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1 Introduction

The Pentagon Operator Product Expansion (or POPE) has shown itself to be a powerful

tool for the calculation of polygonal Wilson loops and their dual amplitudes in planar

N = 4 super Yang-Mills [1–3]. Making use of integrability, the POPE computes Wilson

loops at finite coupling, presented as an expansion in flux tube states propagating across

the loop. Kinematically, this expansion corresponds to expanding around a particular

collinear limit.

For quite some time, it was unclear if this expansion could be re-summed to obtain the

full kinematic dependence of the amplitude. A partial resummation was achieved in [4],

but it was only with recent work by Lućıa Córdova that such a resummation was shown to

be possible in the limit of weak coupling for all flux tube states [7]. Córdova shows that, for

the NMHV six-particle amplitude at tree level, it is possible to package all combinations of

states that can contribute into single effective excitations, creating a series which can be

re-summed to match the full (tree-level) amplitude.

In this work, we extend Córdova’s calculation to one loop for the MHV case. While the

expressions that appear are of comparable complexity, computing a one-loop amplitude in

this way allows us to observe the appearance of transcendental functions from the POPE,

in a way that should generalize to higher loop orders.

We begin in section 2 by describing the effective one-particle excitations needed for

MHV. In section 3 we show how to re-sum them into the polylogarithmic functions of

the one-loop hexagon Wilson loop. Finally, we conclude by discussing how this procedure

might be extended to higher loops.

2 Effective one-particle states for MHV

We can start by considering the expression for the hexagon Wilson loop given by the POPE

program [3], as a sum over all possible flux tube excitations:

W6 =
∑
m

1

Sm

∫
du1 . . . dum

(2π)m
ΠdynΠmat . (2.1)
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Figure 1. Table of effective weak coupling excitations including the first n descendants of the

particles transforming in the vector representation of SU(4), from [7]. The plane in the bottom

contains the primary excitations.

Here Sm are symmetry factors, ui are rapidities, and Πdyn and Πmat are referred to as

the dynamical part and matrix part respectively. The dynamical part contains all of this

expression’s dependence on the coupling, while the matrix part takes care of R-symmetry.

The excitations summed over here are combinations of fundamental excitations: gluons

(and gluon bound states), fermions, and scalars. While gluons and scalars can be straight-

forwardly integrated in rapidity from u = −∞ to u =∞, fermions must be integrated over

two different Riemann sheets. On one of these sheets the fermion momentum is large with

respect to the coupling, while on the other it is small. Hence we follow prior convention

and divide fermion integrations into “large” and “small” fermions, which can be treated

separately.

Through one loop, only states with one fundamental excitation can contribute, with the

exception of small fermions. In practice, then, we can sum effective excitations consisting of

one fundamental excitation and a string of small fermions which we refer to as descendants.

The small fermion contour allows us to evaluate all small fermion rapidity integrations

via residues, so the only integration we need to do explicitly is that of the fundamental

excitation. The resulting effective excitations are summarized in figure 1.

While [7] had to consider general R-symmetry representations, here for the MHV case

we need only consider the singlets. These correspond to r = 0 and r = 4 in the notation of

that paper, or R-charges of 0 or 4 on the boundary of the Wilson loop. In particular, we

do not need to re-derive the list of residues that must be taken in small fermion rapidity,

as figure 6 of that paper provides the needed information. Specifically, it instructs us to

consider ten chains of fundamental excitations and corresponding descendants: Fb(ψSψ̄S)n,

ψψ̄S(ψSψ̄S)n, φψ̄2
S(ψSψ̄S)n, ψ̄ψ̄3

S(ψSψ̄S)n, F−bψ̄
4
S(ψSψ̄S)n, and their conjugates. These

correspond to the top and bottom lines in figure 1.
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The most straightforward procedure would then be to start with the effective measures

given in appendix B of [7], and find expressions that can be summed over helicity. Instead,

we will take a shortcut, and begin with equation (17) of that paper for which this has

already been done. For singlet excitations, we specialize to the case where r1 = 4 and

r2 = 0, corresponding to an NMHV Wilson loop with four units of R-charge. There are

two cases: the positive helicity excitations (here, just Fa) and the rest, which we will refer

to as “gluonic” and “non-gluonic”.

µ[4,0]
a,n (u)|gluonic =

(−1)a+nΓ
(
|a|
2 −iu

)
Γ
(
|a|
2 +iu

)
Γ(n+1)Γ(|a|+n)

(
iu+
|a|
2

+2

)
n

(
iu+
|a|
2

)
n

+O(g2) (2.2)

µ[4,0]
a,n (u)|non−gluonic =

(−1)a+nΓ
(
|a|
2 −iu−1

)
Γ
(
|a|
2 +iu+3

)
Γ(n+1)Γ(|a|+n+2)

(
iu+
|a|
2

+3

)
n

(
iu+
|a|
2

+1

)
n

+O(g2).

(2.3)

These effective measures serve to describe both the dynamical part and the matrix part

for the effective excitations, after all small fermion residues have been taken.

For MHV, we have the same excitations, evaluated at the same residues with the same

symmetry factors. The only change is in the contributions referred to as NMHV form

factors, presented in [8]. These are factors present in the NMHV amplitude that take into

account the nontrivial R-symmetry of the external states. Since we are interested in the

MHV amplitude here, we need to divide the integrands in eq. (2.3) by these form factors

in order to obtain our desired result.

For the gluonic case, form factors contribute a factor of h−4
Fa

(u) from the fundamental

excitation and a product of contributions from the descendants, where hFa(u) is the gluonic

form factor. Expanded in g, h−4
Fa

(u) is

h−4
Fa

(u) =
1

g2

(a
2

+ iu
)(a

2
− iu

)
+O(g0). (2.4)

This tells us two things. First, since the form factor for gluonic excitations starts at

order g−2, removing it means that what was previously a tree-level NMHV expression

now gives us the one-loop expression for MHV. Second, we must also remove a factor

of
(
a
2 + iu

) (
a
2 − iu

)
.

The contribution from the descendants is also simple to take into account. Expanding

the small fermion form-factors hψS
(v) in g we find

h−4
ψS

(v) =
g

v
+O(g2), h−4

ψ̄S
(v) =

v

g
+O(g0) . (2.5)

Since the descendants consist of pairs of ψS and ψ̄S evaluated at different residues, the

factors of g cancel.

For the gluonic case, the first pair of descendants of Fa contains a ψS at u− ia2 and a

ψ̄S at u− ia2 − 2i [7]. Subsequent descendants are at intervals of i. Then to leading order

in the coupling, the contribution from the descendant form factors is
n∏
k=1

u− i
(
a
2 + k + 1

)
u− i

(
a
2 + k − 1

) (2.6)

for n descendants.

– 3 –



J
H
E
P
1
2
(
2
0
1
6
)
0
1
1

Most of these factors cancel. We are left only with contributions from k = 1, k = 2,

k = n− 1 and k = n. Together, these give an overall factor of(
u− ia2 − in

) (
u− ia2 − in− i

)(
u− ia2

) (
u− ia2 − i

) , (2.7)

which we must remove.

Between eq. (2.4) and eq. (2.7) we have all that we need to convert the expressions in 2.3

to the corresponding integrands for the MHV case in the gluonic sector. The calculation

for the non-gluonic states is similar, and is omitted for brevity. Removing these factors,

and simplifying using the definition of the Pochhammer symbol an, we are left with the

following expressions:

µMHV, gluonic
a,n (u) = g2

(−1)a+nΓ
(
|a|
2 −iu

)
Γ
(
|a|
2 +iu

)
(
|a|
2 −iu

)(
|a|
2 +iu

)
Γ(n+1)Γ(|a|+n)

(
iu+
|a|
2

)2

n

+O(g4) (2.8)

µMHV, non-gluonic
a,n (u) = g2

(−1)a+nΓ
(
|a|
2 −iu+1

)
Γ
(
|a|
2 +iu+1

)
(
|a|
2 −iu

)(
|a|
2 +iu

)
Γ(n+1)Γ(|a|+n+2)

(
iu+
|a|
2

+1

)2

n

+O(g4).

(2.9)

To sum up, one loop MHV,WMHV = 1+g2WMHV, (1) +O(g4), is given by the following

POPE series,

WMHV = 1 + 2

∞∑
n=0

∫
du

2π
e−(2n+2)τ+2iuσµMHV, non-gluonic

0,n (u)

+
∑
a 6=0

∞∑
n=0

∫
du

2π
e−(|a|+2n)τ+iaφ+2iuσ

[
µMHV, gluonic
a,n (u) + e−2τµMHV, non-gluonic

a,n (u)
]
.

(2.10)

3 One-loop resummation

The resummation of the MHV POPE series can be carried out following a similar strategy

to that employed in [7]. The resummation is performed beginning with an expansion in the

collinear limit, exp(τ)→∞, which is then analytically continued to arbitrary kinematics.

The key step is to replace the summation over n with integrations over t using the series

and integral representations of hypergeometric functions,

2F1(a,b,c;z) =
∞∑
n=0

Γ(a+ n)Γ(b+ n)Γ(c)

Γ(a)Γ(b)Γ(c+ n)

zn

n!
=

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
dt tb−1(1− t)c−b−1(1− tz)−a

(3.1)

where this integral representation is valid only when Re(c) > Re(b) > 0. After this re-

placement, the POPE series is converted into the following expression,

WMHV, (1) =
∑
a 6=0

∫ 1

0
dt

∫ ∞+iε

−∞+iε

du

2π

(
Igluonic
a + Inon-gluonic

a

)
+ 2

∫ 1

0
dt

∫ ∞+iε

−∞+iε

du

2π
Inon-gluonic

0

(3.2)
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with the following integrands,

Igluonic
a =

(−1)at
|a|
2

+iu−1(1− t)
|a|
2
−iu−1

(
e−2τ t+ 1

)− |a|
2
−iu

e−τ |a|+iaφ+2iσu

u2 + |a|2 /4

Inon-gluonic
a =

(−1)at
|a|
2

+iu(1− t)
|a|
2
−iu (e−2τ t+ 1

)− |a|
2
−iu−1

e−τ(|a|+2)+iaφ+2iσu

u2 + |a|2 /4
.

(3.3)

The integration over u can be evaluated by taking residues at u = ±i|a|/2. Only one of

the residues will be picked up depending on how the contour is closed. All of the integrands

are of the form exp [if(t)u] /u2 in the limit of large u, with

f(t) = 2σ − log

[
(1 + e−2τ t)(1− t)

t

]
which has a root between 0 and 1 at,

t∗ =
1

2

[
1− e2σ+2τ − e2τ +

√
(1− e2σ+2τ − e2τ )2 + 4e2τ

]
.

When t ∈ (t∗, 1), f(t) > 0, the contour closes in the upper half complex plane and picks

up a pole at u = i|a|/2 so that the integration at infinity vanishes. On the other hand,

when t ∈ (0, t∗), f(t) < 0, the contour closes in the lower half-plane and picks up a pole

at u = −i|a|/2. The prescription is however different when a = 0. There, the integration

contour is shifted upwards on the complex plane as suggested by the POPE proposal (this

allows us to reproduce the correct Riemann sheet for the large fermions, which give the

a = 0 contribution). When t ∈ (0, t∗), a double pole at u = 0 is selected and when

t ∈ (t∗, 1), no pole is selected.

After integrating over u, the integration domain of t breaks into two pieces,

WMHV, (1) =

∫ 1

t∗
dt
∑
a 6=0

(−1)aeiaφ−|a|σ−|a|τ

|a|
(1−t)|a|

(
1

t
− 1

t−1
+

1

t+e2τ

)

+

∫ t∗

0
dt

 2f(t)

t+e2τ
+
∑
a 6=0

(−1)aeiaφ+|a|σ−|a|τ

|a|

(
e2τ t

t+e2τ

)|a|(
1

t
− 1

t−1
+

1

t+e2τ

).
(3.4)

We move the summation over helicity inside the integration. This summation converges in

the collinear limit, and it has a closed form, found from the following simple relation,

∞∑
a=1

xa

a
= − log(1− x) . (3.5)

We are left with the following integrations to be performed,

WMHV, (1) =

∫ 1

t∗
dt log

[
1 + eiφ−σ−τ (1− t)

]( 1

t− 1
− 1

t
− 1

t+ e2τ

)
+

∫ t∗

0
dt

[
f(t)

t+ e2τ
+ log

(
1 +

eiφ+σ+τ t

t+ e2τ

)(
1

t− 1
− 1

t
− 1

t+ e2τ

)]
+ h.c.

(3.6)

– 5 –
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We organize the integrands as follows,

WMHV, (1) =

∫ t∗

0
dtlog

[
t+e2τ+eiφ+τ+σt

]( 1

t−1
−1

t
− 1

t+e2τ

)
+

d

dt
log
[
t+e2τ

]
log

[
e2(τ+σ)t

1−t

]

+

∫ 1

t∗
dtlog

[
1+eiφ−σ−τ−eiφ−σ−τ t

]( 1

t−1
−1

t
− 1

t+e2τ

)
+h.c.

(3.7)

where some of the integrands are combined into total derivatives and the rest are of the

following type,∫
dt

log(b+ at)

t+ c
= log(b+ at) log

[
a(t+ c)

ac− b

]
+ Li2

(
b+ at

b− ac

)
.

The integration is made up of two parts: one depending on t∗ and the other one with no

dependence on t∗, which we refer to as the middle term and the boundary term,

Wboundary =
π2

6
− 2 log [T ] log

[
−T

2(F 2S + T )(1 + F 2ST + T 2)

F 2S3

]
+ Li2

[
−F

2T

S

]
− Li2

[
F 2S

F 2S + T

]
− Li2

[
F 2ST

1 + F 2ST + T 2

]
− Li2

[
1

1 + F 2ST + T 2

]
+ h.c.

Wmiddle =
π2

6
+ log

[
t+

1

T 2

]
log

[
− S2

T 2(1 + tT 2)

]
+ log

[
v

w(1 + tT 2)

]
log

[
t− 1

t(1 + tT 2)

]
+ log

[
vw∗

T 2

]
log

[
F 2S

(S + F 2T )(ST + F 2 + F 2T 2)

]
− Li2 [v]− Li2

[
−F

2T

S
v

]
+ Li2

[
F 2

ST + F 2 + F 2T 2
v

]
− Li2 [w] + Li2

[
F 2S

F 2S + T
w

]
+ Li2

[
F 2ST

1 + F 2ST + T 2
w

]
+ h.c.

(3.8)

where S = eσ, T = e−τ , F = e−iφ/2, v = (F 2 + StT + F 2tT 2)/F 2 and w = (F 2S +

T − tT )/F 2S . (Note that v and w are not the dual conformal cross-ratios used in sources

like [9], which we refer to here as u1, u2, and u3.) Both terms are symmetric under complex

conjugation so we can replace some of the terms by their complex conjugates (w to w∗ and

so on). The new variables v and w satisfy a few relations when t = t∗,

v

w(1 + tT 2)
= 1, vw∗ = v∗w =

ST + F 2 + F 2S2 + F 2T 2 + F 4ST

F 2
. (3.9)

Using these relations the one-loop MHV expression WMHV, (1) = Wboundary +Wmiddle

can be further simplified to reach the known expression,

WMHV, (1) =
π2

6
+ log[S2]log[1 + T 2]− log[u1]log[u3] + Li2[u2]− Li2[1− u1]− Li2[1− u3],

(3.10)

– 6 –
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where

u1 =
F 2S2

(1 + T 2) (ST + F 2 + F 2S2 + F 2T 2 + F 4ST )

u2 =
T 2

1 + T 2

u3 =
F 2

ST + F 2 + F 2S2 + F 2T 2 + F 4ST
.

(3.11)

A particularly straightforward way to see this simplification is to use symbol methods,

as we illustrate in appendix A.

4 Conclusions and outlook

Extending the results of [7], we have demonstrated how to re-sum the Pentagon Operator

Product Expansion at one loop to obtain an MHV amplitude. In particular, we have shown

how logarithms and polylogarithms emerge in two ways: from the sum over helicity, and

via integral representations of hypergeometric functions.

At higher loop orders (and for one loop NMHV) the integrands we found here mul-

tiply sums of polygamma functions. Above one loop, we also need to consider multiple

effective excitations. Either will make this procedure more complex, but neither should

compromise the core of our program. Going forward, it should be possible either to find

appropriate choices of integral representations of these functions (similar to that used for

the hypergeometric function) or to take their residues in an explicit infinite sum, in either

case making the transcendentality properties of the resummation manifest.

Looking farther afield, we anticipate that it may be possible to re-sum the POPE

for finite coupling. Doing so will likely involve an as-yet unknown basis of functions.

Nevertheless, hints at this stage indicate that this may be more feasible than one would

assume. In particular, summing over descendants reduces the complexity of the needed

sums over states dramatically, leaving a much simpler sum over effective excitations.
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A Simplifying WMHV using the symbol map

In this appendix we will show the equivalence of our expression for the one-loop MHV

Wilson loop in eq. (3.8) to the known expression in eq. (3.10) using symbols [10–12]. The
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symbol maps polylogarithmic functions to tensor products of rational functions. For our

purposes we need only the action of the symbol map on the dilogarithm and on products

of two logarithms:
Li2[z] ∼ (1− z)⊗ 1/z

log[x] log[y] ∼ x⊗ y + y ⊗ x .
(A.1)

The symbol map is not one-to-one. In particular, constants vanish under the symbol map,

so any two functions that differ by a constant are mapped to the same symbol. Symbols

obey the following relations:

φ1 ⊗ . . .⊗ φiφj ⊗ . . .⊗ φn = φ1 ⊗ . . .⊗ φi ⊗ . . .⊗ φn + φ1 ⊗ . . .⊗ φj ⊗ . . .⊗ φn,
φ1 ⊗ . . .⊗ φai ⊗ . . .⊗ φn = a(φ1 ⊗ . . .⊗ φi ⊗ . . .⊗ φn) .

The symbols of the middle and boundary terms can be simplified by using the above

relations along with those in eq. (3.9). In the end, we collect symbols with the same first

entry and get,

Wboundary ∼ a⊗
a2

F 2ST 3
+ b⊗ b2

F 2ST 3
+ c⊗− c

aT 3
+ d⊗− d

bT 3
+ F 2 ⊗− ST

6

bdF 2

+ S2 ⊗ T 7

S
+ T ⊗ F 12S14

a3b3c3d3T 16
+
(
1 + T 2

)
⊗ F 2S2T 2

ab

Wmiddle ∼ a⊗
F 2ST 3

a2
+ b⊗ F 2ST 3

b2
+ c⊗−aT

3

c
+ d⊗−bT

3

d
+ F 2 ⊗−bdF

2

ST 6

+ S2 ⊗ abS

F 2T 7
+ T ⊗ abcdT 16

F 4S10
+
ST + F 2(1 + S2 + T 2) + F 4ST

F 2T 2
⊗ F 4S2

abcd
(A.2)

where a = 1+F 2ST +T 2, b = ST +F 2 +F 2T 2, c = F 2S+T and d = S+F 2T . Combining

them, the symbol of the full expression is,

WMHV,(1) ∼ S2 ⊗ F 2S2

cd
+ (1 + T 2)⊗ F 2S2T 2

ab
+
ST + F 2(1 + S2 + T 2) + F 4ST

F 2S2
⊗ F 4S2

abcd
(A.3)

which is exactly the expected symbol for one-loop MHV, as can straightforwardly be ob-

tained from the full expression:

WMHV,(1) =
π2

6
+ log[S2]log[1 + T 2]− log[u1]log[u3] + Li2[u2]− Li2[1− u1]− Li2[1− u3].

(A.4)

The symbol maps transcendental constants to zero, so in principle our expression may

differ from the known result by a term proportional to π2. However, we can check this

constant by taking the collinear limit (T → 0), in which the one-loop hexagon Wilson loop

must vanish. We find that our expression satisfies this, and thus is indeed the correct result

for one-loop MHV.
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