

RECEIVED: September 23, 2016 ACCEPTED: November 13, 2016 PUBLISHED: December 15, 2016

New LUX and PandaX-II results illuminating the simplest Higgs-portal dark matter models

Xiao-Gang He a,b,c and Jusak Tandean b,c

- ^a INPAC, Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China
- ^bDepartment of Physics and Center for Theoretical Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
- ^cPhysics Division, National Center for Theoretical Sciences, No. 101, Sec. 2, Kuang Fu Rd., Hsinchu 300, Taiwan

E-mail: hexg@phys.ntu.edu.tw, jtandean@yahoo.com

ABSTRACT: Direct searches for dark matter (DM) by the LUX and PandaX-II Collaborations employing xenon-based detectors have recently come up with the most stringent limits to date on the spin-independent elastic scattering of DM off nucleons. For Higgsportal scalar DM models, the new results have precluded any possibility of accommodating low-mass DM as suggested by the DAMA and CDMS II Si experiments utilizing other target materials, even after invoking isospin-violating DM interactions with nucleons. In the simplest model, SM+D, which is the standard model plus a real singlet scalar named darkon acting as the DM candidate, the LUX and PandaX-II limits rule out DM masses roughly from 4 to 450 GeV, except a small range around the resonance point at half of the Higgs mass where the interaction cross-section is near the neutrino-background floor. In the THDM II+D, which is the type-II two-Higgs-doublet model combined with a darkon, the region excluded in the SM+D by the direct searches can be recovered due to suppression of the DM effective interactions with nucleons at some values of the ratios of Higgs couplings to the up and down quarks, making the interactions significantly isospin-violating. However, in either model, if the 125-GeV Higgs boson is the portal between the dark and SM sectors, DM masses less than 50 GeV or so are already ruled out by the LHC constraint on the Higgs invisible decay. In the THDM II+D, if the heavier CP-even Higgs boson is the portal, theoretical restrictions from perturbativity, vacuum stability, and unitarity requirements turn out to be important instead and exclude much of the region below 100 GeV. For larger DM masses, the THDM II+D has plentiful parameter space that corresponds to interaction cross-sections under the neutrino-background floor and therefore is likely to be beyond the reach of future direct searches without directional sensitivity.

Keywords: Beyond Standard Model, Cosmology of Theories beyond the SM, Higgs Physics

ARXIV EPRINT: 1609.03551

C	ontents	
1	Introduction	1
2	Constraints on SM+D	3
3	Constraints on THDM II+D $3.1 \lambda_H = 0$ $3.2 \lambda_h = 0$	1: 1:
4	Conclusions	16
\mathbf{A}	Extra formulas for darkon reactions	18
В	Conditions for perturbativity, vacuum stability, and tree-level unitarity	20

1 Introduction

Cosmological studies have led to the inference that ordinary matter makes up only about 5% of the energy budget of the Universe, the rest being due to dark matter (26%) and dark energy (69%), the properties of which are largely still unknown [1]. Although the evidence for cosmic dark matter (DM) has been established for decades from numerous observations of its gravitational effects, the identity of its basic constituents has so far remained elusive. As the standard model (SM) of particle physics cannot account for the bulk of the DM, it is of great interest to explore various possible scenarios beyond the SM that can accommodate it. Amongst the multitudes of DM candidates that have been proposed in the literature, those classified as weakly interacting massive particles (WIMPs) are perhaps the leading favorites [1]. The detection of a WIMP is then essential not only for understanding the nature of the DM particle, but also for distinguishing models of new physics beyond the SM.

Many different underground experiments have been and are being performed to detect WIMPs directly by looking for the signatures of nuclear recoils caused by the collisions between the DM and nucleons. The majority of these searches have so far come up empty, leading only to upper bounds on the cross section $\sigma_{\rm el}^N$ of spin-independent elastic WIMP-nucleon scattering. Experiments utilizing xenon as the target material have turned out to supply the strictest bounds to date, especially the newest ones reported separately by the LUX and PandaX-II Collaborations [2, 3], under the implicit assumption that the DM interactions with the proton and neutron respect isospin symmetry. These null results are in conflict with the tentative indications of WIMP signals observed earlier at relatively low masses in the DAMA [4] and CDMS II Si [5] measurements, which employed nonxenon

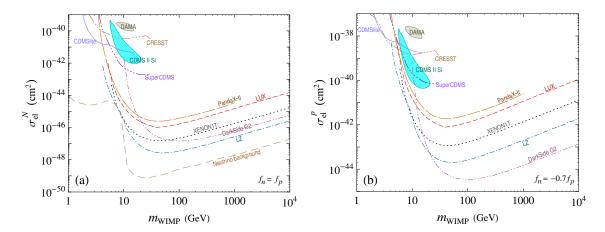


Figure 1. (a) Measured upper-limits on the spin-independent elastic WIMP-nucleon cross-section at 90% confidence level (CL) versus WIMP mass from LUX [2], PandaX-II [3], CDMSlite [11], SuperCDMS [12], and CRESST [13] in the isospin-symmetric limit. Also shown are a gray patch compatible with the DAMA Na modulation signal at the 3σ level [23], a cyan area for the possible DM hint from CDMS II Si at 90% CL [5], the sensitivity projections [14] of XENON1T [15] (black dotted curve), DarkSide G2 [16] (maroon dash-dot-dotted curve), and LZ [17] (turquoise dash-dotted curve), and the WIMP discovery lower-limit due to coherent neutrino scattering backgrounds [18] (brown dashed curve). (b) The corresponding WIMP-proton cross-sections computed from (a) with isospin-violating effective WIMP couplings to the neutron and proton in the ratio $f_n/f_p = -0.7$.

target materials.¹ A graphical comparison between the new limits on $\sigma_{\rm el}^N$ from LUX and PandaX-II and the hypothetical signal regions suggested by DAMA and CDMS II Si is presented in figure 1a. It also displays the limits from a few other direct searches [11–13], which were more sensitive to lighter WIMPs, as well as the expected reaches [14] of the upcoming XENON1T [15], DarkSide G2 [16], and LZ [17] experiments and an estimate of the WIMP discovery limit due to coherent neutrino scattering backgrounds [18].

Mechanisms that may reconcile the incompatible null and positive results of the WIMP DM direct searches have been suggested over the years. One of the most appealing proposals stems from the realization that the effective couplings f_p and f_n of the DM to the proton and neutron, respectively, may be very dissimilar [19–21]. If such a substantial violation of isospin symmetry occurs, the impact on the detection sensitivity to WIMP collisions can vary significantly, depending on the target material. In particular, during the collision process the DM may manifest a xenophobic behavior brought about by severe suppression of the collective coupling of the DM to xenon nuclei, but not necessarily to other nuclei [22]. This can explain why xenon-based detectors still have not discovered any DM, but DAMA and CDMS II Si perhaps did. Numerically, in the xenon case the suppression is the strongest if $f_n/f_p \simeq -0.7$ [21]. Assuming this ratio and applying it to the pertinent formulas provided in ref. [21], one can translate the data in figure 1a into the corresponding numbers for the spin-independent elastic WIMP-proton cross-section, $\sigma_{\rm el}^p$. The latter are plotted in

¹The excess events previously observed in the CoGeNT [6] and CRESST-II [7] experiments have recently been demonstrated to be entirely attributable to underestimated backgrounds instead of DM recoils [8–10].

figure 1b, where the curve for DarkSide G2, which will employ an argon target, is scaled up differently from the curves for the xenon experiments including LZ. It is now evident that the conjectured signal regions of DAMA and CDMS II Si are no longer viable in light of the latest LUX and PandaX-II bounds.²

Since these new results have reduced further the allowed WIMP parameter space, it is of interest to investigate what implications they may have for the simplest Higgs-portal WIMP DM models and how these scenarios may be probed more stringently in the future. For definiteness, in this paper we focus on the SM+D, which is the SM minimally expanded with the addition of a real singlet scalar serving as the DM and dubbed darkon, and on its two-Higgs-doublet extension of type II, which we call THDM II+D.³ Specifically, we look at a number of constraints on these two models not only from the most recent DM direct searches, but also from LHC measurements on the gauge and Yukawa couplings of the 125-GeV Higgs boson and on its invisible decay mode, as well as from some theoretical requirements. We find that in the SM+D the darkon mass region up to $\sim 450\,\mathrm{GeV}$ is ruled out, except a small range near the resonant point at half of the Higgs mass where the DM-nucleon cross-section is close to the neutrino-background floor. On the other hand, in the THDM II+D the region excluded in the SM+D can be partially recovered because of suppression of the cross section that happens at some values of the product $\tan \alpha \tan \beta$ or $\cot \alpha \tan \beta$, where α is the mixing angle of the CP-even Higgs bosons and $\tan \beta$ the ratio of vacuum expectation values (VEVs) of the Higgs doublets.

The structure of the rest of the paper is as follows. We treat the SM+D in section 2 and the THDM II+D in section 3. We summarize our results and conclude in section 4. A couple of appendices contain additional formulas and extra details.

2 Constraints on SM+D

The darkon, D, in the SM+D is a real scalar field and transforms as a singlet under the gauge group of the SM. Being the DM candidate, D is stable due to an exactly conserved discrete symmetry, Z_2 , under which $D \to -D$, all the other fields being unaffected. The renormalizable darkon Lagrangian then has the form [27]

$$\mathcal{L}_D = \frac{1}{2} \,\partial^{\mu} D \,\partial_{\mu} D - \frac{1}{4} \lambda_D D^4 - \frac{1}{2} \,m_0^2 D^2 - \lambda D^2 H^{\dagger} H \,, \tag{2.1}$$

where λ_D , m_0 , and λ are free parameters and H is the Higgs doublet containing the physical Higgs field h. After electroweak symmetry breaking

$$\mathcal{L}_D \supset -\frac{\lambda_D}{4} D^4 - \frac{(m_0^2 + \lambda v^2)}{2} D^2 - \frac{\lambda}{2} D^2 h^2 - \lambda D^2 h v, \qquad (2.2)$$

²If the DM-nucleon scattering is both isospin violating and inelastic, which can happen if a spin-1 particle, such as a Z' boson, is the portal between the DM and SM particles, it may still be possible to accommodate the potential hint of low-mass DM from CDMS II Si and evade the limits from xenon detectors at the same time [24, 25]. The inelastic-DM approach has also been proposed to explain the DAMA anomaly [26].

³There are earlier studies in the literature on various aspects of the SM plus singlet scalar DM, or a greater scenario containing the model, in which the scalar was real [27–65] or complex [66–74]. Two-Higgs-doublet extensions of the SM+D have also been explored previously [75–91].

where the second term contains the darkon mass $m_D = (m_0^2 + \lambda v^2)^{1/2}$, the last two terms play an important role in determining the DM relic density, and $v \simeq 246\,\mathrm{GeV}$ is the vacuum expectation value (VEV) of H. Clearly, the darkon interactions depend on a small number of free parameters, the relevant ones here being the darkon-Higgs coupling λ , which pertains to the relic density, and the darkon mass m_D .

In the SM+D, the relic density results from the annihilation of a darkon pair into SM particles which is induced mainly by the Higgs-exchange process $DD \to h^* \to X_{\rm SM}$, where $X_{\rm SM}$ includes all kinematically allowed final states at the darkon pair's center-of-mass (c.m.) energy, \sqrt{s} . If the energy exceeds twice the Higgs mass, $\sqrt{s} > 2m_h$, the channel $DD \to hh$ also contributes, which arises from contact and (s,t,u)-channel diagrams. Thus, we can write the cross section $\sigma_{\rm ann}$ of the darkon annihilation into SM particles as

$$\begin{split} \sigma_{\rm ann} &= \sigma(DD \to h^* \to X_{\rm SM}) + \sigma(DD \to hh) \,, \\ \sigma(DD \to h^* \to X_{\rm SM}) &= \frac{4\lambda^2 v^2}{\left(m_h^2 - s\right)^2 + \Gamma_h^2 m_h^2} \, \frac{\sum_i \Gamma\left(\tilde{h} \to X_{i,\rm SM}\right)}{\sqrt{s - 4m_D^2}} \,, \qquad X_{\rm SM} \neq hh \,, \end{split} \tag{2.3}$$

with \tilde{h} being a virtual Higgs having the same couplings as the physical h and an invariant mass equal to \sqrt{s} , and the expression for $\sigma(DD \to hh)$ can be found in appendix A, which also includes an outline of how λ is extracted from the observed abundance of DM. The resulting values of λ can then be tested with constraints from other experimental information

In numerical work, we take $m_h = 125.1\,\mathrm{GeV}$, based on the current data [92], and correspondingly the SM Higgs width $\Gamma_h^\mathrm{SM} = 4.08\,\mathrm{MeV}$ [93]. For $m_D < m_h/2$, the invisible decay channel $h \to DD$ is open and contributes to the Higgs' total width $\Gamma_h = \Gamma_h^\mathrm{SM} + \Gamma(h \to DD)$ in eq. (2.3), where

$$\Gamma(h \to DD) = \frac{\lambda^2 v^2}{8\pi m_h} \sqrt{1 - \frac{4m_D^2}{m_h^2}} \,. \tag{2.4}$$

The Higgs measurements at the LHC provide information pertinent to this process. In the latest combined analysis on their Higgs data, the ATLAS and CMS Collaborations [94] have determined the branching fraction of h decay into channels beyond the SM to be $\mathcal{B}_{\text{BSM}}^{\text{exp}} = 0.00^{+0.16}$, which can be interpreted as setting a cap on the Higgs invisible decay, $\mathcal{B}(h \to \text{invisible})_{\text{exp}} < 0.16$. Accordingly, we can impose

$$\mathcal{B}(h \to DD) = \frac{\Gamma(h \to DD)}{\Gamma_h} < 0.16, \qquad (2.5)$$

which as we will see shortly leads to a major restriction on λ for $m_D < m_h/2$.

Direct searches for DM look for the nuclear recoil effects of DM scattering off a nucleon, N. In the SM+D, this is an elastic reaction, $DN \to DN$, which is mediated by the Higgs in the t channel and has a cross section of

$$\sigma_{\rm el}^{N} = \frac{\lambda^2 g_{NNh}^2 m_N^2 v^2}{\pi \left(m_D + m_N \right)^2 m_h^4} \tag{2.6}$$

for momentum transfers small relative to m_h , where g_{NNh} is the Higgs-nucleon effective coupling. Numerically, we adopt $g_{NNh}=0.0011$, which lies at the low end of our earlier estimates [77, 78, 95, 96] and is comparable to other recent calculations [65, 97]. The strictest limitations on $\sigma_{\rm el}^N$ to date are supplied by the newest null findings of LUX [2] and PandaX-II [3].

To show how these data confront the SM+D, we display in figure 2a the values of $|\lambda|$ derived from the observed relic abundance (green solid curve) and compare them to the upper bounds on $|\lambda|$ inferred from eq. (2.5) based on the LHC information on the Higgs invisible decay [94] (black dotted curve) and from the new results of LUX [2] (red dashed curve) and PandaX-II [3] (orange dashed curve). The plot in figure 2b depicts the corresponding prediction for $\sigma_{\rm el}^N$ (green curve) in comparison to the same DM direct search data and future potential limits as in figure 1a.

In the SM+D context, the graphs in figure 2 reveal that the existing data rule out darkon masses below about 450 GeV, except for the narrow dip area in the neighborhood of $m_D = m_h/2$, more precisely 52.1 GeV $\lesssim m_D \lesssim 62.6$ GeV. At $m_D = m_h/2$, the threshold point for $h \to DD$, the darkon annihilation into SM particles undergoes a resonant enhancement, and consequently a small size of λ can lead to the correct relic density and, at the same time, a low cross-section of darkon-nucleon collision. However, as figure 2 indicates, the bottom of the λ dip does not go to zero due to the Higgs' finite total width Γ_h and the annihilation cross-section at the resonant point being proportional to $1/\Gamma_h^2$. It is interesting to note that in figure 2b the bottom of the resonance region almost touches the expected limit of DM direct detection due to coherent neutrino scattering backgrounds. We also notice that the planned XENON1T, DarkSide G2, and LZ experiments [14] can probe the dip much further, but not all the way down. Thus, to exclude the dip completely a more sensitive machine will be needed. For darkon masses above 450 GeV, tests will be available from the ongoing PandaX-II as well as the forthcoming quests: particularly, XENON1T, DarkSide G2, and LZ can cover up to ~ 3.5 , 10, and a few tens TeV, respectively.

3 Constraints on THDM II+D

There are different types of the two-Higgs-doublet model (THDM), depending on how the two Higgs doublets, H_1 and H_2 , couple to SM fermions [98, 99]. In the THDM I, only one of the doublets is responsible for endowing mass to all the fermions. In the THDM II, the up-type fermions get mass from only one of the Higgs doublets, say H_2 , and the down-type fermions from the other doublet. In the THDM III, both H_1 and H_2 give masses to all the fermions.

Since only one Higgs doublet generates all of the fermion masses in the THDM I, the couplings of each of the CP-even Higgs bosons to fermions are the same as in the SM, up to an overall scaling factor. Therefore, the couplings of the 125-GeV Higgs, h, in the THDM I slightly enlarged with the addition of a darkon are similar to those in the SM+D treated in the previous section, and consequently for $m_D < m_h/2$ the modifications cannot readily ease the restraints from the DM direct searches and LHC quest for the Higgs invisible decay. Combining a darkon with the THDM III instead could provide the

desired ingredients to help overcome these obstacles [77, 78], but the model possesses too many parameters to be predictable, some of which give rise to undesirable flavor-changing neutral-Higgs transitions at tree level. For these reasons, in the remainder of the section we concentrate on the THDM II plus the darkon (THDM II+D).

In the THDM II+D, the fermion sector is no different from that in the THDM II, with the Yukawa interactions being described by [98, 99]

$$\mathcal{L}_{\mathbf{Y}} = -\overline{Q}_{j,L}(\lambda_{2}^{u})_{il}\tilde{H}_{2}\mathcal{U}_{l,R} - \overline{Q}_{j,L}(\lambda_{1}^{d})_{il}H_{1}\mathcal{D}_{l,R} - \overline{L}_{j,L}(\lambda_{1}^{\ell})_{il}H_{1}E_{l,R} + \text{h.c.}, \qquad (3.1)$$

where summation over j, l = 1, 2, 3 is implicit, $Q_{j,L}$ ($L_{j,L}$) represents left-handed quark (lepton) doublets, $\mathcal{U}_{l,R}$ and $\mathcal{D}_{l,R}$ ($E_{l,R}$) denote right-handed quark (charged lepton) fields, $\tilde{H}_{1,2} = i\tau_2 H_{1,2}^*$ with τ_2 being the second Pauli matrix, and $\lambda^{u,d,\ell}$ are 3×3 matrices for the Yukawa couplings. This Lagrangian respects the discrete symmetry, Z_2 , under which $H_2 \to -H_2$ and $\mathcal{U}_R \to -\mathcal{U}_R$, while all the other fields are not affected. Thus, Z_2 prohibits the combinations $\overline{Q}_L \tilde{H}_1 U_R$, $\overline{Q}_L H_2 D_R$, $\overline{L}_L H_2 E_R$, and their Hermitian conjugates from occurring in \mathcal{L}_Y .

The longevity of the darkon as the DM in the THDM II+D is maintained by another discrete symmetry, Z'_2 , under which $D \to -D$, whereas all the other fields are Z'_2 even. Consequently, being a real field and transforming as a singlet under the SM gauge group, D has no renormalizable interactions with SM fermions or gauge bosons, like in the SM+D.

The renormalizable Lagrangian of the model, $\mathcal{L} \supset -\mathcal{V}_D - \mathcal{V}_H$, contains the scalar potential terms [75, 76]

$$\mathcal{V}_{D} = \frac{m_{0}^{2}}{2} D^{2} + \frac{\lambda_{D}}{4} D^{4} + \left(\lambda_{1D} H_{1}^{\dagger} H_{1} + \lambda_{2D} H_{2}^{\dagger} H_{2}\right) D^{2},$$

$$\mathcal{V}_{H} = m_{11}^{2} H_{1}^{\dagger} H_{1} + m_{22}^{2} H_{2}^{\dagger} H_{2} - \left(m_{12}^{2} H_{1}^{\dagger} H_{2} + \text{H.c.}\right) + \frac{\lambda_{1}}{2} \left(H_{1}^{\dagger} H_{1}\right)^{2} + \frac{\lambda_{2}}{2} \left(H_{2}^{\dagger} H_{2}\right)^{2} + \lambda_{3} H_{1}^{\dagger} H_{1} H_{2}^{\dagger} H_{2} + \lambda_{4} H_{1}^{\dagger} H_{2} H_{2}^{\dagger} H_{1} + \frac{\lambda_{5}}{2} \left[\left(H_{1}^{\dagger} H_{2}\right)^{2} + \text{H.c.}\right], \tag{3.2}$$

where \mathcal{V}_H is the usual THDM II potential [98, 99]. Because of Z_2 , the combinations $H_1^{\dagger}H_2D^2$, $H_1^{\dagger}H_1H_1^{\dagger}H_2$, $H_1^{\dagger}H_2H_2^{\dagger}H_2$, and their Hermitian conjugates are forbidden from appearing in eq. (3.2). However, in \mathcal{V}_H we have included the m_{12}^2 terms which softly break Z_2 and are important in relaxing the upper bounds on the Higgs masses [99]. In contrast, Z_2' , which guarantees the darkon stability, is exactly conserved. The Hermiticity of $\mathcal{V}_{D,H}$ implies that the parameters $m_{0,11,22}^2$ and $\lambda_{D,1D,2D,1,2,3,4}$ are real. We assume $\mathcal{V}_{D,H}$ to be CP invariant, and so m_{12}^2 and λ_5 are also real parameters.

The $\lambda_{1D,2D}$ terms in eq. (3.2) play a crucial role in the determination of the relic density, which follows from darkon annihilation into the other particles via interactions with the Higgs bosons. To address this in more detail, we first decompose the Higgs doublets as

$$H_r = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} h_r^+ \\ v_r + h_r^0 + iI_r^0 \end{pmatrix}, \qquad r = 1, 2,$$
 (3.3)

where $v_{1,2}$ are the VEVs of $H_{1,2}$, respectively, and connected to the electroweak scale $v \simeq 246 \,\text{GeV}$ by $v_1 = v \cos \beta$ and $v_2 = v \sin \beta$. The H_r components h_r^+ , h_r^0 , and I_r^0 are

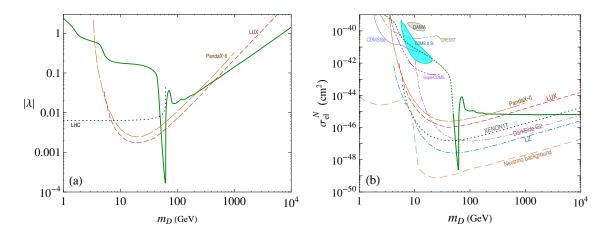


Figure 2. (a) The magnitude of the darkon-Higgs coupling λ satisfying the relic abundance constraint versus the darkon mass m_D in the SM+D (green curve) compared to the upper limits inferred from LHC data on the Higgs invisible decay (black dotted curve) and from the latest LUX (red dashed curve) and PandaX-II (orange dashed curve) searches. (b) The corresponding darkon-nucleon cross-section $\sigma_{\rm el}^N$ (green curve) compared to the same current data and future potential limits as in figure 1a. The dotted portion of the green curve is excluded by the LHC bound in (a).

related to the physical Higgs bosons h, H, A, and H^+ and the would-be Goldstone bosons w^+ and z by

$$\begin{pmatrix} h_1^+ \\ h_2^+ \end{pmatrix} = \begin{pmatrix} c_{\beta} & -s_{\beta} \\ s_{\beta} & c_{\beta} \end{pmatrix} \begin{pmatrix} w^+ \\ H^+ \end{pmatrix}, \qquad \begin{pmatrix} I_1^0 \\ I_2^0 \end{pmatrix} = \begin{pmatrix} c_{\beta} & -s_{\beta} \\ s_{\beta} & c_{\beta} \end{pmatrix} \begin{pmatrix} z \\ A \end{pmatrix},
\begin{pmatrix} h_1^0 \\ h_2^0 \end{pmatrix} = \begin{pmatrix} c_{\alpha} & -s_{\alpha} \\ s_{\alpha} & c_{\alpha} \end{pmatrix} \begin{pmatrix} H \\ h \end{pmatrix}, \qquad c_{\mathcal{X}} = \cos \mathcal{X}, \qquad s_{\mathcal{X}} = \sin \mathcal{X},$$
(3.4)

where \mathcal{X} is any angle or combination of angles. The w^{\pm} and z will be eaten by the W^{\pm} and Z bosons, respectively.

After electroweak symmetry breaking, we can then express the relevant terms in $\mathcal{V} = \mathcal{V}_D + \mathcal{V}_H$ involving the physical bosons as

$$\mathcal{V} \supset \frac{1}{2} m_D^2 D^2 + (\lambda_h h + \lambda_H H) D^2 v
+ \frac{1}{2} (\lambda_{hh} h^2 + 2\lambda_{hH} h H + \lambda_{HH} H^2 + \lambda_{AA} A^2 + 2\lambda_{H^+H^-} H^+ H^-) D^2
+ \left(\frac{1}{6} \lambda_{hhh} h^2 + \frac{1}{2} \lambda_{hhH} h H + \frac{1}{2} \lambda_{hHH} H^2 + \frac{1}{2} \lambda_{hAA} A^2 + \lambda_{hH^+H^-} H^+ H^- \right) h v
+ \left(\frac{1}{6} \lambda_{HHH} H^2 + \frac{1}{2} \lambda_{HAA} A^2 + \lambda_{HH^+H^-} H^+ H^- \right) H v ,$$
(3.5)

where $m_D^2 = m_0^2 + (\lambda_{1D} c_\beta^2 + \lambda_{2D} s_\beta^2) v^2$,

$$\lambda_{h} = \lambda_{2D} c_{\alpha} s_{\beta} - \lambda_{1D} s_{\alpha} c_{\beta}, \qquad \lambda_{H} = \lambda_{1D} c_{\alpha} c_{\beta} + \lambda_{2D} s_{\alpha} s_{\beta},$$

$$\lambda_{hh} = \lambda_{1D} s_{\alpha}^{2} + \lambda_{2D} c_{\alpha}^{2}, \qquad \lambda_{HH} = \lambda_{1D} c_{\alpha}^{2} + \lambda_{2D} s_{\alpha}^{2},$$

$$\lambda_{hH} = (\lambda_{2D} - \lambda_{1D}) c_{\alpha} s_{\alpha}, \qquad \lambda_{AA} = \lambda_{H^{+}H^{-}} = \lambda_{1D} s_{\beta}^{2} + \lambda_{2D} c_{\beta}^{2}, \qquad (3.6)$$

and the cubic couplings λ_{XYZ} are listed in appendix A. There is no AD^2 term under the assumed CP invariance. Since m_0 and $\lambda_{1,2}$ are free parameters, so are m_D and $\lambda_{h,H}$. The quartic couplings of the darkon to the Higgs bosons can then be related to $\lambda_{h,H}$ by

$$\lambda_{hh} = \left(\frac{c_{\alpha}^{3}}{s_{\beta}} - \frac{s_{\alpha}^{3}}{c_{\beta}}\right) \lambda_{h} + \frac{s_{2\alpha}c_{\beta-\alpha}}{s_{2\beta}} \lambda_{H}, \quad \lambda_{HH} = \left(\frac{c_{\alpha}^{3}}{c_{\beta}} + \frac{s_{\alpha}^{3}}{s_{\beta}}\right) \lambda_{H} - \frac{s_{2\alpha}s_{\beta-\alpha}}{s_{2\beta}} \lambda_{h},$$

$$\lambda_{hH} = \frac{s_{2\alpha}}{s_{2\beta}} \left(\lambda_{h}c_{\beta-\alpha} - \lambda_{H}s_{\beta-\alpha}\right), \qquad \lambda_{AA} = \lambda_{H^{+}H^{-}} = \frac{c_{\alpha}c_{\beta}^{3} - s_{\alpha}s_{\beta}^{3}}{c_{\beta}s_{\beta}} \lambda_{h} + \frac{c_{\alpha}s_{\beta}^{3} + s_{\alpha}c_{\beta}^{3}}{c_{\beta}s_{\beta}} \lambda_{H}.$$

$$(3.7)$$

Since h and H couple directly to the weak bosons, we need to include the annihilation channels $DD \to W^+W^-$, ZZ if kinematically permitted. The pertinent interactions are given by

$$\mathcal{L} \supset \left(2m_W^2 W^{+\mu} W_{\mu}^- + m_Z^2 Z^{\mu} Z_{\mu}\right) \left(k_V^h \frac{h}{v} + k_V^H \frac{H}{v}\right), \qquad k_V^h = s_{\beta-\alpha}, \qquad k_V^H = c_{\beta-\alpha}. \tag{3.8}$$

The scattering of the darkon off a nucleon $\mathcal{N} = p$ or n is generally mediated at the quark level by h and H and hence depends not only on the darkon-Higgs couplings $\lambda_{h,H}$, but also on the effective Higgs-nucleon coupling $g_{\mathcal{N}\mathcal{N}\mathcal{H}}$ defined by

$$\mathcal{L}_{\mathcal{N}\mathcal{N}\mathcal{H}} = -g_{\mathcal{N}\mathcal{N}\mathcal{H}} \,\overline{\mathcal{N}}\mathcal{N}\mathcal{H} \,, \qquad \mathcal{H} = h, H \,. \tag{3.9}$$

This originates from the quark-Higgs terms in eq. (3.1) given by

$$\mathcal{L}_{Y} \supset -\sum_{q} k_{q}^{\mathcal{H}} m_{q} \overline{q} q \frac{\mathcal{H}}{v}, \qquad k_{c,t}^{\mathcal{H}} = k_{u}^{\mathcal{H}}, \qquad k_{s,b}^{\mathcal{H}} = k_{d}^{\mathcal{H}},$$
 (3.10)

where the sum is over all quarks, q = u, d, s, c, b, t, and

$$k_u^h = \frac{c_\alpha}{s_\beta}, \qquad k_d^h = -\frac{s_\alpha}{c_\beta}, \qquad k_u^H = \frac{s_\alpha}{s_\beta}, \qquad k_d^H = \frac{c_\alpha}{c_\beta}. \tag{3.11}$$

It follows that [100-102]

$$g_{\mathcal{N}\mathcal{N}\mathcal{H}} = \frac{m_{\mathcal{N}}}{v} \left[\left(f_u^{\mathcal{N}} + f_c^{\mathcal{N}} + f_t^{\mathcal{N}} \right) k_u^{\mathcal{H}} + \left(f_d^{\mathcal{N}} + f_s^{\mathcal{N}} + f_b^{\mathcal{N}} \right) k_d^{\mathcal{H}} \right], \tag{3.12}$$

where $f_q^{\mathcal{N}}$ is defined by the matrix element $\langle \mathcal{N} | m_q \overline{q} q | \mathcal{N} \rangle = f_q^{\mathcal{N}} m_{\mathcal{N}} \overline{u}_{\mathcal{N}} u_{\mathcal{N}}$ with $u_{\mathcal{N}}$ being the Dirac spinor for \mathcal{N} and $m_{\mathcal{N}}$ its mass. Employing the values $f_q^{\mathcal{N}}$ for the different quarks listed in appendix A, we find

$$g_{pp\mathcal{H}} = (0.5631 \, k_u^{\mathcal{H}} + 0.5599 \, k_d^{\mathcal{H}}) \times 10^{-3}, \qquad g_{nn\mathcal{H}} = (0.5481 \, k_u^{\mathcal{H}} + 0.5857 \, k_d^{\mathcal{H}}) \times 10^{-3}.$$
 (3.13)

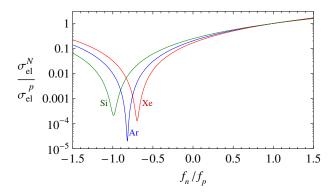


Figure 3. Dependence of $\sigma_{\rm el}^N/\sigma_{\rm el}^p$ on f_n/f_p according to eq. (3.14) for silicon, argon, and xenon targets.

Setting $k_{u,d}^h=1$ in these formulas, we reproduce the SM values $g_{pph,nnh}^{\rm SM}\simeq 0.0011$ quoted in the last section. However, if $k_{u,d}^{\mathcal{H}}$ are not close to unity, $g_{pp\mathcal{H}}$ and $g_{nn\mathcal{H}}$ can be very dissimilar, breaking isospin symmetry substantially. Particularly, they have different zeros, $k_d^{\mathcal{H}}\simeq -1.01\,k_u^{\mathcal{H}}$ and $k_d^{\mathcal{H}}\simeq -0.936\,k_u^{\mathcal{H}}$, respectively.

This suggests that to evaluate DM collisions with nucleons in the THDM II+D it is more appropriate to work with either the darkon-proton or darkon-neutron cross-section $(\sigma_{\rm el}^p \text{ or } \sigma_{\rm el}^n$, respectively) rather than the darkon-nucleon one under the assumption of isospin conservation. The calculated $\sigma_{\rm el}^{p,n}$ can then be compared to their empirical counterparts which are converted from the measured $\sigma_{\rm el}^N$ using the relations [21, 22]

$$\sigma_{\rm el}^{N} \sum_{i} \eta_{i} \, \mu_{A_{i}}^{2} A_{i}^{2} = \sigma_{\rm el}^{p} \sum_{i} \eta_{i} \, \mu_{A_{i}}^{2} \left[\mathcal{Z} + \left(A_{i} - \mathcal{Z} \right) f_{n} / f_{p} \right]^{2}, \qquad \sigma_{\rm el}^{n} = \sigma_{\rm el}^{p} \, f_{n}^{2} / f_{p}^{2}, \qquad (3.14)$$

where the sums are over the isotopes of the element in the target material with which the DM interacts dominantly, η_i (A_i) represent the fractional abundances (the nucleon numbers) of the isotopes, $^4\mu_{A_i} = m_{A_i}m_D/(m_{A_i}+m_D)$, with m_{A_i} being the *i*th isotope's mass, \mathcal{Z} denotes the proton number of the element, and f_n/f_p is fixed under certain assumptions. For illustration, from eq. (3.14) we graph $\sigma_{\rm el}^N/\sigma_{\rm el}^p$ as a function f_n/f_p for a few target materials (silicon, argon, and xenon) in figure 3, where the curves are not sensitive to the darkon masses in our range of interest. Thus, if there is no isospin violation, $f_n = f_p$ leading to $\sigma_{\rm el}^p = \sigma_{\rm el}^N$. On the other hand, for DM with maximal xenophobia, $f_n/f_p = -0.70$, and with this number we arrived at figure 1b from figure 1a. More generally, $\sigma_{\rm el}^p$ can be bigger or smaller than $\sigma_{\rm el}^N$ if $f_n \neq f_p$, but completely destructive interference on the right-hand side of the first relation in eq. (3.14) yielding $\sigma_{\rm el}^N/\sigma_{\rm el}^p = 0$ is not achievable if the element has more than one naturally abundant isotope.

If both the h and H couplings to the darkon are nonzero, the cross section of the darkon- \mathcal{N} scattering $D\mathcal{N} \to D\mathcal{N}$ is

$$\sigma_{\rm el}^{\mathcal{N}} = \frac{m_{\mathcal{N}}^2 v^2}{\pi \left(m_D + m_{\mathcal{N}} \right)^2} \left(\frac{\lambda_h g_{\mathcal{N}\mathcal{N}h}}{m_h^2} + \frac{\lambda_H g_{\mathcal{N}\mathcal{N}H}}{m_H^2} \right)^2 \tag{3.15}$$

⁴A recent list of isotopic abundances can be found in [103].

for momentum transfers small relative to $m_{h,H}$ and $\mathcal{N}=p$ or n. Given that $g_{\mathcal{N}\mathcal{N}\mathcal{H}}$ depends on $k_{u,d}^{\mathcal{H}}$ according to eq. (3.12), it may be possible to make $g_{\mathcal{N}\mathcal{N}\mathcal{H}}$ sufficiently small with a suitable choice of $k_d^{\mathcal{H}}/k_u^{\mathcal{H}}$ to allow $\sigma_{\rm el}^{\mathcal{N}}$ to avoid its experimental limit [79], at least for some of the m_D values. Moreover, the $\lambda_{h,H}$ terms in eq. (3.15) may (partially) cancel each other to reduce $\sigma_{\rm el}^{\mathcal{N}}$ as well. These are attractive features of the THDM II+D that the SM+D does not possess.

Since there are numerous different possibilities in which h and H may contribute to darkon interactions with SM particles in the THDM+D, hereafter for definiteness and simplicity we focus on a couple of scenarios in which h is the 125-GeV Higgs boson and the other Higgs bosons are heavier, $m_h < m_{H,A,H^{\pm}}$. In addition, we assume specifically that either H or h has a vanishing coupling to the darkon, $\lambda_H = 0$ or $\lambda_h = 0$, respectively. As a consequence, either h or H alone serves as the portal between the DM and SM particles, and so we now have $f_n/f_p = g_{nn\mathcal{H}}/g_{pp\mathcal{H}}$, upon neglecting the n-p mass difference.

If we take $g_{nn\mathcal{H}}/g_{pp\mathcal{H}}=-0.70$, which corresponds to the xenophobic limit, using eq. (3.13) we get $r_k^{\mathcal{H}} \equiv k_d^{\mathcal{H}}/k_u^{\mathcal{H}} = -0.96$, where $r_k^h = -\tan\alpha$ tan β and $r_k^H = \cot\alpha$ tan β from eq. (3.11). Nevertheless, as we see later on, despite the strongest constraints to date from xenon-based detectors, higher $r_k^{\mathcal{H}}$ values are still compatible with the data and hence the darkon can still avoid extreme xenophobia. The choices for α and β , however, need to comply with further restraints on $k_{d,u,V}^h$, as specified below.

Given that LHC measurements have been probing the Higgs couplings to SM fermions and electroweak bosons, we need to take into account the resulting restrictions on potential new physics in the couplings. A modification to the $h \to X\bar{X}$ interaction with respect to its SM expectation can be parameterized by κ_X defined by $\kappa_X^2 = \Gamma_{h\to X\bar{X}}/\Gamma_{h\to X\bar{X}}^{\rm SM}$. Assuming that $|\kappa_{W,Z}| \le 1$ and the Higgs total width can get contributions from decay modes beyond the SM, the ATLAS and CMS Collaborations have performed simultaneous fits to their Higgs data to extract [94]

$$\begin{split} \kappa_W &= 0.90 \pm 0.09 \,, \qquad \kappa_t = 1.43^{+0.23}_{-0.22} \,, \qquad |\kappa_b| = 0.57 \pm 0.16 \,, \qquad |\kappa_\gamma| = 0.90^{+0.10}_{-0.09} \,, \\ \kappa_Z &= 1.00_{-0.08} \,, \qquad |\kappa_g| = 0.81^{+0.13}_{-0.10} \,, \qquad |\kappa_\tau| = 0.87^{+0.12}_{-0.11} \,, \end{split} \tag{3.16}$$

where [94] $\kappa_{\gamma}^2 = 0.07 \,\kappa_t^2 + 1.59 \,\kappa_W^2 - 0.66 \,\kappa_t \kappa_W$. In the THDM II context, we expect these numbers to respect within one sigma the relations $k_V^h = \kappa_W = \kappa_Z$, $k_u^h = \kappa_t \simeq \kappa_g$, and $k_d^h = \kappa_b = \kappa_{\tau}$, although the $\kappa_{t,g}$ ($\kappa_{b,\tau}$) numbers above overlap only at the two-sigma level. Accordingly, pending improvement in the precision of these parameters from future data, based on eq. (3.16) we may impose

$$0.81 \le k_V^h \le 1$$
, $0.71 \le k_u^h \le 1.66$, $0.41 \le |k_d^h| \le 0.99$, $0.81 \le |k_\gamma^h| \le 1$, (3.17)

where k_{γ}^{h} incorporates the loop contribution of H^{\pm} to $h \to \gamma \gamma$, and so $k_{\gamma}^{h} \to \kappa_{\gamma}$ if the impact of H^{\pm} is vanishing. Explicitly

$$k_{\gamma}^{h} = 0.264 k_{u}^{h} - 1.259 k_{V}^{h} + 0.151 \frac{\lambda_{hH^{+}H^{-}} v^{2}}{2m_{H^{\pm}}^{2}} A_{0}^{\gamma\gamma} (4m_{H^{\pm}}^{2}/m_{h}^{2}), \qquad (3.18)$$

where $A_0^{\gamma\gamma}$ is a loop function whose expression can be found in the literature (e.g., [104]). The effect of the $\lambda_{hH^+H^-}$ term in k_{γ}^h turns out to be somewhat minor in our examples. To

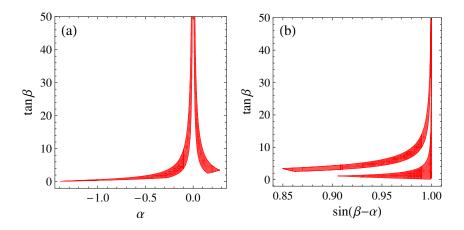


Figure 4. Regions of $\tan \beta$ versus (a) α and (b) $\sin(\beta - \alpha)$ which obey the restrictions in eq. (3.17).

visualize the impact of the limitations in eq. (3.17), we plot in figure 4 the (red) regions representing the α and β parameter space satisfying them.

Before proceeding to our specific scenarios of choice, we remark that in the alignment limit, $\beta = \alpha + \pi/2$, we recover the SM+D darkon parameters,

$$m_D^2 = m_0^2 + \lambda_h v^2, \qquad \lambda_{hh} = \lambda_h \tag{3.19}$$

with $\lambda_h = \lambda$. Furthermore, in this limit the h couplings become SM-like,

$$\lambda_{hhh} = \frac{3m_h^2}{v^2}, \qquad k_V^h = 1, \qquad k_q^h = 1.$$
 (3.20)

3.1 $\lambda_H = 0$

In this case, the cross section of the darkon annihilation into THDM particles is

$$\sigma_{\rm ann} = \sigma(DD \to h^* \to X_{\rm SM}) + \sum_{\mathbf{s}_1 \mathbf{s}_2} \sigma(DD \to \mathbf{s}_1 \mathbf{s}_2),$$
 (3.21)

where the first term on the right-hand side is equal to its SM+D counterpart in eq. (2.3), except λ is replaced by λ_h and the h couplings to fermions and gauge bosons are multiplied by the relevant $k_{u,d,V}^h$ factors mentioned earlier, and the sum is over $\mathbf{s}_1\mathbf{s}_2 = hh, hH, HH, AA, H^+H^-$ with only kinematically allowed channels contributing. The formulas for $\sigma(DD \to \mathbf{s}_1\mathbf{s}_2)$ have been relegated to appendix A. Hence, though not the portal between the DM and SM particles in this scenario, H can still contribute to the darkon relic abundance via $DD \to \mathbf{s}_1\mathbf{s}_2$, along with A and H^{\pm} .

Once λ_h has been extracted from the relic density data and $g_{\mathcal{NN}h}$ calculated with the α and β choices consistent with eq. (3.11), we can predict the darkon- \mathcal{N} cross-section. From now on, we work exclusively with the darkon-proton one,

$$\sigma_{\rm el}^p = \frac{\lambda_h^2 g_{pph}^2 m_p^2 v^2}{\pi \left(m_D + m_p \right)^2 m_h^4} \,. \tag{3.22}$$

Set	α	β	$\frac{m_H}{\rm GeV}$	$\frac{m_A}{{\rm GeV}}$	$\frac{m_{H^\pm}}{{\rm GeV}}$	$\frac{m_{12}^2}{\text{GeV}^2}$	k_V^h	k_u^h	$\frac{k_d^h}{k_u^h}$	k_V^H	k_u^H	k_d^H	$\frac{g_{pph}}{10^{-5}}$	$\frac{f_n}{f_p}$
1	0.117	1.428	470	500	550	31000	0.966	1.003	-0.818	0.257	0.118	6.98	10.6	+0.658
2	0.141	1.422	550	520	540	44000	0.958	1.001	-0.947	0.286	0.142	6.68	3.29	-0.197
3	0.206	1.357	515	560	570	55000	0.913	1.002	-0.962	0.408	0.209	4.61	2.42	-0.646

Table 1. Sample values of input parameters α , β , $m_{H,A,H^{\pm}}$, and m_{12}^2 in the $\lambda_H = 0$ scenario and the resulting values of several quantities, including $f_n/f_p = g_{nnh}/g_{pph}$.

This is to be compared to its empirical counterparts derived from the $\sigma_{\rm el}^N$ data using eq. (3.14) with $f_n/f_p = g_{nnh}/g_{pph}$. There are other restrictions that we need to take into account.

As in the SM+D, for $m_D < m_h/2$ the invisible channel $h \to DD$ is open and has a rate given by eq. (2.4), with λ being replaced by λ_h . The branching fraction of $h \to DD$ must then be consistent with the LHC measurement on the Higgs invisible decay, and so for this darkon mass range we again impose the bound in eq. (2.5).

Since the extra Higgs particles in the THDM exist due to the second doublet being present, they generally affect the so-called oblique electroweak parameters S and T which encode the impact of new physics coupled the standard $SU(2)_L$ gauge boson [105]. Thus the new scalars must also comply with the experimental constraints on these quantities. To ensure this, we employ the pertinent formulas from ref. [106] and the S and T data from ref. [1].

Lastly, the parameters of the scalar potential $\mathcal{V} = \mathcal{V}_D + \mathcal{V}_H$ in eq. (3.2) need to fulfill a number of theoretical conditions. The quartic couplings in \mathcal{V} cannot be too big individually, for otherwise the theory will no longer be perturbative. Another requirement is that \mathcal{V} must be stable, implying that it has to be bounded from below to prevent it from becoming infinitely negative for arbitrarily large fields. It is also essential to ensure that the (tree level) amplitudes for scalar-scalar scattering at high energies do not violate unitarity constraints. We address these conditions in more detail in appendix B. They can be consequential in restraining parts of the model parameter space, especially for m_D less than $\mathcal{O}(100 \, \text{GeV})$, as some of our examples will later demonstrate.

To illustrate the viable parameter space in this scenario, in the second to seventh columns of table 1 we put together a few sample sets of input parameters which are consistent with eq. (3.17) and the requirements described in the last two paragraphs. The eighth to twelfth columns contain the resulting values of several quantities. With the input numbers from Set 1 in the table, we show in figure 5a the λ_h region evaluated from the observed relic density. We also display the upper limits on λ_h inferred from eq. (2.5) for the $h \to DD$ limit (black dotted curve), from the latest LUX [2] and PandaX-II [3] searches, and from the aforementioned theoretical demands for perturbativity, potential stability, and unitarity.

The plot in figure 5b exhibits the corresponding prediction for $\sigma_{\rm el}^p$ (green curve) compared to its empirical counterparts obtained from the data depicted in figure 1a by employing eq. (3.14) with $f_n/f_p = 0.658$ from Set 1 in table 1. One observes that the $m_D < 50$ GeV

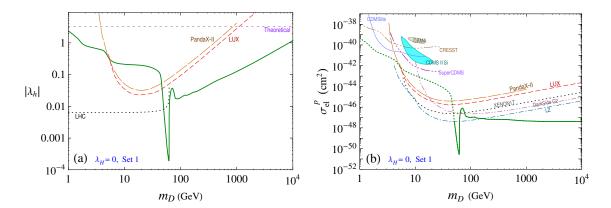


Figure 5. (a) The darkon-h coupling λ_h consistent with the relic data (green curve) versus darkon mass in the THDM II+D with $\lambda_H = 0$ and input numbers from Set 1 in table 1. Also plotted are upper limits from the theoretical conditions mentioned in the text (horizontal purple dotted-line), the LHC Higgs invisible decay data (black dotted-curve), and the latest LUX (red dashed-curve) and PandaX-II (orange dashed-curve) results. (b) The corresponding darkon-proton cross-section $\sigma_{\rm el}^p$ (green curve), compared to its counterparts translated from the $\sigma_{\rm el}^N$ data and projections in figure 1a using eq. (3.14) with f_n/f_p from Set 1 in table 1. The dotted portion of the green curve is excluded by the LHC bound in (a).

region, represented by the dotted section of the green curve, is incompatible with the LHC constraint on $h \to DD$ and a portion of it is also excluded by LUX and PandaX-II. The green solid curve is below all of the existing limits from direct searches and for a narrow range of m_D lies not far under the LUX line. Upcoming quests with XENON1T as well as DarkSide G2 will apparently be sensitive to only a small section of the green solid curve, below 100 GeV, whereas LZ can expectedly reach more of it, from about 63 to 170 GeV.

For further illustrations, in figure 6 we graph analogous results with the input numbers from Sets 2 and 3 in table 1. Their f_n/f_p values are lower than that in Set 1, making the darkon more xenophobic and therefore harder to discover with xenon-based detectors, as can also be deduced from figure 3. Especially, in these instances the predictions for $\sigma_{\rm el}^p$ (green solid curves) are far less than the available experimental bounds and may be out of reach for direct searches in the not-too-distant future.

For a more straightforward comparison between the model predictions and direct search results, which are typically reported in terms of the DM-nucleon cross-section $\sigma_{\rm el}^N$, we have converted the calculated $\sigma_{\rm el}^p$ in figures 5 and 6 to the three (green) $\sigma_{\rm el}^N$ curves in figure 7a using eq. (3.14) with the f_n/f_p values from table 1 and assuming that the target material in the detector is xenon. Recalling that the DarkSide G2 experiment will employ an argon target [16], we plot the corresponding predictions for $\sigma_{\rm el}^N$ assuming an argon target instead in figure 7b, which reveals some visible differences from figure 7a in the predictions with $f_n/f_p < 0$, as figure 3 would imply as well. Also shown are the same data and projections as in figure 1a. From figure 7, we can conclude that near-future direct detection experiments will be sensitive to only a rather limited part of the h-portal THDM II+D parameter space. We notice specifically that the predicted $\sigma_{\rm el}^N$ in much of the $m_D > 100\,{\rm GeV}$ region is under the neutrino-background floor.

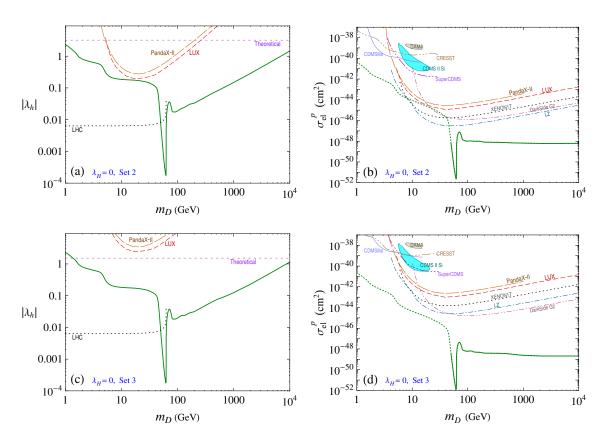


Figure 6. The same as figure 5, except the input parameters are from Set 2 (a, b) and Set 3 (c, d) in table 1.

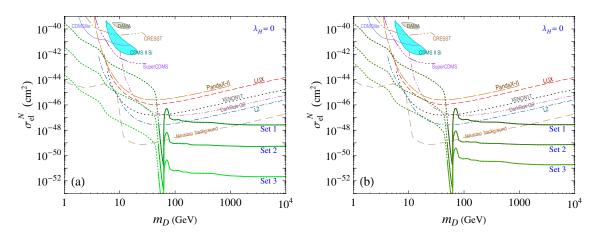


Figure 7. The predictions for darkon-nucleon cross-section $\sigma_{\rm el}^N$ (green curves) corresponding to Sets 1–3 in table 1 for (a) xenon and (b) argon targets as described in the text, compared to the same data and projections as in figure 1a. The dotted portions of the green curves are excluded as in figures 5 and 6.

Set	α	β	$\frac{m_H}{\rm GeV}$	$\frac{m_A}{{\rm GeV}}$	$\frac{m_{H^\pm}}{{\rm GeV}}$	$\frac{m_{12}^2}{\text{GeV}^2}$	k_V^h	k_u^h	k_d^h	k_V^H	k_u^H	$\frac{k_d^H}{k_u^H}$	$\frac{g_{ppH}}{10^{-5}}$	$\frac{f_n}{f_p}$
1	-0.785	0.738	550	600	650	70000	0.999	1.051	0.955	0.048	-1.051	-0.910	-5.62	+0.281
2	-0.749	0.723	610	750	760	91000	0.995	1.107	0.908	0.099	-1.029	-0.949	-3.26	-0.245
3	-0.676	0.658	590	610	640	60000	0.972	1.276	0.791	0.235	-1.023	-0.964	-2.40	-0.693

Table 2. Samples values of input parameters α , β , $m_{H,A,H^{\pm}}$, and m_{12}^2 in the $\lambda_h = 0$ scenario and the resulting values of several quantities, including $f_n/f_p = g_{nnH}/g_{ppH}$.

3.2 $\lambda_h = 0$

In this scenario, the cross section of the darkon annihilation into THDM particles is

$$\sigma_{\rm ann} = \sigma(DD \to H^* \to X_{\rm SM}) + \sum_{\mathbf{s}_1 \mathbf{s}_2} \sigma(DD \to \mathbf{s}_1 \mathbf{s}_2),$$
 (3.23)

where

$$\sigma(DD \to H^* \to X_{\rm SM}) = \frac{4\lambda_H^2 v^2}{\left(m_H^2 - s\right)^2 + \Gamma_H^2 m_H^2} \frac{\sum_i \Gamma(\tilde{H} \to X_{i,\rm SM})}{\sqrt{s - 4m_D^2}},$$
(3.24)

with \tilde{H} being a virtual H having the same couplings as the physical H and an invariant mass equal to \sqrt{s} , and the sum in $\sigma_{\rm ann}$ is again over $\mathbf{s}_1\mathbf{s}_2=hh,hH,HH,AA,H^+H^-$. For the H-mediated darkon-proton scattering, $Dp \to Dp$, the cross section is

$$\sigma_{\rm el}^p = \frac{\lambda_H^2 g_{ppH}^2 m_p^2 v^2}{\pi \left(m_D + m_p \right)^2 m_H^4} \,. \tag{3.25}$$

In applying eq. (3.14), we set $f_n/f_p = g_{nnH}/g_{ppH}$.

Similarly to the $\lambda_H = 0$ case, here we present three examples, with their respective sets of input numbers being collected in table 2. We also impose the requirements described earlier in this section, except that the LHC information on the decay mode $h \to \text{invisible}$ is not useful for bounding λ_H . Nevertheless, the theoretical conditions for perturbativity, stability of the potential, and unitarity of high-energy scalar scattering amplitudes turn out to be consequential in disallowing darkon masses less than 100 GeV.

The input numbers from Set 1 (Sets 2 and 3) in table 2 lead to the graphs in figure 8 (9). In these figures, we see that the $|\lambda_H|$ values extracted from the relic density data tend to be bigger than their λ_h counterparts in the $\lambda_H=0$ instances. This is because the H-mediated annihilation rate is relatively more suppressed due to $m_H>m_h$. As a consequence, more of the low- m_D regions are in conflict with the restrictions from the aforementioned theoretical requirements. Furthermore, in figure 8b, like in figure 5b, there is a small range of the solid green curve, around its leftmost end, that is close to the LUX and PandaX-II limits.

As in the previous subsection, assuming xenon to be the target material, we have translated the predicted $\sigma_{\rm el}^p$ in figures 8 and 9 into the three (green) $\sigma_{\rm el}^N$ curves in figure 10a in order to provide a more direct comparison with experimental results. If the target is argon instead and $f_n/f_p < 0$, the $\sigma_{\rm el}^N$ predictions can be visibly greater, as depicted in figure 10b.

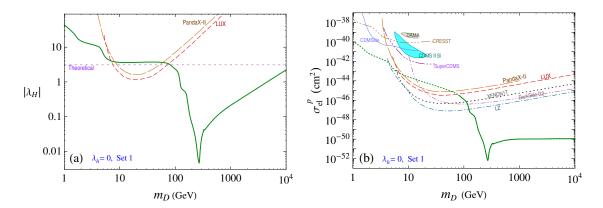


Figure 8. (a) The darkon-H coupling λ_H versus darkon mass in the THDM II+D with $\lambda_h = 0$ and input numbers from Set 1 in table 2. (b) The corresponding darkon-proton cross-section $\sigma_{\rm el}^p$ (green curve), compared to its counterparts translated from figure 1a using eq. (3.14) with f_n/f_p from Set 1 in table 2. The dotted portion of the green curve is excluded by the theoretical bound in (a).

For darkon masses above 100 GeV, the majority of the $\sigma_{\rm el}^N$ predictions in figure 10 appear to lie under the neutrino-background floor, more in these instances than those in the $\lambda_H=0$ case. Thus, the $\lambda_h=0$ scenario is likely to be comparatively more challenging to probe with direct searches.

4 Conclusions

We have explored some of the implications of the most recent null results of WIMP DM direct searches by LUX and PandaX-II. For Higgs-portal scalar WIMP DM models, the new limits have eliminated any possibility to accommodate low-mass DM undergoing spinindependent elastic scattering off nucleons that was suggested by the potentially positive results of the DAMA and CDMS II Si experiments, even after invoking the mechanism of isospin violation in DM-nucleon interactions. We have studied particularly how the LUX and PandaX-II results probe the parameter space of the simplest Higgs-portal scalar DM models, namely the SM+D, which is the SM plus a real scalar singlet called darkon, and the THDM II+D, which is the two-Higgs-doublet model of type II combined with a darkon. In the THDM II+D we entertain the possibility that the 125-GeV Higgs boson, h, is the lightest one of the physical members of the scalar doublets. Our analysis takes into account various constraints from LHC data on the Yukawa couplings of h, its couplings to gauge bosons, and its invisible decay mode. Also pertinent are restrictions from oblique electroweak precision measurements and from theoretical considerations regarding perturbativity, vacuum stability, and unitarity. In the SM+D case, h is the only portal between the DM and SM sectors, while in the THDM II+D one or both of the CP-even Higgs bosons, h and the heavier H, can be the portals.

We find that in scenarios with h being the only portal the LHC information on $h \rightarrow$ invisible places a significant restraint on the darkon-h coupling and rules out the $m_D \le$

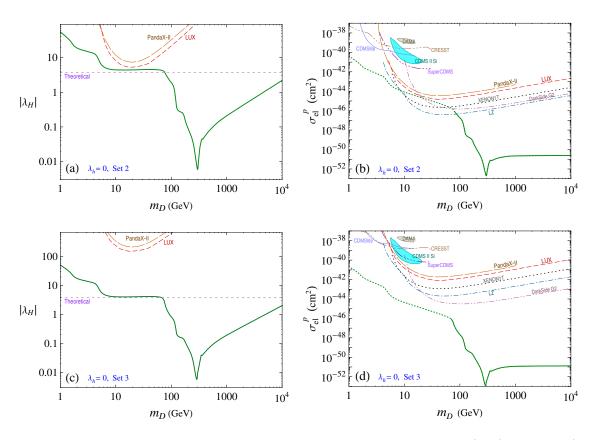


Figure 9. The same as figure 8, except the input parameters are from Set 2 (a, b) and Set 3 (c, d) in table 2.

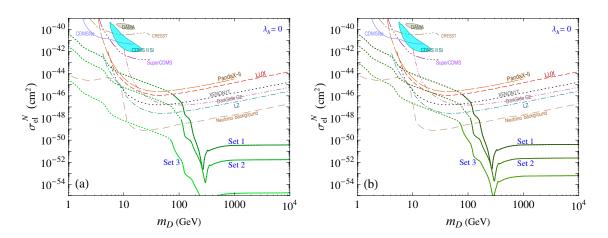


Figure 10. The predictions for darkon-nucleon cross-section $\sigma_{\rm el}^N$ (green curves) corresponding to Sets 1–3 in table 2 for (a) xenon and (b) argon targets as described in the text, compared to the same data and projections as in figure 1a. The dotted portions of the green curves are excluded as in figures 8 and 9.

 $m_h/2$ region, except a small range near the resonance point $m_D = m_h/2$. We also find that for $m_D > m_h/2$ in the SM+D the new LUX and PandaX-II limits exclude masses up to $450 \,\mathrm{GeV}$ or so, but in the h-portal THDM II+D they can be recovered due to suppression of the Higgs-nucleon coupling, $g_{\mathcal{N}\mathcal{N}h}$, at some values of the product $\tan \alpha \tan \beta$. In contrast, in the THDM II+D scenario with H being the sole portal, the $h \to \text{invisible}$ bound does not apply to the much heavier H, and the LUX and PandaX-II limits can be evaded due to suppression of $g_{\mathcal{N}\mathcal{N}H}$ at some values of $\cot \alpha \tan \beta$. However, in this case our examples demonstrate that the foregoing theoretical requirements are consequential and disallow most of the $m_D < 100\,\mathrm{GeV}$ region. Thus, darkon masses below $m_D \simeq 50\,\mathrm{GeV}$ are ruled out in the SM+D by LHC data and very likely so in the THDM II+D by the LHC and theoretical restrictions. For higher masses, lower parts of the dip around $m_D = m_h/2$ in the h-portal cases will remain viable for the foreseeable future, and beyond the hresonance area the region up to roughly 3.5, 10, and 20 TeV in the SM+D will be testable by XENON1T, DarkSide G2, and LZ, respectively. For $m_D > 100 \,\mathrm{GeV}$ in the THDM II+D there is generally ample parameter space that yields a darkon-nucleon cross-section below the neutrino-background floor and is therefore likely to elude direct detection experiments in the future which lack directional sensitivity. Finally, we point out that the considerable suppression of g_{NNH} is accompanied by g_{ppH} and g_{nnH} manifesting sizable isospin breaking, as illustrated in our examples.

Acknowledgments

This research was supported in part by MOE Academic Excellence Program (Grant No. 102R891505) and NCTS of ROC. X.-G. He was also supported in part by MOST of ROC (Grant No. MOST104-2112-M-002-015-MY3) and in part by NSFC (Grant Nos. 11175115 and 11575111), Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education, and Shanghai Key Laboratory for Particle Physics and Cosmology (SKLPPC) (Grant No. 11DZ2260700) of PRC.

A Extra formulas for darkon reactions

To extract the darkon-Higgs coupling which enters the annihilation cross-section $\sigma_{\rm ann}$, we employ its thermal average [107]

$$\langle \sigma v_{\rm rel} \rangle = \frac{x}{8 m_D^5 K_2^2(x)} \int_{4 m_D^2}^{\infty} ds \, \sqrt{s} \left(s - 4 m_D^2 \right) \, K_1 \left(\sqrt{s} \, x / m_D \right) \sigma_{\rm ann} \,, \tag{A.1}$$

where $v_{\rm rel}$ is the relative speed of the DM pair, K_r is the modified Bessel function of the second kind of order r and x can be set to its freeze out value $x = x_f$, which is related to $\langle \sigma v_{\rm rel} \rangle$ by [108]

$$x_f = \ln \frac{0.038 \, m_D \, m_{\text{Pl}} \, \langle \sigma v_{\text{rel}} \rangle}{\sqrt{g_* x_f}} \,, \tag{A.2}$$

with $m_{\rm Pl}=1.22\times 10^{19}$ GeV being the Planck mass and g_* is the total number of effectively relativistic degrees of freedom below the freeze-out temperature $T_f=m_D/x_f$. In addition,

we adopt the numerical values of $\langle \sigma v_{\rm rel} \rangle$ versus m_D determined in ref. [109], as well as the latest relic density data $\Omega \hat{h}^2 = 0.1197 \pm 0.0022$ [110], with \hat{h} being the Hubble parameter.

In the THDM II+D, if kinematically allowed, a darkon pair can annihilate into a pair of Higgs bosons, $DD \to hh, hH, HH, AA, H^+H^-$, induced by the diagrams drawn in figure 11. They lead to the cross sections

$$\sigma(DD \to \mathcal{H}\mathcal{H}) = \frac{\lambda_{\mathcal{H}}^2 v^2}{\beta_D^2 \pi s^2} \left(\frac{\mathcal{M}_{\mathcal{H}\mathcal{H}}}{2} + \frac{2\lambda_{\mathcal{H}}^2 v^2}{2m_{\mathcal{H}}^2 - s} \right) \ln \left| \frac{s - 2m_{\mathcal{H}}^2 - \beta_D \beta_{\mathcal{H}} s}{s - 2m_{\mathcal{H}}^2 + \beta_D \beta_{\mathcal{H}} s} \right|$$

$$+ \frac{\beta_{\mathcal{H}}}{\beta_D} \left[\frac{\mathcal{M}_{\mathcal{H}\mathcal{H}}^2}{32\pi s} + \frac{\lambda_{\mathcal{H}}^4 v^4}{\pi (m_{\mathcal{H}}^4 + \beta_{\mathcal{H}}^2 m_D^2 s) s} \right], \tag{A.3}$$

$$\sigma(DD \to hH) = \frac{\lambda_h \lambda_H v^2}{\beta_D^2 \pi s^2} \left(\mathcal{M}_{hH} + \frac{4\lambda_h \lambda_H v^2}{m_h^2 + m_H^2 - s} \right) \ln \left| \frac{s - m_h^2 - m_H^2 - \beta_D \mathcal{K}^{\frac{1}{2}}(s, m_h^2, m_H^2)}{s - m_h^2 - m_H^2 + \beta_D \mathcal{K}^{\frac{1}{2}}(s, m_h^2, m_H^2)} \right| + \frac{\mathcal{K}^{\frac{1}{2}}(s, m_h^2, m_H^2)}{\beta_D \pi s} \left(\frac{\mathcal{M}_{hH}^2}{16s} + \frac{2\lambda_h^2 \lambda_H^2 v^4}{m_h^2 m_H^2 s + \mathcal{K}(s, m_h^2, m_H^2) m_D^2} \right), \tag{A.4}$$

$$\sigma(DD \to AA) = \frac{\beta_A \mathcal{M}_{AA}^2}{32\beta_D \pi s}, \qquad \sigma(DD \to H^+H^-) = \frac{\beta_{H^\pm} \mathcal{M}_{H^+H^-}^2}{16\beta_D \pi s}, \tag{A.5}$$

where \sqrt{s} is the c.m. energy of the darkon pair, $\mathcal{HH}=hh,HH,$

$$\beta_{\mathbf{X}} = \sqrt{1 - \frac{4m_{\mathbf{X}}^2}{s}}, \qquad \mathcal{K}(x, y, z) = x^2 + y^2 + z^2 - 2(xy + yz + xz),$$
 (A.6)

$$\mathcal{M}_{\mathrm{XY}} = 2\lambda_{\mathrm{XY}} + \frac{2\lambda_h\lambda_{h\mathrm{XY}}\left(s-m_h^2\right)v^2}{\left(s-m_h^2\right)^2 + \Gamma_h^2m_h^2} + \frac{2\lambda_H\lambda_{H\mathrm{XY}}\left(s-m_H^2\right)v^2}{\left(s-m_H^2\right)^2 + \Gamma_H^2m_H^2}\,,$$

$$XY = hh, hH, HH, AA, H^{+}H^{-},$$
 (A.7)

with λ_{XY} being given by eq. (3.6) and

$$\begin{split} \lambda_{hhh} &= \frac{c_{\alpha}^{3}c_{\beta} - s_{\alpha}^{3}s_{\beta}}{c_{\beta}s_{\beta}} \; \frac{3m_{h}^{2}}{v^{2}} - \frac{3c_{\alpha+\beta}c_{\alpha-\beta}^{2}}{c_{\beta}^{2}s_{\beta}^{2}} \frac{m_{12}^{2}}{v^{2}} \,, \\ \lambda_{hhH} &= \frac{c_{\beta-\alpha}}{c_{\beta}s_{\beta}} \left[s_{2\alpha} \frac{2m_{h}^{2} + m_{H}^{2}}{2v^{2}} + \left(1 - \frac{3s_{2\alpha}}{s_{2\beta}} \right) \frac{m_{12}^{2}}{v^{2}} \right] = \lambda_{Hhh} \,, \\ \lambda_{hHH} &= \frac{s_{\alpha-\beta}}{c_{\beta}s_{\beta}} \left[s_{2\alpha} \frac{m_{h}^{2} + 2m_{H}^{2}}{2v^{2}} - \left(1 + \frac{3s_{2\alpha}}{s_{2\beta}} \right) \frac{m_{12}^{2}}{v^{2}} \right] = \lambda_{HhH} \,, \\ \lambda_{hH+H-} &= \frac{c_{\alpha}c_{\beta}^{3} - s_{\alpha}s_{\beta}^{3}}{c_{\beta}s_{\beta}} \; \frac{m_{h}^{2}}{v^{2}} + 2s_{\beta-\alpha} \frac{m_{H^{\pm}}^{2}}{v^{2}} - \frac{c_{\alpha+\beta}}{c_{\beta}^{2}s_{\beta}^{2}} \frac{m_{12}^{2}}{v^{2}} = \lambda_{hAA} + 2s_{\beta-\alpha} \frac{m_{H^{\pm}}^{2} - m_{A}^{2}}{v^{2}} \,, \\ \lambda_{HHH} &= \frac{c_{\alpha}s_{\beta} + s_{\alpha}^{3}c_{\beta}}{c_{\beta}s_{\beta}} \; \frac{3m_{H}^{2}}{v^{2}} - \frac{3s_{\alpha+\beta}s_{\alpha-\beta}^{2}}{c_{\beta}^{2}s_{\beta}^{2}} \frac{m_{12}^{2}}{v^{2}} \,, \\ \lambda_{HH+H-} &= \frac{c_{\alpha}s_{\beta}^{3} + s_{\alpha}c_{\beta}^{3}}{c_{\beta}s_{\beta}} \; \frac{m_{H}^{2}}{v^{2}} + 2c_{\beta-\alpha} \frac{m_{H^{\pm}}^{2}}{v^{2}} - \frac{s_{\alpha+\beta}}{c_{\beta}^{2}s_{\beta}^{2}} \frac{m_{12}^{2}}{v^{2}} = \lambda_{HAA} + 2c_{\beta-\alpha} \frac{m_{H^{\pm}}^{2} - m_{A}^{2}}{v^{2}} \,. \end{split}$$

$$(A.8)$$

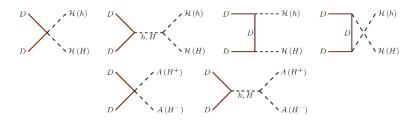


Figure 11. Feynman diagrams contributing to $DD \to hh, HH, hH, AA, H^+H^-$.

In eqs. (A.3) and (A.4), we have dropped terms with two powers of $\Gamma_{h,H}$ in the numerators. In the scenarios we look at, Γ_H receives contributions not only from rates of the fermion and gauge-boson decay modes of H, similarly to those of h, but also from

$$\Gamma(H \to DD) = \frac{\lambda_H^2 v^2}{8\pi m_H} \sqrt{1 - \frac{4m_D^2}{m_H^2}}, \qquad \Gamma(H \to hh) = \frac{\lambda_{hhH}^2 v^2}{8\pi m_H} \sqrt{1 - \frac{4m_h^2}{m_H^2}}$$
(A.9)

once these channels are open. The $\sigma(DD \to hh)$ formula in eq. (A.4) is applicable to the SM+D, in which case there is only one coupling for the darkon-Higgs interaction, $\lambda_h = \lambda_{hh} = \lambda$, and there is no H contribution, $\lambda_H = \lambda_{hhH} = 0$.

The parameters $f_q^{\mathcal{N}}$ in eq. (3.12) depend on the so-called pion-nucleon sigma term $\sigma_{\pi N}$, which is not yet well-determined. To minimize the prediction for σ_{el}^{N} in view of the stringent experimental restraints, we estimate $f_q^{\mathcal{N}}$ using the results of refs. [77–79] with $\sigma_{\pi N} = 30$ MeV. This yields

$$f_u^p = 0.01370$$
, $f_d^p = 0.01686$, $f_s^p = 0.06305$, $f_{c,b,t}^p = 0.06703$, $f_u^n = 0.00976$, $f_d^n = 0.02359$, $f_s^n = 0.06296$, $f_{c,b,t}^n = 0.06694$. (A.10)

We note that $f_{c,b,t}^{\mathcal{N}} \simeq 2(1 - f_u^{\mathcal{N}} - f_d^{\mathcal{N}} - f_s^{\mathcal{N}})/27$.

B Conditions for perturbativity, vacuum stability, and tree-level unitarity

The parameters of the scalar potential $\mathcal{V} = \mathcal{V}_H + \mathcal{V}_D$ of the THDM II+D in eq. (3.2) are subject to a number of theoretical constraints. We adopt the usual assumption that the scalar interactions are in the perturbative regime, implying that the λ parameters in \mathcal{V} need to be capped. Thus, we demand that $|\lambda_{1,2,3,4,5}| \leq 8\pi$, like in the THDM scenario without the darkon [111], while for the darkon couplings $|\lambda_{D,1D,2D}| \leq 4\pi$ in view of their normalization convention in \mathcal{V} . In what follows, we describe additional requirements which may lead to stronger restraints on these λ s.

The requisite stability of V implies that it has to be bounded from below. In other words, its quartic part

$$\mathcal{V}_{4} = \frac{1}{2}\lambda_{1}(H_{1}^{\dagger}H_{1})^{2} + \frac{1}{2}\lambda_{2}(H_{2}^{\dagger}H_{2})^{2} + \lambda_{3}H_{1}^{\dagger}H_{1}H_{2}^{\dagger}H_{2} + \lambda_{4}H_{1}^{\dagger}H_{2}H_{2}^{\dagger}H_{1} + \frac{1}{2}\lambda_{5}\left[(H_{1}^{\dagger}H_{2})^{2} + \text{H.c.}\right] + \frac{1}{4}\lambda_{D}D^{4} + (\lambda_{1D}H_{1}^{\dagger}H_{1} + \lambda_{2D}H_{2}^{\dagger}H_{2})D^{2}$$
(B.1)

must stay positive for arbitrarily large values of the fields. Expressing

$$H_r^{\dagger} H_r = \eta_r^2$$
, $\eta_r \ge 0$, $r = 1, 2$, $H_1^{\dagger} H_2 = \eta_1 \eta_2 \rho^2 e^{i\theta}$, $0 \le \rho^2 \le 1$, $\operatorname{Im} \theta = 0$, (B.2)

we then have

$$\mathcal{V}_{4} = \frac{1}{2} \left(\eta_{1}^{2} \ \eta_{2}^{2} \ D^{2} \right) \mathcal{M}_{4} \begin{pmatrix} \eta_{1}^{2} \\ \eta_{2}^{2} \\ D^{2} \end{pmatrix},
\mathcal{M}_{4} = \begin{pmatrix} \lambda_{1} & \lambda_{3} + [\lambda_{4} + \lambda_{5} \cos(2\theta)] \rho^{2} \ \lambda_{1D} \\ \lambda_{3} + [\lambda_{4} + \lambda_{5} \cos(2\theta)] \rho^{2} & \lambda_{2} & \lambda_{2D} \\ \lambda_{1D} & \lambda_{2D} & \frac{1}{2} \lambda_{D} \end{pmatrix}.$$
(B.3)

For any of $\eta_{1,2}$ and D being large, $V_4 > 0$ if \mathcal{M}_4 is strictly copositive [114–117], and this entails

$$\begin{split} \lambda_r &> 0 \,, \qquad \lambda_D > 0 \,, \qquad \lambda_{rD} > -\sqrt{\frac{1}{2}\lambda_r\lambda_D} \,, \qquad \lambda_3 + \min(0,\lambda_4 - |\lambda_5|) > -\sqrt{\lambda_1\lambda_2} \,, \\ 0 &< \lambda_{1D}\sqrt{2\lambda_2} + \lambda_{2D}\sqrt{2\lambda_1} + \left[\sqrt{\lambda_1\lambda_2} + \lambda_3 + \min(0,\lambda_4 - |\lambda_5|)\right]\sqrt{\lambda_D} \\ &+ \sqrt{\left(\sqrt{2\lambda_1\lambda_D} + 2\lambda_{1D}\right)\left(\sqrt{2\lambda_2\lambda_D} + 2\lambda_{2D}\right)\left[\sqrt{\lambda_1\lambda_2} + \lambda_3 + \min(0,\lambda_4 - |\lambda_5|)\right]} \,, \quad \text{(B.4)} \end{split}$$

where r = 1, 2.

Another important limitation is that the amplitudes for scalar-scalar scattering $s_1s_2 \rightarrow s_3s_4$ at high energies respect unitarity. Similarly to the THDM case [99, 112, 113], for the scalar pair s_ms_n we can work with the nonphysical fields h_r^\pm , h_r^0 , and I_r^0 , as well as D. Accordingly, one can take the uncoupled sets of orthonormal pairs

$$\left\{h_{1}^{+}h_{2}^{-}, h_{1}^{-}h_{2}^{+}, h_{1}^{0}h_{2}^{0}, h_{1}^{0}I_{2}^{0}, I_{1}^{0}h_{2}^{0}, I_{1}^{0}I_{2}^{0}\right\}, \qquad \left\{h_{1}^{+}h_{2}^{0}, h_{1}^{+}I_{2}^{0}, h_{2}^{+}h_{1}^{0}, h_{2}^{+}I_{1}^{0}\right\}, \\
\left\{h_{1}^{+}h_{1}^{-}, h_{2}^{+}h_{2}^{-}, \frac{1}{\sqrt{2}}h_{1}^{0}h_{1}^{0}, \frac{1}{\sqrt{2}}h_{2}^{0}h_{2}^{0}, \frac{1}{\sqrt{2}}I_{1}^{0}I_{1}^{0}, \frac{1}{\sqrt{2}}I_{2}^{0}I_{2}^{0}, \frac{1}{\sqrt{2}}DD\right\}, \qquad \left\{h_{1}^{0}D, h_{2}^{0}D\right\} \quad (B.5)$$

to construct the matrix containing the tree-level amplitudes for $s_1s_2 \to s_3s_4$, which at high energies are dominated by the contributions of the four-particle contact diagrams. We can write the distinct eigenvalues of this matrix as

$$\begin{split} b_{\pm} &= \frac{1}{2}(\lambda_1 + \lambda_2) \pm \sqrt{\frac{1}{4}(\lambda_1 - \lambda_2)^2 + \lambda_4^2} \,, \quad c_{\pm} &= \frac{1}{2}(\lambda_1 + \lambda_2) \pm \sqrt{\frac{1}{4}(\lambda_1 - \lambda_2)^2 + \lambda_5^2} \,, \\ \mathbf{E}_{\pm} &= \lambda_3 + 2\lambda_4 \pm 3\lambda_5 \,, \quad \mathbf{F}_{\pm} &= \lambda_3 \pm \lambda_4 \,, \quad \mathbf{G}_{\pm} &= \lambda_3 \pm \lambda_5 \,, \quad d_r &= 2\lambda_{rD} \,, \quad r = 1, 2 \,, \end{split} \tag{B.6}$$

and the 3 solutions $a_{1,2,3}$ of the cubic polynomial equation

$$0 = a^{3} - 3(\lambda_{1} + \lambda_{2} + \lambda_{D})a^{2} + \left[9\lambda_{1}\lambda_{2} - (2\lambda_{3} + \lambda_{4})^{2} + 9(\lambda_{1} + \lambda_{2})\lambda_{D} - 4\lambda_{1D}^{2} - 4\lambda_{2D}^{2}\right]a + 4\left[3\lambda_{1}\lambda_{2D}^{2} + 3\lambda_{2}\lambda_{1D}^{2} - 2(2\lambda_{3} + \lambda_{4})\lambda_{1D}\lambda_{2D}\right] + 3\left[(2\lambda_{3} + \lambda_{4})^{2} - 9\lambda_{1}\lambda_{2}\right]\lambda_{D}.$$
 (B.7)

These results are consistent with those of ref. [91]. The unitarity requirement for the $s_1s_2 \rightarrow s_3s_4$ amplitudes then translates into the constraints

$$|a_{1,2,3}|, |b_{\pm}|, |c_{\pm}|, |d_{1,2}|, |E_{\pm}|, |F_{\pm}|, |G_{\pm}| \le 8\pi.$$
 (B.8)

The analogous conditions in the SM+D can be deduced from the foregoing by taking the one-Higgs-doublet limit. Thus, in the SM+D perturbativity demands $|\lambda_{\bar{H}}| \leq 8\pi$ for the Higgs self-coupling, $|\lambda_D| \leq 4\pi$, and $|\lambda| \leq 4\pi$, whereas from eq. (B.4) we have

$$\lambda_D > 0, \qquad \lambda_{\bar{\mathbf{H}}} > 0, \qquad \lambda > -\sqrt{\frac{1}{2}\lambda_D\lambda_{\bar{\mathbf{H}}}}$$
 (B.9)

and from eq. (B.8)

$$\left| \frac{3}{2} (\lambda_D + \lambda_{\bar{\mathbf{H}}}) \pm \sqrt{\frac{9}{4} (\lambda_D - \lambda_{\bar{\mathbf{H}}})^2 + 4\lambda^2} \right| \le 8\pi, \qquad |\lambda_{\bar{\mathbf{H}}}| \le 8\pi, \qquad |\lambda| \le 4\pi. \quad (B.10)$$

The first inequalities in the last line imply the stronger caps $\lambda_{\bar{H}} \leq 8\pi/3$ and $\lambda_D \leq 8\pi/3$. The values of $|\lambda|$ shown in figure 2a are consistent with its limit in eq. (B.10).

To implement the conditions in eqs. (B.4) and (B.8), we employ the relations

$$\begin{split} \lambda_1 &= \frac{s_{\alpha}^2 m_h^2 + c_{\alpha}^2 m_H^2}{c_{\beta}^2 v^2} - \frac{s_{\beta} m_{12}^2}{c_{\beta}^3 v^2}, \qquad \qquad \lambda_2 = \frac{c_{\alpha}^2 m_h^2 + s_{\alpha}^2 m_H^2}{s_{\beta}^2 v^2} - \frac{c_{\beta} m_{12}^2}{s_{\beta}^3 v^2}, \\ \lambda_3 &= \frac{s_{2\alpha}}{s_{2\beta}} \frac{m_H^2 - m_h^2}{v^2} + \frac{2m_{H^\pm}^2}{v^2} - \frac{2m_{12}^2}{s_{2\beta} v^2}, \qquad \lambda_4 = \frac{m_A^2 - 2m_{H^\pm}^2}{v^2} + \frac{2m_{12}^2}{s_{2\beta} v^2}, \\ \lambda_5 &= \frac{2m_{12}^2}{s_{2\beta} v^2} - \frac{m_A^2}{v^2}, \qquad \qquad \lambda_{1D} = \frac{c_{\alpha} \lambda_H - s_{\alpha} \lambda_h}{c_{\beta}}, \qquad \qquad \lambda_{2D} = \frac{c_{\alpha} \lambda_h + s_{\alpha} \lambda_H}{s_{\beta}}, \end{split}$$
 (B.11)

derived from $\mathcal{V}_{H,D}$. Once α and β have been specified, $m_{h,H,A,H^{\pm},12}$ and $\lambda_{h,H}$ can then serve as the free parameters instead of $\lambda_{1,2,3,4,5,1D,2D}$, as in eqs. (3.7) and (A.8). The expressions for $\lambda_{1,2,3,4,5}$ in eq. (B.11) agree with those in the literature [118].

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

- [1] Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
- [2] D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, arXiv:1608.07648 [INSPIRE].
- [3] PANDAX-II collaboration, A. Tan et al., Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment, Phys. Rev. Lett. 117 (2016) 121303 [arXiv:1607.07400] [INSPIRE].

- [4] R. Bernabei et al., Final model independent result of DAMA/LIBRA-phase1, Eur. Phys. J.
 C 73 (2013) 2648 [arXiv:1308.5109] [INSPIRE].
- [5] CDMS collaboration, R. Agnese et al., Silicon Detector Dark Matter Results from the Final Exposure of CDMS II, Phys. Rev. Lett. 111 (2013) 251301 [arXiv:1304.4279] [INSPIRE].
- [6] COGENT collaboration, C.E. Aalseth et al., CoGeNT: A Search for Low-Mass Dark Matter using p-type Point Contact Germanium Detectors, Phys. Rev. D 88 (2013) 012002 [arXiv:1208.5737] [INSPIRE].
- [7] G. Angloher et al., Results from 730 kg days of the CRESST-II Dark Matter Search, Eur. Phys. J. C 72 (2012) 1971 [arXiv:1109.0702] [INSPIRE].
- [8] J.H. Davis, C. McCabe and C. Boehm, Quantifying the evidence for Dark Matter in CoGeNT data, JCAP 08 (2014) 014 [arXiv:1405.0495] [INSPIRE].
- [9] CRESST-II collaboration, G. Angloher et al., Results on low mass WIMPs using an upgraded CRESST-II detector, Eur. Phys. J. C 74 (2014) 3184 [arXiv:1407.3146] [INSPIRE].
- [10] J.H. Davis, The Past and Future of Light Dark Matter Direct Detection, Int. J. Mod. Phys.
 A 30 (2015) 1530038 [arXiv:1506.03924] [INSPIRE].
- [11] SUPERCDMS collaboration, R. Agnese et al., Search for Low-Mass Weakly Interacting Massive Particles with SuperCDMS, Phys. Rev. Lett. 112 (2014) 241302 [arXiv:1402.7137] [INSPIRE].
- [12] SUPERCDMS collaboration, R. Agnese et al., New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment, Phys. Rev. Lett. 116 (2016) 071301 [arXiv:1509.02448] [INSPIRE].
- [13] CRESST collaboration, G. Angloher et al., Results on light dark matter particles with a low-threshold CRESST-II detector, Eur. Phys. J. C 76 (2016) 25 [arXiv:1509.01515] [INSPIRE].
- [14] P. Cushman et al., Working Group Report: WIMP Dark Matter Direct Detection, arXiv:1310.8327 [INSPIRE].
- [15] XENON collaboration, E. Aprile et al., *Physics reach of the XENON1T dark matter experiment*, *JCAP* **04** (2016) 027 [arXiv:1512.07501] [INSPIRE].
- [16] C.E. Aalseth et al., The DarkSide Multiton Detector for the Direct Dark Matter Search, Adv. High Energy Phys. 2015 (2015) 541362 [INSPIRE].
- [17] LZ collaboration, D.S. Akerib et al., LUX-ZEPLIN (LZ) Conceptual Design Report, arXiv:1509.02910 [INSPIRE].
- [18] J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. **D** 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].
- [19] A. Kurylov and M. Kamionkowski, Generalized analysis of weakly interacting massive particle searches, Phys. Rev. **D** 69 (2004) 063503 [hep-ph/0307185] [INSPIRE].
- [20] F. Giuliani, Are direct search experiments sensitive to all spin-independent WIMP candidates?, Phys. Rev. Lett. 95 (2005) 101301 [hep-ph/0504157] [INSPIRE].
- [21] J.L. Feng, J. Kumar, D. Marfatia and D. Sanford, *Isospin-Violating Dark Matter*, *Phys. Lett.* **B 703** (2011) 124 [arXiv:1102.4331] [INSPIRE].

- [22] J.L. Feng, J. Kumar and D. Sanford, Xenophobic Dark Matter, Phys. Rev. D 88 (2013) 015021 [arXiv:1306.2315] [INSPIRE].
- [23] C. Savage, G. Gelmini, P. Gondolo and K. Freese, Compatibility of DAMA/LIBRA dark matter detection with other searches, JCAP 04 (2009) 010 [arXiv:0808.3607] [INSPIRE].
- [24] N. Chen, Q. Wang, W. Zhao, S.-T. Lin, Q. Yue and J. Li, Exothermic isospin-violating dark matter after SuperCDMS and CDEX, Phys. Lett. B 743 (2015) 205 [arXiv:1404.6043] [INSPIRE].
- [25] C.-Q. Geng, D. Huang, C.-H. Lee and Q. Wang, Direct Detection of Exothermic Dark Matter with Light Mediator, JCAP 08 (2016) 009 [arXiv:1605.05098] [INSPIRE].
- [26] S. Scopel and K.-H. Yoon, Inelastic dark matter with spin-dependent couplings to protons and large modulation fractions in DAMA, JCAP 02 (2016) 050 [arXiv:1512.00593] [INSPIRE].
- [27] V. Silveira and A. Zee, Scalar Phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].
- [28] C.P. Burgess, M. Pospelov and T. ter Veldhuis, *The Minimal model of nonbaryonic dark matter: A Singlet scalar*, *Nucl. Phys.* **B 619** (2001) 709 [hep-ph/0011335] [INSPIRE].
- [29] M.C. Bento, O. Bertolami, R. Rosenfeld and L. Teodoro, Selfinteracting dark matter and invisibly decaying Higgs, Phys. Rev. D 62 (2000) 041302 [astro-ph/0003350] [INSPIRE].
- [30] M.C. Bento, O. Bertolami and R. Rosenfeld, Cosmological constraints on an invisibly decaying Higgs boson, Phys. Lett. B 518 (2001) 276 [hep-ph/0103340] [INSPIRE].
- [31] D.E. Holz and A. Zee, Collisional dark matter and scalar phantoms, Phys. Lett. B 517 (2001) 239 [hep-ph/0105284] [INSPIRE].
- [32] H. Davoudiasl, R. Kitano, T. Li and H. Murayama, *The New minimal standard model, Phys. Lett.* B 609 (2005) 117 [hep-ph/0405097] [INSPIRE].
- [33] V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, *LHC Phenomenology of an Extended Standard Model with a Real Scalar Singlet, Phys. Rev.* D 77 (2008) 035005 [arXiv:0706.4311] [INSPIRE].
- [34] S. Andreas, T. Hambye and M.H.G. Tytgat, WIMP dark matter, Higgs exchange and DAMA, JCAP 10 (2008) 034 [arXiv:0808.0255] [INSPIRE].
- [35] C.E. Yaguna, Gamma rays from the annihilation of singlet scalar dark matter, JCAP 03 (2009) 003 [arXiv:0810.4267] [INSPIRE].
- [36] M. Gonderinger, Y. Li, H. Patel and M.J. Ramsey-Musolf, *Vacuum Stability, Perturbativity and Scalar Singlet Dark Matter*, *JHEP* **01** (2010) 053 [arXiv:0910.3167] [INSPIRE].
- [37] X.-G. He, T. Li, X.-Q. Li, J. Tandean and H.-C. Tsai, The Simplest Dark-Matter Model, CDMS II Results and Higgs Detection at LHC, Phys. Lett. B 688 (2010) 332 [arXiv:0912.4722] [INSPIRE].
- [38] M. Asano and R. Kitano, Constraints on Scalar Phantoms, Phys. Rev. D 81 (2010) 054506 [arXiv:1001.0486] [INSPIRE].
- [39] S. Andreas, C. Arina, T. Hambye, F.-S. Ling and M.H.G. Tytgat, A light scalar WIMP through the Higgs portal and CoGeNT, Phys. Rev. D 82 (2010) 043522 [arXiv:1003.2595] [INSPIRE].
- [40] A. Badin and A.A. Petrov, Searching for light Dark Matter in heavy meson decays, Phys. Rev. D 82 (2010) 034005 [arXiv:1005.1277] [INSPIRE].

- [41] W.-L. Guo and Y.-L. Wu, The Real singlet scalar dark matter model, JHEP 10 (2010) 083 [arXiv:1006.2518] [INSPIRE].
- [42] W.-L. Guo and Y.-L. Wu, Exploring the Singlet Scalar Dark Matter from Direct Detections and Neutrino Signals Via Its Annihilation in the Sun, Nucl. Phys. B 867 (2013) 149 [arXiv:1103.5606] [INSPIRE].
- [43] S. Profumo, L. Ubaldi and C. Wainwright, Singlet Scalar Dark Matter: monochromatic gamma rays and metastable vacua, Phys. Rev. **D** 82 (2010) 123514 [arXiv:1009.5377] [INSPIRE].
- [44] A. Abada, D. Ghaffor and S. Nasri, A Two-Singlet Model for Light Cold Dark Matter, Phys. Rev. D 83 (2011) 095021 [arXiv:1101.0365] [INSPIRE].
- [45] G. Cynolter, E. Lendvai and G. Pocsik, Note on unitarity constraints in a model for a singlet scalar dark matter candidate, Acta Phys. Polon. **B 36** (2005) 827 [hep-ph/0410102] [INSPIRE].
- [46] A. Biswas and D. Majumdar, The Real Gauge Singlet Scalar Extension of Standard Model: A Possible Candidate of Cold Dark Matter, Pramana 80 (2013) 539 [arXiv:1102.3024] [INSPIRE].
- [47] K. Ghosh, B. Mukhopadhyaya and U. Sarkar, Signals of an invisibly decaying Higgs in a scalar dark matter scenario: a study for the Large Hadron Collider, Phys. Rev. **D** 84 (2011) 015017 [arXiv:1105.5837] [INSPIRE].
- [48] Y. Mambrini, Higgs searches and singlet scalar dark matter: Combined constraints from XENON 100 and the LHC, Phys. Rev. D 84 (2011) 115017 [arXiv:1108.0671] [INSPIRE].
- [49] M. Raidal and A. Strumia, Hints for a non-standard Higgs boson from the LHC, Phys. Rev. D 84 (2011) 077701 [arXiv:1108.4903] [INSPIRE].
- [50] I. Low, P. Schwaller, G. Shaughnessy and C.E.M. Wagner, The dark side of the Higgs boson, Phys. Rev. D 85 (2012) 015009 [arXiv:1110.4405] [INSPIRE].
- [51] O. Lebedev, H.M. Lee and Y. Mambrini, Vector Higgs-portal dark matter and the invisible Higgs, Phys. Lett. B 707 (2012) 570 [arXiv:1111.4482] [INSPIRE].
- [52] A. Drozd, B. Grzadkowski and J. Wudka, Multi-Scalar-Singlet Extension of the Standard Model — The Case for Dark Matter and an Invisible Higgs Boson, JHEP 04 (2012) 006 [Erratum ibid. 11 (2014) 130] [arXiv:1112.2582] [INSPIRE].
- [53] A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].
- [54] Y. Mambrini, M.H.G. Tytgat, G. Zaharijas and B. Zaldivar, Complementarity of Galactic radio and collider data in constraining WIMP dark matter models, JCAP 11 (2012) 038 [arXiv:1206.2352] [INSPIRE].
- [55] K. Cheung, Y.-L.S. Tsai, P.-Y. Tseng, T.-C. Yuan and A. Zee, Global Study of the Simplest Scalar Phantom Dark Matter Model, JCAP 10 (2012) 042 [arXiv:1207.4930] [INSPIRE].
- [56] L.-B. Jia and X.-Q. Li, Study of a WIMP dark matter model with the updated results of CDMS II, Phys. Rev. D 89 (2014) 035006 [arXiv:1309.6029] [INSPIRE].
- [57] F.S. Queiroz, K. Sinha and A. Strumia, Leptoquarks, Dark Matter and Anomalous LHC Events, Phys. Rev. **D** 91 (2015) 035006 [arXiv:1409.6301] [INSPIRE].

- [58] L. Feng, S. Profumo and L. Ubaldi, Closing in on singlet scalar dark matter: LUX, invisible Higgs decays and gamma-ray lines, JHEP 03 (2015) 045 [arXiv:1412.1105] [INSPIRE].
- [59] M. Duerr, P. Fileviez Pérez and J. Smirnov, Scalar Singlet Dark Matter and Gamma Lines, Phys. Lett. B 751 (2015) 119 [arXiv:1508.04418] [INSPIRE].
- [60] M. Duerr, P. Fileviez Pérez and J. Smirnov, Scalar Dark Matter: Direct vs. Indirect Detection, JHEP 06 (2016) 152 [arXiv:1509.04282] [INSPIRE].
- [61] M. Duerr, P. Fileviez Pérez and J. Smirnov, Gamma-Ray Excess and the Minimal Dark Matter Model, JHEP 06 (2016) 008 [arXiv:1510.07562] [INSPIRE].
- [62] H. Han and S. Zheng, New Constraints on Higgs-portal Scalar Dark Matter, JHEP 12 (2015) 044 [arXiv:1509.01765] [INSPIRE].
- [63] H. Han, J.M. Yang, Y. Zhang and S. Zheng, Collider Signatures of Higgs-portal Scalar Dark Matter, Phys. Lett. B 756 (2016) 109 [arXiv:1601.06232] [INSPIRE].
- [64] F.S. Sage and R. Dick, Gamma ray signals of the annihilation of Higgs-portal singlet dark matter, arXiv:1604.04589 [INSPIRE].
- [65] J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D 88 (2013) 055025 [Erratum ibid. D 92 (2015) 039906] [arXiv:1306.4710] [INSPIRE].
- [66] J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].
- [67] V. Barger, M. McCaskey and G. Shaughnessy, Complex Scalar Dark Matter vis-à-vis CoGeNT, DAMA/LIBRA and XENON100, Phys. Rev. D 82 (2010) 035019 [arXiv:1005.3328] [INSPIRE].
- [68] J.K. Mizukoshi, C.A. de S. Pires, F.S. Queiroz and P.S. Rodrigues da Silva, WIMPs in a 3-3-1 model with heavy Sterile neutrinos, Phys. Rev. D 83 (2011) 065024 [arXiv:1010.4097] [INSPIRE].
- [69] M. Gonderinger, H. Lim and M.J. Ramsey-Musolf, Complex Scalar Singlet Dark Matter: Vacuum Stability and Phenomenology, Phys. Rev. D 86 (2012) 043511 [arXiv:1202.1316] [INSPIRE].
- [70] C.-W. Chiang, T. Nomura and J. Tandean, Dark Matter and Higgs Boson in a Model with Discrete Gauge Symmetry, Phys. Rev. D 87 (2013) 073004 [arXiv:1205.6416] [INSPIRE].
- [71] R. Coimbra, M.O.P. Sampaio and R. Santos, Scanners: Constraining the phase diagram of a complex scalar singlet at the LHC, Eur. Phys. J. C 73 (2013) 2428 [arXiv:1301.2599] [INSPIRE].
- [72] S. Baek, P. Ko and W.-I. Park, Invisible Higgs Decay Width vs. Dark Matter Direct Detection Cross section in Higgs Portal Dark Matter Models, Phys. Rev. D 90 (2014) 055014 [arXiv:1405.3530] [INSPIRE].
- [73] R. Costa, A.P. Morais, M.O.P. Sampaio and R. Santos, Two-loop stability of a complex singlet extended Standard Model, Phys. Rev. **D** 92 (2015) 025024 [arXiv:1411.4048] [INSPIRE].
- [74] R. Costa, M. Mühlleitner, M.O.P. Sampaio and R. Santos, Singlet Extensions of the Standard Model at LHC Run 2: Benchmarks and Comparison with the NMSSM, JHEP 06 (2016) 034 [arXiv:1512.05355] [INSPIRE].

- [75] C. Bird, R.V. Kowalewski and M. Pospelov, Dark matter pair-production in $b \to s$ transitions, Mod. Phys. Lett. A 21 (2006) 457 [hep-ph/0601090] [INSPIRE].
- [76] X.-G. He, T. Li, X.-Q. Li and H.-C. Tsai, Scalar dark matter effects in Higgs and top quark decays, Mod. Phys. Lett. A 22 (2007) 2121 [hep-ph/0701156] [INSPIRE].
- [77] X.-G. He, B. Ren and J. Tandean, Hints of Standard Model Higgs Boson at the LHC and Light Dark Matter Searches, Phys. Rev. D 85 (2012) 093019 [arXiv:1112.6364] [INSPIRE].
- [78] X.-G. He and J. Tandean, Low-Mass Dark-Matter Hint from CDMS II, Higgs Boson at the LHC and Darkon Models, Phys. Rev. D 88 (2013) 013020 [arXiv:1304.6058] [INSPIRE].
- [79] X.-G. He, T. Li, X.-Q. Li, J. Tandean and H.-C. Tsai, Constraints on Scalar Dark Matter from Direct Experimental Searches, Phys. Rev. **D** 79 (2009) 023521 [arXiv:0811.0658] [INSPIRE].
- [80] B. Grzadkowski and P. Osland, Tempered Two-Higgs-Doublet Model, Phys. Rev. D 82 (2010) 125026 [arXiv:0910.4068] [INSPIRE].
- [81] M. Aoki, S. Kanemura and O. Seto, Multi-Higgs portal dark matter under the CDMS II results, Phys. Lett. B 685 (2010) 313 [arXiv:0912.5536] [INSPIRE].
- [82] T. Li and Q. Shafi, Scalar Dark Matter Search at the LHC through FCNC Top Decay, Phys. Rev. D 83 (2011) 095017 [arXiv:1101.3576] [INSPIRE].
- [83] Y. Cai, X.-G. He and B. Ren, Low Mass Dark Matter and Invisible Higgs Width In Darkon Models, Phys. Rev. D 83 (2011) 083524 [arXiv:1102.1522] [INSPIRE].
- [84] Y. Bai, V. Barger, L.L. Everett and G. Shaughnessy, Two-Higgs-doublet-portal dark-matter model: LHC data and Fermi-LAT 135 GeV line, Phys. Rev. D 88 (2013) 015008 [arXiv:1212.5604] [INSPIRE].
- [85] Y. Cai and T. Li, Singlet dark matter in a type-II two Higgs doublet model, Phys. Rev. **D** 88 (2013) 115004 [arXiv:1308.5346] [INSPIRE].
- [86] A. Greljo, J. Julio, J.F. Kamenik, C. Smith and J. Zupan, Constraining Higgs mediated dark matter interactions, JHEP 11 (2013) 190 [arXiv:1309.3561] [INSPIRE].
- [87] L. Wang and X.-F. Han, A simplified 2HDM with a scalar dark matter and the galactic center gamma-ray excess, Phys. Lett. B 739 (2014) 416 [arXiv:1406.3598] [INSPIRE].
- [88] N. Okada and O. Seto, Galactic Center gamma-ray excess from two-Higgs-doublet-portal dark matter, Phys. Rev. **D** 90 (2014) 083523 [arXiv:1408.2583] [INSPIRE].
- [89] R. Campbell, S. Godfrey, H.E. Logan, A.D. Peterson and A. Poulin, Implications of the observation of dark matter self-interactions for singlet scalar dark matter, Phys. Rev. D 92 (2015) 055031 [arXiv:1505.01793] [INSPIRE].
- [90] A. Drozd, B. Grzadkowski, J.F. Gunion and Y. Jiang, *Isospin-violating dark-matter-nucleon scattering via two-Higgs-doublet-model portals*, *JCAP* **10** (2016) 040 [arXiv:1510.07053] [INSPIRE].
- [91] A. Drozd, B. Grzadkowski, J.F. Gunion and Y. Jiang, Extending two-Higgs-doublet models by a singlet scalar field The Case for Dark Matter, JHEP 11 (2014) 105 [arXiv:1408.2106] [INSPIRE].
- [92] ATLAS and CMS collaborations, Combined Measurement of the Higgs Boson Mass in pp Collisions at $\sqrt{s} = 7$ and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].

- [93] LHC HIGGS CROSS SECTION Working Group, J.R. Andersen et al., *Handbook of LHC Higgs Cross sections: 3. Higgs Properties*, arXiv:1307.1347 [INSPIRE] and online updates at https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR2014.
- [94] ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $\sqrt{s} = 7$ and 8 TeV, JHEP **08** (2016) 045 [arXiv:1606.02266] [INSPIRE].
- [95] X.-G. He, S.-Y. Ho, J. Tandean and H.-C. Tsai, Scalar Dark Matter and Standard Model with Four Generations, Phys. Rev. D 82 (2010) 035016 [arXiv:1004.3464] [INSPIRE].
- [96] X.-G. He and J. Tandean, Hidden Higgs Boson at the LHC and Light Dark Matter Searches, Phys. Rev. D 84 (2011) 075018 [arXiv:1109.1277] [INSPIRE].
- [97] H.-Y. Cheng and C.-W. Chiang, Revisiting Scalar and Pseudoscalar Couplings with Nucleons, JHEP 07 (2012) 009 [arXiv:1202.1292] [INSPIRE].
- [98] J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, *The Higgs Hunter's Guide*, Westview Press, Colorado U.S.A. (2000).
- [99] G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, *Theory and phenomenology of two-Higgs-doublet models*, *Phys. Rept.* **516** (2012) 1 [arXiv:1106.0034] [INSPIRE].
- [100] M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Remarks on Higgs Boson Interactions with Nucleons, Phys. Lett. B 78 (1978) 443 [INSPIRE].
- [101] T.P. Cheng, Chiral Symmetry and the Higgs Nucleon Coupling, Phys. Rev. **D** 38 (1988) 2869 [INSPIRE].
- [102] H.-Y. Cheng, Low-energy Interactions of Scalar and Pseudoscalar Higgs Bosons With Baryons, Phys. Lett. B 219 (1989) 347 [INSPIRE].
- [103] J. Meija et al., Isotopic compositions of the elements 2013 (IUPAC Technical Report), Pure Appl. Chem. 88 (2016) 293.
- [104] C.-S. Chen, C.-Q. Geng, D. Huang and L.-H. Tsai, New Scalar Contributions to $h \to Z\gamma$, Phys. Rev. **D** 87 (2013) 075019 [arXiv:1301.4694] [INSPIRE].
- [105] M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].
- [106] W. Grimus, L. Lavoura, O.M. Ogreid and P. Osland, The Oblique parameters in multi-Higgs-doublet models, Nucl. Phys. B 801 (2008) 81 [arXiv:0802.4353] [INSPIRE].
- [107] P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].
- [108] E.W. Kolb and M.S. Turner, The Early Universe, Westview Press, Boulder (1990) [Front. Phys. 69 (1990) 1] [INSPIRE].
- [109] G. Steigman, B. Dasgupta and J.F. Beacom, Precise Relic WIMP Abundance and its Impact on Searches for Dark Matter Annihilation, Phys. Rev. D 86 (2012) 023506 [arXiv:1204.3622] [INSPIRE].
- [110] Planck collaboration, P.A.R. Ade et al., *Planck 2015 results. XIII. Cosmological parameters*, *Astron. Astrophys.* **594** (2016) A13 [arXiv:1502.01589] [INSPIRE].
- [111] S. Kanemura, T. Kasai and Y. Okada, Mass bounds of the lightest CP even Higgs boson in the two Higgs doublet model, Phys. Lett. B 471 (1999) 182 [hep-ph/9903289] [INSPIRE].

- [112] S. Kanemura, T. Kubota and E. Takasugi, Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model, Phys. Lett. B 313 (1993) 155 [hep-ph/9303263] [INSPIRE].
- [113] A.G. Akeroyd, A. Arhrib and E.-M. Naimi, Note on tree level unitarity in the general two Higgs doublet model, Phys. Lett. B 490 (2000) 119 [hep-ph/0006035] [INSPIRE].
- [114] K. Hadeler, On copositive matrices, Linear Algebra Appl. 49 (1983) 79.
- [115] G. Chang and T.W. Sederberg, Nonnegative quadratic Bézier triangular patches, Comput. Aided Geom. Des. 11 (1994) 113.
- [116] L. Ping and F.Y. Yu, Criteria for copositive matrices of order four, Linear Algebra Appl. 194 (1993) 109.
- [117] K. Kannike, Vacuum Stability Conditions From Copositivity Criteria, Eur. Phys. J. C 72 (2012) 2093 [arXiv:1205.3781] [INSPIRE].
- [118] J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: The Approach to the decoupling limit, Phys. Rev. **D** 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].