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1 Introduction

Recently, an alternative M5-brane action in a generic eleven-dimensional supergravity back-

ground was constructed in [1] with the aim of better understanding the connection of

the original M5-brane action [2, 3] to the 5-brane proposal of [4, 5] based on the three-

dimensional Bagger-Lambert-Gustavsson model [6–8] with the gauge symmetry of a 3d vol-

ume preserving diffeomorphism. In [1] it was shown that the field equations derived from

the new action are equivalent to the ones deduced from the superembedding approach [9, 10]

and hence to the equations of motion which follow from the original action [11].

The difference between the two M5-brane actions is that in the original action of [2, 3]

the 6-dimensional M5-brane worldvolume gets split into 1+5 directions and the manifest

6d space-time invariance is maintained by the presence of a single auxiliary scalar field,

while in the action of [1] the 6d worldvolume is effectively split into 3+3 directions and the

manifest 6d space-time invariance is maintained by the introduction of a triplet of auxiliary

scalar fields [12].

Different formulations of the theory may allow one to gain different insights into its

structure. The action of [1], for instance, in addition to its relation to the BLG model, can

also be useful for studying M2-M5 bound states discussed e.g. in [13, 14].
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The Lagrangian formulation of self-dual or duality-symmetric fields is essentially not

unique, but is related to different possible ways of tackling the issue of (non-manifest)

space-time invariance of the duality-symmetric actions (see e.g. [4, 15–22]). Various pos-

sible ways of constructing actions which produce the (self)-duality relations as (a conse-

quence of) equations of motion by effectively splitting d-dimensional space-time into p-

and q-dimensional subspaces, with d = p + q, were explored for free theories in flat space

in [23, 24]. In these formulations only SO(1, p − 1) × SO(q) subgroup of the SO(1, d − 1)

Lorentz symmetry is manifest, while the complete 6d invariance is realized in a non-manifest

(modified) form. Recently, an action for IIB D=10 supergravity, containing a chiral four-

form gauge field A4 whose field strength F5 = dA4 is self-dual, was constructed in a 5+5

split formulation which originated from an E6(6) Exceptional Field Theory [25]. This for-

mulation is alternative to the earlier constructed D=1+9 IIB supergravity action [26, 27].

The actions with different space-time splitting are generically inequivalent off-shell, as

was shown for the 6 = 1 + 5 and 6 = 3 + 3 cases in [1, 12]. Different off-shell inequiva-

lent formulations may be useful for studying the dynamics of duality-symmetric fields in

topologically non-trivial backgrounds [22, 28–30] and their quantization [22, 31–36]. Po-

tentially, these 6 = p+ q chiral 2-form theories in six dimensional Minkowski space may be

extended to describe the worldvolume theory of the M-theory five brane, as it was carried

out in [2, 3] and [1] for the cases of 6=1+5 and 6=3+3.

The above reasoning has motivated us to complete the list of different Lagrangian

formulations of the M5-brane by constructing its action with an effective 2+4 splitting of

the 6d worldvolume. Another motivation is that this form of the action for the Abelian

N = (2, 0) d = 6 theory would provide us with an appropriate off-shell starting point for

its topological twisting considered recently in [37, 38].

To construct the ‘2+4’ M5-brane action one may try to follow the same strategy as

that for the ‘3+3’ action [1]: first deform the action [23] for the free chiral two-form to

a nonlinear one, couple it to 6d gravity, embed the M5-brane worldvolume into D = 11

supergravity background and finally search for the kappa-symmetry invariant form of the

non-linear action.

It turns out, however, that these steps cannot be accomplished in full. Although it is

possible to extend the free 2+4 action of [23] by supersymmetrising it in the worldvolume,

or separately by making it non-linear, there are obstacles in carrying out further steps.

Most notably, it is not clear how to covariantise the 2+4 action. Nevertheless, as suggested

by Hamiltonian analysis, coupling to 6d gravity might be possible.

In comparison with its previous counterparts, the ‘2+4’ self-dual Lagrangian formula-

tion for the chiral 2-form field has several new features and complications. Namely, some

of the gauge symmetries of the action become semi-local.1 For these semi-local transforma-

tions to be gauge symmetries, the time direction of the d = 2+4 worldvolume should be in

the two-dimensional subspace, thus breaking 6d ‘space-time democracy’, though the action

does possess a (modified) 6d Lorentz invariance. The structure of the M5-brane action

1Semi-local symmetries have previously appeared also in other formulations of duality-symmetric fields

in different dimensions (see e.g. [21, 39, 40]) and topologically non-trivial backgrounds [28–30].
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with ‘2+4’ splitting (if found) is anticipated to be much more complicated in comparison

with a Born-Infeld-like structures of the actions of [2, 3] and [1]. A defining function of

components of the chiral tensor field strength which enters the action should satisfy an

algebraic equation of the sextic order which can only be solved perturbatively.

The problem of covariantising the 2+4 split action for the chiral 2-form may be re-

lated to issues with topological twisting of the Abelian 6d, N = (2, 0) theory considered

in [37, 38].

The paper is organized as follows. In section 2, we review the free non-covariant ‘2+4’

chiral 2-form gauge field Lagrangian, and extend it to describe an Abelian N = (2, 0)

d = 6 chiral supermultiplet. The derivation of a new nonlinear action for the d = 6 chiral

2-form field is considered in section 3. In section 4, we discuss obstacles to get full M5-

brane action with ‘2+4’ splitting, as well as discussing a possible way out encouraged by

Hamiltonian analysis. In Conclusion we summarize the results and discuss open issues,

and possible future directions. In appendix A, we give the detailed proof of the equivalence

of the self-duality equations derived from the new nonlinear ‘2+4’ action with the ones in

the superembedding approach. In appendix B we explicitly check that a nonlinear function

of the components of the chiral field strength in the ‘2+4’ action satisfies the constraint

required by the non-manifest 6d Lorentz invariance of the action.

Basic notation and conventions. The 6d Minkowski metric has the almost plus signa-

ture, xµ (µ = 0, 1, · · · , 5) stand for the 6d space-time coordinates. The chiral gauge field is

denoted by B2(x) = 1
2dx

µdxνBνµ(x). We use the convention that the functional derivative

and the variational derivative are related by,

δFµ1···µp = δFν1···νp
1

p!

∂Fµ1···µp
∂Fν1···νp

= δFν1···νp
δFµ1···µp
δFν1···νp

, (1.1)

for the variation of a p−form Fµ1···µp .

2 Free chiral 2-form theory with non-manifest 6d Lorentz-invariance

We will now review the non-manifestly 6d Lorentz invariant quadratic chiral 2-form action

in six dimensional Minkowski space and then extend it to an action describing the N =

(2, 0) tensor supermultiplet with five scalars and a sixteen-component fermion.

2.1 Free theory

We are interested in the derivation of the self-duality condition

Hµνρ =
1

6
εµνρλ1λ2λ3 H

λ1λ2λ3 = H̃µνρ (2.1)

on the field strength H3 = dB2 from a 6d Lagrangian with a 2+4 splitting of six-dimensional

tensor indices [23]. Here ε012345 = −ε012345 = 1.

Let us perform the following 2+4 splitting of Hµνρ

Hµνρ = (Habj , Hijk, Haij), a, b, c, · · · = 0, 5; i, j, k, · · · = 1, 2, 3, 4. (2.2)

– 3 –
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Then, the Hodge-dual field-strength H̃µνρ splits as follows

εµ1···µ6 ⇒ εabijkl = εabεijkl, (2.3)

H̃abi =
1

3!
εabεijklH

jkl, H̃aij =
1

2
εabεijklH

bkl, H̃ijk =
1

2
εijklεabH

abl. (2.4)

The quadratic action which produces (2.1) has the following form [23]

S = −
∫
d6x

(
1

2
H̃abiH

abi +
1

4
HaijH

aij +
1

6
HijkH

ijk

)
. (2.5)

The action has the local gauge symmetry

δBab = Ωab(x
µ), (2.6)

where Ωab(x
µ) are arbitrary functions, which suggests that the Bab components of B2 are

Stueckelberg-like fields (they enter the above action only under a total derivative).

In addition, as we have found, the action is also invariant under the following semi-local

transformations

δBai = Φai(x
b, xj) (2.7)

whose parameters Φai are restricted to satisfy the anti-self-duality condition

∂[iΦk]a = −1

2
εabεikjl∂jΦbl, so that ∂k∂

[kΦi]a = 0, (2.8)

i.e. Φai obey the differential equation in the four-dimensional subspace parametrized by

the coordinates xi.

We should check that, though being semi-local, the transformations (2.7) form a gen-

uine gauge symmetry which will allow us to get rid of redundant degrees of freedom.2

A semi-local symmetry is a fully-fledged gauge symmetry if its associated Noether

charge vanishes (at least) on the mass shell [41]. The conserved Noether current associated

with (2.7) is

jµ = δµj (Hjai − H̃jai)Φai, µ = 0, 1, · · · , 5. (2.9)

It is clear from the structure of (2.9) that the Noether charge Q =
∫
d5x j0 is identically

zero off-shell if the temporal direction is in the 2d subspace of the ‘2+4’ dimensional space-

time. Therefore, in this formulation we lose the freedom to place the time direction in the

4d subspace. This makes the 2+4 splitting different from the 1+5 and 3+3 splittings of

the previous formulations of the 6d chiral 2-form action.

The field equations which one obtains by varying (2.5) are

∂k

(
−H̃aki +Haki

)
= 0, (2.10)

∂k

(
−H̃ ijk + 2H ijk

)
+ ∂aH

aij = 0. (2.11)

2The presence of this semi-local gauge symmetry is effectively translated into the choice of appropriate

boundary conditions for integration functions considered in [23].
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Equation (2.10) has the general solution

− H̃aik +Haik = εabεikjl∂jΦ̃bl, (2.12)

where Φ̃bl satisfy the condition (2.8), because the left-hand-side of the above equation is

anti-self-dual. Hence, we can obtain the self-duality equation

Haij = H̃aij (2.13)

by fixing the semi-local gauge symmetry (2.7) appropriately. Substituting (2.13) into (2.11)

and using the Bianchi identity, we get

∂k

(
−H̃ ijk +H ijk

)
= 0, (2.14)

which has the general solution

− H̃ijk +Hijk =
1

2
εabεijkl∂

lΩ̃ab, (2.15)

where Ω̃ab are arbitrary functions which can be put to zero with the use of the local gauge

transformations (2.6). We thus arrive at another set of self-duality equations

Hijk = H̃ijk. (2.16)

Combined together, eqs. (2.13) and (2.16) are equivalent to (2.1).

The action (2.5) is manifestly invariant under SO(1, 1) × SO(4) subgroup of Lorentz

symmetry. However, it is less obvious that the action also enjoys the modified Lorentz

symmetry with parameters λaj ≡ λaj (λa
i ≡ λia) associated with the coset transformations

SO(1, 5)/[SO(1, 1) × SO(4)]. For simplicity, we present the modified part of the SO(1, 5)

Lorentz symmetry in the gauge Bab = 0

δBai = δ1Bai + δ2Bai, δBij = δ1Bij + δ2Bij , (2.17)

with

δ1Bai = λjaBji + λbj(xb∂
j − xj∂b)Bai,

δ1Bij = −λbiBbj + λbjBbi + λbk(xb∂
k − xk∂b)Bij , (2.18)

being the standard Lorentz transformation and3

δ2Bai = λbjx
j(H − H̃)bai, δ2Bij =

1

2
λbkx

k(H − H̃)bij (2.21)

vanish on the mass shell. Thus, the modified SO(1, 5) Lorentz symmetry reduces to the

standard one when the field strength of the 2-form B2 is self-dual.

3There is a room of adding to this transformation another term

δ3Bai = λjbx
b(H − H̃)aij . (2.19)

One may check that under this transformation the Lagrangian is invariant up to a total derivative term

δ3S =
1

2

∫
d6x∂k(λjbx

bHaijHaik). (2.20)

– 5 –
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2.2 Action for the Abelian N = (2, 0) tensor supermultiplet

The supersymmetric extension of the free chiral 2-form action is obtained by adding to

it kinetic terms for five scalar fields XI(x) (I = 1, 2, 3, 4, 5) and a sixteen-component

fermionic field ψ(x) which together with Bµν(x) form an N = (2, 0) supermultiplet. The

resulting action

S =
1

2

∫
M6

d6x

[
−
(

1

2
H̃abiH

abi +
1

4
HaijH

aij +
1

6
HijkH

ijk

)
+
(
iψ̄Γµ∂µψ − ∂µXI∂µXI

)]
(2.22)

is invariant under the following N = (2, 0) supersymmetry transformations with a sixteen-

component constant spinor parameter ε

δXI = iε̄ΓIψ,

δBµν = iε̄Γµνψ,

δψ = ΓµΓI∂µX
Iε+

1

12
ΓµνρK

µνρε, (2.23)

where the self-dual 3-form K = ∗K is defined in terms of the components of the field

strength Hµνρ as follows

Kµνρ =
1

2
(Hµνρ + H̃µνρ) +

1

2
(H ijk − H̃ ijk)δµi δ

ν
j δ
ρ
k −

3

2
(Habj − H̃abj)δ[µa δ

ν
b δ
ρ]
j . (2.24)

Note that the self-dual Lagrangian (2.5) for H3 is equal to L = 1
6HµνρK

µνρ.

To define the sixteen-component spinors we use the same conventions as in the ap-

pendix of [42]. Namely, Γµ (µ = 0, 1, 2, 3, 4, 5) and ΓI (I = 6, 7, 8, 9, 10) are the 32 × 32

D = 11 gamma-matrices in the Majorana representation, and the 32-component Majorana

spinors ψ(x) and ε are subject to the chirality constraints

ψ = −γ(6)ψ, ε = γ(6)ε, γ(6) =
1

6!
εµ1···µ6Γµ1···µ6 (2.25)

which reduce the number of the independent spinor components down to sixteen.

To study the theory described by the action (2.22), in particular its topological twist-

ing [37, 38], in geometrically non-trivial 6d backgrounds, one should couple the action (2.22)

to a d = 6 supergravity in a way similar to that considered in the ‘1+5’ formulation [43–47]

and to look for d = 6 backgrounds preserving at least part of supersymmetry. This is left

as a future work.

3 Non-linear chiral 2-form gauge theory with non-manifest 6d Lorentz-

invariance

We would like to find a non-linear generalization of the action (2.5) in 6d Minkowski space,

with the ultimate aim to describe the M5-brane. Let us stress that we are deforming the

free theory (2.5) to a nonlinear one in a six dimensional Minkowski space. An attempt to

apply the construction to the M5-brane worldvolume theory with a non-trival induced 6d

– 6 –
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metric will be discussed in section 4. To have a hint on how this generalization should be

carried out, let us first rewrite the quadratic action in the following form

S = −
∫
d6x

(
1

2
H̃abiH

abi +
1

2
H−aijH

+aij +
1

6
HijkH

ijk

)
, (3.1)

in which the second term is the product of the anti-self-dual (4.12) and self-dual (4.13)

part of Haij .

The non-linear action we are interested in should respect the same (possibly non-

linearly modified) symmetries of the free chiral field action and should produce the equa-

tions of motion, in particular, the same non-linear self-duality condition on H3 which follow

from the other formulations of the M5-brane dynamics, namely, from the superembedding

description [9, 10] and the M5-brane actions [1–3] when they are put in a Minkowski target

superspace with the M5-brane excitations along the transverse directions frozen.

We have found that the non-linear 6d action which satisfies these requirements has the

following form

S = −
∫
d6x

(
1

2
H̃abiH

abi +
1

2
H−aijH

+aij + I(Hijk, H
+
aij)

)
, (3.2)

where I is the following functional of Hijk and H+
aij only

I(Hijk, H
+
aij) = G2 + 4

Q− 1

Q

√
1 +G2 − Q2X

64
. (3.3)

In (3.3)

Gl =
1

3!
εijklH

ijk, (3.4)

and later one we will also deal with

G̃l =
1

3!
εijklH̃

ijk, (3.5)

where the Hodge dual field strength H̃ is taken with respect to Minkowski metric as in (2.4).

X,Y and G2 are three SO(1, 1)× SO(4) invariant scalars

X = −2H+
aijH

+
b
ijH+aklH+b

kl, Y = −2GkGiH
+
ajkH

+aij , G2 = GiGi, (3.6)

and Q satisfies the following sextic equation

−16(G2)3 − 16(G2)2 + 16Q
(
(G2)3 + (G2)2 +G2Y + Y

)
+Q2

(
(G2)4 +

(G2)2X

4
− 2(G2)2Y +G2X − 16G2Y +X + Y 2 − 16Y

)
+Q3

(
−(G2)2X

2
−G2X −X

)
+

1

8
Q4
(
(G2)2X +XY

)
+
Q6X2

256
= 0. (3.7)

Using exactly the same analysis as in section 2, one can show that the variation of the

action (3.2) leads to the following non-linear self-duality equations

H−aij = −1

4

∂I
∂H+aij

, G̃i =
1

2

∂I
∂Gi

↔ Habi =
1

12
εabijkl

∂I
∂Hjkl

, (3.8)

which are equivalent to those obtained from the superembedding description of the M5-

brane [9, 10], as we will show below and in appendix A.

– 7 –
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3.1 Construction of the non-linear action in 6d Minkowski space

Let us first consider (3.2) with, a priori, unknown generic functional I(Hijk, H
+
alm), and

require the action to be invariant under the modified Lorentz symmetry (2.17), which is

composed of the standard Lorentz transformations (2.18) and the additional terms

δ2Bai = εabλ
b
jx
j

(
−G̃i +

1

2

∂I
∂Gi

)
, (3.9)

δ2Bij = λbkx
k

(
H−bij +

1

4

∂I
∂H+bij

)
, (3.10)

with the parameter λbk taking values in SO(1, 5)/[SO(1, 1)× SO(4)].4 The above transfor-

mations reduce to (2.21) if we put I = G2. Notice also that on the mass shell (3.8) the

modified Lorentz symmetry reduces to the standard one.

After a somewhat lengthy calculation, the requirement of the invariance of the ac-

tion (3.2) under the modified Lorentz transformations leads to the following constraint on

the form of I

− 2GiH
+aij +

∂I
∂Gi

H+aij +
1

2
Gi

(
∂I
∂H+

)aij
+

1

4

(
∂I
∂G

)
i

(
∂I
∂H+

)aij
= 0. (3.12)

Note that the symmetry constraint is trivially satisfied if we have I = G2.

As is well known (see e.g. [20, 48–52]), the above constraint may have different solutions

corresponding to different nonlinear chiral 2-form theories. To fix the form of I, our strategy

will be to first find the action which leads to the self-duality equations which are equivalent

to the ones given by the superembedding formulation of the M5 brane [9, 10], and then

check that the solution satisfies the constraint (3.12).

In the superembedding description of the M5-brane [9, 10] the field strength H3 of the

chiral field B2 is expressed in terms of a (linear) self-dual tensor h3 = ∗h3 as follows5

1

4
Hµνρ = m−1λµ hλνρ ,

1

4
H̃µ1ν1ρ1 =

1

6
εµ1ν1ρ1µνρm−1λµ hλνρ = Q−1mµ1λhλ

ν1ρ1 (3.13)

where m−1λµ is the inverse matrix of

mµ
λ = δµ

λ − 2kµ
λ , m−1λµ = Q−1(2δµ

λ −mµ
λ), kµ

λ = hµνρh
λνρ (3.14)

and

Q = 1− 2

3
tr k2 . (3.15)

4Just as in the linear theory, there is an ambiguity in the transformation rule of B2. The following

variation

δ3Bai = λjbx
b

(
H−
αij +

1

4

∂I
∂H+aij

)
(3.11)

also leaves the Lagrangian invariant up to total derivative terms. The nature and meaning of this ambiguity

is unclear to us.
5Our normalization of the field strengths differs from that in [53] by the factor of 1

4
in front of H3.
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As shown in [1, 53], by splitting the six-dimensional indices into 1+5 or 3+3, one can

derive the duality equations which are produced by the M5-brane actions in the corre-

sponding formalisms. Here we perform the ‘2+4’ splitting of (3.13) and obtain

1

4
H+
aij = Q−1haij , (3.16)

1

4
H−aij = Q−1

[
4g2haij + 8gmgihajm − 8gmgjhaim + 2haxyh

bxyhbij

]
, (3.17)

1

4
Gl = Q−1

[
(1 + 4g2)gl − 4gxhaxkh

alk
]
, (3.18)

1

4
G̃l = Q−1

[
(1− 4g2)gl + 4gxhaxkh

alk
]
, (3.19)

Q = 1− 16(g2)2 − 2haijh
bijhbklh

akl + 32glgkh
ajkhajl, (3.20)

where6

gk ≡
1

3!
εlijkh

lij , g2 ≡ gkgk, (3.21)

with a, b = 0, 5 and i, j, · · · = 1, 2, 3, 4. By expressing gi and haij in (3.17) and (3.19) in

terms of H+
aij and Gi via (3.16) and (3.18), one may, in principle, obtain the desired duality

equations. However, it is very difficult to proceed directly in this way.

So, let us present a heuristic way to obtain the action. In [1] it was found that the

chiral 2-form parts of both, the 3+3 and 1+5 formulation of the M5-brane action have the

same on-shell value determined by the super-embedding scalar Q (3.15), namely

Son-shell = −
∫
d6x
√
−g 4

Q
. (3.22)

We assume that this is also true in the 2+4 formulation. Thus, with the help of the

superembedding equations (3.16)–(3.20) we first rewrite the Lagrangian as follows

1

2
H̃abiH

abi +
1

4
HaijH

aij + I = −GiG̃i + 8
1−Q
Q2

− 1

2
(G2 − G̃2) + I. (3.23)

The on-shell action (3.2) equals (3.22) (in the 6d Minkowski space) if

Ion-shell = 4(3Q−1 − 2Q−2) +GiG̃i +
1

2
(GiGi − G̃iG̃i). (3.24)

To recover the off-shell action I, one needs to replace the terms with G̃i by Haij and Gi.

It is convenient to rewrite (3.20) as

Q = 1− 16(g2)2 + 16y + x, (3.25)

where

x ≡ −2haijhb
ijhaklhbkl, y ≡ −2gkgihajkh

aij . (3.26)

Note that

256x = Q4X, (3.27)

6The reader should not confuse g2 with the square of the determinant of the 6d metric g = det gµν .
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where X was defined in (3.6). From the superembedding equations and (3.25) we obtain

1

16
G2 = Q−2

[
g2(2 + 4g2 −Q) +

1−Q+ x

4

]
, (3.28)

1

16
G̃2 = Q−2

[
g2(2− 4g2 −Q)− 1−Q+ x

4

]
, (3.29)

1

16
GiG̃i = g2Q−1. (3.30)

We can solve g2 in terms of X,Y,G2, Q from (3.28) together with (3.27),

g2 =
1

8

(
−2 +Q+

√
Q2 +G2Q2 −Q4X/64

)
. (3.31)

Upon inserting all these ingredients into (3.24), we find (3.3). The remaining work is then

to derive the equation satisfied by Q. We start by expressing Y , defined in (3.6), in terms

of h3 using the superembedding equations

1

256
Y = Q−4

[
y − xy + 4(g2)2(x+ 4y) + g2(x+ 8y)

]
. (3.32)

Using (3.25), (3.27) and (3.31) in the above equation, one obtains the following expression

for the square root
√

1 +G2 −Q2X/64,

√
1 +G2 −Q2X/64 =

−(G2)2Q− 8G2(Q− 1) +Q3X/16 +Q(Y − 8) + 8

4(G2 + 2)(Q− 1)
. (3.33)

The polynomial equation obtained from the above relation is (3.7). As a consistency check,

one can substitute (3.25), (3.27), (3.28) and (3.32) into the sextic equation to see that it is

trivially satisfied.

As one can show (see appendix), the resulting I constructed in terms of X,Y,G2 and

Q as in (3.3) satisfies (3.12) and hence is the promising candidate for the non-linear off-shell

action we are looking for.

However, one should still show that the self-duality equations obtained from this action

are equivalent to those in the superembedding formulation. The detailed proof of this is

given in the appendix A.

Solutions to a generic sextic equation can be written in terms of the Kampé de Fériet

hypergeometric function. Only some special sextic equations can be factorized into radicals

and hence solved explicitly [54], however, this is not the case for (3.7).

Only when Y = G2 = 0, (3.7) reduces to

Q2X

(
Q4X

256
−Q+ 1

)
= 0. (3.34)

Although our sextic equation is not exactly solvable, we can always reconstruct its solution

perturbatively as a series in powers of the field strengths.
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4 Attempts to get a full M5-brane action and issues

As our goal is to provide another alternative action for the M-theory five-brane, we will

look for the covariantisation of the actions (2.5) and (3.2). However, as we will find out in

this section, putting the actions (2.5) and (3.2) on a curved 6d background turns out to be

highly nontrivial. The standard PST technique is not straightforwardly applicable in this

case. We will first present an incomplete covariantisation of the action (2.5), in which the

theory is formally covariant yet not fully consistent. Nevertheless, Hamiltonian analysis

suggests that coupling to gravity looks promising.

4.1 Covariantisation issue

In this section, we present an attempt to covariantise the 2+4 chiral 2-form action and

couple it to 6d gravity (2.5) using the standard PST technique. Unlike [12, 55], the result

of the covariantisation for 2+4 turns out to be problematic in that the action does not

acquire the PST gauge symmetry and, hence, auxiliary PST scalars carry undesirable

dynamical degrees of freedom. We will discuss these issues in detail in section 4.2.

Let us introduce a doublet of auxiliary scalar fields7 as(x) with s = 1, 2 labelling a 2D

representation of internal rigid GL(2) symmetry of the action. Using the derivatives of as

we construct the projector matrices

Pµ
ν = ∂µa

rY −1rs ∂
νas, Πµ

ν = δνµ − Pµν , Πµ
ν∂νa

s = 0, (4.1)

where

Y rs ≡ ∂ρar∂σasgρσ(x), (4.2)

and gρσ(x) is the inverse of the 6d metric gµν(x). The projector Pµ
ν has rank 2 and Πµ

ν

has rank 4, so they split the 6d directions into 2+4 ones which are orthogonal to each other.

The projectors satisfy the following identities

3εµνρτσλP [κ
µ P

η
ν Πξ]

ρ = −εµνρκηξΠ[τ
µ Πσ

νΠλ]
ρ , εµνρτσλP [κ

µ Πη
νΠξ]

ρ = −εµνρκηξP [τ
µ Πσ

νΠλ]
ρ , (4.3)

Π[ρ
λΠκ]

µDλP
ν
µ = 0 = Π[ρ

λΠκ]
µDλΠν

µ (4.4)

where Dµ is the covariant derivative associated with the metric gµν .

The proposed ansatz for the covariantised form of the action (2.5) is

S = −
∫
d6x
√
−g
[

1

2
(H̃PPΠH) +

1

4
(HPΠΠH) +

1

6
(HΠΠΠH)

]
, (4.5)

where g is the determinant of the 6d metric, the dual field strength is

H̃ρµν =
1

6
√
−g

ερµνλστHλστ , (4.6)

7One can alternatively choose a quadruplet of auxiliary fields, as(x), s = 1, 2, 3, 4. In that case, they

label a 4D representation of an internal GL(4) symmetry.
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and

(H̃PPΠH) = H̃µνρH
τσλPµτ P

ν
σΠρ

λ, (HPΠΠH) = HµνρH
τσλPµτ Πν

σΠρ
λ,

(HΠΠΠH) = HµνρH
τσλΠµ

τΠν
σΠρ

λ. (4.7)

The action enjoys the covariant versions of the local gauge symmetry

δBµν = P ρ[µP
σ
ν]Ωρσ, δas = 0, (4.8)

as well as the semi-local gauge symmetry

δBµν = P ρ[µΠσ
ν]Φρσ, δas = 0, (4.9)

with Φρσ satisfying the anti-self-duality condition

δHρσλ P
ρ
µΠσ

νΠλ
ρ = −δH̃ρσλ P

ρ
µΠσ

νΠλ
ρ , δHρσλ = 3∂[λ(P κρ Πδ

σ]Φκδ) . (4.10)

The Noether current associated with this symmetry is

jµ = (H−PΠΠ)ρσµ(ΦPΠ)ρσ, (4.11)

where we introduced the anti-self-dual part of the field strength

H−µνρ ≡
1

2

(
Hµνρ − H̃µνρ

)
, (4.12)

the corresponding self-dual part being

H+
µνρ ≡

1

2

(
Hµνρ + H̃µνρ

)
. (4.13)

It is clear that the Noether charge associated with (4.11) vanishes off-shell if we align

the time along the directions singled out by the P -projector, i.e. along the ‘2’-subspace of

‘2+4’. Therefore, (4.9) is eligible to be a gauge symmetry, and we can use it to obtain the

self-duality equations.

The field equation obtained as the result of the variation of the formally covariant

action with respect to Bµν is

∂ρ

[√
−g
(

6(H−PΠΠ)[µνρ] + 4(H−ΠΠΠ)[µνρ]
)]

= 0. (4.14)

Its integration gives

√
−g
(

6(H−PΠΠ)[µνρ] + 4(H−ΠΠΠ)[µνρ]
)

= εµνρτσλ∂τ

(
Φ̃κηP

κ
σΠη

λ + Ω̃κηP
κ
σP

η
λ

)
, (4.15)

for some parameters Φ̃ and Ω̃. Projecting both sides of the above equation on PΠΠ, we get

6
√
−g(H−PΠΠ)[µνρ] = 3ετσλκηξ∂κ(Φ̃PΠ)ηξP

[µ
τ Πν

σΠ
ρ]
λ . (4.16)

Notice that Φ̃µν satisfy the constraint (4.10), because the left-hand-side of (4.16) is anti-

self-dual. Thus, by appropriately fixing the gauge symmetry (4.9), we get the first set of

the duality equations

(H−PΠΠ)[µνρ] = 0. (4.17)
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Substituting this back into the equation (4.14), we obtain

4
√
−g(H−ΠΠΠ)[µνρ] = εµνρτσλ∂τ

(
Ω̃PP

)
σλ
. (4.18)

The appropriate choice of the gauge symmetry (4.8) leads to the other set of duality

equations

(H−ΠΠΠ)[µνρ] = 0. (4.19)

The equations (4.17) and (4.19) amount to the self-duality of the field strength H3.

The crucial ingredient of the PST covariantisation technique is that, in addition to the

gauge symmetries (4.8) and (4.9), the action should be also invariant under the PST gauge

symmetry, in which the auxiliary fields as(x) transform by arbitrary local functions. In

view of (2.21), a reasonable guess for the PST gauge transformation would be8

δas = ϕs, δBµν = 6Λρ(H−PPΠ)[µνρ] + 3Λρ(H−PΠΠ)[µνρ], (4.20)

where

Λρ ≡ ϕsY −1st ∂
ρat. (4.21)

If the above transformation were indeed a gauge symmetry, one could gauge fix the aux-

iliary fields as(x) to coincide with two (worldvolume) coordinates xa (a = 0, 5), thus

obtaining (in the flat worldvolume space) the non-manifestly Lorentz invariant action of

the previous section

as = δsax
a. (4.22)

This gauge-fixing condition would be preserved by a combined Lorentz transformation with

parameter λai and the transformation (4.20), with parameter Λρ = −δρbλ
b
jx
j ,

(δLorentz + δPST) as = 0. (4.23)

This combination of two transformations acting on the chiral 2-forms would give exactly

the modified Lorentz symmetry (2.17).

However, we find that (4.20) leaves the action invariant, up to total derivative terms,

only when the following constraints are satisfied,

P ρµP
σ
ν D(ρΛσ) = 0 = Πρ

µΠσ
νD(ρΛσ). (4.24)

Therefore, the proposed transformation (4.20) is not eligible to be a PST gauge symmetry

of the action (4.5). The failure of PST gauge symmetry implies the inconsistency of the

current covariantisation procedure. Together with other issues we will discuss in more

detail in section 4.2, this indicates the trouble with coupling of the 2+4 formulation to 6d

gravity.

8It turns out that this transformation does not leave the action invariant. One might try to add to the

transformation law a term δBµν 3 V ρ(x)(H−PΠΠ)ρµν , where V ρ is gauge-fixed to be λjbx
b if as = δsax

a is

allowed, motivated by the Footnote 3. However, this turns out to be not helpful.
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4.2 Discussion of the issues

We have seen in section 4.1 that the standard PST covariantisation is not applicable (at

least straightforwardly) to the chiral 2-form theory with the 2+4 splitting of six dimen-

sions. In this section, we will study the encountered issues in more detail with the hope of

understanding the origin of the problems and resolving them in future.

Failure of finding PST gauge symmetry. The PST gauge transformation (4.20)

leaves the action (4.5) invariant only when the constraints (4.24) are satisfied. Usually, a

fully-fledged PST gauge transformation allows us to gauge-fix the auxiliary fields, say as =

δsax
a, so that the covariant theory reduces to the non-manifestly covariant one. Obviously,

the constraints (4.24) set obstacles to do this. In the absence of the PST gauge symmetry

in the formulation of section 4.1, the fields as are not really auxiliary and may carry

undesirable dynamical degrees of freedom, as the following analysis shows.

(In)dependence of the field equations of as(x). In the free theory (4.5), the field

equation of the 2-form gauge field derived from the action principle is

∂ρ

[√
−g
(

6(H−PΠΠ)[µνρ] + 4(H−ΠΠΠ)[µνρ]
)]

= 0. (4.25)

On the other hand, the field equations of the fields as are

∂σ
[√
−gY −1st ∂ρa

t(H−ΠΠΠ)[µνσ](H
−PΠΠ)[ρµν]

]
= 0. (4.26)

If as(x) were really auxiliary, their field equations would not be independent but implied

by the second order field equation of the 2-form gauge field. This is the case when the

PST covariantisation is successful as in [12, 55]. Actually, the existence of the PST gauge

symmetry in [12, 55] is guaranteed by the fact that the field equations of the auxiliary

field(s) are redundant. In our 2+4 splitting case, however, one can readily verify that (4.26)

is not implied by the second order field equation (4.25) and, hence the fields as may actually

carry additional dynamical degrees of freedom.

Issue with modified diffeomorphism. The chiral 2-form actions of [12, 55] are man-

ifestly 6d diffeomorphism invariant. Upon the appropriate gauge fixing of the auxiliary

fields, one can obtain the non-manifestly reparametrization invariant actions. Such ac-

tions are invariant under certain modified diffeomorphism transformations, which reduce

to the standard ones on-shell. For example, [56] is such a theory which is nonlinear in the

gauge field.

For simplicity, we will consider only free theories here, as the issue of covariantisation

in 2+4 splitting arises already therein. Let us now review how the non-manifest diffeomor-

phism invariance works in the theories with 1+5 and 3+3 splitting and point out the issue

with the 2+4 splitting model.

The following action based on the 1+5 splitting of six dimensions (m,n, p, q, k =

0, 1, 2, 3, 4)

S =

∫
d6x

(
1

4
H̃5mnH5mn + I

)
, (4.27)

I = +
1

8
εmnk5pqH̃

5mnH̃5pq g
5k

g55
− 1

4
√
−g

H̃5pqH̃5mn 1

g55
gpmgqn, (4.28)
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is the truncation of the nonlinear theory [56] to the linear order. The H̃5mn is defined

without involving any metric

H̃5mn ≡ 1

3!
ε5mnpqkHpqk. (4.29)

One can alternatively formulate a 1+5 theory by singling out the temporal direction from

other five spatial ones. In this case, the resulting action is the Henneaux-Teitelboim 1+5

(HT) action [17, 18].

Though it is not obvious, this action also has the modified diffeomorphism symmetry

δBmn = −ξ ∂I
∂H̃mn5

, (4.30)

with the diffeomorphism parameter in the fifth spacial direction x5 → x5 + ξ, as well as the

standard diffeomorphism for xk → xk + ξk (k = 0, 1, 2, 3, 4). The transformation law (4.30)

reduces to the standard one on-shell. The components Bk5 do not transform because we

work in the gauge Bk5 = 0 for simplicity, since Bk5 enters the action through a total

derivative term.

A non-manifestly diffeomorphism invariant action can also be obtained in the formu-

lation with the 3+3 splitting [1, 12] by gauge fixing values of the triplet of auxiliary fields

as = δsax
a, s = 1, 2, 3 ( in the following a, b, c, d = 0, 1, 2, i, j, k, l,m, n, p, q = 3, 4, 5)

S =

∫
d6x

(
1

36
εabcHabcε

ijkHijk −
1

4
εabcεijkHbckHaij + I1 + I2

)
, (4.31)

I1 = −εijkεabcF lcG
giagjbgkl
det(gmn)

+
1

3
εijkεabcG2 gaigbjgck

det(gmn)
− εijkεabcF iaF

j
b g
−1
cd g

dk, (4.32)

I2 = G2√−g
(
gijgij − 2

)
det(gmn)

+ F iaF
j
b

√
−ggijgab

det(gmn)
+ 2F jaG

√
−ggjigai

det(gmn)
, (4.33)

where

Hijk ≡ εijkG, Haij ≡ εijkF ka , (4.34)

and g−1cd is the inverse of the 3 × 3 matrix gab. The action is invariant under the standard

diffeomorphism transformations associated with xk → xk+ξk, as well as under the modified

diffeomorphism

δBai = −1

2

∂I1
∂F ic

εcbaξ
b − 1

2

∂I2
∂F ic

εcbaξ
b, δBij = ξbHbij , (4.35)

associated with xb → xb+ξb. For the diffeomorphism xb → xb+ξb, δBij has the conventional

form but δBai is modified and reduces to the conventional form on the mass shell.

As we have already mentioned, the both actions (4.27) and (4.31), and the modified

diffeomorphisms (4.30) and (4.35) can be obtained by an appropriate gauge fixing the

corresponding covariant actions [12, 55]. Moreover, a generic crucial ingredient for the

actions (4.27) and (4.31) to enjoy the 6d diffeomorphism invariance is that the modified

transformation laws be proportional to the derivatives of the corresponding actions with

respect to the gauge field strengths. In our case of formally covariant 2+4 theory considered
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in section 4.1, one can check that this property is lost in the “gauge” as = δsax
a for the

transformation rule (4.20). Despite the mentioned difficulties in obtaining the modified

diffeomorphism, it is possible to show that coupling to gravity can be done, which indirectly

implies that there exists modified diffeomorphism for the 2+4 split model on a curved

background. This encouragement comes from the Hamiltonian analysis which we will

present right away.

4.3 A possible way out: Hamiltonian analysis

The Hamiltonian analysis provides a natural way to put an action in curved space-time,

and to compute the (modified) diffeomorphism symmetry. So it could provide a better

insight into the issue with coupling of the 2 + 4 model to 6d gravity. This approach

is adopted in the Henneaux-Teitelboim (HT) 1 + 5 action [18]. We leave the systematic

Hamiltonian analysis, following the work of [57], and the refinement of PST covariantisation

of the 2+4 model as future works. Nevertheless, we will show that the “gauge-fixed”9

formally covariant action (4.5) has the correct number of degrees of freedom by doing the

Hamiltonian analysis. Moreover, the Hamiltonian density and momentum densities satisfy

the hyper-surface deformation algebra, which suggests that the coupling to 6d gravity

is promising.

Suppose we put as = xaδsa, s = 1, 2 (in the following a, b, c, d = 0, 5 and i, j, k, l,m, n =

1, 2, 3, 4) in the action (4.5), we obtain a non-covariant action with the Lagrangian density

L = −1

6
εabεklmnHlmnHabk + 2εabGiHbijg

−1
ac g

cj

−
√
−g

2 det(gmn)
F kla F

ij
b g

abgikglj − 2

√
−g

det(gmn)
GlF kja gaigkiglj

− 2

√
−g

det(gmn)
GiGjgklgl[kgi]j +

√
−g

det(gmn)
GiGjgij ,

(4.36)

where Gi is defined as in (3.4), g−1ab is the inverse of the 2× 2 matrix gab, and

H0ij =
1

2
εijklF

kl
0 , H5ij =

1

2
εijklF

kl
5 . (4.37)

The conjugate momenta are

πij =
δL
δḂij

= −2G[ig−15c g
j]c −

√
−g

det(gmn)

(
1

2
εklijF pqb g0bgpkglq +Glεkqijg0pgkpglq

)
(4.38)

π5i =
δL
δḂ5i

= −H̃05i = Gi, (4.39)

π0i = π05 = 0. (4.40)

9Readers should bear in mind that the (naive) PST covariantisation presented in section 4.1 is not

complete. However, one obtains a non-covariant action by naively setting as = δsax
a.
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To go on with the analysis of 2+4 model coupling to gravity, we decompose the 6d metric

according to Arnowitt-Deser-Misner-like Hamiltonian formalism

gµν =

−(N0)2 + γâb̂N
âN b̂ γb̂ĉN

ĉ

γâĉN
ĉ γâb̂

 . (4.41)

We define the inverse of γâb̂ and its determinant as γâb̂, and γ, respectively. The inverse of

the metric is

gµν =

−(N0)−2 N b̂

(N0)2

N â

(N0)2
γâb̂ − N âN b̂

(N0)2

 . (4.42)

The determinant is

g = −(N0)2γ (4.43)

so √
−g = N0√γ. (4.44)

After a somewhat lengthy calculation, the canonical Hamiltonian can be found to be

H = N0

(
1

2

1
√
γ
πijπâb̂γâiγb̂j +

1
√
γ
πj5πâb̂γâjγb̂5 +

1

2

1
√
γ
H̃0âb̂H̃0m̂n̂γâm̂γb̂n̂

)
+

1

2
N îε̂im̂n̂x̂ŷH̃

0m̂n̂πx̂ŷ − πij∂iBj0 − 2π5i(∂5Bi0 + ∂iB05),

(4.45)

where the hatted Roman indices are 5d indices, â, b̂, m̂, n̂ = 1, 2, 3, 4, 5. Note that this

Hamiltonian is at most linear in N0, N â. This form has the potential to not spoil the

degrees of freedom counting for the gravity sector. But to make sure, we have to check

that the hyper-surface deformation algebra is really satisfied. Let us denote

H0 =
1

2

1
√
γ
πijπâb̂γâiγb̂j +

1
√
γ
πj5πâb̂γâjγb̂5 +

1

2

1
√
γ
H̃0âb̂H̃0m̂n̂γâm̂γb̂n̂, (4.46)

Hî =
1

2
ε̂im̂n̂x̂ŷH̃

0m̂n̂πx̂ŷ (4.47)

To couple the theory to 6d gravity, we consider the full Hamiltonian

Hfull = H(g) +H, (4.48)

where the pure gravity Hamiltonian is given by

H(g) = NµH(g)
µ , (4.49)

with

H(g)
0 = −√γR+

1
√
γ

(
ζ âb̂ζm̂n̂γâm̂γb̂n̂ −

1

2
(ζ âb̂γâb̂)

2

)
, (4.50)

H(g)
â = −2γâb̂∇ĉζ

b̂ĉ. (4.51)
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In the above expressions, γâb̂ is (spatial) 5d metric, ζ âb̂ is conjugate momentum to γâb̂, R

is 5d Ricci scalar, and ∇â is γ−compatible covariant derivative.

The primary constraints are

Π(g)
µ ≈ 0, π0â ≈ 0, π5i + H̃05i ≈ 0, (4.52)

where Π
(g)
µ is conjugate to Nµ and ≈ denotes a weak equality which only holds on the

constraint surface. The secondary constraints include

πij + H̃0ij ≈ 0, ∂m̂π
m̂â ≈ 0, H(g)

µ +Hµ ≈ 0. (4.53)

Among which, we have first-class constraints

Πµ ≈ 0 (6), π0â ≈ 0 (5), (H(g)
µ +Hµ) ≈ 0 (6), ∂m̂π

m̂â ≈ 0 (4), (4.54)

where the numbers in the parenthesis indicate the number of the corresponding independent

constraints. On the other hand, we also have 6 second-class constraints which is the

transverse components of πm̂n̂ + H̃0m̂n̂ ≈ 0.

Let us count the number of degrees of freedom. There are 72 phase space variables, 42

of them coming from gravity sector while 30 of them coming from gauge sector. There are

21 first-class constraints and 6 second-class constraints. Therefore, the number of degrees

of freedom is given by

number of degrees of freedom =
(42 + 30)− 2× 21− 6

2

= 12

= 9 + 3.

(4.55)

Note that graviton in 6d has 9 degrees of freedom, therefore the calculation shows that the

2-form theory (4.36) indeed has the desired 3 degrees of freedom.

When classifying class of the constraint, we have considered Poisson’s brackets between

the constraints. Let us list only the hyper-surface deformation algebra:

[Hfull
0 (x),Hfull

0 (x′)] = (γâb̂(x)Hfull
â (x) + γâb̂(x′)Hfull

â (x′))∂b̂δ
(5)(x, x′), (4.56)

[Hfull
â (x),Hfull

0 (x′)] = Hfull
0 (x)∂âδ

(5)(x, x′)

+
2√
γ(x)

∂m̂π
m̂n̂(x)πb̂ĉ(x)γb̂â(x)γn̂ĉ(x)δ(5)(x, x′), (4.57)

[Hfull
â (x),Hfull

b̂
(x′)] = Hfull

â (x′)∂b̂δ
(5)(x, x′) +Hfull

b̂
(x)∂âδ

(5)(x, x′)

+∂m̂π
m̂n̂(x)εb̂ĵk̂ân̂(x)H̃0ĵk̂(x)δ(5)(x, x′), (4.58)

where Hfull
µ = H(g)

µ +Hµ. Note that time dependence in the above formula is suppressed

since Poisson bracket is computed at equal time and that x and x′ represent 5d spatial
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coordinates. We see that the above Poisson’s brackets weakly vanish, indicating that the

hyper-surface deformation algebra is satisfied.

The correctly obtained number of degrees of freedom and hyper-surface deformation

algebra tell us that the couple of the quadratic 2 + 4 action to gravity is actually doable.

The full systematic Hamiltonian analysis and the refinement of PST covariantisation on

2+4 are left in the upcoming works.

5 Conclusion

In this paper we have analysed a possibility of supersymmetrising and coupling to gravity

the free theory for the 2-form chiral gauge field in six-dimensional space-time in the for-

mulation with the manifest SO(1, 1) × SO(4) invariance [23] and generalize it to include

non-linear self-interactions of a Born-Infeld type. In the formulation with the 2+4 split

space-time we have constructed an action describing N = (2, 0) tensor supermultiplet.

On the other route, we have constructed a non-linear Lagrangian for the chiral 2-form in

d = 2+4 with a non-manifest 6d Lorentz invariance, whose equations of motion amount to

the non-linear self-duality condition which coincides with that obtained from the superem-

bedding description of the dynamics of the M5-brane.

In order to make a further extension of these results and ultimately obtain the com-

plete M5-brane action in 6d space-time with 2+4 splitting, one should couple the 2+4

action to 6d gravity, using e.g. the PST technique. However, our analysis showed that the

covariantisation of this system via the conventional PST approach does not work, at least

straightforwardly. Nevertheless, the non-covariant theory obtained by naively gauge-fixing

has the correct number of degrees of freedom. Though the straightforward application of

PST technique is not successful, the counting of the number of degrees of freedom suggests

that we are on the right track.

Having encountered the above mentioned issues in one of the alternative Lagrangian

formulations for the 6d chiral gauge field, it would be of interest to study if similar difficul-

ties arise in self-dual Lagrangian descriptions of chiral gauge fields with different splittings

of space-time in other dimensions [23, 24].
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A Equivalence of self-duality equations

To show that the self-duality equations derived from the action (3.2) are equivalent to the

ones in the super-embedding approach (3.13), we should check that

H−aij = 4Q−1
[
4g2haij + 8gmgihajm − 8gmgjhaim + 2haxyh

bxyhbij

]
= −1

4

∂I
∂H+aij

(
H+(h, g), G(h, g)

)
, (A.1)

G̃l = 4Q−1
[
(1− 4g2)gl + 4gxhaxkh

alk
]

=
1

2

∂I
∂Gl

(
H+(h, g), G(h, g)

)
. (A.2)

That is, we need to calculate the derivatives of I with respect to H+ and G, and then

express H+ and G in terms of h and g, as in (3.16) and (3.18), to check that the results

coincide with (3.17) and (3.19).

When dealing with the self-dual tensor H+
aij , we found it convenient to further split its

components into independent ones and utilize a ‘bra-ket’ notation

F±ij ≡ H±5ij , Gk → |G〉k, h5ij ≡ f ij , gk → |g〉k. (A.3)

fn implies matrix multiplication, e.g. f ijf jk etc., g2 ≡ gig
i = 〈g|g〉, and f |g〉 and 〈g|f

stand, respectively, for f ijgj and gjf
ji.

In this notation, the super-embedding duality equations take the form

F+ = 4Q−1f, (A.4)

F− = 4Q−1
(

(2trf2 + 4g2)f − 8f3 − 8|g〉〈g|f − 8f |g〉〈g|
)
, (A.5)

|G〉 = 4Q−1
(

(1 + 4g2 − 2trf2)|g〉+ 8f2|g〉
)
, (A.6)

|G̃〉 = 4Q−1
(

(1− 4g2 + 2trf2)|g〉 − 8f2|g〉
)
, (A.7)

Q = 1− 16(g2)2 + 16y + x. (A.8)

The X,Y and G2, eq. (3.6), and x, y, eq. (3.26), can be written as

x = 4
(
trf2

)2 − 16trf4, y = g2trf2 − 4〈g|f2|g〉, (A.9)

X = 4
(
trF+2

)2 − 16trF+4, Y = G2trF+2 − 4〈G|F+2|G〉. (A.10)

The self-duality equations derived from the action principle take the form

|G̃〉 =
1

2
| ∂I
∂G
〉, F− = −1

4

∂I
∂F+

. (A.11)

One can calculate the derivatives of I in a straightforward though tedious way. In partic-

ular, one needs to obtain
∂Q

∂G2
,

∂Q

∂X
,

∂Q

∂Y
,
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from the sextic equation (3.7). The argument of the square root
√

1 +G2 −Q2X/64

becomes a perfect square when the expressions (3.27) and (3.28) are used

√
1 +G2 −Q2X/64 =

√
(−8g2 +Q− 2)2

Q2
=

8g2 + 2−Q
Q

. (A.12)

Then, the checking of (A.7) is straightforward, while the checking of (A.5) is a bit more

complicated. After substituting (A.4) and (A.6) into the derivative ∂I/∂F+, we see that

we need to deal with terms of the following form

f2|g〉〈g|f and f2|g〉〈g|f3. (A.13)

These terms can be traded with other simpler-looking terms as follows. Applying to 〈g|f4|g〉
and 〈g|f6|g〉 the Cayley-Hamilton formula

M4 =
1

2

(
trM2

)
M2 −

(
−1

4
trM4 +

1

8

(
trM2

)2)
, (A.14)

where M is any anti-symmetric 4× 4 matrix, we have

〈g|f4|g〉 =
1

2
trf2 〈g|f2|g〉 −

(
1

8
(trf2)2 − 1

4
trf4

)
g2. (A.15)

Taking derivatives of the both sides of the above equations, we can then trade f2|g〉〈g|f
with another more convenient basis. For example,

|g〉〈g|f3 + f3|g〉〈g|+ f |g〉〈g|f2 + f2|g〉〈g|f

= f〈g|f2|g〉+
1

2
trf2 (|g〉〈g|f + f |g〉〈g|) +

1

2
(2f3 − trf2f)〈g|g〉.

(A.16)

This identity also implies that the terms on the left-hand-side of the above equation always

show up together. Terms like f2|g〉〈g|f3 can be simplified by utilising the above identity

and then using Cayley-Hamilton theorem repeatedly if necessary.

In this way, we have checked, using Mathematica, that (A.5) and (A.7) are correctly

reproduced by (A.11).

B Checking the worldvolume space-time symmetry constraint

Without loss of generality, the worldvolume space-time symmetry constraint (3.12) on the

form of the nonlinear self-dual action reduces to

2F+ijGj − F+ij ∂I
∂Gj

− 1

2

(
∂I
∂F+

)ij
Gj −

1

4

(
∂I
∂F+

)ij ∂I
∂Gj

= 0, (B.1)

where F+ij ≡ H+5ij .

In order to proceed, it is convenient to utilize the ‘bra-ket’ notation, introduced in the

appendix A. Then, the above equation can be written as follows

2F+|G〉 − F+| ∂I
∂G
〉 − 1

2

∂I
∂F+

|G〉 − 1

4

∂I
∂F+

| ∂I
∂G
〉 = 0, (B.2)
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where the derivatives of I with respect to Gi and F+
ij have the form

∂I
∂Gi

=
∂G2

∂Gi

∂I
∂G2

+

(
∂G2

∂Gi

∂Q

∂G2
+
∂Y

∂Gi

∂Q

∂Y

)
∂I
∂Q

, (B.3)

∂I
∂F+

ij

=
∂X

∂F+
ij

∂I
∂X

+

(
∂X

∂F+
ij

∂Q

∂X
+

∂Y

∂F+
ij

∂Q

∂Y

)
∂I
∂Q

, (B.4)

and the derivatives of Q with respect to X,Y and G2 can be obtained from the sextic

equation (3.7).

The left hand side of (B.2) can be expressed in terms of the two-vector basis:

F 3|G〉, F |G〉, (B.5)

with complicated coefficients, which are fractions and contain
√

64 + 64G2 −Q2X. In order

to proceed, we make a common denominator for the both coefficients, and call C1 the

numerator of the coefficient of F |G〉, and C3 the numerator of the coefficient of F 3|G〉.
To show that (B.2) is satisfied, we should check that C1 = C3 = 0. Assuming that

C1 vanishes, we can obtain the expression for the square root by solving the correspond-

ing equation

C1(
√
· · ·, Q,X, Y,G2, trF 2) = 0 ⇔

√
64 + 64G2 −Q2X = D1(Q,X, Y,G

2, trF 2), (B.6)

where D1 is a fraction composed of Q,X, Y,G2 and trF 2. This requirement can then be

easily rearranged into a Qn series equation of the form∑
n=0

Rn(X,Y,G2, trF 2)Qn = 0. (B.7)

This candidate identity will be trivially satisfied if and only if C1 is zero. We then simplify

the candidate identity by trading all the Qn with n > 6 in terms of the sextic equation (3.7),

with lower degrees of Q. The final result is that (B.7) is indeed the identity. The check

that C3 = 0 is carried out in a similar way. Therefore, the nonlinear self-dual action (3.2)

with Q satisfying the sextic equation (3.7) indeed has the (modified) worldvolume space-

time symmetry.

Open Access. This article is distributed under the terms of the Creative Commons
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