are up to three

singular points the equation can be cast in the form of the hypergeometric equation and two

linearly independent solutions can be expressed in terms of hypergeometric functions [83].

Similar algorithms exist when four singular points are present. On the other hand if more

than four singular points are present the solution requires a case by case analysis.

After differentiating with respect to the Mandelstam variables, the second order dif-

ferential equation for IA1,1,0,1,1,1,1,0,0 has six singular points. We show that using the

parametrization (3.12) the solution can be reduced to the three singular point case.

Once h1(x(α), ǫ) is made explicit as in (4.1), the coefficients of the second order differ-

ential equation (4.7) are,

p1(α) =
2x1

(

αx1 (x2 − x3)
2 − 4 (x2 (x1 − x3) + x3 (x1 + x3))

)

d1(α)
, (4.10)

and,

q1(α) =
x21 (x2 − x3)

2

4d1(α)
, (4.11)

where,

d1(α) = x21 α
2 (x2 − x3)

2 − 8x1 α (x2(x1 − x3) + x3(x1 + x3)) + 16(x1 + x3)
2 . (4.12)

We see that after using parametrization (3.12) we are left with three singular points, which

are the two roots of d1(α) = 0 and the point at infinity. The homogeneous solutions of (4.7)

can be then readily found3 to be

y1(α) = K

(

1

2
− k(α)

2

)

, y2(α) = K

(

1

2
+

k(α)

2

)

, (4.13)

where the function k(z) is,

k(z) =
(x2 − x3)

2 x1 z − 4 (x2(x1 − x3) + x3(x1 + x3))

8
√

x1 x3 x2 (x1 + x3 − x2)
, (4.14)

3We have found the Mathematica built-in function DSolve to be adequate. In alternative it is possible

to use the algorithm of [83].
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and K(z) is the complete elliptic integral of the first kind,4

K(z) =

∫ 1

0

dt
√

(1− t2)(1− z t2)
. (4.15)

The complete elliptic integral of the second kind is defined as,

E(z) =

∫ 1

0

√
1− z t2√
1− t2

dt . (4.16)

We have the following relations for the derivatives of the complete elliptic integrals,

dK(z)

dz
=

E(z)− (1− z)K(z)

2(1− z)z
, (4.17)

and,
dE(z)

dz
=

E(z)−K(z)

2z
. (4.18)

Since h
(i)
2 (α) is a linear combination of h

(i)
1 (α) and its first derivative, it is expressed in

terms of complete elliptic integrals of the first and second kind, of the same arguments

as in (4.13). The Wronskian of the two homogeneous solutions is defined in terms of the

derivatives above. Its expression is a rational function of the integration variable α, and in

our case it reads,

w(α) =
4πx1

√

x1 x3 x2 (x1 + x3 − x2)

d1(α)
. (4.19)

This property can be proven by using the Legendre identity,

E(z)K(1− z) + E(1− z)K(z)−K(z)K(1− z) =
π

2
. (4.20)

Thanks to the overall normalization factor we chose for h1(x, ǫ), it is elementary to

determine boundary conditions and use them to fix the free constants of the general so-

lution (4.8). Integral IA1,1,0,1,1,1,1,0,0 is regular for α = 0, so that h1(0, ǫ) = ∂αh1(0, ǫ) = 0

and c1 = c2 = 0.

4.3 Auxiliary bases and solution in terms of two-fold iterated integrals

Since we need to evaluate the components of h (4.1) through O(ǫ4), all the I integrals of

eq. (4.1) need to be computed through O(ǫ0), except IA1,1,0,1,1,1,2,0,0 which must be evaluated

through O(ǫ). Higher orders are irrelevant for two-loop processes. In general, the result

for a master integral at O(ǫi) is obtained integrating over subtopologies through O(ǫi−1)

and, if coupled to them, over integrals of the same topology at O(ǫi). In section 3.2 we saw

that weight-two functions can be expressed in terms of logarithms and dilogarithms, and

weight-three functions can be reduced to one-fold integrals. This implies that, because of

the general form of (4.3), h
(3)
3 (α) is expressed in terms of one-fold integrals, while h

(4)
1 (α)

4Note that also a different convention exists for the definition of complete elliptic integrals such that,

compared to our definition, the argument is replaced by its squared at the level of the integrand.
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and h
(4)
2 (α) are expressed in terms of up to two-fold integrals. On the other hand h

(4)
3 (α)

and h
(4)
4 (α) involve three-fold iterated integrals.

In order to avoid considering more than two iterated integrations we introduce two

auxiliary bases, satisfying differential equations of the form of (4.3)–(4.4). The bases are

defined in such a way that the respective second integrals are linearly independent of

h2(x, ǫ) and h1(x, ǫ), and linearly independent on each other. Two bases satisfying these

requests are,

{h1(x, ǫ), h5(x, ǫ), h3(x, ǫ), h4(x, ǫ)} , (4.21)

with,

h5(x, ǫ) = ǫ4IA1,2,0,1,1,1,1,0,0 , (4.22)

and,

{h1(x, ǫ), h6(x, ǫ), h3(x, ǫ), h4(x, ǫ)} , (4.23)

with,

h6(x, ǫ) = ǫ4IA1,1,0,1,1,1,2,−1,0 . (4.24)

Both h5(x, ǫ) and h6(x, ǫ) are finite. Since the differential equations for basis {h1(x, ǫ) ,
h5(x, ǫ), h3(x, ǫ), h4(x, ǫ)} and basis {h1(x, ǫ) , h6(x, ǫ), h3(x, ǫ), h4(x, ǫ)} have the form

of (4.3)–(4.4), we can compute h
(4)
5 (x, ǫ) and h

(4)
6 (x, ǫ) as functions of h

(4)
1 (x, ǫ) and its first

derivative, as we did in section 4.1 for h2(x, ǫ). In this way h
(4)
5 (x, ǫ) and h

(4)
6 (x, ǫ) are

expressed as linear combinations of up to two-fold integrals.

The full (finite) basis for the integral sector is then chosen to be,

fA
66 = h1(x, ǫ) ,

fA
67 = (−x1)

3/2 x1h2(x, ǫ) ,

fA
68 = (−x1)

3/2 x1h5(x, ǫ) ,

fA
69 = (−x1)

3/2 x1h6(x, ǫ) .

(4.25)

With this choice all the integrals can be computed up to O(ǫ4) in terms of up to

two-fold integrals. The algebraic prefactors are not strictly necessary but they lead to

simpler expressions.

Interestingly, if we consider the differential equations for fA
66 − fA

69, they are fully

coupled and cannot be solved directly. We could nevertheless solve them with the help of

auxiliary bases.

4.4 Sector I
A
1,1,1,1,1,1,1,0,0

The highest elliptic sector is IA1,1,1,1,1,1,1,0,0. It has four master integrals, shown in figure 5,

and it depends on the elliptic subsector IA1,1,0,1,1,1,1,0,0 via inhomogeneous terms in the

differential equations. Using the criteria outlined in [34] we can find a basis satisfying,

∂αv(α, ǫ) = ǫ F (1)(α)v(α, ǫ) +G(0)(α)g(α, ǫ) + ǫG(1)(α) g(α, ǫ) +O(ǫ2) . (4.26)

– 15 –



J
H
E
P
1
2
(
2
0
1
6
)
0
9
6

(k2+p1)
2 (k1−p3)

2 (k2+p1)
2(k1−p3)

2

Figure 5. The four master integrals of the elliptic sector IA1,1,1,1,1,1,1,0,0.

v(α, ǫ) is a four-dimensional basis vector for the highest elliptic sector, g(α, ǫ) is the vector

of the subtopologies, F (1)(α) is a 4 × 4 matrix, G(0)(α) and G(1)(α) are 4 × 69 matrices.

The homogeneous part is in canonical form, while this is not the case for the subtopologies.

When solving the above equation for a given power of ǫ, we have to integrate over subsectors

of the same order due to the G(0)(α) matrix. For numerical optimization it is convenient

to get rid of such integrals. Matrix elements of G(0)(α) corresponding to non-elliptic

subsectors are removed with a basis shift, as described in [44, 57]. In order to remove

G(0)(α) entries corresponding to elliptic subsectors we proceed as follows. Let us consider

the ith component of v, which fulfills the equation,

∂αvi(α, ǫ) =
2

∑

j=1

kij(α)ej(α, ǫ) +O(ǫ) , (4.27)

where kij(α), with i = 1, . . . , 4 and j = 1, 2, are known algebraic functions and e1, e2 are

two coupled integrals of an elliptic subsector, satisfying,

∂αei(α, ǫ) =
2

∑

j=1

aij(α)ej(α) +O(ǫ) . (4.28)

We shift vi(α, ǫ) according to,

vi(α, ǫ) → vi(α, ǫ) +
2

∑

j=1

bij(α)ej(α, ǫ) , (4.29)

where bij(α) are functions to be determined. After the basis shift the equation for vi reads,

∂αvi(α, ǫ) =
2

∑

j=1

(

∂αbij(α) +
2

∑

k=1

akj(α)bik(α) + kij(α)
)

ej(α) +O(ǫ) . (4.30)

In order to remove terms proportional to e1(α, ǫ) and e2(α, ǫ), their coefficients must vanish,

i.e. bij(α) must fulfill the equations,

∂αbij(α) = −
2

∑

k=1

akj(α)bik(α)− kij(α) , (4.31)

with j = 1, 2. For fixed i, the above equation is a two-by-two system of first order differen-

tial equations. The matrix defining the system is the transpose of the matrix defining (4.28).

– 16 –



J
H
E
P
1
2
(
2
0
1
6
)
0
9
6

This implies that if y1(α) and y2(α) are the homogeneous solutions of (4.28) and w(α) is

their Wronskian, the solutions of (4.31) are,

c
y1(α)

w(α)
, c

y2(α)

w(α)
, (4.32)

where c is an overall constant. Their Wronskian is c2/w(α). Therefore with the method of

the variation of constants the full expression for bi1(α) reads,

bi1(α) = −y1(α)

w(α)

∫ α

1
dtLi(t) y2(t) +

y2(α)

w(α)

∫ α

1
dtLi(t)y1(t) , (4.33)

where Li(α) are functions of ki1(α) and ki2(α), and where two arbitrary integration con-

stants have been set to zero. In addition, we set the lower integration bound to 1 but we

have the freedom to choose a different value. Usually this is dictated by the properties of

the integrand, that might have non-integrable singularities for specific integration bounds.

Once bi1(α) is known it is elementary to obtain bi2(α) using the same differential equations.

For sector IA1,1,1,1,1,1,1,0,0 the integrals that need to be shifted are fA
71 and fA

73, as e1 and

e2 defined via (4.29) are equal to fA
66 and fA

67 respectively. y1(α) and y2(α) are the same

as those of (4.13) and,

L2(z) =
x1(x1 − x2)

(4− x1 z)3/2
, L4(z) =

x1(x1 + x3)

(−x1 z)3/2
, (4.34)

while L1 and L3 vanish.

In general the integrals of (4.33) are not known analytically in closed form. Since after

the basis shift they will contribute to the matrix elements of the differential equations, one

might wonder if such a basis change is convenient in practice, as our main goal was to

get rid of one integration. In practice, because of the simple form of (4.34), its numerical

evaluation takes O(10−3) sec. In this form the result for the elliptic sector at O(ǫ4) is in

terms of three-fold integrals, while their numerical performance is comparable to the one

of two-fold integrals. Alternatively, it is possible to series expand the complete elliptic

integrals of eq. (4.33) and then perform the integrations analytically.5 In this way the

result for the integral sector can be expressed in terms of two-fold integrals.6

5We series expand the complete elliptic integrals using well known results. The expansion around a

generic point z0 will involve powers of z − z0, and factors of log(z − z0) if z0 is a singular point. It is then

possible to perform the integrations analytically when considering the elementary functions of eq. (4.34).
6In order to get rid of the extra integration, one could have performed an integration by parts after

solving directly eq. (4.26). Also this method introduces integrals over complete elliptic integrals and al-

gebraic functions in the integrands of the solution. However such integrals are not as simple as the ones

introduced by the basis shift, and the integration over the series expanded complete elliptic integrals is not

straightforward.
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5 The class of functions

In order to discuss the general structure of the solution of sector IA1,1,0,1,1,1,1,0,0 let us

introduce the following shorthands for the complete elliptic integrals defined in section 4.2,

K(1)(α) = K

(

1

2
+

k(α)

2

)

, K(−1)(α) = K

(

1

2
− k(α)

2

)

,

E(1)(α) = E

(

1

2
+

k(α)

2

)

, E(−1)(α) = E

(

1

2
− k(α)

2

)

.

(5.1)

Integrals f
A,(4)
66 − f

A,(4)
69 are expressed as linear combinations of the class of functions,

E(σ)(1)

∫ 1

0
F(t)E(−σ)(t)dt , (5.2)

where E(σ) can be one of the following complete elliptic integrals,

K(σ)(α) , E(σ)(α) , (5.3)

where σ ∈ {−1, 1}. F(t) denotes a linear combination of pure weight-two and weight-three

functions, belonging to the subtopologies, multiplied by either derivatives of logarithms or

derivatives of algebraic functions, with respect to α.7 Interestingly, weight-three functions

are never multiplied by derivatives of logarithms, but only by the following simple inverse

square roots (modulo functions depending only on rescaled Mandelstam invariants),

1√
α
,

1√
4− x1α

. (5.4)

The same class of functions has been found in [84] for the massive crossed triangle.

See [62, 63, 67, 85] for results in terms of elliptic polylogarithms [86], and [64–66, 69] for a

related class of functions.

In order to decouple integral sector IA1,1,1,1,1,1,1,0,0 from sector IA1,1,0,1,1,1,1,0,0, in

section 4.4 we performed a non-algebraic basis shift of fA
71 and fA

73, involving integrals

of complete elliptic integrals, that we denote here with the following shorthands,

K̃
(1)
i (α) =

∫ α

1
Li(t)K

(1)(t)dt , K̃
(−1)
i (α) =

∫ α

1
Li(t)K

(−1)(t)dt , (5.5)

where Li(t) are those of eq. (4.34). For this reason the result for the highest elliptic sector

is not directly expressed in terms of iterated integrals of the form of eq. (5.2), though

such expressions can be immediately obtained by solving the differential equations without

performing the non-algebraic basis shift. Integrals f
A,(4)
70 − f

A,(4)
73 are linear combinations

of polylogarithmic functions and of the class of functions,

∫ 1

0
G(t)E(σ)(t)K̃

(−σ)
i (t)dt . (5.6)

7In a few cases also algebraic functions that are derivatives of (combinations of) incomplete elliptic

integrals appear. However this result requires further investigation as a reparametrization of the square

roots might reduce them to derivatives of algebraic or logarithmic functions.
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G(t) has the same properties as F(t) described above, but the prefactors of pure weight-

three functions are any of the algebraic functions,

1√
α
,

1√
4− x1α

,
√
α . (5.7)

6 Conclusion and perspectives

In this paper we presented the analytic computation of all the planar master integrals

which are necessary to evaluate the two-loop amplitudes for Higgs → 3 partons, with the

full heavy-quark mass dependence. They occur in the NNLO corrections to fully inclusive

Higgs production and in the NLO corrections to Higgs plus one jet production in hadron

collisions. The result is expressed in terms of iterated integrals over both algebraic and

elliptic kernels. This is the first time that Feynman integrals for four-point multiscale

amplitudes involving elliptic integrals are computed in a fully analytic way. While it was

generally believed that the analytic computation of multiscale loop integrals with many

internal massive lines was out of reach with present analytic tools, this work shows that new

ideas involving the proper parametrization of the integrals, an optimal basis choice, and

the subsequent solution with the differential equations method in terms of elliptic iterated

integrals, are effective to treat such problems.

The computation of the non-elliptic integral sectors has been performed with the dif-

ferential equations method applied to a set of basis integrals defined to be pure functions of

uniform weight. The presence of many square roots that cannot be simultaneously ratio-

nalized makes the direct solution of these equations in terms of multiple polylogarithms not

possible. We have shown that the Chen iterated integral representation plus the knowledge

of the boundary conditions provide the information needed to integrate the system in terms

of a minimal polylogarithmic basis, circumventing in this way the necessity to rationalize

the square roots of the alphabet. To do so we used an algorithm for the integration of

symbols with general algebraic alphabets, generalizing well established algorithms for the

rational case.

We have seen that the crucial point for the computation of the elliptic sectors is the

solution of the associated homogeneous second order differential equation. We noticed that

a very simple univariate reparametrization of the integrals makes the equation elementary

and standard tools are sufficient to solve it. The central point is that the fewer singular

points are present in higher-order differential equations, the simpler is their solution. It will

be important to further investigate and develop the idea of what is the proper parametriza-

tion of the integrals yielding the simplest singular structure of the equations. The univari-

ate parametrization has also the benefit that only one set of differential equations has to

be solved, while in the traditional approach one has to iteratively solve multiple sets of

equations, one for each variable, which might be highly non-trivial when elliptic integrals

are involved.

In contrast to the non-elliptic sectors, we did not use the notion of canonical basis

for the elliptic sectors. Instead, we showed that the problem can be completely solved in

total generality, once the relevant higher order homogeneous equations have been solved.
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However it will be important to extend the notion of canonical basis to elliptic cases. First,

this will clarify the class of functions needed to represent the answer — in our case we used

a rather general class that might still contain spurious information. Second, it is natural

to expect that the explicit results for canonical integrals will be relatively compact. In

order to define a canonical basis in the elliptic case, the notion of leading singularity has

to be generalized, which is beyond the scope of the present paper (see appendix F for a

discussion about the maximal cut of those integrals, which would be the starting point

for defining a generalization of leading singularity in the elliptic case). In particular, we

know [37–39] that it is possible to obtain a form of the differential equations with only

Fuchsian singularities and linear in ǫ. This is valid for any Feynman integral and it is

another natural starting point for finding a canonical basis.

We showed that for the sake of stable and precise numerical evaluations we express the

master integrals up to order ǫ4 in terms of one-fold integrals for the non-elliptic sectors, and

up to three-fold integrals for the elliptic sectors. We found these representations suitable

for numerical evaluation. In principle, as the integrands are known functions, it should be

possible to achieve a series representation of the solution, though we did not attempt it as

the integral representation already showed satisfying performance. It will be important to

develop general purpose numerical routines for elliptic iterated integrals, so that one can

take advantage of such analytic expressions also when higher loop orders are considered,

i.e. when more iterated integrals are needed.
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A Integral basis

In this appendix, we provide the explicit form of the integral families we used to parametrize

the integrals defined in eq. (2.1). We call them family A, B, C, and D.

For each family, we perform an independent reduction to the master integrals. Then

we perform a change of basis that maps the master integrals into the canonical form. We

give such a canonical basis for each family separately. The canonical master integrals

are labeled with f i
n, with i ∈ {A,B,C,D} and n = 1, . . . , N , where N is the number of

master integrals of the family under consideration. The elliptic sectors correspond to eight

integrals of family A, labeled with fA
66–f

A
73. These integrals are not in canonical form, as

discussed in section 4.

– 20 –



J
H
E
P
1
2
(
2
0
1
6
)
0
9
6

For each family of integrals we define the corresponding system of differential equations,

that we then solve as discussed in sections 3 and 4.

Note that, in general, there is an overlap among the master integrals of the different

families. Making the appropriate correspondences, we can reduce the process to the com-

putation of 125 master integrals. In the next appendix, we draw these 125 (pre-canonical)

master integrals and we link them to the corresponding canonical form.

We label with p1, p2, and p3 the momenta of the massless partons, and with p4 =

p1 + p2 + p3 the momentum of the Higgs. The loop momenta are labeled with k1 and k2.

Finally, we use the shorthand pij = pi + pj .

Family A. Family A is defined by the nine propagators,

dA1 = m2 − k21, dA2 = m2 − (k1 + p12)
2, dA3 = m2 − k22,

dA4 = m2 − (k2 + p12)
2, dA5 = m2 − (k1 + p1)

2, dA6 = −(k1 − k2)
2,

dA7 = m2 − (k2 − p3)
2, dA8 = −(k2 + p1)

2, dA9 = −(k1 − p3)
2,

(A.1)

with the extra restriction that a8 and a9 are non-positive. The family contains 73 master in-

tegrals. Below, we give the basis transformation between pre-canonical and canonical forms.

fA
1 = ǫ2IA0,0,0,0,2,0,2,0,0 ,

fA
2 = ǫ2x2I

A
0,2,0,0,0,1,2,0,0 ,

fA
3 = ǫ2

√
4− x2

√
−x2

(

IA0,2,0,0,0,1,2,0,0/2 + IA0,2,0,0,0,2,1,0,0

)

,

fA
4 = ǫ2x1I

A
0,2,2,0,0,1,0,0,0 ,

fA
5 = ǫ2

√
4− x1

√
−x1

(

IA0,2,2,0,0,1,0,0,0/2 + IA0,2,1,0,0,2,0,0,0

)

,

fA
6 = ǫ2

√
4− x1

√
−x1I

A
0,0,2,1,2,0,0,0,0 ,

fA
7 = ǫ2

√
4− x2

√
−x2I

A
0,0,0,2,2,0,1,0,0 ,

fA
8 = ǫ3(x2 − x1)I

A
1,1,0,0,0,1,2,0,0 ,

fA
9 = ǫ2(x2 − x1)I

A
1,1,0,0,0,1,3,0,0 ,

fA
10 = −ǫ2

√
4− x1

4
√−x1

(

2ǫ(x2 + x1)I
A
1,1,0,0,0,1,2,0,0 − 4(x2 + x1)I

A
1,1,0,0,0,1,3,0,0

+ 4x1I
A
2,1,0,0,0,1,2,0,−1 + x2I

A
0,2,0,0,0,1,2,0,0

)

,

fA
11 = ǫ2x3I

A
0,0,0,0,2,1,2,0,0 ,

fA
12 = ǫ2

√
4− x3

√
−x3

(

IA0,0,0,0,2,1,2,0,0/2 + IA0,0,0,0,2,2,1,0,0

)

,

fA
13 = ǫ3(x2 − x1)I

A
2,0,0,1,0,1,1,0,0 ,

fA
14 = ǫ2(x2 − x1)I

A
3,0,0,1,0,1,1,0,0 ,

fA
15 = ǫ2

√
4− x2√−x2(2− x1)

(

ǫ
2x2 − x1(x1 − x2)

2
IA2,0,0,1,0,1,1,0,0 + x1(x1 − x2)I

A
3,0,0,1,0,1,1,0,0

+
x2

(

x2 + x1(x1 − x2)
)

x1 − x2
IA2,0,−1,2,0,1,1,0,0 −

x1
(

4x2 + x1(x1 − x2)
)

4 (x1 − x2)
IA0,2,2,0,0,1,0,0,0

)
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fA
16 = ǫ3x3I

A
1,0,0,0,1,1,2,0,0 ,

fA
17 = ǫ3(x2 − x1)I

A
0,2,1,0,0,1,1,0,0 ,

fA
18 = ǫ3x1I

A
0,1,2,0,1,1,0,0,0 ,

fA
19 = ǫ3(x2 − x3)I

A
0,1,0,0,1,1,2,0,0 ,

fA
20 = ǫ3x1I

A
0,0,1,1,2,1,0,0,0 ,

fA
21 = ǫ2x1I

A
0,0,1,1,3,1,0,0,0 ,

fA
22 = ǫ2

√
4− x1

√
−x1

(

ǫIA0,0,1,1,2,1,0,0,0/2− IA0,0,1,1,3,1,0,0,0 + IA0,0,2,1,2,1,0,−1,0

)

,

fA
23 = ǫ3(x2 − x3)I

A
0,0,0,1,2,1,1,0,0 ,

fA
24 = ǫ2(x2 − x3)I

A
0,0,0,1,3,1,1,0,0 ,

fA
25 = −ǫ2

√
4− x2

4
√−x2

(

2ǫ(x2 + x3)I
A
0,0,0,1,2,1,1,0,0 − 4(x2 + x3)I

A
0,0,0,1,3,1,1,0,0

+ 4x2I
A
0,0,0,2,2,1,1,−1,0 + x3I

A
0,0,0,0,2,1,2,0,0

)

fA
26 = ǫ3(x2 − x1)I

A
0,0,1,1,2,0,1,0,0 ,

fA
27 = ǫ2(4− x1)x1I

A
2,1,2,1,0,0,0,0,0 ,

fA
28 = ǫ2

√
4− x2

√
−x2

√
4− x1

√
−x1I

A
2,1,0,2,0,0,1,0,0 ,

fA
29 = ǫ3

√
4− x1

√
−x1x1I

A
1,1,2,1,1,0,0,0,0 ,

fA
30 = ǫ3x1I

A
1,1,0,0,1,0,2,0,0 ,

fA
31 = ǫ3

√
4− x1

√
−x1 (x2 − x1) I

A
2,1,1,1,0,0,1,0,0 ,

fA
32 = ǫ4(x2 − x1)I

A
1,1,1,0,0,1,1,0,0 ,

fA
33 = ǫ3

√
4− x1

√
−x1 (x2 − x1) I

A
1,2,1,0,0,1,1,0,0 ,

fA
34 = ǫ3

√
4− x2

√
−x2 x1 I

A
1,1,0,2,1,0,1,0,0 ,

fA
35 = ǫ4x3I

A
1,0,1,0,1,1,1,0,0 ,

fA
36 = ǫ4x1I

A
1,0,1,1,1,1,0,0,0 ,

fA
37 = ǫ3

√
4− x1

√
−x1 x1 I

A
1,0,1,2,1,1,0,0,0 ,

fA
38 = ǫ4(x2 − x1)I

A
1,1,0,1,0,1,1,0,0 ,

fA
39 = ǫ3

√
4− x1

√
−x1 (x2 − x1) I

A
2,1,0,1,0,1,1,0,0 ,

fA
40 = ǫ3

√
4− x2

√
−x2(x2 − x1)I

A
1,1,0,1,0,1,2,0,0 ,

fA
41 = ǫ2

(

ǫx2(x1 − x2)I
A
1,1,0,1,0,1,2,0,0 − ǫx1(x1 − x2)I

A
2,1,0,1,0,1,1,0,0

+ (x1 − x2)
2IA2,1,0,1,0,1,2,0,0 + 2

(

x2x1 − 2(x2 + x1)
)

IA2,1,0,2,0,0,1,0,0

)

,

fA
42 = ǫ4(x2 − x3)I

A
0,1,0,1,1,1,1,0,0 ,

fA
43 = ǫ3

√
4− x2

√
−x2(x2 − x3)I

A
0,1,0,1,1,1,2,0,0 ,

fA
44 = ǫ4(x2 − x1)x1I

A
1,1,1,1,1,0,1,0,0 ,

fA
45 = ǫ3

√

(x2 − x1)2 + x21x
2
3 + 2x1x3(x2 − x1 − 2x3)I

A
0,0,1,1,2,1,1,0,0 ,

fA
46 = ǫ2

√
−x1

√
−x3

√

4(x2 − x1 − x3) + x1x3
(

ǫIA0,0,1,1,2,1,1,0,0 − IA0,0,1,1,3,1,1,0,0
)

,
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fA
47 = ǫ3(x2 − x1)I

A
0,0,1,1,2,1,1,−1,0 ,

fA
48 = ǫ4(x2 − x1 − x3)I

A
0,1,1,0,1,1,1,0,0 ,

fA
49 = ǫ3

√
−x1

√
−x3

√

x1x3 + 4(x2 − x1 − x3) I
A
0,1,1,0,1,2,1,0,0 ,

fA
50 = ǫ3(x2 − x1 − x3)

(

IA0,1,1,0,2,1,1,0,0 + IA0,2,1,0,1,1,1,0,0

)

,

fA
51 = ǫ3(x2 − x1 − x3)

(

IA0,1,1,0,1,1,2,0,0 + IA0,1,2,0,1,1,1,0,0

)

,

fA
52 = ǫ3

√
−x1

√

−
(

x1 + x1x23 + 2x3(2x2 − x1 − 2x3)
)

IA1,1,0,0,1,1,2,0,0 ,

fA
53 = ǫ2

√
−x1

√
−x3

√

4(x2 − x1 − x3) + x1x3

(

IA1,1,0,0,1,1,3,0,0 − ǫIA1,1,0,0,1,1,2,0,0

)

,

fA
54 = ǫ3x1I

A
1,1,0,0,1,1,2,0,−1 ,

fA
55 = ǫ4

√
−x1

√
−x3

√

4(x2 − x1 − x3) + x1x3 I
A
0,1,1,1,1,1,1,0,0 ,

fA
56 =−ǫ4

(

(2x2−2x1−x3)I
A
0,1,1,0,1,1,1,0,0+(x1−x2)I

A
0,1,1,1,1,1,1,−1,0+(x1−x2)I

A
0,1,1,1,1,1,1,0,0

)

,

fA
57 = ǫ2

(

2(x2 + x1)I
A
0,0,0,1,3,1,1,0,0 + ǫ(x1 + x3)I

A
1,0,−1,1,1,2,1,0,0 − 2ǫ(x2 + x1)I

A
0,0,0,1,2,1,1,0,0

)

,

fA
58 = ǫ4(x1 + x3)I

A
1,0,0,1,1,1,1,0,0 ,

fA
59 = ǫ3

√
4− x2

√
−x2

(

x1I
A
1,0,0,2,1,1,1,0,0 − x3I

A
1,0,0,1,1,1,2,0,0

)

,

fA
60 = ǫ3

√
−x1

√
−x3

√

x1x3 − 4(−x2 + x1 + x3) I
A
1,0,0,1,1,2,1,0,0 ,

fA
61 = ǫ3

(

(x1 + x3)− x2x3/2
)

(

IA1,0,0,1,1,1,2,0,0 + IA1,0,0,2,1,1,1,0,0

)

,

fA
62 = ǫ4

√
−x1

√
−x3

√

x1x3 − 4(−x2 + x1 + x3) I
A
1,0,1,1,1,1,1,0,0 ,

fA
63 = ǫ4

(

(x2 + x3)I
A
1,0,0,1,1,1,1,0,0 + (x1 − x2)I

A
1,0,1,1,1,1,1,−1,0 + (x1 − x2)I

A
1,0,1,1,1,1,1,0,0

)

,

fA
64 = ǫ4

√
−x1

√
−x3

√

4(x2 − x1 − x3) + x1x3 I
A
1,1,1,0,1,1,1,0,0 ,

fA
65 = ǫ4

(

x1I
A
1,1,1,0,1,1,1,0,−1 + x1I

A
1,1,1,0,1,1,1,0,0 − (x2 − x3)I

A
0,1,1,0,1,1,1,0,0

)

,

fA
66 = ǫ4(−x1)

3/2 IA1,1,0,1,1,1,1,0,0 ,

fA
67 = ǫ4(−x1)

3/2 x1 I
A
2,1,0,1,1,1,1,0,0 ,

fA
68 = ǫ4(−x1)

3/2 x1 I
A
1,2,0,1,1,1,1,0,0 ,

fA
69 = ǫ4(−x1)

3/2 IA1,1,0,1,1,1,2,−1,0 ,

fA
70 = ǫ4x1

√
−x3

√
4− x1

√

4(x2 − x1 − x3) + x1x3 I
A
1,1,1,1,1,1,1,0,0 ,

fA
71 = ǫ4

√
4− x1

√
−x1

(

(x2 − x1)
(

IA1,1,1,1,1,1,1,−1,0 + IA1,1,1,1,1,1,1,0,0

)

− x3

√

4(x2 − x1 − x3) + x1x3
√

4x2 − x3 − x1(4− x3)
IA1,1,1,0,1,1,1,0,0 + 4

x1 − x2
4− x1

IA1,1,0,1,1,1,1,0,0

)

,

fA
72 = ǫ4

√
−x1

√
4− x1

(

x1

(

IA1,1,1,1,1,1,1,0,0 + IA1,1,1,1,1,1,1,0,−1

)

+

√

4(x2 − x1 − x3) + x1x3
√

4(x2 − x3)− x1(4− x3)

(

x3I
A
1,0,1,1,1,1,1,0,0 + (x3 − x2)I

A
0,1,1,1,1,1,1,0,0

)

)

,
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fA
73 = ǫ4

(

x1
2

(

(2 + x2 − 2x1)
(

IA1,1,1,1,1,1,1,0,0 + IA1,1,1,1,1,1,1,−1,0

)

+ (2− x1)I
A
1,1,1,1,1,1,1,0,−1 + 2IA1,1,1,1,1,1,1,−1,−1

)

− 2(x1 + x3)I
A
1,1,0,1,1,1,1,0,0

+
x1

√

4(x2 − x1 − x3) + x1x3

2
√

4(x2 − x3)− x1(4− x3)

(

(x2 − x3)I
A
0,1,1,1,1,1,1,0,0

− x3
(

IA1,0,1,1,1,1,1,0,0 + IA1,1,1,0,1,1,1,0,0
)

)

)

+ ǫ3
x1
4

(

2x1
(

IA1,0,1,2,1,1,0,0,0 − IA1,1,2,1,1,0,0,0,0
)

+ (x1 − x2)
(

IA1,2,1,0,0,1,1,0,0 + IA2,1,0,1,0,1,1,0,0 − 2IA2,1,1,1,0,0,1,0,0

)

)

. (A.2)

Family B. Family B is defined by the nine propagators,

dB1 = −k21, dB2 = −(k1 + p12)
2, dB3 = m2 − k22 ,

dB4 = m2 − (k2 + p12)
2, dB5 = −(k1 + p1)

2, dB6 = m2 − (k1 − k2)
2,

dB7 = m2 − (k2 − p3)
2, dB8 = m2 − (k2 + p1)

2, dB9 = −(k1 − p3)
2,

(A.3)

with the extra restriction that a8 and a9 are non-positive. The family contains 50 master in-

tegrals. Below, we give the basis transformation between pre-canonical and canonical forms.

fB
1 = ǫ2IB0,0,0,0,0,2,2,0,0 ,

fB
2 = ǫ2x1I

B
1,2,0,0,0,0,2,0,0 ,

fB
3 = ǫ2x1I

B
0,1,2,0,0,2,0,0,0 ,

fB
4 = ǫ2

√
4− x1

√
−x1

(

IB0,1,2,0,0,2,0,0,0/2 + IB0,2,2,0,0,1,0,0,0

)

,

fB
5 = ǫ2x2I

B
0,1,0,0,0,2,2,0,0 ,

fB
6 = ǫ2

√
4− x2

√
−x2

(

IB0,1,0,0,0,2,2,0,0/2 + IB0,2,0,0,0,2,1,0,0

)

,

fB
7 = ǫ2

√
4− x1

√
−x1 I

B
0,0,1,2,0,2,0,0,0 ,

fB
8 = ǫ2

√
4− x2

√
−x2I

B
0,0,0,2,0,2,1,0,0 ,

fB
9 = ǫ2x3I

B
0,0,0,0,1,2,2,0,0 ,

fB
10 = ǫ2

√
4− x3

√
−x3

(

IB0,0,0,0,1,2,2,0,0/2 + IB0,0,0,0,2,2,1,0,0

)

,

fB
11 = ǫ2

√
4− x1

√
−x1 x1I

B
1,2,1,2,0,0,0,0,0 ,

fB
12 = ǫ2

√
4− x2

√
−x2 x1I

B
1,2,0,2,0,0,1,0,0 ,

fB
13 = ǫ3(x2 − x1)I

B
1,1,0,0,0,2,1,0,0 ,

fB
14 = ǫ2

√
4 + x1 − x2√
x1 − x2

(

x1I
B
1,2,0,0,0,2,1,0,−1 − x2I

B
0,2,0,0,0,2,1,0,0 − ǫ(x1 − x2)I

B
1,1,0,0,0,2,1,0,0

)

,

fB
15 = ǫ3(x2 − x1)I

B
1,0,0,1,0,2,1,0,0 ,

fB
16 = ǫ2(x2 − x1)I

B
1,0,0,1,0,3,1,0,0 ,
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fB
17 = ǫ2

√
4− x2

√−x2
4(x2 − 2x1)

(

6ǫ(x1 − x2)I
B
1,0,0,1,0,2,1,0,0 − 4(x1 − x2)I

B
1,0,0,1,0,3,1,0,0

+ 4
(

x2 + x1(x1 − x2)
)

IB1,0,0,2,0,2,1,0,0 − 3x1I
B
0,1,2,0,0,2,0,0,0

)

,

fB
18 = ǫ3(x2 − x1)I

B
0,1,1,0,0,2,1,0,0 ,

fB
19 = ǫ3x1I

B
0,0,1,1,1,2,0,0,0 ,

fB
20 = ǫ2x1I

B
0,0,1,1,1,3,0,0,0 ,

fB
21 = ǫ2

√
4− x1

√
−x1

(

IB0,0,1,2,1,2,0,−1,0 − ǫIB0,0,1,1,1,2,0,0,0

)

,

fB
22 = ǫ3(x2 − x1)I

B
0,0,1,1,0,2,1,0,0 ,

fB
23 = ǫ3x3I

B
0,0,1,0,1,2,1,0,0 ,

fB
24 = ǫ3(x2 − x3)I

B
0,0,0,1,1,2,1,0,0 ,

fB
25 = ǫ2(x2 − x3)I

B
0,0,0,1,1,3,1,0,0 ,

fB
26 = ǫ2

√
4− x2√−x2

(

x3(2x2 − x3)− 2(x2 + x3)
)

(

x2
(

x2 − x3(x2 − x3)
)

IB0,0,0,2,1,2,1,−1,0

+ x23(x2 − x3)I
B
0,0,0,1,1,3,1,0,0 + x3(4x2 − x3(4x2 − x3))I

B
0,0,0,0,1,2,2,0,0/4

− ǫ
(

2x2(x2 + x3)− x3(2x
2
2 − 3x2x3 + x23)

)

IB0,0,0,1,1,2,1,0,0/2

)

,

fB
27 = ǫ3(1− 2ǫ)x1I

B
1,1,1,1,0,1,0,0,0 ,

fB
28 = ǫ3(x2 − x1)x1I

B
1,2,1,1,0,0,1,0,0 ,

fB
29 = ǫ4(x2 − x1)I

B
1,1,1,0,0,1,1,0,0 ,

fB
30 = ǫ4(x2 − x1)I

B
1,1,0,1,0,1,1,0,0 ,

fB
31 = ǫ2x1I

B
1,1,0,1,0,2,1,0,0 + ǫ3(4− x2)(x2 + x1)I

B
1,1,0,1,0,1,2,0,0/2

− 2ǫ4x2I
B
1,1,0,1,0,1,1,0,0 +

ǫ2

2(x2 − x1)

(

(

x2(x2 − x1)− 4(x2 + x1)
)

IB0,2,0,0,0,2,1,0,0

+ 2x1(4− x2 + x1)I
B
1,2,0,0,0,2,1,0,−1

)

+ ǫ3(4− 3x2 + x1)I
B
1,1,0,0,0,2,1,0,0

+
ǫ2

4(x2 − 2x1)

(

4
(

4x2 + x2(x2 − x1)x1 − (x22 + 4x2x1 − 4x21)
)

IB1,0,0,2,0,2,1,0,0

+ (4− x2)(x2 − x1)I
B
1,0,0,1,0,3,1,0,0 − 3(4− x2)x1I

B
0,1,2,0,0,2,0,0,0

+ 2ǫ
(

x2(5x2 − 7x1)− 12(x2 − x1)
)

IB1,0,0,1,0,2,1,0,0

)

+ ǫ2(− x2/4)
(

IB0,1,0,0,0,2,2,0,0 − 2IB0,0,0,2,0,2,1,0,0 + 4x1I
B
1,2,0,2,0,0,1,0,0

)

,

fB
32 = ǫ3

√
4− x2

√
−x2 (x2 − x1)I

B
1,1,0,1,0,1,2,0,0 ,

fB
33 = ǫ3x1

√
4− x3

√
−x3 I

B
1,1,0,0,1,2,1,0,0 ,

fB
34 = ǫ3x1

(

IB1,1,0,0,1,2,1,0,−1 + x3I
B
1,1,0,0,1,2,1,0,0

)

,

fB
35 = ǫ4(x1 + x3)I

B
1,0,0,1,1,1,1,0,0 ,

fB
36 = ǫ3

√
−x1

√
−x3

√

4(x2 − x1 − x3) + x1x3 I
B
1,0,0,1,1,2,1,0,0 ,
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fB
37 = ǫ2

2(x1 + x3)− x2x3

4x2x3
(

2(x2 + x3)− x3(2x2 − x3)
)

(

x3
(

4x2 − x3(4x2 − x3)
)

IB0,0,0,0,1,2,2,0,0

+ 2ǫ
(

x3(2x
2
2 − 3x2x3 + x23)− 2x2(x2 + x3)

)

IB0,0,0,1,1,2,1,0,0

+ 4(x2 − x3)x
2
3I

B
0,0,0,1,1,3,1,0,0 + 4x2(x2 − x3(x2 − x3))I

B
0,0,0,2,1,2,1,−1,0

)

+ ǫ2
2(x1 + x3)− x2x3
4x3(x2 − 2x1)

(

3x1I
B
0,1,2,0,0,2,0,0,0 + 6ǫ(x2 − x1)I

B
1,0,0,1,0,2,1,0,0

− 4(x2 − x1)I
B
1,0,0,1,0,3,1,0,0 − 4

(

x2 − x1(x2 − x1)
)

IB1,0,0,2,0,2,1,0,0

)

+ ǫ3
(

(

2(x1+x3)− x1x3
)

IB1,0,0,1,1,2,1,0,0/2 +
(

(x1+x3)
2 − x2x1x3

)

IB1,0,0,2,1,1,1,0,0/x3

)

fB
38 = ǫ3

√

(x2 − x1)2 + x21x
2
3 + 2x1x3(x2 − x1 − 2x3) I

B
0,0,1,1,1,2,1,0,0 ,

fB
39 = ǫ2

√
−x1

√
−x3

√

4(x2 − x1 − x3) + x1x3

(

IB0,0,1,1,1,3,1,0,0 − ǫIB0,0,1,1,1,2,1,0,0

)

fB
40 = ǫ3(x2 − x1)

(

IB0,0,1,1,1,2,1,−1,0 − IB0,0,1,1,1,2,1,0,0

)

,

fB
41 = ǫ4

√
4− x1

√
−x1 (x2 − x1)I

B
1,1,1,1,0,1,1,0,0) ,

fB
42 = ǫ4(x2 − x1 − x3)I

B
0,1,1,0,1,1,1,0,0 ,

fB
43 = ǫ3

√

x1x3(4(x2 − x1 − x3) + x1x3) I
B
0,1,1,0,1,2,1,0,0 ,

fB
44 = ǫ4x1x3I

B
1,1,1,0,1,1,1,0,0 ,

fB
45 = ǫ4x1(x2 − x3)I

B
1,1,0,1,1,1,1,0,0 ,

fB
46 = ǫ2x1

√
4− x2

√
−x2

(

2IB1,1,0,0,1,2,1,0,0 − IB1,0,0,1,1,2,1,0,0 + (x2 − x3)I
B
1,1,0,1,1,1,2,0,0

)

,

fB
47 = ǫ4x1

√
−x1

√
−x3

√

4(x2 − x1 − x3) + x1x3 I
B
1,1,1,1,1,1,1,0,0 ,

fB
48 = ǫ4(x2 − x1)x1I

B
1,1,1,1,1,1,1,−1,0 ,

fB
49 = ǫ2

√
−x1

√
4− x1

(

ǫ2x1x3I
B
1,1,1,1,1,1,1,0,0 + ǫ2x1I

B
1,1,1,1,1,1,1,0,−1 + ǫx3I

B
1,0,0,1,1,2,1,0,0/2

− ǫ(x2 − x3)I
B
0,1,1,0,1,2,1,0,0/2 + (x2 − 2x3)

(

ǫIB0,0,1,1,1,2,1,0,0 − IB0,0,1,1,1,3,1,0,0

)

)

,

fB
50 = 2ǫ4x1

(

2IB1,1,1,1,1,1,1,−1,−1 + 2(x2 − x1)I
B
1,1,1,1,1,1,1,−1,0 − x1I

B
1,1,1,1,1,1,1,0,−1

− x1x3I
B
1,1,1,1,1,1,1,0,0

)

+ ǫ2
x2

x2 − x1

(

x2I
B
0,1,0,0,0,2,2,0,0 − x1I

B
0,1,2,0,0,2,0,0,0

)

− 2ǫ3x2

(

IB0,0,1,1,0,2,1,0,0 − 2IB0,0,1,1,1,2,1,−1,0 + IB0,1,1,0,0,2,1,0,0

)

2ǫ2x1(x2 − 2x3)I
B
0,0,1,1,1,3,1,0,0 − 2ǫ3

(

2x2 + x1(x2 − 2x3)
)

IB0,0,1,1,1,2,1,0,0

+ ǫ3x1

(

(x2 − x3)I
B
0,1,1,0,1,2,1,0,0 − x3I

B
1,0,0,1,1,2,1,0,0 − 4x3I

B
1,2,1,1,0,0,1,0,0

)

− 4ǫ4x1

(

IB0,1,1,0,1,1,1,0,0 + IB1,0,0,1,1,1,1,0,0 + IB1,1,1,1,0,1,0,0,0

)

+ 4ǫ4x2I
B
1,1,0,1,0,1,1,0,0 − 2ǫ4(x2 − x1)x1I

B
1,1,1,1,0,1,1,0,0. (A.4)
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Family C. Family C is defined by the nine propagators,

dC1 = −k21, dC2 = −(k1 + p12)
2, dC3 = m2 − (k2 + p12)

2,

dC4 = −(k1 + p1)
2, dC5 = m2 − (k1 − k2)

2, dC6 = m2 − (k2 − p3)
2,

dC7 = −(k1 − p3)
2, dC8 = m2 − k22, dC9 = m2 − (k2 + p1)

2 ,

(A.5)

with the extra restriction that a8 and a9 are non-positive. The family contains 45 master in-

tegrals. Below, we give the basis transformation between pre-canonical and canonical forms.

fC
1 = ǫ2IC0,0,0,0,2,2,0,0,0 ,

fC
2 = ǫ2x3I

C
0,0,0,1,0,2,2,0,0 ,

fC
3 = ǫ2x3I

C
0,0,0,1,2,2,0,0,0 ,

fC
4 = ǫ2

√
4− x3

√
−x3

(

IC0,0,0,2,1,2,0,0,0 + IC0,0,0,1,2,2,0,0,0/2
)

,

fC
5 = ǫ2x2I

C
0,0,2,0,2,0,1,0,0 ,

fC
6 = ǫ2

√
4− x2

√
−x2

(

IC0,0,1,0,2,0,2,0,0 + IC0,0,2,0,2,0,1,0,0/2
)

,

fC
7 = ǫ2

√
4− x2

√
−x2 I

C
0,0,1,0,2,2,0,0,0 ,

fC
8 = ǫ2x2I

C
0,1,0,0,0,2,2,0,0 ,

fC
9 = ǫ2x1I

C
1,0,2,0,2,0,0,0,0 ,

fC
10 = ǫ2

√
4− x1

√
−x1

(

IC2,0,1,0,2,0,0,0,0 + IC1,0,2,0,2,0,0,0,0/2
)

,

fC
11 = ǫ2x1I

C
1,2,0,0,0,2,0,0,0 ,

fC
12 = ǫ2x3

√
4− x2

√
−x2 I

C
0,0,1,1,0,2,2,0,0 ,

fC
13 = ǫ3(x2 − x3)I

C
0,0,1,1,2,0,1,0,0 ,

fC
14 = ǫ2

√
4− x2 + x3√
x3 − x2

(

x3I
C
0,−1,1,1,2,0,2,0,0 − x2I

C
0,0,1,0,2,0,2,0,0 − ǫ(x3 − x2)I

C
0,0,1,1,2,0,1,0,0

)

,

fC
15 = ǫ3(x2 − x3)I

C
0,0,1,1,2,1,0,0,0 ,

fC
16 = ǫ2(x2 − x3)I

C
0,0,1,1,3,1,0,0,0 ,

fC
17 = ǫ2

√
4− x2

√−x2
4(x2 − 2x3)

(

4(x2 − x3)I
C
0,0,1,1,3,1,0,0,0 − 6ǫ(x2 − x3)I

C
0,0,1,1,2,1,0,0,0

+ 4
(

x2 − x3(x2 − x3)
)

IC0,0,1,1,2,2,0,0,0 − 3x3I
C
0,0,0,1,2,2,0,0,0

)

,

fC
18 = ǫ2x2

√
4− x2

√
−x2 I

C
0,1,1,0,0,2,2,0,0 ,

fC
19 = ǫ3(x2 − x1)I

C
1,0,1,0,2,1,0,0,0 ,

fC
20 = ǫ2(x2 − x1)I

C
1,0,1,0,3,1,0,0,0 ,

fC
21 = ǫ2

√
4− x2

√−x2
4(x2 − 2x1)

(

4(x2 − x1)I
C
1,0,1,0,3,1,0,0,0 − 6ǫ(x2 − x1)I

C
1,0,1,0,2,1,0,0,0

+ 4
(

x2 − x1(x2 − x1)
)

IC1,0,2,0,2,1,0,0,0 − 3x1I
C
1,0,2,0,2,0,0,0,0

)

,

fC
22 = ǫ3(x2 − x1)I

C
1,1,0,0,2,1,0,0,0 ,

fC
23 = ǫ2

√
4− x2 + x1√
x1 − x2

(

x1I
C
1,2,0,0,2,1,−1,0,0 − x2I

C
0,2,0,0,2,1,0,0,0 − ǫ(x1 − x2)I

C
1,1,0,0,2,1,0,0,0

)

,
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fC
24 = ǫ2x1

√
4− x2

√
−x2 I

C
1,2,1,0,0,2,0,0,0 ,

fC
25 = ǫ4(x2 − x3)I

C
0,0,1,1,1,1,1,0,0 ,

fC
26 = ǫ2x3I

C
0,0,1,1,2,1,1,0,0 + ǫ3(4− x2)(x2 + x3)I

C
0,0,2,1,1,1,1,0,0/2

− 2ǫ4x2I
C
0,0,1,1,1,1,1,0,0 +

ǫ2

2(x2 − x3)

(

(

x2(x2 − x3)− 4(x2 + x3)
)

IC0,0,1,0,2,0,2,0,0

+ 2x3(4− x2 + x3)I
C
0,−1,1,1,2,0,2,0,0

)

+ ǫ3(4− 3x2 + x3)I
C
0,0,1,1,2,0,1,0,0

+
ǫ2

4(x2 − 2x3)

(

2ǫ
(

x2(5x2 − 7x3)− 12(x2 − x3)
)

IC0,0,1,1,2,1,0,0,0

+ 4
(

4x2 + x2(x2 − x3)x3 − (x22 + 4x2x3 − 4x23)
)

IC0,0,1,1,2,2,0,0,0

+ 4(4− x2)(x2 − x3)I
C
0,0,1,1,3,1,0,0,0 − 3(4− x2)x3I

C
0,0,0,1,2,2,0,0,0

)

+ ǫ2(4− x2)
(

x3I
C
0,0,1,1,0,2,2,0,0 − IC0,0,1,0,2,2,0,0,0/2 + IC0,0,2,0,2,0,1,0,0/4

)

,

fC
27 = ǫ3

√
4− x2

√
−x2 (x2 − x3)I

C
0,0,2,1,1,1,1,0,0 ,

fC
28 = (1− 2ǫ)ǫ3x2I

C
0,1,1,0,1,1,1,0,0 ,

fC
29 = ǫ3

√
4− x1

√
−x1 x3I

C
1,0,1,1,2,0,1,0,0 ,

fC
30 = ǫ3x3

(

IC1,−1,1,1,2,0,1,0,0 + x1I
C
1,0,1,1,2,0,1,0,0

)

,

fC
31 = ǫ4(x1 + x3)I

C
1,0,1,1,1,1,0,0,0 ,

fC
32 = ǫ3

√
−x1

√
−x3

√

4(x2 − x1 − x3) + x1x3 I
C
1,0,1,1,2,1,0,0,0 ,

fC
33 = ǫ2

2(x1 + x3)− x2x3

4x2x3
(

2(x2 + x3)− x3(2x2 − x3)
)

(

x3
(

4x2 − x3(4x2 − x3)
)

IC0,0,0,1,2,2,0,0,0

− 2ǫ
(

2x2(x2 + x3)− x3(2x
2
2 − 3x2x3 + x23)

)

IC0,0,1,1,2,1,0,0,0

+ 4(x2 − x3)x
2
3I

C
0,0,1,1,3,1,0,0,0 + 4x2

(

x2 − x3(x2 − x3)
)

IC0,0,2,1,2,1,0,0,−1

)

+ ǫ2
2(x1 + x3)− x2x3
4(x2 − 2x1)x3

(

3x1I
C
1,0,2,0,2,0,0,0,0 − 4(x2 − x1)I

C
1,0,1,0,3,1,0,0,0

+ 6ǫ(x2 − x1)I
C
1,0,1,0,2,1,0,0,0 − 4

(

x2 + x1(−x2 + x1)
)

IC1,0,2,0,2,1,0,0,0

)

+ ǫ3
(

(

2(x1+x3)− x1x3
)

IC1,0,1,1,2,1,0,0,0/2 +
(

(x1 + x3)
2 − x2x1x3

)

IC1,0,2,1,1,1,0,0,0)/x3

)

,

fC
34 = ǫ3x1x3I

C
1,1,0,1,0,2,1,0,0 ,

fC
35 = ǫ3x1

√
4− x3

√
−x3 I

C
1,1,0,1,2,1,0,0,0 ,

fC
36 = ǫ3x1

(

IC1,1,0,1,2,1,−1,0,0 + x3I
C
1,1,0,1,2,1,0,0,0

)

,

fC
37 = ǫ4(x2 − x1)I

C
1,1,1,0,1,1,0,0,0 ,

fC
38 = ǫ2x1I

C
1,1,1,0,2,1,0,0,0 + ǫ3(4− x2)(x2 + x1)I

C
1,1,1,0,1,2,0,0,0/2

− 2ǫ4x2I
C
1,1,1,0,1,1,0,0,0 +

ǫ2

2(x2 − x1)

(

(

x2(x2 − x1)− 4(x2 + x1)
)

IC0,2,0,0,2,1,0,0,0

+ 2x1(4− x2 + x1)I
C
1,2,0,0,2,1,−1,0,0

)

+ ǫ3(4− 3x2 + x1)I
C
1,1,0,0,2,1,0,0,0

+
ǫ2

4(x2 − 2x1)

(

2ǫ
(

x2(5x2 − 7x1)− 12(x2 − x1)
)

IC1,0,1,0,2,1,0,0,0
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+ 4
(

4x2 + x2(x2 − x1)x1 − (x22 + 4x2x1 − 4x21)
)

IC1,0,2,0,2,1,0,0,0

4(4− x2)(x2 − x1)I
C
1,0,1,0,3,1,0,0,0 − 3(4− x2)x1I

C
1,0,2,0,2,0,0,0,0

)

+ ǫ2(4− x2)
(

IC0,1,0,0,2,2,0,0,0/4− IC0,0,2,0,2,1,0,0,0/2 + x1I
C
1,2,2,0,0,1,0,0,0

)

,

fC
39 = ǫ3

√
4− x2

√
−x2 (x2 − x1)I

C
1,1,1,0,1,2,0,0,0 ,

fC
40 = ǫ4(x2 − x1)x3I

C
1,0,1,1,1,1,1,0,0 ,

fC
41 = ǫ3

√
4− x2

√
−x2 x3

(

2IC1,0,1,1,2,0,1,0,0 − IC1,0,1,1,2,1,0,0,0 + (x2 − x1)I
C
1,0,2,1,1,1,1,0,0

)

,

fC
42 = ǫ3

√
4− x2

√
−x2 x1x3I

C
1,1,1,1,0,2,1,0,0 ,

fC
43 = ǫ4x1(x2 − x3)I

C
1,1,1,1,1,1,0,0,0 ,

fC
44 = ǫ3

√
4− x2

√
−x2 x1

(

2IC1,1,0,1,2,1,0,0,0 − IC1,0,1,1,2,1,0,0,0 + (x2 − x3)I
C
1,1,1,1,1,2,0,0,0

)

,

fC
45 = ǫ4x2

(

x3I
C
1,0,1,1,1,1,1,0,0 + x1I

C
1,1,1,1,1,1,0,0,0 + x1x3I

C
1,1,1,1,1,1,1,0,0

)

. (A.6)

Family D. Family D is defined by the nine propagators,

dD1 = m2 − k21, dD2 = m2 − (k1 + p12)
2, dD3 = m2 − k22 ,

dD4 = m2 − (k2 + p12)
2, dD5 = m2 − (k1 + p1)

2, dD6 = −(k1 − k2)
2,

dD7 = m2 − (k2 − p3)
2, dD8 = m2 − (k2 + p1)

2, dD9 = m2 − (k1 − p3)
2,

(A.7)

with the extra restriction that a1, a5, and a6 are non-positive. The family contains 17

master integrals. Below, we give the basis transformation between pre-canonical and

canonical forms.

fD
1 = ǫ2ID0,0,0,0,0,0,2,0,2 ,

fD
2 = −ǫ2

√
4− x3

√
−x3I

D
0,0,0,0,0,0,1,2,2 ,

fD
3 = −ǫ2

√
4− x1

√
−x1I

D
0,0,2,1,0,0,0,0,2 ,

fD
4 = −ǫ2

√
4− x2

√
−x2I

D
0,1,2,0,0,0,0,0,2 ,

fD
5 = ǫ3(x3 − x2)I

D
0,0,0,1,0,0,1,1,2 ,

fD
6 = ǫ3x3I

D
0,0,1,0,0,0,1,1,2 ,

fD
7 = ǫ3x1I

D
0,0,1,1,0,0,0,1,2 ,

fD
8 = ǫ3(x1 − x2)I

D
0,0,1,1,0,0,1,0,2 ,

fD
9 = ǫ2

√
4− x2

√
−x2

√
4− x3

√
−x3 I

D
0,1,0,0,0,0,1,2,2 ,

fD
10 = −ǫ2x2(4− x2)I

D
0,1,0,1,0,0,2,0,2 ,

fD
11 = ǫ2

√
4− x2

√
−x2

√
4− x1

√
−x1 I

D
0,1,1,2,0,0,0,0,2 ,

fD
12 = −ǫ3

√
−x1

√
−x3

√

4(x2 − x1 − x3) + x1x3 I
D
0,0,1,1,0,0,1,1,2) ,

fD
13 = ǫ3

√
4− x2

√
−x2 (x2 − x3)I

D
0,1,0,1,0,0,1,1,2 ,

fD
14 = ǫ3

√
4− x2

√
−x2 x3I

D
0,1,1,0,0,0,1,1,2 ,

fD
15 = ǫ3

√
4− x2

√
−x2 x1I

D
0,1,1,1,0,0,0,1,2 ,

fD
16 = ǫ3

√
4− x2

√
−x2 (x2 − x1)I

D
0,1,1,1,0,0,1,0,2 ,

fD
17 = ǫ3

√
4− x2

√
−x2

√
−x1

√
−x3

√

4(x2 − x1 − x3) + x1x3 I
D
0,1,1,1,0,0,1,1,2. (A.8)
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B Pre-canonical master integrals

In this appendix we draw the 125 master integrals in the pre-canonical form and we link

them to the corresponding integral(s) in the canonical basis.

fA
1 , fB

1 , fC
1 , fD

1

p2

fB
2 , fC

11

fC
2

fC
8

p2

fA
6 , fB

7 , fD
3

fD
2

fA
7 , fB

8 , fC
7 , fD

4

p2

fA
5 , fB

3 , fC
9

fA
12, f

B
9 , fC

3

fA
3 , fB

5 , fC
5

p2

fA
4 , fB

4 , fC
10

fA
11, f

B
10, f

C
4

fA
2 , fB

6 , fC
6

q2 q2

fB
11

fC
18

s

fB
12, f

C
24

t

fC
12

q2 q2

fA
27

fD
10

s

fA
28, f

D
11

t

fD
9

r2

fA
30, f

D
7

fD
6

r2

fA
26, f

B
22, f

D
8

fD
5

r2

fA
18

fA
16, f

B
23

r2

fA
17, f

B
18

fA
19

r2

fA
13, f

B
15, f

C
19

fA
23, f

B
24, f

C
15

r2

fA
14, f

B
16, f

C
20

fA
24, f

B
25, f

C
16

(k2+p1)
2
−m2

r2

fA
15, f

B
17, f

C
2

fA
25, f

B
26, f

C
17

s

fA
8

s

fA
9

s

fA
10

s

fA
20, f

B
19

s

fA
21, f

B
20

(k2+p1)
2
−m2

s

fA
22, f

B
21

r2

fB
13, f

C
22

fC
13

(k1+p1+p2)
2

t

fC
14

(k1 − p3)
2

s

fB
14, f

C
23

s, t

fA
34, f

D
15

s

fA
29

s

fA
31, f

D
16
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s

fB
28 fD

13

t

fC
34 fD

12

q2

fB
27

fC
28

s

fA
36

s

fA
37

t

fA
35

t

fA
42

t

fA
43

s

fA
38

s

fA
39

s

fA
40

s

fA
41

s

fA
32

s

fA
33

r2

fB
30, f

C
37

fC
25

r2

fB
32, f

C
39

fC
27

r2

fB
31, f

C
38

fC
26

s

fB
29

fA
48 fA

49 fA
50 fA

51 fA
58

fA
59 fA

60 fA
61 fA

57

(k2

2
)

fB
33, f

C
35

fC
29

s, t

fB
34, f

C
36

s

(k1−p3)
2

fC
30

t

(k1+p1+p2)
2

fA
52 fA

53 fA
54

(k1−p3)
2

fA
45, f

B
38 fA

46, f
B
39 fA

47, f
B
40

(k2+p1)
2

fB
42 fB

43
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fB
35, f

C
31 fB

36, f
C
32 fB

37, f
C
33 fA

44 fC
42

fD
17 fA

55

(k2+p1)
2

fA
56 fA

62

(k2+p1)
2

fA
63

fA
64

(k1−p3)
2

fA
65 fA

66 fA
67 fA

68

(k2+p1)
2

fA
69

s

fB
41 fB

44 fB
45, f

C
43

s, t

fB
46, f

C
44

fC
41

s, t

fA
70

(k2+p1)
2

fA
71

(k1−p3)
2

fA
72

(k2+p1)
2(k1−p3)

2

fA
73 fC

45

fB
47

(k2+p1)
2

fB
48

(k1−p3)
2

fB
49

(k2+p1)
2(k1−p3)

2

fB
50
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C Alphabet

In this appendix we list the alphabet for the four integral families defined in section 2. We

introduce the following shorthands for the set of 13 square roots,

R1(x1) =
√
−x1 , R1(x3) =

√
−x3 , R1(x2) =

√
−x2 ,

R2(x1) =
√
4− x1 , R2(x3) =

√
4− x3 , R2(x2) =

√
4− x2 ,

R3(x1) =
√
x2 − x1 , R3(x3) =

√
x2 − x3 ,

R4(x1) =
√
x2 − x1 − 4 , R4(x3) =

√
x2 − x3 − 4 ,

R5(x) =
√

4x2 + x1x3 − 4(x1 + x3) ,

R6(x) =
√

2x3(−2x2 + x1 + 2x3)− x1x23 − x1 ,

R7(x) =
√

2x1x3(x2 − x1) + (x2 − x1)2 + (x1 − 4)x1x23 . (C.1)

They appear in the alphabet in the following 8 linearly independent combinations,

R1(x1)R2(x1) , R1(x2)R2(x2) ,

R1(x3)R2(x3) , R3(x1)R4(x1) ,

R3(x3)R4(x3) , R1(x1)R1(x3)R5(x) ,

R1(x1)R6(x) , R7(x). (C.2)

Referring to the matrix Ã defined in (3.4) the alphabets of the four families can be

written in terms of the following linearly independent 49 letters,

log(x3), log(x1), log(x2) ,

log(x1 − 4), log(x3 − 4), log(x2 − 4) ,

log(x1 + x3), log(x3 − x2), log(x1 − x2) ,

log(−x2 + x1 + x3), log(−x2 + x3 + 4), log(−x2 + x1 + 4) ,

log(4x2 − 4x1 + x1x3 − 4x3), log
(

x21 − x2x3x1 + 2x3x1 + x23
)

,

log
(

x23 − x2x3 + x2
)

, log
(

x21 − x2x1 + x2
)

, log
(

x22 − x1x2 + x1
)

,

log (x2 − x1 + x1x3 +R7(x)) ,

log
(

x22 − x1x2 + x1x3x2 − 2x1x
2
3 +R7(x)x2

)

,

log
(

−x3x
2
1 + x21 − x2x1 + 3x3x1 −R7(x)x1 + x1 − x2 +R7(x)

)

,

log (x3x1 − x1 − 2x2x3 +R1(x1)R6(x)) ,

log (x2x1x1 − 2x1 − 2x3 +R1(x2)R2(x2)) ,

log (x3 −R1(x3)R2(x3)) , log (x1 −R1(x1)R2(x1)) ,

log
(

−x3x
2
1 + x21 − 2x2x1 + 4x3x1 +R2(x1)R6(x)x1

)

,

log (x2 −R1(x2)R2(x2)) , log (x2 − x3 +R3(x3)R4(x3)) ,

log (x2 − x1 +R3(x1)R4(x1)) , log (x2 − 2x3 +R1(x2)R2(x2)) ,

log (x2 − 2x1 +R1(x2)R2(x2)) , log (x3x1 − x1 +R1(x1)R6(x)) ,
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log (−x3x1 − x1 +R1(x1)R6(x)) , log (−x2x1 + 2x1 + x2R1(x1)R2(x1)) ,

log (x1x3 +R1(x1)R1(x3)R5(x)) ,

log (x3x1 − 2x1 − 2x3 +R1(x1)R1(x3)R5(x)) ,

log
(

x3x
2
1 − x21 + x2x1 − 4x3x1 +R1(x1)R2(x1)R7(x)

)

,

log
(

−x22 + x1x2 − x1x3x2 + 2x3x2 + 2x1x3 +R1(x2)R2(x2)R7(x)
)

,

log
(

−x23x
2
1 + 3x3x

2
1 + 4x23x1 − 4x2x3x1 +R1(x3)R5(x)R6(x)x1

)

,

log (x3R1(x2)R2(x2) + x2R1(x3)R2(x3)) ,

log (x1R1(x2)R2(x2) + x2R1(x1)R2(x1)) ,

log (x1R1(x3)R2(x3)−R1(x1)R1(x3)R5(x)) ,

log (x3R1(x1)R2(x1)−R1(x1)R1(x3)R5(x)) ,

log (−x2R1(x1)R2(x1) + x3R1(x1)R2(x1) + x1R3(x3)R4(x3)) ,

log (−x2R1(x2)R2(x2) + x3R1(x2)R2(x2) + x2R3(x3)R4(x3)) ,

log (−x2R1(x3)R2(x3) + x1R1(x3)R2(x3) + x3R3(x1)R4(x1)) ,

log (−x2R1(x2)R2(x2) + x1R1(x2)R2(x2) + x2R3(x1)R4(x1)) ,

log
(

−x23x
2
1 + 3x3x

2
1 + 4x23x1 − 3x2x3x1 +R1(x1)R1(x3)R5(x)R7(x)

)

,

log (x2R1(x1)R1(x3)R5(x)− x1x3R1(x2)R2(x2)) ,

log (−x2x3 + x1x3 +R1(x2)R2(x2)x3 −R1(x1)R1(x3)R5(x)) . (C.3)

D Weight-two functions

In section 3.2 we described how to express the non-elliptic master integrals in terms of a

minimal set of logarithms and dilogarithms up to weight two. On the other hand the weight-

three functions are one-fold integrals over linear combinations of weight-two functions with

algebraic coefficients. Weight-four functions are expressed in two ways. The first consists

of logarithms times one-fold integrals over linear combinations of weight-two functions,

therefore a function of weight one times one of weight three. The other consists of a

one-fold integral of weight-three functions, that are expressed as a product of weight-two

functions times logarithms, with algebraic coefficients.

In this appendix we list the basis choice we made for the set of linearly independent

dilogarithms required to express the master integrals of each family at weight two. They

are chosen to be single-valued in the Euclidean region x3 < x2 < x1 < 0.

Family A.

Li2

(

x1
x1 − 4

)

,

Li2

(

x2
x2 − 4

)

,

Li2

(

x3
x3 − 4

)

,

Li2

(

R1 (x3)−R2 (x3)

R1 (x3)

)

,
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Li2

(

R1 (x2)−R2 (x2)

R1 (x2)

)

,

Li2

(

R1 (x1)−R2 (x1)

R1 (x1)

)

,

Li2

(

(R1 (x3)−R2 (x3))
2

(R1 (x3) +R2 (x3)) 2

)

,

Li2

(

(R1 (x2)−R2 (x2))
2

(R1 (x2) +R2 (x2)) 2

)

,

Li2

(

(R1 (x1)−R2 (x1))
2

(R1 (x1) +R2 (x1)) 2

)

,

Li2

(

R1 (x1)R1 (x3)−R5(x)

R1 (x3) (R1 (x1)−R2 (x1))

)

,

Li2

(

R1 (x3) (R1 (x2)−R2 (x2))

R1 (x2) (R1 (x3) +R2 (x3))

)

,

Li2

(

R1 (x3) (R1 (x2) +R2 (x2))

R1 (x2) (R1 (x3)−R2 (x3))

)

,

Li2

(

R1 (x1) (R1 (x2) +R2 (x2))

R1 (x2) (R1 (x1)−R2 (x1))

)

,

Li2

(

R1 (x1) (R1 (x2)−R2 (x2))

R1 (x2) (R1 (x1) +R2 (x1))

)

,

Li2

(

R1 (x1) (R1 (x3) +R2 (x3))

R1 (x1)R1 (x3)−R5(x)

)

,

Li2

(

R1 (x3) (R1 (x1) +R2 (x1))

R1 (x1)R1 (x3)−R5(x)

)

,

Li2

(

−R1 (x1) (R1 (x3)−R2 (x3))

R1 (x1)R1 (x3)−R5(x)

)

,

Li2

(

R1 (x1)
2 (R1 (x3)−R2 (x3))

2

(R1 (x1)R1 (x3)−R5(x)) 2

)

,

Li2

(

R1 (x1) (R1 (x2)−R2 (x2))

R1 (x2)R2 (x1)−R1 (x1)R2 (x2)

)

,

Li2

(

R1 (x2)R2 (x3)−R1 (x3)R2 (x2)

R1 (x3) (R1 (x2)−R2 (x2))

)

,

Li2

(

−R1 (x2)R2 (x3)−R1 (x3)R2 (x2)

R1 (x3) (R1 (x2) +R2 (x2))

)

,

Li2

(

− R1 (x1) (R1 (x2) +R2 (x2))

R1 (x2)R2 (x1)−R1 (x1)R2 (x2)

)

,

Li2

(

R1 (x1)R1 (x3) (R1 (x2) +R2 (x2))

R1 (x2) (R1 (x1)R1 (x3)−R5(x))

)

,

Li2

(

−R1 (x1)R1 (x3) (R1 (x2)−R2 (x2))

R1 (x2) (R1 (x1)R1 (x3)−R5(x))

)

,

Li2

(

R1 (x1)
2R1 (x3)

2 (R1 (x2)−R2 (x2))
2

R1 (x2) 2 (R1 (x1)R1 (x3)−R5(x)) 2

)

. (D.1)
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Family B.

Li2

(

x1
x1 − 4

)

,

Li2

(

x2
x2 − 4

)

,

Li2

(

x3
x3 − 4

)

,

Li2

(

R1 (x3)−R2 (x3)

R1 (x3)

)

,

Li2

(

R1 (x2)−R2 (x2)

R1 (x2)

)

,

Li2

(

R1 (x1)−R2 (x1)

R1 (x1)

)

,

Li2

(

(R1 (x3)−R2 (x3))
2

(R1 (x3) +R2 (x3)) 2

)

,

Li2

(

(R1 (x2)−R2 (x2))
2

(R1 (x2) +R2 (x2)) 2

)

,

Li2

(

(R1 (x1)−R2 (x1))
2

(R1 (x1) +R2 (x1)) 2

)

,

Li2

(

R1 (x3) (R1 (x2)−R2 (x2))

R1 (x2) (R1 (x3) +R2 (x3))

)

,

Li2

(

R1 (x3) (R1 (x2) +R2 (x2))

R1 (x2) (R1 (x3)−R2 (x3))

)

,

Li2

(

R1 (x1) (R1 (x2) +R2 (x2))

R1 (x2) (R1 (x1)−R2 (x1))

)

,

Li2

(

R1 (x1) (R1 (x2)−R2 (x2))

R1 (x2) (R1 (x1) +R2 (x1))

)

,

Li2

(

x2 +R1 (x2)R2 (x2)− 2

−x1 + x2 +R3 (x)R4 (x)− 2

)

,

Li2

(

R1 (x1) (R1 (x2)−R2 (x2))

R1 (x2)R2 (x1)−R1 (x1)R2 (x2)

)

,

Li2

(

R1 (x2)R2 (x3)−R1 (x3)R2 (x2)

R1 (x3) (R1 (x2)−R2 (x2))

)

,

Li2

(

− R1 (x1) (R1 (x2) +R2 (x2))

R1 (x2)R2 (x1)−R1 (x1)R2 (x2)

)

,

Li2

(

−R1 (x2)R2 (x3)−R1 (x3)R2 (x2)

R1 (x3) (R1 (x2) +R2 (x2))

)

,

Li2

(

R1 (x1)R1 (x3) (x3 −R1 (x3)R2 (x3))

x3 (R1 (x1)R1 (x3)−R5(x))

)

,

Li2

(

R1 (x1)R1 (x3) (x2 −R1 (x2)R2 (x2))

x2 (R1 (x1)R1 (x3)−R5(x))

)

,
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Li2

(

R1 (x1)R1 (x3) (x1 −R1 (x1)R2 (x1))

x1 (R1 (x1)R1 (x3)−R5(x))

)

,

Li2

(

R1 (x1)R1 (x3) (R1 (x2)−R2 (x2))

R1 (x2)R5(x)−R1 (x1)R1 (x3)R2 (x2)

)

,

Li2

(

−R1 (x1)R1 (x3) (x1 +R1 (x1)R2 (x1))

x1 (R1 (x1)R1 (x3)−R5(x))

)

,

Li2

(

−R1 (x1)R1 (x3) (x3 +R1 (x3)R2 (x3))

x3 (R1 (x1)R1 (x3)−R5(x))

)

,

Li2

(

− x1 (R1 (x1)R1 (x3)−R5(x))
2

R1 (x1) 2R1 (x3) 2 (R1 (x1)−R2 (x1)) 2

)

,

Li2

(

2R1 (x1)
2R1 (x3)

2 (x3 +R1 (x3)R2 (x3)− 2)

x3 (R1 (x1)R1 (x3)−R5(x)) 2

)

,

Li2

(

x1x2 (R1 (x2) +R2 (x2))

−R3 (x)R4 (x)R1 (x2) 3 − x22R2 (x2) + x1x2R2 (x2)

)

,

Li2

(

− (x1 − x2)x2 (R1 (x2)−R2 (x2))

−R3 (x)R4 (x)R1 (x2) 3 − x22R2 (x2) + x1x2R2 (x2)

)

. (D.2)

Family C.

Li2

(

1− x2
x1

)

,

Li2

(

1− x2
x3

)

,

Li2

(

x1
x1 − x2 + x3

)

,

Li2

(

x1x3
x2(x1 − x2 + x3)

)

,

Li2

(

(R1(x2) +R2(x2))
2

(R1(x3) +R2(x3))2

)

,

Li2

(

(R1(x1) +R2(x1))
2

(R1(x2) +R2(x2))2

)

,

Li2

( −4

(R3(x1) +R4(x1))2

)

,

Li2

(

16

(R1(x3) +R2(x3))4

)

,

Li2

( −4

(R1(x3) +R2(x3))2

)

,

Li2

(

16

(R1(x2) +R2(x2))4

)

,

Li2

( −4

(R1(x2) +R2(x2))2

)

,

Li2

(

16

(R1(x1) +R2(x1))4

)

,
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Li2

( −4

(R1(x1) +R2(x1))2

)

,

Li2

( −4

(R3(x3) +R4(x3))2

)

,

Li2

( −4(x1 − x2 + x3)

(R1(x1)R1(x3) +R5(x))2

)

,

Li2

(

R1(x1)(R1(x3) +R2(x3))

R1(x1)R1(x3) +R5(x)

)

,

Li2

(

R1(x2)(R1(x2) +R2(x2))

R1(x3)(R1(x3) +R2(x3))

)

,

Li2

(

R1(x1)R1(x3)(R1(x2) +R2(x2))

R1(x2)(R1(x1)R1(x3) +R5(x))

)

,

Li2

( −x1(R1(x2) +R2(x2))
2

(R2(x2)R3(x1) +R1(x2)R4(x1))2

)

,

Li2

(−(x1 − x2 + x3)(R1(x1) +R2(x1))
2

R1(x1)R1(x3) +R5(x))2

)

,

Li2

(

16

(R1(x1) +R2(x1))2(R1(x2) +R2(x2))2

)

,

Li2

(

16

(R1(x2) +R2(x2))2(R1(x3) +R2(x3))2

)

,

Li2

( −x1(R1(x2) +R2(x2))

R3(x1)(R2(x2)R3(x1) +R1(x2)R4(x1))

)

,

Li2

( −4R1(x1)

(R1(x3) +R2(x3))(R1(x1)R1(x3) +R5(x))

)

,

Li2

( −4R1(x2)

R1(x3)(R1(x2) +R2(x2))(R1(x3) +R2(x3))

)

,

Li2

( −16(x1 − x2 + x3)

(R1(x1) +R2(x1))2(R1(x1)R1(x3) +R5(x))2

)

,

Li2

( −4R1(x1)R1(x3)

R1(x2)(R1(x2) +R2(x2))(R1(x1)R1(x3) +R5(x))

)

,

Li2

(

4R3(x3)

(R1(x2) +R2(x2))(R2(x2)R3(x3) +R1(x2)R4(x3))

)

,

Li2

( −16x1
(R1(x2) +R2(x2))2(R2(x2)R3(x1) +R1(x2)R4(x1))2

)

,

Li2

( −4x1
(R1(x2) +R2(x2))R3(x1)(R2(x2)R3(x1) +R1(x2)R4(x1))

)

,

Li2

( −4x3
(R1(x2) +R2(x2))R3(x3)(R2(x2)R3(x3) +R1(x2)R4(x3))

)

. (D.3)
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Family D.

Li2

(

x2 − 4

x3 − 4

)

,

Li2

(

x1 − 4

x2 − 4

)

,

Li2

(

R1 (x3)

R2 (x3)

)

,

Li2

(

−R1 (x3)

R2 (x3)

)

,

Li2

(

R5(x)

R1 (x3)R2 (x1)

)

,

Li2

(

− R5(x)

R1 (x3)R2 (x1)

)

,

Li2

(

R2 (x2)

R1 (x2) +R2 (x2)

)

,

Li2

(

R2 (x1)

R1 (x1) +R2 (x1)

)

,

Li2

(

− 4 (x2 − 4)

(x1 − 4) (x3 − 4)

)

,

Li2

(

16

(R1 (x1) +R2 (x1)) 4

)

,

Li2

(

16

(R1 (x2) +R2 (x2)) 4

)

,

Li2

(

16

(R1 (x3) +R2 (x3)) 4

)

,

Li2

(

R1 (x1)R1 (x3)R2 (x2)

R1 (x2)R5(x)

)

,

Li2

(

R1 (x1)R1 (x3) +R5(x)

R1 (x3)R2 (x1) +R5(x)

)

,

Li2

(

R1 (x1)R1 (x3) +R5(x)

R1 (x1)R2 (x3) +R5(x)

)

,

Li2

(

R5(x)

R1 (x1)R1 (x3) +R5(x)

)

,

Li2

(

R5(x)

R1 (x1)R2 (x3) +R5(x)

)

,

Li2

(

− R1 (x2)R5(x)

R1 (x1)R1 (x3)R2 (x2)

)

,

Li2

(

4

R2 (x1) (R1 (x1) +R2 (x1))

)

,

Li2

(

4

R2 (x2) (R1 (x2) +R2 (x2))

)

,
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Li2

(

R1 (x1)R1 (x3) +R5(x)

R1 (x3) (R1 (x1) +R2 (x1))

)

,

Li2

(

R2 (x3) (R1 (x1)R1 (x3) +R5(x))

(R1 (x3) +R2 (x3))R5(x)

)

,

Li2

(

R1 (x1)R1 (x3) (R1 (x2) +R2 (x2))

R1 (x2) (R1 (x1)R1 (x3) +R5(x))

)

,

Li2

(

R1 (x2) (R1 (x1)R1 (x3) +R5(x))

R1 (x1)R1 (x3)R2 (x2) +R1 (x2)R5(x)

)

. (D.4)

E One-fold integral representations

We consider a system of differential equations for a set of integrals f(x, ǫ) in canonical

form [34] defined by a matrix Ã(x),

df (i)(x) = dÃ(x)f (i−1)(x) . (E.1)

If some boundary values f (i)(0) and a parametrization of the integration path are provided,

the equations can be readily integrated. The integration path goes from the boundary

point to x. If the boundary point is x = 0 a convenient parametrization is x(α) = xα with

α ∈ [0, 1]. The solution reads

f (i)(x) =

∫ 1

0
dα (∂αÃ(α))f

(i−1)(α) + f (i)(0) . (E.2)

Performing an integration by parts we can reduce the weight of the functions involved,

f (i)(x) = Ã(1)

(∫ 1

0
dα (∂αÃ(α))f

(i−2)(α) + f (i−1)(0)

)

− Ã(0)f (i−1)(0)

−
∫ 1

0
dα Ã(α)(∂αÃ(α))f

(i−2)(α) + f (i)(0) .

(E.3)

If the weight-two functions are known analytically, weight-three functions can be computed

numerically using eq. (E.2), while the weight-four functions are computed via eq. (E.3). In

general the matrix Ã(x) and the functions f(x, ǫ) may have singular behavior for x → 0

(α → 0), so that one has to distinguish different cases in order to properly define the

previous expression. If the boundary values are f(0, ǫ) = 0 (as for most of the integrals

discussed in this paper, see section 3.2), eq. (E.3) is well-defined (this is the case also if

Ã(0) is singular, since f (i−1)(0) vanish in the same limit and the second term on the right

hand side vanishes).

On the other hand, when f(0, ǫ) is singular, eq. (E.3) is not defined. Nevertheless in our

case all the divergent integrals are factorisable into products of one-loop integrals, which are

already known analytically to all orders of ǫ [24, 79]. We then need to define the integrals

that, via eq. (E.3), depend on those with singular boundary values. Assume that integral

fk(x, ǫ) has a singular boundary condition fk(0, ǫ), and that it is known analytically to all

orders of ǫ. Consider an integral fn(x, ǫ), with n 6= k, with a regular boundary condition

– 40 –



J
H
E
P
1
2
(
2
0
1
6
)
0
9
6

fn(0, ǫ). Using eq. (E.2) we can write it as,

f (i)
n (x) =

∑

m 6=k

∫ 1

0
dα (∂αÃnm(α))f (i−1)

m (α)+

∫ 1

0
dα (∂αÃnk(α))f

(i−1)
k (α)+f (i)

n (0) , (E.4)

Since by assumption f
(i−1)
k (x) is known analytically, we can directly evaluate the second

integral on the right hand side. Also, the fact that fn(0, ǫ) is regular ensures that the second

integral is well-defined even if f
(i−1)
k (0) is singular. Finally we can perform an integration

by parts and reduce the other integrals to the form of (E.3).

Another exception is represented by integrals with regular but non-zero boundary con-

ditions, since the term Ã(0)f (i−1)(0) of eq. (E.3) would be ill-defined if Ã(0) was singular.

Again, in our case integrals with non-zero boundary conditions are factorized ones, so that

they are already known analytically to all orders, and we can proceed as explained above

for the case of singular boundary conditions.

F Maximal cut of the elliptic sectors

We show that the maximal cut [35, 89] of IA1,1,0,1,1,1,1,0,0 provides useful information about

the class of functions needed to represent the result. We cut the six visible propagators.

We parametrize the two loop momenta using the spinor-helicity formalism [90] (see [91, 92]

for a different formalism),

kµ1 = z1p
µ
1 + z2p

µ
2 + z3

〈1−|γµ|2−〉
2〈13〉[32] + z4

〈2−|γµ|1−〉
2〈23〉[31] ,

kµ2 = z5p
µ
1 + z6p

µ
2 + z7

〈1−|γµ|2−〉
2〈13〉[32] + z8

〈2−|γµ|1−〉
2〈23〉[31] .

(F.1)

We get the following two-fold integral result for the maximal cut,

Ī =
s13s23
s212

∫

dz6dz8
1√
F1 F2

, (F.2)

where the two factors under the square root are,

F1 = m2s13s23 − s12z8 ((s12 + s23) z6 − s13 + z8) ,

F2 = m2s13s23 (2z6 + 1) 2 + 4m2 (s12 + s13) z6z8 − s12z8 ((s12 + s23) z6 − s13 + z8) .
(F.3)

The integrand is the square root of a quartic polynomial in z8, with four different roots.

This means that the integrand has two genuine branch cuts that cannot be removed by

any change of variables, yielding an elliptic integral upon integration [59, 93].

For completeness let us also show that localizing the two loops individually gives a con-

sistent result. First we may localize the integration momentum k1 by cutting propagators

1,2,5,6 (using the numbering of (A.1)). This yields the result,

Ībox-cut = s212

∫

d4k2
(iπ2)2

1

J(k2)
(

m2 − (k2 + p12)2
) (

m2 − (k2 − p3)2
) , (F.4)
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where the Jacobian of the contour deformation J(k2) reads,

J(k2) = s212

√

s12(s12(2p1 · k2 + k22 +m2)2 − 4m2(k22s12 − 4p1 · k2 p2 · k2)) . (F.5)

We note that in the limit m2 → 0 the Jacobian reduces to,

J(k2)|m2→0 = s312(k2 + p1)
2 , (F.6)

reproducing the well known result for the cut of the massless case.

Localizing the contour onto the two genuine propagators of (F.4), will yield an ex-

pression similar to (F.2) — an inverse square root of a quartic polynomial with no re-

peated roots.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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