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1 Introduction

The decay B® — KTn~puTp~ is a flavour-changing neutral-current process.! In the Stan-
dard Model (SM), the leading order transition amplitudes are described by electroweak pen-
guin or box diagrams. In extensions to the SM, new heavy particles can contribute to loop
diagrams and modify observables such as branching fractions and angular distributions.
The previous angular analyses of B® — K+7n~ T~ performed by the LHCb collab-
oration [1-4] focused on the K7~ invariant mass range 796 < m(K™n~) < 996 MeV/c?
where the decay proceeds predominantly via the P-wave process K*(892)° — K+tz=. A
global analysis of the CP-averaged angular observables measured in the LHCb Run 1 data
sample indicated differences from SM predictions at the level of 3.4 standard deviations [4].
This measurement is widely discussed in the literature (see, for instance, [5-8] and refer-
ences therein). It is still not clear if this discrepancy could be caused by an underestimation

IThe inclusion of charge conjugate processes is implied, unless otherwise noted.



Resonance | J | Mass [MeV/c?] | Full width [MeV/c?] | B(Kn) [%]
K*(1410)° | 1~ 1414 £ 15 232 4 21 6.6+ 1.3
Ka‘(1430)0 0r 1425 4+ 50 270 £ 80 93 £10
K§(1430)0 2+ 1432.44+1.3 109+ 5 49.9+1.2
[("“(1680)0 1~ 1717 £ 27 322 £110 38.7+2.5
K3(1780)° | 3~ 1776 £ 7 159 + 21 18.8+ 1.0
KZ(2045)0 4+ 2045+ 9 198 + 30 99+1.2

Table 1. Expected resonant contributions above the K*(892)° mass range. For each, the spin-
parity, J¥'| and branching fraction to K, B(Kr), are given (taken from ref. [10]).

of the theory uncertainty on hadronic effects or if it requires a New Physics explanation.
Since short-distance effects should be universal in all b — spp transitions, measuring other
such transitions can shed light on this situation. Recently, the S-wave contribution to
BY - K*7~putpu~ decays has been measured in the 644 < m(K*7~) < 1200 MeV/c?
region [9].

Since the dominant structures in the Kt7~ invariant mass spectrum of BY —
K*n~utpu~ above the P-wave K*(892)° are resonances in the 1430 MeV/c? region, this
is a natural region to study. The relevant K*° states above the K*(892)° mass range are
listed in table 1. Throughout this paper, the symbol K*° denotes any neutral strange
meson in an excited state that decays to a K+7~ final state. In the 1430 MeV/c? region,
contributions are expected from the S-wave Kz(1430)%, P-wave K*(1410)" and D-wave
K3(1430)° states, as well as the broad P-wave K*(1680)° state. The mass region of the
higher K} resonances was studied in ref. [11] with model-dependent theoretical predictions
based on QCD form-factors. However, since the form-factors for broad resonances remain
poorly known, a more model-independent prescription was provided in ref. [12], which is
used in this analysis.

The m(K*7~) distribution for B® — K*7~pu"pu~ decays in the range 1.1 < ¢ <
6.0GeV?/c* and 630 < m(K+71~) < 1630MeV/c? is shown in figure 1, where ¢> =
m?2(u* ). The candidates are obtained using the selection described in section 4 and the
background component is subtracted using the sPlot technique [13]. The main structures
are observed around the mass of the K*(892)° resonance and in the 1430 MeV/c? region.

This paper presents the first measurements of the differential branching fraction and
angular moments of BY — K+*7~pu*pu~ in the region 1330 < m(K*7~) < 1530 MeV/c2.
The values of the differential branching fraction are reported in five bins of ¢? between 0.1
and 8.0 GeV?/¢t, and in the range 1.1 < ¢% < 6.0 GeV?/c* for which the angular moments
are also measured. The measurements are based on samples of pp collisions collected by
the LHCb experiment in Run 1, corresponding to integrated luminosities of 1.0fb~! at a
centre-of-mass energy of 7TeV and 2.0fb~! at 8 TeV.
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Figure 1. Background-subtracted m(K*7~) distribution for B® — K+*7~pu*pu~ decays in the
range 1.1 < ¢ < 6.0 GeV?/c*. The region 1330 < m(K*7~) < 1530 MeV/c? is indicated by the
blue, hatched area.
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Figure 2. Angle conventions for (a) B — K—ntu~u* and (b) B — KTn~utu~, as described
in ref. [12]. The leptonic and hadronic frames are back-to-back with a common ¢ axis. For the
dihedral angle ¢ between the leptonic and hadronic decay planes, there is an additional sign flip
¢ — —¢ compared to previous LHCb analyses [1-4].

2 Angular distribution

The final state of the decay B® — K7~ ™t~ is fully described by five kinematic variables:
three decay angles (6, O, ¢), m(K+7~), and ¢°. Figure 2a shows the angle conventions
for the B® decay (containing a b quark): the back-to-back leptonic and hadronic systems
share a common ¢ axis and have opposite & and Z axes. The negatively charged lepton is
used to define the leptonic helicity angle 6, for the B?. The quadrant of the dihedral angle
¢ between the dimuon and the K** — K7t decay planes is determined by requiring the
azimuthal angle of the u~ to be zero in the leptonic helicity frame. The azimuthal angle
of the K~ in the hadronic helicity frame is then equal to ¢. Compared to the dihedral
angle used in the previous LHCb analyses [1-4], there is a sign flip, ¢ — —¢, in the
convention used here. For the B” decay (containing a b quark), the charge conjugation
is performed explicitly, and the angles are shown in figure 2b, where for the BY, the u*



and K directions are used to define the angles. An additional minus sign is added to the
dihedral angle when performing the CP conjugation, in order to keep the measured angular
observables the same between B® and B in the absence of direct CP violation.

In the limit where ¢? is large compared to the square of the muon mass, the CP-
averaged differential decay rate of B — K+7~putp~ with the K7~ system in a S-, P-, or
D-wave configuration can be expanded in an orthonormal basis of angular functions f;(€) as

41
dr .
qozdn * L HON@) with Tie) =THe) +uf 7 e, @)
=1

where dQ2 = dcos 0y dcos Ok d¢, and L and R denote the (left- and right-handed) chirality
of the lepton system [12]. The sign nF—%
under 6y — 7 + 6,.

The orthonormal angular basis is constructed out of spherical harmonics,
Y™ = Y™ (0, ¢), and reduced spherical harmonics, P/" = \/%Ylm (0k,0).

The transversity-basis moments of the 41 orthonormal angular functions are given in

= 41 depends on whether f; changes sign

appendix A. The convention is that the amplitudes correspond to the BY decay, with the
corresponding amplitudes for the B® decay obtained by flipping the signs of the helicities
and weak phases. The S-,; P- and D-wave transversity amplitudes are denoted as SLE}
HEOL ﬁi} and Dg’ ]ﬁ_}, respectively.

The measured angular observables are averaged over the range 1330 < m(K*n~) <
1530 MeV/c? and 1.1 < ¢ < 6.0 GeV?/c. This ¢? range is part of the large-recoil regime
where the recoiling K*0 has a relatively large energy, Ej+o, as measured in the rest frame of
the parent B meson. In the limit Aqcp/Ex+0 — 0, the uncertainties arising from hadronic
effects in the relevant form-factors are reduced at leading order, resulting in more reliable
theory predictions [5]. The high-¢? region above the /(25 resonance is polluted by broad
charmonium resonances and is also phase-space suppressed for higher m (K7~ ) masses.
Therefore, that region is not considered in this study.

In the present analysis, the first moment, I'y (¢?), corresponds to the total decay rate.

From this, 40 normalised moments for i € {2,...,41} are defined as
= L'i(¢%)
Ti(¢°) = =5 2.2
() = f1 (22)

These form the set of observables that are measured in the angular moments analysis
described in section 8.

3 Detector and simulation

The LHCDb detector [14, 15] is a single-arm forward spectrometer covering the
pseudorapidity range 2 < n < 5, designed for the study of particles containing b or ¢
quarks. The detector includes a high-precision tracking system consisting of a silicon-strip
vertex detector surrounding the pp interaction region, a large-area silicon-strip detector
located upstream of a dipole magnet with a bending power of about 4 Tm, and three sta-
tions of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The



tracking system provides a measurement of momentum of charged particles with a relative
uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum
distance of a track to a primary vertex (PV), the impact parameter (IP), is measured with
a resolution of (15 + 29/pr) wm, where pr is the component of the momentum transverse
to the beam, in GeV/c. Different types of charged hadrons are distinguished using infor-
mation from two ring-imaging Cherenkov detectors. Photons, electrons and hadrons are
identified by a calorimeter system consisting of scintillating-pad and preshower detectors,
an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a
system composed of alternating layers of iron and multiwire proportional chambers. The
online event selection is performed by a trigger, which consists of a hardware stage, based
on information from the calorimeter and muon systems, followed by a software stage, which
applies a full event reconstruction.

Simulated signal events are used to determine the effect of the detector geometry,
trigger, reconstruction and selection on the angular distributions of the signal and of the
B® — J/p K*(892)Y mode, which is used for normalisation. Additional simulated samples
are used to estimate the contribution from specific background processes. In the simulation,
pp collisions are generated using PYTHIA [16, 17] with a specific LHCb configuration [18].
Decays of hadronic particles are described by EVTGEN [19], in which final-state radiation
is generated using PHOTOS [20]. The interaction of the generated particles with the de-
tector, and its response, are implemented using the GEANT4 toolkit [21] as described in
ref. [22]. Data-driven techniques are used to correct the simulation for mismodelling of
the detector occupancy, the B meson momentum and vertex quality distributions, and
particle identification performance.

4 Selection of signal candidates

The B® — K+tn~putpu~ signal candidates are first required to pass the hardware trig-
ger, which selects events containing at least one muon with transverse momentum pp >
1.48 GeV/c in the 7TeV data or pr > 1.76 GeV/c in the 8 TeV data. In the subsequent soft-
ware trigger, at least one of the final-state particles is required to have both pp > 1.0 GeV/c
and an impact parameter larger than 100 um with respect to all PVs in the event. Finally,
the tracks of two or more of the final-state particles are required to form a vertex signifi-
cantly displaced from all PVs.

Signal candidates are formed from a pair of oppositely charged tracks identified as
muons, combined with two oppositely charged tracks identified as a kaon and a pion. These
signal candidates are then required to pass a set of loose preselection requirements, identical
to those described in ref. [4] with the exception that the K7~ system is permitted to be
in the wider mass range 630 < m(K+t7~) < 1630 MeV/c?. This allows the decay B? —
J/p K*(892)° to be used as a normalisation mode for the branching fraction measurement.
Candidates are required to have good quality vertex and track fits, and a reconstructed
BY invariant mass in the range 5170 < m(K 7~ puTp~) < 5700 MeV/c?. From this point
onwards, the normalisation mode is selected in the range 796 < m(K*7~) < 996 MeV/c?
and the signal in the range 1330 < m(KT7~) < 1530 MeV/c?.



The backgrounds from combining unrelated particles, mainly from different b and ¢
hadron decays, are referred to as combinatorial. Such backgrounds are suppressed with
the use of a Boosted Decision Tree (BDT) [23, 24]. The BDT used for the present analysis
is identical to that described in ref. [4] and the same working point is used.

Exclusive background processes can mimic the signal if their final states are misiden-
tified or misreconstructed. For the present analysis, the requirements of ref. [4] for the
K*(892)" region are applied to a wider m (K T7~) invariant mass window. However, to re-
duce the expected contamination from peaking background to the level of 2% of the signal
yield, it is necessary to modify two of them. First, the requirement to remove contributions
from B?— Jip K*(892)° candidates, where the 7~ (K1) is misidentified as a u~ (u*) and
the p~ (u™) is misidentified as a 7= (K™T), is tightened by extending the invariant mass
window of the ptn~ (K*pu~) system and requiring stricter muon identification criteria.
Second, the requirement to remove the contributions from genuine B® — K7~ u*pu~ de-
cays where the two hadron hypotheses are interchanged is tightened by requiring stricter
hadron identification criteria.

5 Acceptance correction

The triggering, reconstruction and selection of candidates distorts their kinematic distri-
butions. The dominant acceptance effects are due to the requirements on track momentum
and impact parameter.

The method for obtaining the acceptance correction, described in ref. [4], is extended
to include the m(K 7 ™) dimension. The efficiency is parameterised in terms of Legendre
polynomials of order n, L, (x), as

E(qzla cos g, cos O, ¢/7 m/(K+7T_)) =

Z Chijkl Lh(qzl) Li(cos 07) Lj(cos 0x ) Li(¢') Ly(m/ (K +77)). (5.1)

hijkl

As the polynomials are defined over the domain = € [—1,1], the variables q217 ¢’ and
m/(K+7~) are used, which are obtained by linearly transforming ¢%, ¢ and m(K7~) to
lie in this range. The sum in eq. (5.1) encompasses Ly (z) up to fourth order in cos §, and
m/(K+tn™), sixth order in ¢’ and ¢%', and eighth order in cosf. The coefficients Chijkl
are determined using a moment analysis of simulated B — K+7~utu~ decays, generated
according to a phase space distribution. The angular acceptance as a function of cos 8y,
cosfx and ¢’ in the region 1.1 < ¢% < 6.0GeV?/c* and 1330 < m(K+t7~) < 1530 MeV/c?
is shown in figure 3.

6 The m(K*tw putp™) invariant mass distribution

The invariant mass m(K+tn~uTp~) is used to discriminate between signal and back-
ground. The signal distribution is modelled as the sum of two Gaussian functions with
a common mean, each with a power-law tail on the low-mass side. The parameters de-
scribing the shape of the mass distribution of the signal are determined from a fit to the
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Figure 3. Relative efficiency in cosfy, cosfx and ¢’ in the region 1.1 < ¢> < 6.0 GeV?/¢* and
1330 < m(K*7n~) < 1530MeV/c? as determined from a moment analysis of simulated B° —
K7~ p*u~ decays, shown as a histogram. The efficiency function is shown by the blue, dashed line.

B — Jhp K*(892)° control mode, as shown in figure 4, and are subsequently fixed when
fitting the B - K7~ pu*p~ candidates. An additional component is included in the fit
to the control mode to model the contribution from B?— J/ K*O decays. A single scaling
factor is used to correct the width of the Gaussian functions to account for variations in
the shape of the mass distribution of the signal observed in simulation, due to the different
regions of m(K*7~) and ¢ between the control mode and signal mode. The combinato-
rial background is modelled using an exponential function. The fit to B® — K+ta—putpu~
candidates in the range 1.1 < ¢®> < 6.0 GeV?/c* is shown in figure 4. The signal yield in
the range 1.1 < ¢® < 6.0 GeV?/c* is 229 + 21. The fits to B — K*7~utu~ candidates in
each of the ¢? bins used for the differential branching fraction measurement are shown in
appendix B.

7 Differential branching fraction

The differential branching fraction dB/dq? of the decay B® — K7~ pu*pu~ in an interval
(qr2nin7 qrznax) is given by
dB 1 0 * 0 +,,—
d¢? = (R — )fK*(892)OB(B — JW K*(892)")B(J/ip = " ™)
N ;(ﬂr*uﬂf

TR ’

x B(K*(892)" — KTn™)
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Figure 4. Invariant mass m(K+ 7~ utpu™) for (left) the control decay B° — J/ip K*© and (right)
the signal decay BY — Ktn~ptp~ in the bin 1.1 < ¢? < 6.0GeV?/ct. The solid black line
represents the total fitted function. The individual components of the signal (blue, shaded area)
and combinatorial background (red, hatched area) are also shown.

where N ;(ﬂr*uﬂf and N ’J/ K0 Are the acceptance-corrected yields of the BY —
Ktr=ptp~ and B® — Jhp(— ptp ) K*(— K+7~) decays, respectively. The B? —
J/p K*O yield has to be corrected for the S-wave fraction within the 796 < m(K+7~) <
996 MeV/c? window of B — J/ip K*0 decays, Fé]/wK*O. The value of FSJ/wK*0 = 0.084+0.01
is obtained from ref. [25], after recalculation for the m(K*x~) range 796 < m(KT7~) <
996 MeV/c?. The branching fractions B(B? — Jip K*(892)%), B(Ji) — pTu~) and
B(K*(892)° — K*7~) are (1.1940.0140.08) x 1073 [26], (5.961+0.033) x 1072 [10] and 2/3,
respectively. The fraction fgggo)o is used to scale the value of B(B°— Jip K*(892)°) to
the appropriate m(K*7~) range and is calculated by integrating the K*(892)° line shape

given in ref. [26] over the range 796 < m(KT7~) < 996 MeV/c2.

In order to obtain the acceptance-corrected yield, the efficiency function described in
section 5 is used to evaluate an acceptance weight for each candidate. An average accep-
tance weight is determined for both the B® — J/) K*? candidates and the signal candidates
in each ¢ bin. The acceptance-corrected yield is then equal to the measured yield mul-
tiplied by the average weight. The average weight is calculated within the 450 MeV/c?
signal window around the mean B° mass and also in the background region taken from
the upper mass sideband in the range 5350 < m(K 7~ puTp~) < 5700 MeV/c?. The latter
is subsequently used to subtract the background contribution from the average weight ob-
tained in the £50 MeV/c? window, taking into account the extrapolated background yield
in this window. This method avoids making any assumption about the unknown angular
distribution of the B — K+7n~u*pu~ decay.

The results for the differential branching fraction are given in figure 5. The uncertain-
ties shown are the sums in quadrature of the statistical and systematic uncertainties. The
results are also presented in table 2. The various sources of the systematic uncertainties
are described in section 9.



2 T T T T

LHCb

—_
W
IIIIIIIIIIIIIII

—_

dBldg? x 10° [¢*/GeV?]
(]
n

S
Z+Z

8
q2 [GeV?/ 4]

OO
[\o)
Ny
o

Figure 5. Differential branching fraction of B — K+7~ ™ in bins of ¢ for the range 1330 <
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¢ [GeV?/cl]  dB/dg? x 1078 [¢*/ GeV?]

0.10,0.98 1.60 £ 0.28 £ 0.04 £+ 0.11
1.10,2.50 1.14 £ 0.19 £ 0.03 £+ 0.08
2.50,4.00 0.91 + 0.16 + 0.03 £ 0.06

6.00, 8.00 0.49 £ 0.11 + 0.01 £ 0.03
1.10,6.00 0.82 £ 0.09 & 0.02 £ 0.06

[ ]
[ }
[ }
[4.00,6.00]  0.56 £ 0.12 % 0.02 + 0.04
[ ]
[ }

Table 2. Differential branching fraction of B — K+7~u* ™ in bins of ¢? for the range 1330 <
m(K*Tm~) < 1530 MeV/c?. The first uncertainty is statistical, the second systematic and the third
due to the uncertainty on the B® — J/ K*(892)° and J/ib — pu*p~ branching fractions.

8 Angular moments analysis

The angular observables defined in section 2 are determined using a moments analysis of the
angular distribution, as outlined in ref. [12]. This approach has the advantage of producing
stable measurements with well-defined uncertainties even for small data samples. Similar
methods using angular moments are described in refs. [27, 28].

The 41 background-subtracted and acceptance-corrected moments are estimated as

Nsig Nbkg

Dy =Y wpfil( %) —z Y wifi( %) (8.1)

k=1 k=1

and the corresponding covariance matrix is estimated as

Cij = Z wi () () + 22 Z wi () £ (). (8.2)
k=1 k=1



Here nsjg and npye correspond to the candidates in the signal and background regions,
respectively. The signal region is defined within +50 MeV/c? of the mean B° mass, and the
background region in the range 5350 < m(K*m~utp~) < 5700 MeV/c2. The scale factor x
is the ratio of the estimated number of background candidates in the signal region over the
number of candidates in the background region and is used to normalise the background
subtraction. It has been checked in data that the angular distribution of the background
is independent of m(K 7~ "~ ) within the precision of this measurement, and that the
uncertainty on x has negligible impact on the results. The weights, wy, are the reciprocals
of the candidates’ efficiencies and account for the acceptance, described in section 5.

The covariance matrix describing the statistical uncertainties on the 40 normalised
moments is computed as

Cz‘j = Cl'j + I;?Cll — FzC'IJI—:FJCh ;%7 1,] € {2, R ,41}. (8.3)

The results for the normalised moments, I';, are given in figure 6. The uncertainties
shown are the sums in quadrature of the statistical and systematic uncertainties. The
results are also presented in table 3. The various sources of the systematic uncertainties
are described in section 9. The complete set of numerical values for the measured moments
and the covariance matrix is provided in ref. [29].

The distributions of each of the decay angles within the signal region are shown in
figure 7. The estimated signal distribution is derived from the moments model by evaluating
the sum in eq. (2.1), which is found to provide a good representation of the data for each
of the decay angles.

The D-wave fraction, Fp, is estimated from the moments I's and I'1g as

7 _
Fp=—¢ (2r5 + 5x/5P10) . (8.4)

Naively, one would expect a large D-wave contribution in this region, as was seen in the
amplitude analysis of B — J/ K*7~ [26]. However, in B’ — K*7~ "~ no significant
D-wave contribution is seen and, with the limited statistics currently available, it is only
possible to set an upper limit of Fp < 0.29 at 95% confidence level using the approach
in ref. [30]. This might be an indication of a large breaking of QCD factorisation due to
non-factorizable diagrams where additional gluons are exchanged between the K7~ and
the c¢, before the J/ip decays into u™pu~. For electroweak penguins, similar effects could
occur due to charm loops [8]. Additionally, the values of the moments I'; and T's imply the
presence of large interference effects between the S- and P- or D-wave contributions.

9 Systematic uncertainties

The main sources of systematic uncertainty for the measurements of the differential branch-
ing fraction and angular moments are described in detail below and summarised in table 4.
They are significantly smaller than the statistical uncertainties.

The differential branching fraction and angular moments analysis share several com-
mon systematic effects: the statistical uncertainty on the acceptance function due to the

~10 -
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T; Value T; Value

Ty | —0.42 4+ 0.13 &+ 0.03 Te | 0.21 +0.12 £+ 0.01
Ts | —0.38 £ 0.15 £+ 0.01 Te3 | 0.03 £+ 0.12 £+ 0.01
Ty | —0.02 4+ 0.14 £+ 0.01 Ty | —0.10 & 0.10 £ 0.01
Ts 0.29 4+ 0.14 + 0.02 Tos | 0.03 +0.10 £+ 0.01
Te¢ | —0.05 + 0.14 £+ 0.04 To | 0.08 &+ 0.11 £+ 0.01
T7 | —0.06 &+ 0.15 & 0.03 To7 | 0.14 4+ 0.11 £ 0.01
Tg 0.04 & 0.16 £ 0.01 Tag | —0.04 &+ 0.11 £ 0.01
Ty 0.05 + 0.16 + 0.02 Ta9 | 0.06 + 0.15 & 0.04
Tio| 0.24 +0.17 + 0.02 T3p | —0.21 &+ 0.15 & 0.04
Ty | 0.06+0.13 £ 0.01 T3 | —0.07 + 0.16 & 0.01
Tio | —0.01 & 0.13 & 0.02 T3y | —0.16 4 0.17 & 0.02
Ti3 | —0.08 + 0.12 £+ 0.01 Ts3 | —0.04 4+ 0.17 & 0.02
T | 0.09+0.13 +0.01 T3y | 0.15 4+ 0.11 £+ 0.01
Tis | 0.11 4+ 0.13 & 0.00 T35 | —0.13 4+ 0.11 £ 0.01
Tis | —0.12 + 0.13 £ 0.01 Tss | 0.05 4+ 0.11 £+ 0.01
Ti7 | —0.04 £+ 0.13 £ 0.01 Ts7 | 0.05 4 0.11 £+ 0.01
Tig | 0.03+0.14 £ 0.01 Tss | 0.06 &+ 0.11 & 0.00
Ti9| 0.11 +£0.11 £ 0.01 Ts9 | —0.08 & 0.11 + 0.00
Ty | —0.00 £+ 0.11 £ 0.01 Ty | 0.1540.11 £+ 0.01
Ty | 0.03+0.12 £ 0.01 Ty | 0.1240.11 £+ 0.01

Table 3. Measurement of the normalised moments, I';, of the decay B® — K+n~utu~ in the range
1.1 < ¢% < 6.0GeV?/ct and 1330 < m(KTn~) < 1530 MeV/c?. The first uncertainty is statistical
and the second systematic.

Source dB/dq? x 1078 [¢*/ GeV?] T;
Acceptance stat. uncertainty 0.006-0.030 0.003-0.013
Data-simulation differences 0.001-0.014 0.001-0.007
Peaking backgrounds 0.013-0.026 0.001-0.040
B(B° — Jjp K*(892)%) 0.033-0.110 —

Table 4. Summary of the main sources of systematic uncertainty for the differential branching
fraction and the angular moments analysis. Typical ranges are quoted for the different ¢? bins used
in the differential branching fraction measurement, and for the moments measured in the angular
analysis. The systematic uncertainties are significantly smaller than the statistical ones.
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size of the simulated sample from which it is determined, differences between data and the
simulated decays used to determine the acceptance function and contributions from resid-
ual peaking background candidates. The differential branching fraction has, in addition,
a systematic uncertainty due to the uncertainty on the branching fraction of the decay
B — Jhp K*(892)°, which is dominant and is shown separately in table 2.

The size of the systematic uncertainties associated with the determination of the ac-
ceptance correction and residual peaking background contributions are evaluated using
pseudoexperiments, in which samples are generated varying one or more parameters. The
differential branching fraction and each of the moments are evaluated using both the nom-
inal model and the systematically varied models. In general, the systematic uncertainty is
taken as the average of the difference between the nominal and varied models over a large
number of pseudoexperiments. The exception to this is the statistical uncertainty of the ac-
ceptance function, due to the limited size of the simulated samples, for which the standard
deviation is used instead. For this, pseudoexperiments are generated where the acceptance
is varied according to the covariance matrix of the moments of the acceptance function.

The effect of differences between the data candidates and the simulated candidates is
evaluated using pseudoexperiments, where candidates are generated with an acceptance
determined from simulated candidates without applying the corrections for the differences
between data and simulation described in section 3.

The effect of residual peaking background contributions is evaluated using pseudoex-
periments, where peaking background components are generated in addition to the signal
and the combinatorial background. The angular distributions of the peaking backgrounds
are taken from data by isolating the decays using dedicated selections.

All other sources of systematic uncertainties investigated, such as the choice of the
m(K+tn~ptp~) signal model and the resolution in the angular variables, are found to
have a negligible impact.

10 Conclusions

This paper presents measurements of the differential branching fraction and angu-
lar moments of the decay B — KTr putp~ in the K7~ invariant mass range
1330 < m(K*7m~) < 1530 MeV/c?. The data sample corresponds to an integrated lumi-
nosity of 3fb~! of pp collision data collected by the LHCb experiment. The differential
branching fraction is reported in five narrow ¢ bins between 0.1 and 8.0 GeV?/¢* and in
the range 1.1 < ¢ < 6.0 GeV?/c*, where an angular moments analysis is also performed.

The measured values of the angular observables I's and I's point towards the presence
of large interference effects between the S- and P- or D-wave contributions. Using only
T's and Ty it is possible to estimate the D-wave fraction, Fp, yielding an upper limit
of Fp < 0.29 at 95% confidence level. This value is lower than naively expected from
amplitude analyses of B — Jip KTn~ decays [26].

The underlying Wilson coefficients may be extracted from the normalised moments and
covariance matrix presented in this analysis, when combined with a prediction for the form
factors. While first estimates for the form factors are given in ref. [11], no interpretation
of the results in terms of the Wilson coefficients is made at this time. With additional
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input from theory, these results could provide further contributions to understanding the
pattern of deviations with respect to SM predictions that has been observed in other
b — spp transitions.
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A Angular distribution

The transversity-basis moments of the 41 orthonormal angular functions defined in eq. (2.1)
are shown in table 5. The orthonormal angular basis is constructed out of spherical har-
monics, Y™ = Y/™(;, ¢), and reduced spherical harmonics, P/ = v/27Y;"(0k,0). The
S-, P- and D-wave transversity amplitudes are denoted as SiL.R} H% "‘IZ}} and Dg’ ,Illi}’
respectively.

It should be noted that in addition to dependence on the amplitudes there is an overall

kinematic factor of kq?, where k is the BY break-up momentum given by

N\ 2
k:\/(sz_QQZnZg(K+W ) —m2(K*m), (A1)

and mp is the B? mass.

B Mass distributions

Figure 8 shows the fits to the m(K 7~ puTu~) distribution in each of the ¢* bins used for
the differential branching fraction measurement.
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i fi(®) T (¢?) /ke? 0t
G [[E§ 2+ |HEP + [HE? + S5 + D2 +|Df + [DEP] 1
2 | PO 2 [ 2 Re(H} DE") + Re(S" 1) +\fRe H’Dﬁ*+HﬁDﬁ*)] +1
3 PYy P (IDfI” + IDYP) - = (HfP + [HEP) + Z [Hy P + 2% ID§|” + 2 Re(S"D§*) | +1
4 PYYY J%[ Re (H”LDﬁ*+HLDL*)+\fRe(HOLD(§*)} +1
51 Py 2[-2(Df? + DL P) + 31Df?] +1
6 Y L [(DER + IDEP) + (HEP + [HEP) - 2IS* - 2D§? - 2/ HE?] +1
7 POYY [ ‘RF(HLDL*+Hfo*)—%Re(SLHO*)—éRe(HLDL*)] +1
5| AYS [(DEE + 1DFR) — 3IDEF — G(HEE + |HFP) — 2|HEF -~ ZRe(s*DE)] | +1
9 Yy — [RL(HHLDﬁ*+HfDL*)+2f Re(HE DL )] +1
0] Py —=2= [|DE + DY + 31DE 7] +1
11| PIvV2Re(Yy) — = [\/2 Re(if5™) - V2 Re(HIDE) + /2 Re( (D} )] 11
12 | P}v2Re(Yy) 4 [ Re( H”LH )+ /3 Re(D}SY) + 252 Re(D} D} 9] +1
13 | PIV3 Re(Yy) . [QRe(DﬁHL*HfRe(H DL*)] +1
14 | P}V2Re(Yy) =05 Re(D['D(") +1
15 | P}v2 Im(Y3) 3 mIm(HLSL*) lIm(DLH )7%Im(HfD[§*) +1
16 | P32 Im(Yy) 3 |5 Im(DEDE) + § Im(HYHE®) + \}Im(DfSL*) +1
17 | P}vV2Im(Y3) o= [2Im(DYHE) + V3 Im(HE D)) +1
18 | P}v2Im(Y3) =55 Im(D" Df*) +1
19 | P{VERe(Y) —ng [(\H 2= |HEP) + (D - [DEP)] +1
20 | PPv2 Re(Y7) 2 [ Re(Hf D) - Re(DLHL*)} +1
21 | PYVZRe(Y7) £l- L(DEP — IDEP) + K1 —|HEP)] +1
22 | P9v/2 Re(Y}) /3 [RL(HLDL* Rc(Df_Hf_*)] +1
23 | P0v2 Re(Y2) 2,/2UDEP - IDLP) +1
24 | POV2 Im(Y2) \[ [InL(HLH”L*)+ Im(D* Dﬁ*)] 41
25 | PPV2 Im(Y$) 3 Im(H{Dp* + DYH™) +1
26 | PYV2Im(Y2) \/ﬂ Im(DLDL*)fllm(HfH”L*)] +1
27 | POV2 Im(Y2) -3\/8 (Dt} + HEDE) +1
28 | POV3 Im(Y2) ~1,/2 (Dt D) 11
29 POYP -3 {RL(HJL_HL*) + Rc(DLDL* ] -1
30 PYYY J= Re(H{ D[ + H{D") —1
31 PYYP 3 ["RP(DLD ) - Re(HLHHL*)] -1
32 PYY = Re(H! D[ + Hf' D) -1
33 POY) 43 Re (DLDﬁ*) -1
34 | PI\2 Re(Y}) NE [\/ERE(Hst*Hf Re(DYHE*) — Re(HYDE)] -1
35 | PIv2 Re(Y}!) 3 {ﬁ Re(HIHE®) + 15 Re(DYSY) + 21\[1?,6 DL DE¥) } -1
36 | P{v/2 Re(Y{) 5 [2 Re(DTH{™) + V3 Re(H [ D)) -1
37 | PIVZ Re(Yd) 10 Re(DE DE?) -1
38 | PIvZIm(YV}) 7\f [\f Im(HPS™) + /3 Im(D} HE®) — Im(HLDL*)] -1
39 | P2 Im(Y}) g[flm HEHE) + /5 Im(D] SL*)+91m(DﬁDL*)} -1
40 | PIV3 Im(Y}) 6/ QIm(DLHL*)+f1m(HLDL*)} -1
41 | P}V2Im(Y) ~$V10 Im(D[ D) -1
Table 5. The transversity-basis moments of the 41 orthonormal angular functions f;(Q) in

eq. (2.1) [12]. The amplitudes correspond to the B° decay.
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Figure 8. Invariant mass m(K+t7~putpu™) distributions of the signal decay B — KTn~utu~ in
each of the ¢? bins used for the differential branching fraction measurement. The solid black line
represents the total fitted function. The individual components of the signal (blue, shaded area)
and combinatorial background (red, hatched area) are also shown.
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