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1 Introduction

The superstring theory is a candidate for the unified theory of the fundamental interactions

including quantum gravity. There are strings and branes in the superstring theory. Our

universe can be described by the strings and branes in a unified way at the low energy limit.

The stability of the branes is preserved by supersymmetry (SUSY) and conserved Ramond-

Ramond charges. We can avoid unstable tachyons by SUSY. Further, the conserved charges

guarantee the number of branes. Antisymmetric tensor (p-form) gauge fields are coupled

to the conserved charges of the branes.

One of the most important issues in the superstring theory is to construct realistic

four-dimensional (4D) effective theories. Since the superstring theory is a ten-dimensional

theory, 4D effective theories are obtained by compactifying extra six dimensions. 4D N = 1

supergravity (SUGRA) is a candidate for the effective theories. This theory consists of

chiral fermions as well as gravity. Thus, we can embed the standard model particles into

the theory. Further, the stability of the theory is ensured by SUSY.

Thus, it is important to consider p-form gauge fields in 4D N = 1 SUGRA [1–11].

In particular, we study the p-form gauge fields which can be regarded as dimensionally

reduced ones from higher dimensions. Such p-form gauge fields differ from those of just

defined in 4D. Because the original gauge transformation laws of the p-form gauge fields

are given in higher dimensions, the gauge transformations of the p-form gauge fields should

contain different rank forms in 4D. The structure of the transformations is called a tensor

hierarchy [12–15].
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In 4D N = 1 global SUSY, Becker et al. constructed such Abelian tensor hierarchy

in superspace [16]. They showed Chern-Simons (CS) actions.1 The CS actions are con-

structed by integrands which are proportional to p-form gauge fields. Since the different

ranked tensors are related each other by the tensor hierarchy, each of the integrands is not

independent. The internal gauge invariance requires the relations between the integrands.

They showed the relations in a systematic manner, which is called descent formalism. The

descent formalism relates the integrands each other by derivatives. The CS actions are

important because they are related to the anomaly cancellation in 4D [18–20].

In this paper, we embed the CS actions of Abelian tensor hierarchy obtained in ref. [16]

into 4D N = 1 SUGRA. We use 4D N = 1 conformal superspace formalism [21]. This

formalism has larger gauge symmetries than superconformal tensor calculus [22–30] and

Poincaré superspace formalism [31, 32]. Superconformal tensor calculus and Poincaré su-

perspace formalism are obtained from the conformal superspace formalism by using their

correspondences [21, 33, 34]. The CS actions are constructed by the prepotentials of the

p-form gauge superfields in the presence of the tensor hierarchy.2 We obtain the prepo-

tentials by using so-called covariant approach, which are shown in our previous paper [35].

In the covariant approach, we introduce p-form gauge superfields and their field strength

superfields in the superspace. The field strength superfields have some constraints, since

they have superfluous degrees of freedom. We obtain the prepotentials as the solutions to

the constraints. The CS actions in 4D N = 1 SUGRA would be useful to discuss the roles

of the p-form gauge fields, e.g. in cosmology [36, 37].

In the conformal superspace, the derivations of the solutions to the constraints are

mostly the same as the case of the global SUSY in ref. [2]. This is because superconformally

covariant spinor derivatives satisfy the same anti-commutation relations as those of global

SUSY. Moreover, we can naturally extend the descent formalism of the CS actions in

global SUSY [16] into the conformal superspace, since the relation between D- and F-term

integrations in the conformal superspace are quite similar to the global SUSY case.

This paper is organized as follows. In section 2, we briefly review the covariant ap-

proach to Abelian tensor hierarchy in 4DN = 1 conformal superspace. The prepotentials of

p-form gauge superfields are obtained in section 3. We show the internal gauge transforma-

tion laws of the prepotentials. Section 4 is devoted to constructing the CS actions of the ten-

sor hierarchy. In particular, the descent formalism in the conformal superspace is discussed.

Finally, we conclude this paper in section 5. Throughout this paper, we use the terms

“gauge superfields”, “field strengths superfields”, and “gauge parameter superfields” are

simply written as “gauge fields”, “field strengths”, and “gauge parameters”, respectively.

2 Review of the covariant approach

We briefly review so-called covariant approach to Abelian tensor hierarchy in 4D N = 1

conformal superspace discussed in ref. [35]. Covariant approach is an approach to con-

structing supersymmetric theories of p-form gauge fields in superspace.

1They also showed CS actions in the case of non-Abelian tensor hierarchy [17].
2In this paper, we use the term “prepotentials” to refer to superfields which consist of the bosonic gauge

fields and field strengths as well as their superpartners.
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We use the notations and conventions of ref. [35] except the normalizations of the

superfields Y I3 and LI2 , which are the same as GS and HM in ref. [16], respectively.

2.1 Conformal superspace

We firstly review conformal superspace formalism to construct SUGRA [21]. Superspace is

space which is spanned by the ordinary spacetime coordinates xm and the Grassmannian

coordinates (θµ, θ̄µ̇). Here, the indices m,n, . . . are used to refer to curved vector indices.

The indices µ, ν, . . . and µ̇, ν̇, . . . denote curved undotted and dotted spinor indices, re-

spectively. In the superspace, SUSY transformations are understood as the translations to

Grassmannian coordinates. Thus, we simply denote these coordinates at the same time:

zM = (xm, θµ, θ̄µ̇), where we use Roman capital indices M,N, . . . for both of curved vector

and spinor indices.

Conformal superspace is superspace where the superconformal symmetry is introduced

as a gauge symmetry. The generators of the superconformal symmetry are spacetime trans-

lations Pa, SUSY transformations (Qα, Q̄
α̇), Lorentz transformations Mab, dilatation D,

chiral rotation A, conformal boosts Ka, and conformal SUSY transformations (Sα, S̄
α̇).

Here, Roman letters a, b, . . . denote flat vector indices. Greek letters α, β, . . . and α̇, β̇, . . .

denote flat spinor indices. All of the generators of the superconformal symmetry are de-

noted as XA, where we use calligraphic indices A,B, . . . to refer to the generators of the

superconformal symmetry. In the conformal superspace, both of Pa and (Qα, Q̄
α̇) are un-

derstood as the translations. Thus, we simply express Pa and (Qα, Q̄
α̇) at the same time:

PA := (Pa, Qα, Q̄
α̇). Here, capital Roman letters A,B, . . . are used for both of flat vector

and spinor indices. Similarly, we denote both of Ka and (Sα, S̄
α̇) as KA := (Ka, Sα, S̄

α̇).

The (anti-)commutation relations of the generators are summarized in ref. [21].

The gauge fields of the superconformal symmetry are given by

hM
AXA := EM

APA +
1

2
φM

abMba +BMD +AMA+ fM
AKA, (2.1)

where we assume that the vielbein EM
A is invertible, and the inverse of the vielbein is

denoted as EA
M : EM

AEA
N = δM

N and EA
MEM

B = δA
B. Note that the gauge fields

hM
A are also expressed by differential forms on the conformal superspace as

hA = dzMhM
A. (2.2)

Here, we use the convention of ref. [31] for the differential forms. The differential forms

dzM = (dxm, dθµ, dθ̄µ̇) are bases of the superforms on the conformal superspace. The gauge

transformation parameters are denoted as

ξAXA = ξAPA +
1

2
ξ(M)abMba + ξ(D)D + ξ(A)A+ ξ(K)AKA. (2.3)

We denote infinitesimal superconformal transformations as δG(ξ
AXA). The transformation

laws of the gauge fields hM
A under the superconformal transformations other than PA are

given by

δG(ξ
B′

XB′)hM
A = ∂MξB

′

δB′
A + hM

CξB
′

fB′C
A. (2.4)
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Here, primed calligraphic indices A′,B′, . . . are used to refer to the generators of the su-

perconformal symmetry other than PA: XA′ = (Mab, D,A,KA). The coefficients fCB
A are

the structure constants of the superconformal symmetry: [XC , XB] = −fCB
AXA, where we

use the convention of “implicit grading” [21].

We define SUSY transformations and spacetime translations in the conformal super-

space. In the conformal superspace, SUSY transformations are regarded as translations to

the Grassmannian coordinates. Using field-independent parameters ξA, we relate infinites-

imal PA-transformations δG(ξ
APA) to the general coordinate transformations δGC(ξ

M ) as

δG(ξ
APA) = δGC(ξ

M )− δG(ξ
MhM

B′

XB′). (2.5)

Here, the parameters ξM are related to ξA as ξM = ξAEA
M . The actions of PA-

transformations on a superfield without curved indices Φ define superconformally covariant

derivatives ∇A:

δG(ξ
APA)Φ = ξA∇AΦ = ξAEA

M (∂M − hM
B′

XB′)Φ. (2.6)

2.2 Covariant approach to Abelian tensor hierarchy

Next, we introduce p-form gauge fields in the conformal superspace, where p runs over p =

−1, 0, 1, 2, 3, 4. We assume that (−1)-forms are zero as in ordinary differential geometry.

The p-form gauge fields are denoted as

C
Ip
[p] =

1

p!
dzM1 ∧ · · · ∧ dzMpC

Ip
Mp...M1

=
1

p!
EA1 ∧ · · · ∧ EApC

Ip
Ap...A1

. (2.7)

Here, Ip are indices of internal degrees of freedom, which run over Ip = 1, . . . , dimVp.

The ranks of the differential forms are represented as [p]. The XA′-transformations of the

p-form gauge fields are defined as

δG(ξ
A′

XA′)C
Ip
Mp...M1

= 0. (2.8)

Thus, the XA′-transformations of C
Ip
Ap...A1

are given by the XA′-transformations of vielbein

EM
A:

δG(ξ
A′

XA′)C
Ip
Ap...A1

= −EAp

N (δG(ξ
A′

XA′)EN
B)C

Ip
BAp−1...A1

− · · · − EA1

N (δG(ξ
A′

XA′)EN
B)C

Ip
Ap...A2B

.
(2.9)

The explicit transformation of the vielbein is summarized in ref. [35]. The infinitesimal

internal gauge transformations δT (Λ) of the p-form gauge fields are given by

δT (Λ)C
Ip
[p] = dΛ

Ip
[p−1] + (q(p) · Λ[p])

Ip . (2.10)

Here, d denotes the exterior derivative in the conformal superspace, and Λ is the set of the

real gauge parameter superforms: Λ = (ΛI1
[0], . . . ,Λ

I4
[3]). We assume that Λ

Ip
Mp−1...M1

are field

independent parameters. Note that Λ
Ip
Ap−1...A1

= EAp−1

Mp−1 · · ·EA1

M1Λ
Ip
Mp−1...M1

are field

dependent parameters. Ordinary Abelian gauge transformations are expressed by the first

– 4 –
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term in eq. (2.10). Shifts of the gauge fields are represented by the second term due to the

tensor hierarchy. q(p) are real linear maps from the vector space Vp+1 to the vector space

Vp. The expressions (q(p) · Λ[p])
Ip mean (q(p))

Ip
Ip+1

Λ
Ip+1

[p] . Note that q(p) can be understood

as the exterior derivative on the extra dimensions [16].

The PA-transformations are redefined with respect to the internal gauge transforma-

tions in the presence of the tensor hierarchy. The redefinitions are given by

δG(ξ
APA) = δGC(ξ

M )− δG(ξ
MhM

B′

XB′)− δT (Λ(ξ)). (2.11)

Here, Λ(ξ) is defined by

Λ(ξ) = (ιξC
I1
[1], . . . , ιξC

I4
[4]), (2.12)

and ιξ is a interior product

ιξC
Ip
[p] =

1

(p− 1)!
dzM1 ∧ · · · ∧ dzMp−1ξMpC

Ip
Mp...M1

. (2.13)

In the presence of the tensor hierarchy, the field strengths of the p-form gauge fields

are given by using the exterior derivative and q’s. The definitions of the field strengths of

the p-form gauge fields are given as follows:

F
Ip
[p+1] = dC

Ip
[p] − (q(p) · C[p+1])

Ip . (2.14)

The field strengths are transformed under the internal gauge transformations as

δT (Λ)F
Ip
[p+1] = −(q(p) · q(p+1) · Λ[p+1])

Ip . (2.15)

The invariances of the field strengths under the internal transformations require conditions

on the q’s as

q(p) · q(p+1) = 0. (2.16)

The covariant derivatives on the field strengths with Lorentz indices are given by

∇BF
Ip
Ap+1...A1

= EB
M (∂M − hM

A′

XA′)F
Ip
Ap+1...A1

. (2.17)

Note that the covariant derivatives ∇B on the field strengths F
Ip
Ap+1...A1

are superconfor-

mally covariant and internally invariant derivatives because F
Ip
Ap+1...A1

are invariant under

the internal gauge transformations. The Bianchi identities for the field strengths are given

by

0 = dF
Ip
[p+1] + (q(p) · F[p+2])

Ip . (2.18)

We summarize the explicit forms of the gauge fields, field strengths and Bianchi identities

in table 1.

We impose some constraints on the field strengths to eliminate degrees of freedoms

because there are superfluous degrees of freedoms in the field strengths in the superspace.

The constraints are the same ones as the case without the tensor hierarchy [2, 3, 32]. We

exhibit the constraints in table 2. In this table, the indices α, β, . . . denote both undotted

and dotted spinor indices: α = (α, α̇). Note that the constraints are covariant under both

superconformal and internal gauge transformations.
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form gauge field field strength Bianchi identity

4-form U I4 GI4 = dU I4 = 0 −

3-form CI3 ΣI3 = dCI3 − (q(3) · U)I3 dΣI3 = 0

2-form BI2 HI2 = dBI2 − (q(2) · C)I2 dH = −(q(2) · Σ)I2

1-form AI1 F I1 = dAI1 − (q(1) ·B)I1 dF I1 = −(q(1) ·H)I1

0-form f I0 gI0 = df I0 − (q(0) ·A)I0 dgI0 = −(q(0) · F )I0

−1-form 0 ωI−1 = −(q(−1) · f)I−1 dωI−1 = −(q(−1) · g)I−1

Table 1. The p-forms, their corresponding field strengths and Bianchi identities. We impose that

the field strengths of the 4-form gauge fields are zero as in table 2.

form constraints

4-form GI4
EDCBA = 0

3-form ΣI3
δ γ βA = ΣI3

δγ̇ba = 0

2-form HI2
γ β α = HI2

γβa = HI2
γ̇β̇a

= 0, HI2
γβ̇a

= i(σa)γβ̇L
I2

1-form F I1
αβ = 0

0-form gI0α = i∇αΨ
I0 , gI0

β̇
= −i∇̄β̇Ψ

I0 , KAΨ
I0 = 0

Table 2. The constraints on the field strengths.

We solve the Bianchi identities under the constraints. As a result, the field strengths

are expressed by the irreducible superfields. The irreducible superfields of the 2- and 0-form

gauge fields are LI2 and ΨI0 in table 2. We find the irreducible superfields of 3- and 1-form

gauge fields Y I3 and W I1
α as follows, respectively:

ΣI3δ̇γ̇
ba = 4(σ̄baǫ)

δ̇γ̇Y I3 , ΣI3
δγba = 4(σbaǫ)δγ Ȳ

I3 . (2.19)

F I1
β̇,αα̇

= −2ǫβ̇α̇W
I1
α , F I1

β,αα̇ = −2ǫβαW̄
I1
α̇ . (2.20)

Note that the Weyl weights ∆ and chiral weights w of the irreducible superfields are as

follows:

Y I3 : (∆, w) = (3, 2),

LI2 : (∆, w) = (2, 0),

W I1
α : (∆, w) = (3/2, 1),

ΨI0 : (∆, w) = (0, 0).

(2.21)

Here, Weyl and chiral weights of a superfield Φ are given by

DΦ = ∆Φ, AΦ = iwΦ. (2.22)

Hereafter, we use the term “conformal weights” to refer to “ Weyl and chiral weights”.
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The tensor hierarchy deforms the properties of the irreducible superfields such as the

linear multiplet conditions for LI2 and reality conditions for W I1
α :

−
1

4
∇̄2LI2 = −(q(2) · Y )I2 , −

1

4
∇2LI2 = −(q(2) · Ȳ )I2 ,

1

2i
(∇αW I1

α − ∇̄α̇W̄
I1α̇) = −(q(1) · L)I1 ,

−
1

4
∇̄2∇αΨ

I0 = −(q(0) ·Wα)
I0 , −

1

4
∇2∇̄α̇Ψ

I0 = −(q(0) · W̄α̇)
I0 .

(2.23)

Note that the derivatives ∇A on the superfields Y I3 , LI2 , W I1
α , and ΨI0 are superconfor-

mally covariant and internally invariant derivatives because of the properties in eq. (2.17).

3 Prepotentials

In this section, we construct the prepotentials of the p-form gauge fields in the presence of

the tensor hierarchy. The prepotentials and their gauge transformation laws are needed to

construct CS actions. The prepotentials are obtained by solving the constraints on the field

strengths in certain gauge-fixing conditions. The relations between the prepotentials and

the irreducible superfields are also obtained by the relations of the gauge fields and field

strengths in eq. (2.14). The gauge transformations of the prepotentials are determined by

the gauge transformations which leave the gauge-fixing conditions invariant.

3.1 Gauge-fixing conditions for the p-form gauge fields

We solve the constraints on the field strengths. Since the constraints in table 2 are gauge

covariant, we solve the constraints under the gauge-fixing conditions where some compo-

nents of the gauge fields are gauged away by using the definitions of the field strengths

F
Ip
[p+1] =

1

p!
EA1 ∧ · · · ∧ EAp ∧ EB∇BC

Ip
Ap...A1

+
1

p!2!
EA1 ∧ · · ·EAp−2 ∧ EB ∧ ECTCB

ApC
Ip
Ap...A1

+
1

(p+ 1)!
EA1 ∧ · · · ∧ EAp+1(q(p) · CAp+1...A1

)Ip ,

(3.1)

and the internal gauge transformation laws of the gauge fields

δT (Λ)C
Ip
[p] =

1

(p− 1)!
EA1 ∧ · · · ∧ EAp−1 ∧ EB∇BΛ

Ip
Ap−1...A1

+
1

(p− 1)!2!
EA1 ∧ · · ·EAp−2 ∧ EB ∧ ECTCB

Ap−1Λ
Ip
Ap−1...A1

+
1

p!
EA1 ∧ · · · ∧ EAp(q(p) · ΛAp...A1

)Ip .

(3.2)

Here, ∇A are covariant with respect to only the superconformal symmetry, and TCB
A are

the coefficients of torsion 2-form defined by

TA =
1

2
EB ∧ ECTCB

A = dEA − EC ∧ hB
′

fB′C
A. (3.3)
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form conditions on the gauge fields

4-form U I4
δ γ β A = U I4

δγ̇ba = 0

3-form CI3
γ β α = CI3

γβa = CI3
γ̇β̇a

= 0, CI3
γβ̇a

= i(σa)γβ̇X
I3

2-form BI2
β α = 0

1-form AI1
α = i∇αV

I1 , AI1
α̇ = −i∇̄α̇V

I1

Table 3. The gauge-fixing conditions on the gauge fields. The gauge-fixing conditions are imposed

in order of 4-, 3-, 2- and 1-form gauge fields.

The gauge-fixing conditions take the same form as the case of global SUSY without the

tensor hierarchy [2] because of the following three reasons. First, the constraints on the

following components of the torsion are the same as those of global SUSY (see ref. [21]):

Tγβ
A = 0, Tγ̇β̇

A = 0, Tγβ̇
a = 2i(σa)γβ̇ , Tγβ̇

α = 0, Tγb
A = 0, Tcb

a = 0. (3.4)

Second, as announced in section 1, the superconformally covariant spinor derivatives obey

the same anti-commutation relations as those of global SUSY:

{∇α,∇β} = 0, {∇̄α̇, ∇̄β̇} = 0, {∇α, ∇̄β̇} = −2i∇αβ̇ . (3.5)

Third, if we impose the gauge-fixing conditions and solve the constraints in order of 4-,

3-, 2, and 1-form, the gauge-fixing conditions are not deformed from the case of the absence

of the tensor hierarchy in ref. [2]. For example, we discuss the gauge-fixing conditions for

CI3
γβα. Since the field strengths of the 4-form gauge fields are the same as the case of the

absence of the tensor hierarchy, we fix some of the 4-form gauge fields, e.g., U I4
δγβα = 0.

Under the gauge-fixing conditions U I4
δγβα = 0, the field strengths of the 3-form gauge fields

ΣI3
δγβα are written as ΣI3

δγβα = ∇δC
I3
γβα + ∇γC

I3
δβα + ∇βC

I3
γδα + ∇αC

I3
δγβ . We find that the

terms (q(3) · Uδγβα)
I3 do not appear in the field strengths ΣI3

δγβα in this gauge. Thus, we

impose the same gauge-fixing conditions as the case of global SUSY without the tensor

hierarchy: CI3
γβα = 0, which are derived from the constraints ΣI3

δγβα = 0.

Therefore, the gauge-fixing conditions take the same ones as the case in which the

tensor hierarchy does not exist in global SUSY. The explicit forms are summarized in

table 3. In this table, XI3 and V I1 are real superfields, which are the prepotentials of the

3- and 1-form gauge fields, respectively.

3.2 Prepotentials: the solutions to the constraints

In this subsection, we show the prepotentials for the p-form gauge fields. Under the gauge-

fixing conditions and the constraints on the field strengths, the gauge fields are expressed

in terms of the prepotentials. We remark that the gauge-fixing conditions of p-form gauge

fields in table 3 have the same spinor structure as the constraints on the field strengths of

(p−1)-form gauge fields in table 2. Thus, we solve the constraints by the same procedure as

the Bianchi identities for the field strengths [35]. The conformal weights of the prepotentials

– 8 –



J
H
E
P
1
2
(
2
0
1
6
)
0
9
2

are also determined by using eq. (2.9). We exhibit the expressions of the gauge fields in

terms of the prepotentials as follows.

The 4-form gauge fields. The solutions to the gauge-fixing conditions and constraints

for the field strengths are the same as the case of the absence of the tensor hierarchy. The

prepotentials of the 4-form gauge fields are given as the 2-spinor/2-vector components:

U I4δ̇γ̇
ba = 4(σ̄baǫ)

δ̇γ̇ΓI4 , U I4
δγba = 4(σbaǫ)δγΓ̄

I4 . (3.6)

The prepotentials ΓI4 are primary superfields with conformal weights (∆, w) = (3, 2),

which are derived from the superconformal transformation laws of U I4
δ̇γ̇ba

in eq. (2.9). The

prepotential ΓI4 and Γ̄I4 are chiral and anti-chiral superfields, respectively:

∇̄α̇Γ
I4 = 0, ∇αΓ̄

I4 = 0. (3.7)

The other components the 4-form gauge fields are expressed in terms of the prepotentials

U I4δ̇
cba = +

1

2
(σ̄d)δ̇δǫdcba∇δΓ

I4 , U I4
δcba = −

1

2
(σd)δδ̇ǫdcba∇̄

δ̇Γ̄I4 , (3.8)

U I4
dcba =

i

8
ǫdcba(∇

2ΓI4 − ∇̄2Γ̄I4). (3.9)

The 3-form gauge fields. We find the prepotentials of the 3-form gauge fields XI3 in

the 2-spinor/1-vector component, where XI3 are real primary superfields with conformal

weights (∆, w) = (2, 0). The derivatives of the prepotentials give the other components of

the gauge fields as

CI3
γba = (σba)γ

δ∇δX
I3 , CI3γ̇

ba = (σ̄ba)
γ̇
δ̇∇̄

δ̇XI3 , (3.10)

CI3
cba =

1

8
ǫcbad(σ̄

d)δ̇δ[∇δ, ∇̄δ̇]X
I3 . (3.11)

The 2-form gauge fields. The prepotentials of the 2-form gauge fields are primary

superfields ΣI2
α and their conjugates Σ̄I2

α̇ . The prepotentials are found in the spinor/vector

components:

BI2
β,αα̇ = −2ǫβαΣ̄

I2
α̇ , BI2

β̇,αα̇
= −2ǫβ̇α̇Σ

I2
α . (3.12)

Here, ΣI2
α are primary superfields with conformal weights (∆, w) = (3/2, 1). The prepoten-

tial ΣI2
α and Σ̄I2

α̇ are chiral and anti-chiral superfields, respectively:

∇̄β̇Σ
I2
α = 0, ∇βΣ̄

I2
α̇ = 0. (3.13)

The 2-vector components are as follows:

BI2
ba =

1

2i

(

(σba)β
α∇βΣI2

α − (σ̄ba)
β̇
α̇∇̄β̇Σ̄

I2α̇
)

. (3.14)

The 1-form gauge fields. As in ordinary super QED case, the spinor components of

1-form gauge fields are given by real primary superfields V I1 in table 3. The conformal

weights of V I1 are (∆, w) = (0, 0). The vector components are expressed by

AI1
αα̇ =

1

2
[∇α, ∇̄α̇]V

I1 . (3.15)

We assume that V I1 are primary sueprfields: KAV
I1 = 0. This assumption and conformal

weights of V I1 are consistent with the KA-invariances of A
I1
α [29].
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form prepotentials and irreducible superfields

3-form Y I3 = −
1

4
∇̄2XI3 − (q(3) · Γ)I3 , Ȳ I3 = −

1

4
∇2XI3 − (q(3) · Γ̄)I3

2-form LI2 =
1

2i
(∇αΣI2

α − ∇̄α̇Σ̄
I2α̇)− (q(2) ·X)I2

1-form W I1
α = −

1

4
∇̄2∇αV

I1 − (q(1) · Σα)
I1 , W̄ I1

α̇ = −
1

4
∇2∇̄α̇V

I1 − (q(1) · Σ̄α̇)
I1

0-form ΨI0 =
1

2i
(ΦI0 − Φ̄I0)− (q(0) · V )I0

(−1)-form JI−1 = −(q(−1) · Φ)I−1

Table 4. The relations between the prepotentials and the irreducible superfields.

The 0-form gauge fields. The constraints on the field strengths of the 0-form are

satisfied if the gauge fields are real parts of chiral superfields ΦI0 , which are the prepotentials

of 0-form gauge fields:

f I0 =
1

2
(ΦI0 + Φ̄I0). (3.16)

Here, the conformal weights of ΦI0 are (∆, w) = (0, 0), and ΦI0 are assumed to be primary

superfields.

The relations between the prepotentials and the irreducible superfields. We

then find the relations between the prepotentials and the irreducible superfields. The

relations are found as follows. On the one hand, the irreducible superfields are given by

the components of the field strengths ΣI3
δγba, Σ

I3
δ̇γ̇ba

, HI2
γβ̇a

, F I1
βa, and gI0a . On the other hand,

the field strengths are expressed by the derivatives of the gauge fields in eq. (2.14), which

are now written in terms of the prepotentials. In addition, the field strengths of (−1)-form

gauge fields ωI−1 are given by the 0-form gauge fields f I0 as in table 1: ωI−1 = −(q(−1)·f)I−1 .

Since the 0-form gauge fields are expressed by the prepotential ΦI0 , the field strengths ωI−1

are now given by the real parts of chiral superfields JI−1 = −(q(−1) · Φ)I−1 :

ωI−1 =
1

2
(JI−1 + J̄I−1). (3.17)

Thus, we find the relations by using the definitions of the field strengths in terms of

gauge fields (2.14), the definitions of the superfields in eqs. (2.19), (2.20) and table 2.

The results are summarized in table 4. Note that the irreducible superfields for p-form

gauge fields are expressed by the prepotentials of p- and (p + 1)-form gauge fields due to

the tensor hierarchy.

3.3 The gauge transformation laws of the prepotentials

In this subsection, we show internal transformation laws of the prepotentials. The trans-

formation laws are important when we construct CS actions. We have solved the gauge

fields in terms of the prepotentials under the set of the gauge-fixing conditions. Although
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it seems that the gauge parameters are exhausted to fix the gauge fields, there are remain-

ing gauge parameters which preserve the gauge-fixing conditions in table 3 invariant. The

remaining gauge transformation laws are determined by the conditions for the gauge fields

which are gauged away in table 3:

0 = δT (Λ)C
Ip
[p] = dΛ

Ip
[p−1] + (q(p) · Λ[p])

Ip . (3.18)

We denote the remaining parameters as Θ = (ΘI1 ,ΘI2 ,ΘI3
α ,ΘI4). We determine the

properties of Θ’s and the gauge transformation laws of the prepotentials as follows.

The 4-form gauge fields. The gauge parameters are determined by the conditions so

that the gauge-fixing conditions in table 3 are invariant:

δT (Λ)U
I4
δ γ β A = 0, δT (Λ)U

I4
δγ̇ba = 0. (3.19)

The gauge transformations which preserve the gauge-fixing conditions are given by

ΛI4
γ β α = 0, ΛI4

γβa = 0, ΛI4
γ̇β̇a

= 0, ΛI4
γβ̇a

= i(σa)γβ̇Θ
I4 . (3.20)

Here, ΘI4 are real superfields. The prepotentials ΓI4 and Γ̄I4 are transformed by ΘI4 as

δT (Λ
I1 ,ΛI2 ,ΛI3 ,ΘI4)ΓI4 = −

1

4
∇̄2ΘI4 , δT (Λ

I1 ,ΛI2 ,ΛI3 ,ΘI4)Γ̄I4 = −
1

4
∇2ΘI4 , (3.21)

which are determined by the gauge transformation laws of U I4
δ̇γ̇ba

and U I4
δγba, respectively.

We can impose Wess-Zumino (WZ) gauge for the prepotentials ΓI4 by using ΘI4 as

follows:

ΓI4 | = 0, ∇αΓ
I4 | = 0, ∇̄α̇Γ̄

I4 | = 0, (∇2ΓI4 + ∇̄2Γ̄I4)| = 0. (3.22)

Here, the symbol of “|” means θ = θ̄ = 0 projection.

The 3-form gauge fields. We determine the remaining gauge parameters so that the

gauge-fixing conditions in table 3 are invariant as follows:

δT (Λ
I1 ,ΛI2 ,ΛI3 ,ΘI4)CI3

γ β α = 0,

δT (Λ
I1 ,ΛI2 ,ΛI3 ,ΘI4)CI3

γβa = 0, δT (Λ
I1 ,ΛI2 ,ΛI3 ,ΘI4)CI3

γ̇β̇a
= 0.

(3.23)

The invariances are preserved by the following conditions for the gauge parameters:

ΛI3
β α = 0. (3.24)

Note that the gauge parameters ΘI4 do not change the gauge-fixing conditions in eq. (3.23)

under the conditions for the gauge parameters in eq. (3.20) even if the tensor hierarchy

exists. Solving the constraints on the parameters, we obtain that the remaining gauge

parameters are

ΛI3
β̇,αα̇

= −2ǫβ̇α̇Θ
I3
α , ΛI3

β,αα̇ = −2ǫβαΘ̄
I3
α̇ . (3.25)
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Here, ΘI3
α and Θ̄I3

α̇ are chiral and anti-chiral superfields, respectively:

∇̄β̇Θ
I3
α = 0, ∇βΘ̄

I3
α̇ = 0. (3.26)

The gauge transformation laws of the prepotential XI3 are determined by those of CI3
γβ̇a

:

δT (Λ
I1 ,ΛI2 ,ΘI3

β ,ΘI4)XI3 =
1

2i
(∇αΘI3

α − ∇̄α̇Θ̄
I3α̇) + (q(3) ·Θ)I3 . (3.27)

We find that XI3 are also transformed by the remaining gauge parameters ΘI4 due to the

tensor hierarchy.

The WZ gauge conditions for the prepotentials XI3 can be imposed by the parameters

ΘI3
α as follows:

XI3 | = 0, ∇αX
I3 | = 0, ∇̄α̇X

I3 | = 0. (3.28)

Note that the WZ conditions in eq. (3.28) are imposed under the WZ gauge conditions for

the prepotentials of 4-form gauge fields in eq. (3.22).

The 2-form gauge fields. The remaining parameters are found by the conditions so

that the gauge-fixing conditions in table 3 are invariant:

δT (Λ
I1 ,ΛI2 ,ΘI3

γ ,ΘI4)BI2
β α = 0. (3.29)

By using the gauge invariances, we determine the remaining parameters ΘI2 as

ΛI2
α = i∇αΘ

I2 , ΛI2
α̇ = −i∇̄α̇Θ

I2 , ΛI2
αα̇ =

1

2
[∇α, ∇̄α̇]Θ

I2 , (3.30)

where ΘI2 are real superfields. Again, ΘI3
α do not affect the gauge-fixing conditions in

eq. (3.29) in the presence of the tensor hierarchy. The gauge transformation laws of the

prepotential ΣI2
α are given by

δT (Λ
I1 ,ΘI2 ,ΘI3

β ,ΘI4)ΣI2
α = −

1

4
∇̄2∇αΘ

I2 + (q(2) ·Θα)
I2 ,

δT (Λ
I1 ,ΘI2 ,ΘI3

β ,ΘI4)Σ̄I2
α̇ = −

1

4
∇2∇̄α̇Θ

I2 + (q(2) · Θ̄α̇)
I2 .

(3.31)

Under the conditions in eqs. (3.22) and (3.28), we can go to theWZ gauge conditions for ΣI2
α :

ΣI2
α | = 0, Σ̄I2

α̇ | = 0, (∇αΣI2
α + ∇̄α̇Σ̄

I2α̇)| = 0. (3.32)

The 1-form gauge fields. The gauge transformations for the 1-form gauge fields are the

same as in ordinary super QED case except the shifts due to the tensor hierarchy. We find

that the gauge transformations which leave the gauge-fixing conditions in table 3 invariant

are given by

ΛI1 =
1

2
(ΘI1 + Θ̄I1), (3.33)

Here, ΘI1 and Θ̄I1 are chiral and anti-chiral superfields, respectively:

∇̄α̇Θ
I1 = 0, ∇αΘ̄

I1 = 0. (3.34)
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The gauge transformations of the 1-form prepotentials are given by the imaginary parts of

ΘI1 and the shifts by the gauge parameters of 2-form gauge fields ΘI2 :

δT (Θ
I1 ,ΘI2 ,ΘI3

α ,ΘI4)V I1 =
1

2i
(ΘI1 − Θ̄I1) + (q(1) ·Θ)I1 . (3.35)

We can impose the WZ gauge conditions for the prepotentials V I1 under the conditions in

eqs. (3.22), (3.28) and (3.32):

V I1 | = 0, ∇αV
I1 | = 0, ∇̄α̇V

I1 | = 0, ∇2V I1 | = 0, ∇̄2V I1 | = 0. (3.36)

The 0-form gauge fields. The gauge transformation laws of the prepotentials of 0-form

are given by the chiral shifts by the gauge parameters ΘI1 :

δT (Θ
I1 ,ΘI2 ,ΘI3

α ,ΘI4)ΦI0 = (q(0) ·Θ)I0 . (3.37)

Again, the shifts come from the tensor hierarchy.

4 Chern-Simons actions

In this section, we construct CS actions in the conformal superspace. The CS actions of the

tensor hierarchy is related to anomaly cancellations in low energy effective theories. The

construction of the CS actions in the conformal superspace is quite similar to the global

SUSY case [16]. CS actions are constructed by the combinations of the prepotentials and

irreducible superfields Y I3 , LI2 ,W I1
α ,ΨI0 , JI−1 and their conjugates.

To construct the CS actions, we use the descent formalism. This formalism systemat-

ically gives the CS actions from the internal transformation laws of the prepotentials. We

show that the descent formalism that was given in ref. [16] is straightforwardly extended

in the case of the conformal superspace.

Descent formalism in global SUSY. We briefly review the descent formalism in global

SUSY in ref. [16]. The descent formalism in global SUSY is given by the combinations of

the prepotentials and irreducible field strengths as

SCS =

∫

d4xd4θ(V I1cI1 −XI3cI3) + Re

(

i

∫

d4xd2θ(ΦI0cI0 +ΣI2αcI2α + ΓI4cI4)

)

. (4.1)

Here, c’s are polynomials of the irreducible superfields Y I3 , LI2 , W I1
α , ΨI0 , JI−1 and their

conjugates. The superfields cI1 and cI3 are real superfields, and cI0 , cI2α, and cI4 are chiral

superfields. The internal gauge invariance requires that c’s are related each other as

−
1

4
D̄2cI1 = (q(0))I0I1cI0 ,

1

2i

(

DαcI2α − D̄α̇c̄
α̇
I2

)

= −(q(1))I1I2cI1 ,

−
1

4
D̄2DαcI3 = (q(2))I2I3cI2α,

1

2i
(cI4 − c̄I4) = −(q(3))I3I4cI3 .

(4.2)
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Here, the derivatives Dα and D̄α̇ are the covariant spinor derivatives in global SUSY:

Dα = ∂α + i(σa)αα̇θ̄
α̇∂a and D̄α̇ = −∂̄α̇ − iθα(σa)αα̇∂a. The internal gauge invariances are

obtained by the relation between the superspace integrations:

∫

d4xd4θV = −
1

4

∫

d4xd2θD̄2V = −
1

4

∫

d4xd2θ̄D2V, (4.3)

where V is a real superfield.

Descent formalism in the conformal superspace. We now discuss the descent for-

malism in the conformal superspace. The descent formalism in the conformal superspace

is given by a natural extension of global SUSY case as

SCS =

∫

d4xd4θE(V I1cI1 −XI3cI3) + Re

(

i

∫

d4xd2θE(ΦI0cI0 +ΣI2αcI2α + ΓI4cI4)

)

,

(4.4)

where E and E are the density of the whole superspace and chiral subspace, respectively.

The integrations
∫

d4xd4θE and
∫

d4xd2θE are called D- and F-term integration, respec-

tively [21]. The superfields c’s are polynomials of the irreducible superfields Y I3 , LI2 , W I1
α ,

ΨI0 , JI−1 and their conjugates. Again, cI1 and cI3 are real superfields, and cI0 , cI2α, and

cI4 are chiral superfields. The c’s have two type of conditions. One is the condition that is

required by the superconformal invariance. The conditions are that all the c’s are primary

superfields, and the conformal weights of them are as follows:

cI0 : (∆, w) = (3, 2),

cI1 : (∆, w) = (2, 0),

cI2α : (∆, w) = (3/2, 1),

cI3 : (∆, w) = (0, 0),

cI4 : (∆, w) = (0, 0).

(4.5)

The other is the condition that is required by the internal gauge invariance of the tensor

hierarchy as in the global SUSY case. The internal gauge invariance requires the same

conditions as those of ref. [16]:

−
1

4
∇̄2cI1 = (q(0))I0I1cI0 ,

1

2i

(

∇αcI2α − ∇̄α̇c̄
α̇
I2

)

= −(q(1))I1I2cI1 ,

−
1

4
∇̄2∇αcI3 = (q(2))I2I3cI2α,

1

2i
(cI4 − c̄I4) = −(q(3))I3I4cI3 .

(4.6)

The internal gauge invariances are obtained by superspace partial integrations of the inte-

grands. In the conformal superspace, the relation between F-term and D-term actions is

∫

d4xd4θEV = −
1

4

∫

d4xd2θE∇̄2V = −
1

4

∫

d4xd2θ̄Ē∇2V. (4.7)
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Here, V is a primary scalar superfield with the conformal weight (∆, w) = (2, 0) [21].

Although the derivation of the relation between D- and F-term integrations is a bit

nontrivial (see ref. [21]), the relation is obtained by replacing d4xd4θ, d4xd2θ, Dα and D̄α̇

in eq. (4.3) with d4xd4θE, d4xd2θE , ∇α and ∇̄α̇, respectively. This is a strong point of

the conformal superspace approach: the relations of the integrals are quite similar to the

case of the global SUSY.

We can go to Poincaré SUGRA by imposing the superconformal gauge-fixing [21, 29].

Because the CS actions are superconformally invariant without a compensator, the CS

actions are not changed by the superconformal gauge-fixing conditions.

We finally show an example of the CS actions. We consider an action which is a natural

extension of the action proposed in ref. [16]:

SCS :=

∫

d4xd4θE(αI1I2V
I1LI2 − αI3I0X

I3ΨI0)

+ Re

(

i

∫

d4xd2θE(αI0I3Φ
I0Y I3 + αI2I1Σ

I2αW I1
α + αI4I−1

ΓI4JI−1)

)

.

(4.8)

Here, α’s are constant parameters. This action is obtained by choosing c’s as follows:

cI0 = αI0I3Y
I3 , cI1 = αI1I2L

I2 , cI2α = αI2I1W
I1
α , cI3 = αI3I0Ψ

I0 , cI4 = αI4I−1
JI−1 .

(4.9)

This action satisfies the conformal weight conditions in eq. (4.5) by using the conformal

weights of the irreducible superfields in eq. (2.21) and those of ΦI0 (for JI−1). The internal

invariance in eq. (4.6) requires the same conditions as the case of global SUSY [16]:

αI1I2(q
(2))I2I3 = −αI0I3(q

(0))I0I1 ,

αI2I1(q
(1))I1J2 = αI1J2(q

(1))I1I2 ,

αI3I0(q
(0))I0I1 = −αI2I1(q

(2))I2I3 ,

αI4I−1
(q(−1))

I−1

I0
= αI3I0(q

(3))I3I4 .

(4.10)

5 Conclusion

In this paper, we have constructed the CS actions of Abelian tensor hierarchy in 4D N = 1

conformal superspace. In section 3, the constraints on the field strengths have been solved

in terms of the prepotentials with the gauge-fixing conditions. The explicit forms are given

in eqs. (3.6), (3.12), (3.16) and table 3. The conformal weights have also been determined

by the conformal weights of the vielbein. We have obtained the relations between the

prepotentials and irreducible superfields in table 4. We have also obtained the gauge

transformation laws of the prepotentials in eqs. (3.21), (3.27), (3.31), (3.35) and (3.37).

The CS actions have been constructed in the conformal superspace by using prepotentials

in section 4. The conformal weights of the c’s are determined in eq. (4.5). We have shown

that the descent formalism is mostly the same as the case of global SUSY as in eq. (4.6).

Finally, the examples of CS couplings are exhibited in eq. (4.8). These examples are natural

extensions of global SUSY case.
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The CS actions in 4D N = 1 SUGRA, in particular the action in eq. (4.8), would be

useful to discuss phenomenology such as inflation of the early universe [36, 37]. It would

be interesting to embed the approach which was proposed in ref. [38] into the conformal

superspace.
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