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1 Introduction

When it comes to determining the physical content of a given theory, it is clear that a

thoroughly symmetry preserving description is not always the best option. From this

perspective, the light-cone has played an important role since the first steps of string

theory [1]. The starting point of this approach is a Lorentz breaking gauge fixing, which

enables the decoupling of unphysical degrees of freedom even before quantisation. For the

RNS superstring, for example, reparametrisation and local (worldsheet) supersymmetry of

the action are used to decouple the light-cone components of Xm and ψm, leaving only the

physical components, represented by Xi and ψi, the transverse SO(8) directions.

In the pure spinor superstring [2], the covariant formulation is not suitable to investi-

gate the physical degrees of freedom. While the massless cohomology is elegantly given in

terms of the Yang-Mills superfield [3], any attempt to fully describe the massive spectrum is

practically hopeless due to the introduction of extra auxiliary superfields and gauge trans-

formations. To date, only the first massive level has a covariant superfield description [4].

The first approaches to determine the pure spinor cohomology [5, 6] involved a series

of indirect methods to produce a light-cone version of its BRST-like charge, but nothing

– 1 –



J
H
E
P
1
2
(
2
0
1
5
)
1
3
6

as clear and plain as for the other formalisms. A full “ungauged” description has been

presented in [7, 8], involving a twistor-like symmetry. A master action was proposed and

shown to give rise to the usual pure spinor BRST symmetry or to the Green-Schwarz κ-

symmetry [9], depending on the chosen gauge fixing. This work has established a much

better understanding on the origin of the formalism and has yet to be explored, but the

known light-cone gauge fixing from bosonic string theory or even the RNS and Green-

Schwarz superstrings is still lacking.

Recently, a DDF-like construction of the massless vertices was proposed [10], introduc-

ing a supersymmetric creation-annihilation algebra that can be used to span the pure spinor

cohomology [11]. It enables an SO(8)-covariant superfield description of the spectrum in a

systematic way, relying solely on the well established massless spectrum.

It is interesting to point out that physical states in the pure spinor superstring are

defined to be at the ghost number one cohomology. Although supported by successful

comparisons with the other formalisms [12–14] and even providing some impressive new

results, for example [15], this definition seems rather ad-hoc and illustrates an incomplete

understanding of some fundamental aspects of the formalism. Taking the bosonic string

as an example, the cohomology at ghost number two (antifields) has a clear kinematic

property that distinguishes it from the cohomology at ghost number one (fields), namely

BRST-closedness does not impose the mass-shell condition. In a more fundamental level,

it can be shown that unitarity of the scattering amplitudes projects out the ghost number

two states. This leads to the physical state condition, known as Siegel gauge: any element

of the BRST cohomology annihilated by the b ghost zero mode, b0, is defined to be a

physical state.

In [16, 17], the massless sector of the pure spinor cohomology at ghost number higher

than one is discussed in detail. But it seems that a complete understanding of the spectrum

beyond that was never achieved, especially when it comes to the antifields. The doubling of

the degrees of freedom was expected, although through a nontrivial realisation. For exam-

ple, when comparing the massless vertices U = λαAα (X, θ) and U∗ = λαλβAαβ (X, θ) [18],

it is far from obvious that the number of degrees of freedom matches at different ghost

numbers. Unlike in the bosonic string, where the zero mode of the c ghost introduces a

sort of degeneracy of the ground state, the pure spinor variable makes the doubling of

the cohomology much more intricate. In this sense, the DDF construction of [10] seems

to be a good way to approach the problem. The creation/annihilation algebra is already

determined, and it remains to introduce a ground state associated to the antifields.

For the fields, the DDF ground state is defined through the state-operator map of the

vertex U in the frame P+ = 0. While one of the SO(8) chiralities of Aα can be gauged

to zero (Aa = 0), the other, Aȧ, is set to depend on only half of the θα’s. This solution

was first presented in [19] and is discussed in the review section 2. The ghost number two

massless vertex can be analogously gauged to U∗ = λȧλḃ
A

ȧḃ
, where A

ȧḃ
represents the

nonvanishing components of Aαβ and is simply given in terms of the superfield Aȧ. This

immediately leads to the definition of the antifields ground state and the spectrum is build

in terms of the DDF creation operators.

The introduction of the integrated vertex associated to U∗ is a natural step and it

is straightforward to build. The first implication is the extension of the DDF algebra.
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Denoting the integrated vertices by VL.C.(k; ai, ξȧ) and V ∗
L.C.(k; a

∗
i , ξ

∗
ȧ) for the massless field

and antifield respectively, the algebra can be cast as

[VL.C.(k; ai, ξȧ), VL.C.(p; bi, χȧ)] = δk+p

√
2{kajbj + iξȧχȧ}P+, (1.1a)

[VL.C.(k; ai, ξȧ), V
∗
L.C.(p; a

∗
i , ξ

∗
ȧ)] ≈ 2kδp+k{kaja∗j + iξȧξ

∗
ȧ}c+0

−ikδp+k{aj(σjξ
∗
)a − a∗j (σ

jξ)a}W ∗
a (0) , (1.1b)

[V ∗
L.C.(k; a

∗
i , ξ

∗
ȧ), V

∗
L.C.(p; b

∗
i , χ

∗
ȧ)] ≈ −4kδk+p{ka∗jb∗j + iξ

∗
ȧχ

∗
ȧ}M. (1.1c)

Here, k and p parametrise the P− 6= 0 momenta, and the remaining arguments of VL.C.

and V ∗
L.C. represent the SO(8) polarisations of the massless field and antifield. The first

equation is exact, the usual creation/annihilation algebra, while the last ones hold up

to BRST-trivial terms. Just like the operator P+ is an element of the zero-momentum

cohomology, so are W ∗
a (0), c+0 and M . The latter, for example, is the integrated form of

the pure spinor measure of integration.

The algebra (1.1) is a simple supersymmetric extension of the bosonic string one,

given by

[VL.C.(k; ai), VL.C.(p; bi)] =
√
2δk+pkajbjP

+, (1.2a)

[VL.C.(k; ai), V
∗
L.C.(p; a

∗
i )] ≈ 2δp+kk

2aja
∗
jc

+
0 , (1.2b)

[V ∗
L.C.(k; a

∗
i ), V

∗
L.C.(p; b

∗
i )] ≈ −4δk+pk

2a∗jb
∗
jMbos, (1.2c)

where c+0 ≡ −
√
2
�

∂c∂X+ and Mbos ≡
� (

∂c∂2c
)

. The operator c+0 is of particular interest.

Observe that it satisfies

i
√
2P+ = {b0, c+0 }, (1.3)

where b0 is the zero mode of the fundamental b ghost. This means that c+0 acts as a DDF

conjugate of b0 in the subspace P+ 6= 0. There is, of course, the P− 6= 0 analogous of this

operator, defined by c−0 ≡ −
√
2
�

∂c∂X−.

Because the cohomology of the bosonic string b0 is trivial, equation (1.3) brings no new

information. However, this is potentially interesting in the pure spinor formalism. The

operators c±0 indeed act as a composite c ghost, taking any element of the ghost number

one cohomology to its related antifield. The explicit expression for c+0 , for example, is

c+0 =
1

6

‰

{

ΠiθijΛj −
3√
2
N iΛi −

3

2

(

θσid
)

Λi −
1

2

(

θσi∂θ
)

θijΛj

}

. (1.4)

The SO(8) notation used above is discussed in detail in subsection 2.2. By investigating

the role of the composite b ghost, the extended DDF algebra implies that

i
√
2P± =

{

b0, c
±
0

}

+
{

Q, ξ±
}

, (1.5)

which differs from the bosonic string analogous by a BRST-exact piece. The operators

ξ± depend on the specific form of the b ghost (recall that the pure spinor b ghost is not

uniquely defined). In this sense, there is a hidden (b, c) structure in the spectrum.

In spite of the more restricted result of (1.5), it is possible to extract some information

about the cohomology of the pure spinor b0. Assuming that the DDF states span the ghost
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number two cohomology, there is an interesting consequence concerning the spectrum.

The antifields have a singular kinematic property, in a direct parallel to the bosonic string,

and the definition of a physical state condition in terms of the action of b0 is roughly a

consequence of this analysis.

This work is organised as follows. Section 2 is a review on some basic aspects of

the pure spinor cohomology, including the DDF-like construction that is extensively used

next. Section 3 presents the analysis of the ghost number two cohomology restricted to

conformal primary operators, with an extension of the DDF algebra and the map from the

physical states to the antifields with the introduction of the operators c±0 , which behave

as zero modes of a c ghost within the DDF construction. Section 4 discusses the physical

state condition known as the Siegel gauge and the b ghost cohomology is analysed in the

subspace of BRST-closed operators. Section 5 summarises the main results of this work:

• SO(8)-covariant construction of the super Yang-Mills antifields;

• SO(8)-covariant construction of the massless integrated vertex for the antifields;

• extension of the DDF algebra;

• doubling of the pure spinor cohomology at ghost number two and its singular BRST-

exact feature;

• definition of the operators c±0 and their role as DDF conjugates of b0;

• analysis of the physical state condition (Siegel gauge) on the BRST-cohomology:

ghost number one states are b0-exact up to a gauge transformation; ghost number

two states do not belong to the cohomology of b0.

Appendix A includes several computations that have been skipped in the main text, e.g.

the SO(8) decomposition of the pure spinor measure of integration and the extended DDF

algebra. In order to present a more familiar ground, appendix B contains a short review

on the DDF operators in bosonic string theory. Most of the results of this work have a

simple analogous there and understanding the bosonic picture will make the pure spinor

case clearer.

2 Review of the pure spinor cohomology

The pure spinor (left-moving) BRST-charge is given by

Q =

‰

(λαdα) , (2.1)

where λα is a pure spinor variable, and

dα = pα − 1

2
∂Xm (θγm)α − 1

8
(θγm∂θ) (θγm)α (2.2)

is the field realization of the supersymmetric derivative

Dα =
∂

∂θα
− 1

2
(γmθ)α

∂

∂Xm
. (2.3)
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Note that

dα (z)F (X, θ; y) ∼ DαF

(z − y)
, (2.4)

with F being a superfield of the variables Xm and θα. It is straightforward to check that

dα (z) dβ (y) ∼ −
γmαβΠm

(z − y)
, (2.5)

with Πm the supersymmetric momentum operator, defined by

Πm = ∂Xm +
1

2
(θγm∂θ) (2.6)

and satisfying

Πm (z) dα (y) ∼ −
γmαβ∂θ

β

(z − y)
, (2.7)

Πm (z)Πn (y) ∼ − ηmn

(z − y)2
. (2.8)

Both Πm and dα are invariant under the action of the supersymmetry charge

Qα =

‰

{

pα +
1

2
∂Xm (θγm)α +

1

24
(θγm∂θ) (θγm)α

}

, (2.9)

with algebra {Qα, Qβ} = −iγmαβPm, where Pm = i
�

∂Xm. The matter energy-momentum

tensor can be written as

Tmatter = −1

2
ΠmΠm − dα∂θ

α, (2.10)

and supersymmetry is explicit.

2.1 Massless cohomology

The pure spinor constraint,

λγmλ = 0, (2.11)

is essential for the nilpotency of the BRST charge, as

Q2 = −1

2

‰

(λγmλ)Πm, (2.12)

and it clearly plays a fundamental role in determining its cohomology. Perhaps the easiest

way to see this is through the zero momentum states, which can be cast as

{

1,
(λγmθ) ,

(λγmθ) (γmθ)α ,

(λγmθ) (λγnθ) (γ
mnθ)α ,

(λγnθ) (λγpθ) (θγ
mnpθ) ,

(λγmθ) (λγnθ) (λγpθ) (θγmnpθ)

}

.

The above set is organized according to the ghost number charge defined by the current

J = −ωαλ
α, where ωα is the conjugate of the pure spinor, such that

J (z)λα (y) ∼ λα

(z − y)
. (2.13)
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The unit operator is the only element at ghost number zero, as there is no nontrivial

structure associated to the constraint (2.11). The ghost number one states correspond to

the unintegrated vertices of the super-Poincaré generators Pm and Qα, cf. equation (2.9).

Note also that the higher ghost number elements can all be composed from the ghost

number one states:

(λγmθ) (λγnθ) (γ
mnθ)α = [(λγmθ)][(λγnθ) (γnθ)β ]γ

αβ
m , (2.14a)

(λγnθ) (λγpθ) (θγ
mnpθ) = [(λγmθ) (γmθ)α][(λγ

nθ) (γnθ)β]γ
αβ
p , (2.14b)

(λγmθ) (λγnθ) (λγpθ) (θγmnpθ) = [(λγmθ)][(λγnθ) (λγpθ) (θγ
npqθ)]δmq . (2.14c)

Clearly only certain combinations give rise to nontrivial elements. For example, at ghost

number three one has

(λγmθ) (λγpθ) (λγqθ) (θγnpqθ) =

(

1

10

)

δmn (λγpθ) (λγqθ) (λγrθ) (θγpqrθ)

+
1

20
[Q, (θγnpqθ) (λγ

mprθ)
(

θγqstθ
)

(λγtθ) ηrs]

+
3

40
[Q, (θγmpqθ) (λγqθ) (θγnprθ) (λγ

rθ)], (2.15)

and the traceless composition from the left hand side of the equation is BRST-exact.

As mentioned before, physical states in the pure spinor formalism are defined to be in

the ghost number one cohomology. The massless vertex, U , is described by a superfield Aα

built from the zero modes of Xm and θα:

U = λαAα (X, θ) . (2.16)

Observe that {Q,U} = λαλβDαAβ , which can be Fierz decomposed to

{Q,U} =
1

16
(λγmλ) (DγmA) +

1

3! · 16 (λγmnpλ) (DγmnpA)

+
1

5! · 32 (λγmnpqrλ) (DγmnpqrA) (2.17)

The first term on the right hand side is proportional to the pure spinor constraint while

the second vanishes because γmnp
αβ is antisymmetric in the spinor indices. BRST-closedness

of the vertex implies DγmnpqrA = 0, which is the equation of motion for the superfield

Aα describing a massless vector boson, am, and its superpartner, ξα [3]. In the gauge

θαAα = 0, the superfield can be expanded as

Aα = ξβ (γmθ)β (γ
mθ)α − 1

8
∂mξβ (γnθ)β (θγ

mnpθ) (γpθ)α

+am (γmθ)α +
1

4
∂nam (θγmnpθ) (γpθ)α +O

(

θ5
)

. (2.18)

The gauge transformations of Aα assume the form δAα = DαΛ, as U is defined up to

BRST-exact terms, δU = [Q,Λ]. The integrated version of the vertex U is given by

V =

˛

{ΠmAm + ∂θαAα + dαW
α +NmnF

mn} , (2.19)

– 6 –
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where

Am =
1

8
(DγmA) , (2.20)

Wα =
1

10
[(γmD)αAm − ∂m (γmA)α] , (2.21)

Fmn =
1

2
(∂mAn − ∂nAm) , (2.22)

and Nmn = −1
2ωγ

mnλ is the pure spinor Lorentz current, satisfying

Nmn (z)λα (y) ∼ 1

2

(γmnλ)α

(z − y)
. (2.23)

BRST-closedness of V again relies on the pure spinor constraint and it is easy to show that

[Q, V ] =
�

∂U .

The extension of the covariant analysis to massive states ends up introducing a lot

of auxiliary superfields with unclear field content (currently only the first massive level

has a known covariant superfield description [4]). Previous analyses of the pure spinor

cohomology relied on nontrivial operations on the BRST charge Q (infinity set of ghosts,

similarity transformations, etc. . . ), which made the superfield character of the vertices very

obscure. Inspired by the DDF description of the bosonic string cohomology,1 there is now

a very transparent way of building the physical vertices in an SO(8)-covariant way, which

will be reviewed below.

2.2 DDF-like operators

The DDF operators are built on the light-cone frame and it will be useful to establish the

SO(8) notation beforehand.

Any SO(1, 9) vector, Km, will be decomposed as
√
2K± =

(

K0 ±K9
)

, with transversal

components represented by Ki, with i = 1, . . . , 8. In this notation, the metric ηmn is such

that η+− = −1, η++ = η−− = η±i = 0 and ηij is the flat SO(8) vector metric. For a rank-2

antisymmetric tensor Kmn, the SO(8) components will be represented as

{

Kij ,Ki = K−i,K
i
= K+i,K = K+−

}

.

Given a spinor ξα, one can denote its SO(8) components as ξa and ξȧ, where a, ȧ =

1, . . . , 8 are the SO(8) spinorial indices, representing different chiralities. Note that upper

and lower indices in the SO(8) language do not distinguish chiralities, i.e., one can define

a spinorial metric, ηab (ηȧḃ), and its inverse, ηab (ηȧḃ), such that ηacη
cb = δba (ηȧċη

ċḃ = δḃȧ),

which are responsible for lowering or raising spinorial indices, acting as charge conjugation.

1The reader not familiar with the DDF operators in bosonic string is advised to follow the quick review

presented in the appendix.

– 7 –



J
H
E
P
1
2
(
2
0
1
5
)
1
3
6

The matrices γm are conveniently written in terms of the 8-dimensional equivalent of

the Pauli matrices, σi
aȧ, which satisfy the following properties

(

σi
aȧσ

j

bḃ
+ σi

aḃ
σ
j
bȧ

)

ηȧḃ = 2ηijηab, (2.24a)
(

σi
aȧσ

j

bḃ
+ σi

aḃ
σ
j
bȧ

)

ηab = 2ηijη
ȧḃ
, (2.24b)

(

σi
aȧσ

j

bḃ
+ σi

aḃ
σ
j
bȧ

)

ηij = 2ηabηȧḃ. (2.24c)

The non-vanishing components of γmαβ and (γm)αβ are

γiαβ ≡ σi
aȧ,

(

γi
)αβ ≡ σi

bḃ
ηabηȧḃ,

γ+αβ ≡ −
√
2ηab, (γ+)

αβ ≡
√
2ηȧḃ,

γ−αβ ≡ −
√
2η

ȧḃ
, (γ−)

αβ ≡
√
2ηab,

(2.25a)

and the usual anticommutation relation {γm, γn} = 2ηmn follows from (2.24). From now

on the light-cone coordinates will be used, unless explicitly said otherwise. All the SO(8)

metrics will be chosen to be equal to the identity and no distinction will be made between

upper and lower indices.

Several combinations of θ’s and λ’s will appear, so a short notation will help simplifying

the results. The pure spinor constraint is rewritten as

λaσ
i
aȧλȧ = λaλa = λȧλȧ = 0, (2.26)

and the following definitions will be recurrent, relating some of the SO(1, 9) bispinors to

their SO(8) decompositions:

θij ≡ − 1√
2

(

θγ+ijθ
)

θ
ij ≡ − 1√

2

(

θγ−ijθ
)

(2.27a)

= θaσ
ij
abθb, = θȧσ

ij

ȧḃ
θ
ḃ
,

Λij ≡ − 1√
2

(

λγ+ijθ
)

Λ
ij ≡ − 1√

2

(

θγ−ijθ
)

(2.27b)

= λaσ
ij
abθb, = λȧσ

ij

ȧḃ
θ
ḃ
,

Λi ≡ 1

2

(

λγ−γi+θ
)

Λ
i ≡ 1

2

(

λγ+γi−θ
)

(2.27c)

= λȧσ
i
aȧθa, = λaσ

i
aȧθȧ,

Λ ≡ − 1√
2

(

λγ+θ
)

Λ ≡ − 1√
2

(

λγ−θ
)

(2.27d)

= λaθa, = λȧθȧ.

Here, σij ≡ 1
2

(

σiσj − σjσi
)

.

Having fixed the notation, the first step in determining the set of operators to proceed

to the DDF construction is to find a convenient gauge for the superfield Aα of (2.18) in a

– 8 –
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given light-cone frame. Working with momentum eigenfunctions and choosing the frame

where k− = k
√
2 and k+ = ki = 0, a quick analysis already determines the physical

polarizations to be ai and ξȧ. The component a+ is removed by the condition amkm = 0

while a− is pure gauge. For its superpartner, the equation of motion km (γmξ)α = 0 implies

ξa = 0, since (γ+)
αβ

projects onto one of the SO(8) chiralities. It turns out that there is a

gauge where Aα gets a very simple form,

Aa (k) = 0, (2.28a)

Aȧ (k) = e−ik
√
2X+

{

δil −
ik

3!
θil −

k2

5!
θijθjl +

ik3

7!
θijθjkθkl

}

ai
(

σlθ
)

ȧ
+

i

k
e−ik

√
2X+

ξȧ

+e−ik
√
2X+

{

1

2!
δil −

ik

4!
θil −

k2

6!
θijθjl +

ik3

8!
θijθjkθkl

}

(

ξσiθ
)

(

σlθ
)

ȧ
, (2.28b)

where ai and ξȧ are the physical polarizations mentioned above. Observe that the unusual

singular term when k → 0 is necessary due to this particular gauge choice, where all

the dependence on the θȧ was removed. It is straightforward to show the action of the

supersymmetric derivative Dα:

DaAȧ (k) = σi
aȧAi (k) , (2.29a)

DȧAḃ
(k) = 0, (2.29b)

DaAi (k) = ikσi
aȧAȧ (k) , (2.29c)

DȧAi (k) = 0, (2.29d)

where

Ai (k) = e−ik
√
2X+

{

δij +
ik

2!
θij −

k2

4!
θikθkj −

ik3

6!
θikθklθlj +

k4

8!
θikθklθlmθmj

}

aj

+e−ik
√
2X+

{

δij +
ik

3!
θij −

k2

5!
θikθkj −

ik3

7!
θikθklθlj

}

(

ξσjθ
)

(2.30)

represents the non-vanishing components of the superfield Am introduced in (2.20) [19].

The next step is to translate the above results to the massless pure spinor cohomology.

Instead of restricting the discussion to the open string, it is more enriching to view them

as coming from the holomorphic sector of the closed string. The worldsheet scalars Xm

are the only possible source of problems in this transition and will be written as

Xm (z, z) = Xm
L (z) +Xm

R (z) . (2.31)

The subtleties coming from this holomorphic splitting will not play any role in the con-

struction of the physical spectrum and will be ignored throughout this work.

Inserting the superfields of (2.28) in U = λαAα, one obtains

U = aiU i + ξȧY ȧ, (2.32)
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where

U i (z; k) ≡ e−ik
√
2X+

L

{

Λi −
ik

3!
θijΛj −

k2

5!
θijθjkΛk +

ik3

7!
θijθjkθklΛl

}

, (2.33)

Y ȧ (z; k) ≡ e−ik
√
2X+

L

(

θσi
)

ȧ

{

1

2!
Λi −

ik

4!
θijΛj −

k2

6!
θijθjkΛk +

ik3

8!
θijθjkθklΛl

}

+

(

i

k

)

e−ik
√
2X+

L λȧ, (2.34)

corresponding to the gauge fixed unintegrated massless vertices of the SO(8) vector and

spinor polarizations.2

Both U i and Y ȧ transform nicely under the action of the supersymmetry charge (2.9),

{Qȧ, U i} = 0, (2.35a)

[Qȧ, Y ḃ
] = 0, (2.35b)

{Qa, U i} = −ikσi
aȧY ȧ, (2.35c)

[Qa, Y ȧ] = σi
aȧU i, (2.35d)

and BRST-closedness follow from the equations in (2.29) and the pure spinor constraint.

The integrated vertex, denoted by VL.C.

(

k; ai, ξȧ
)

, comes from a simple insertion of

the gauge fixed superfield and its auxiliaries in (2.19),

VL.C.

(

k; ai, ξȧ
)

=

˛

{(

Πi − i
√
2kN i

)

Ai +
(

∂θȧ + ikdȧ
)

Aȧ

}

, (2.36)

with N
i
denoting the components N+i of the Lorentz ghost current.

In the DDF construction, the integrated massless vertices constitute a cre-

ation/annihilation algebra acting on a determined fundamental state. A direct computation

shows that the pure spinor vertices of (2.36) satisfy the following commutation relation:

[VL.C.(k), VL.C.(p)] = −
˛

{

Ai (p) ∂Ai (k) + ipAȧ (p) ∂Aȧ (k)
}

+ip

˛

Aȧ (p) ∂θaDaAȧ (k) (2.37)

Although far from obvious, the right hand side can be written in a very simple way due

to (2.29). It might be helpful to point out that ∂ = Π+∂+ + ∂θaDa whenever acting on

superfields that depend only on X+
L and θa. Observe that

Ai (p) ∂Ai (k) + ipAȧ (p) ∂Aȧ (k)− ipAȧ (p) ∂θaDaAȧ (k)

=
k

k + p
∂
(

Ai (p)Ai (k) + ipAȧ (p)Aȧ (k)
)

, (2.38)

2To match the notation of previous works, the vertices here differ from the ones in [10] by imaginary

factors.
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so the integrand of (2.37) is a total derivative for (k + p) 6= 0. Another interesting conse-

quence of (2.38) is that the expression inside the parentheses on the right hand side is a

constant for (k + p) = 0, which can be shown to be:

Ai

(

k; ai, ξȧ
)

Ai (−k; bi, χȧ) + ikAȧ

(

k; ai, ξȧ
)

Aȧ (−k; bi, χȧ) = aibi +

(

i

k

)

ξȧχȧ. (2.39)

Therefore,

[VL.C.(k), VL.C.(p)] = δk+p

˛

{

Ai (k) ∂Ai (−k) + ikAȧ (k) ∂Aȧ (−k)
}

+δk+p

˛

{

ik∂θaDaAȧ (k)Aȧ (−k)
}

= δk+pik
√
2

˛

{

Ai (k)Ai (−k) + ikAȧ (k)Aȧ (−k)
}

∂X+, (2.40)

where in the last line surface contributions were again discarded. Using the result (2.39),

the commutator takes the final form,

[

VL.C.(k; ai, ξȧ), VL.C.(p; bi, χȧ)
]

= δk+p

√
2
{

kaibi + iξȧχȧ

}

P+, (2.41)

constituting a supersymmetric creation/annihilation algebra whenever acting on states with

P+ 6= 0.

Given the vertex (2.32), sometimes it is easier to view supersymmetry as a passive

transformation on the polarizations ai and ξȧ instead of an active transformation on the

basis U i (k) and Y ȧ (k):

[Qa, ai] = −σi
aȧξȧ, {Qa, ξȧ} = −ikσi

aȧai. (2.42a)

When looking at the creation/annihilation algebra of (2.41), supersymmetry is consistent

with the combination δk+p

(

kaibi + iξȧχȧ

)

. Observe that

1

2i

{

Qa,
[

ai(σ
iχ)b − bi(σ

iξ)b
]}

=
(

kaibi + iξȧχȧ

)

ηab. (2.43)

In spite of this result, the right hand side of (2.41) is the most general expression compatible

with supersymmetry, since P+ itself is supersymmetric. In the next section a more general

construction will be introduced for the antifields, which includes the structure of (2.43).

Another interesting feature of the vertex (2.36) is its action on the operator (λγ−θ) =

−
√
2Λ defined in (2.27):

[

VL.C.

(

k; ai, ξȧ
)

,−Λ

2

]

=
ik

2
ΛiAi (k) +

ik

2
λȧAȧ (k)

= ikλȧAȧ (k)−
ik

2

{

Q, θȧAȧ (k)
}

. (2.44)

The unintegrated massless vertex, up to a gauge transformation, can be thought of as com-

ing from the action of the DDF operator on an “unpolarised” state of the zero-momentum

cohomology.
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The last step to build the physical spectrum through the algebra (2.41) is to define

the ground state which they should act upon. They are of course build from the P+ 6= 0

analogous of (2.28):

Aa (k) = e−ik
√
2X−

L

{

δil −
ik

3!
θil −

k2

5!
θijθjl +

ik3

7!
θijθjkθkl

}

ai
(

σlθ
)

a
+

i

k
e−ik

√
2X−

L ξa

+e−ik
√
2X−

L

{

1

2!
δil −

ik

4!
θil −

k2

6!
θijθjl +

ik3

8!
θijθjkθkl

}

(

ξσiθ
)

(

σlθ
)

a
, (2.45a)

Aȧ (k) = 0. (2.45b)

Denoting the fundamental state by |0, k〉, the state-operator map gives

|0, k〉 = lim
z→0

λaAa (k) |0〉
≡ ai |i, k〉+ ξa |a, k〉 , (2.46)

and the massive spectrum is obtained through the action of the operators VL.C.. The

implementation is detailedly presented in [10] and will not be repeated here.

Now the ghost number two cohomology will be discussed.

3 Antifields vertex operators

In bosonic string theory, the antifields have an odd feature that distinguishes them from

the physical states (see appendix B). This is not the case in the pure spinor superstring

and in this perspective the definition of a physical state has to be better understood.

At the massless level, a generic element of the ghost number two cohomology can be

cast as

U∗ = λαλβAαβ , (3.1)

where Aαβ = Aαβ (X, θ) is an SO(1, 9) superfield constructed out of the zero modes of Xm

and θα. Observe that

{Q,U∗} = λγλαλβDγAαβ (3.2)

and the superfield equation of motion follows from the BRST-closedness of U∗:

D((γAαβ)) = 0. (3.3)

The double parentheses represent a symmetrized gamma-traceless operation on the spinor

indices, a consequence of the pure spinor condition.
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The field content of Aαβ is composed by an anticommuting vector field, a∗m, and its

superpartner, ξ∗α,

U∗ = (λγnθ) (λγpθ) (θγ
npξ∗) + a∗n (λγpθ) (λγqθ) (θγ

npqθ)

+

(

1

8

)

∂mξ∗αθ
α (λγnθ) (λγpθ) (θγ

mnpθ)

−
(

1

8

)

∂mξ∗α (γnpθ)
α (λγnθ) (λγqθ) (θγ

mpqθ)

+

(

1

40

)

∂ma∗n (θγ
nprθ) (λγmqsθ) (θγrstθ)

(

λγtθ
)

ηpq

+

(

3

80

)

∂ma∗n (θγ
mprθ) (λγrθ) (θγ

nqsθ) (λγsθ) ηpq +O
(

θ7
)

, (3.4)

and their equations of motion follow from (3.2):

{Q,U∗} =

(

1

20

)

(∂ · a∗) (λγmθ) (λγnθ) (λγpθ) (θγmnpθ) +O
(

θ6
)

, (3.5)

⇒ ∂ma∗m = 0.

This is expected for the gauge boson antifield. Since fields and antifields are dual with

respect to their equations of motion and gauge transformations, it is no surprise that

{Q,U∗} = 0 does not imply an equation for ξ∗α, for there is no gauge freedom associated to

the gauge boson superpartner ξα. On the other hand, ξ∗α has a nontrivial gauge transforma-

tion. Of course U∗ is defined up to BRST-exact terms, which take the form λαλβDαΩβ and

δAαβ = D((αΩβ)) describes the antifield gauge transformations. They can be individually

expressed as

δa∗m = ∂n (∂mbn − ∂nbm) , (3.6a)

δξ∗α = γmαβ∂mχβ , (3.6b)

with gauge parameters bm and χα [18].

In this section, the cohomology at ghost number two will be further analysed, including

the massive levels. It will be shown that the DDF-like extension to this sector displays

some clear parallels with the bosonic string case.

3.1 Cohomology ring

A natural question about the ghost number two cohomology concerns the composition

of two elements from the ghost number one cohomology.3 To illustrate this construction

consider the ordered product of two massless superfields Aα and A′
α with momenta pm and

qm, respectively:

λαλβAαβ (p, q; y) ≡ lim
z→y

: λαAα (p; z)λ
βA′

β (q; y) : (3.7)

3This subject was previously studied in the amplitudes context [20].
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Assuming pm parallel to qm, there is clearly no ordering issue and (3.7) is a massless

BRST-closed operator.

The existence of this vertex is expected, although it is not obvious whether it is in the

cohomology. In fact, it can be shown that (3.7) is BRST-exact when (pm + qm) 6= 0. When

(pm + qm) = 0, it is a combination of two elements of the zero-momentum cohomology, cf.

subsection 2.1. In order to check this, (3.7) can be Lorentz rotated so that pm = p− ≡
√
2p

and qm = q− ≡
√
2q. After a gauge transformation, it can be rewritten as

U
(2)

(p, q) = λȧAȧ (p)λḃ
A

ḃ
(q) . (3.8)

In this way, the θ expansion of U
(2)

is easily obtained from the SO(8) superfields discussed

in the previous section. The explicit construction for the vector polarisations, for example,

is given by

U i (p)U j (q) = e−i(p+q)
√
2X+

L

{

ΛiΛj − i

(

q

3!

)

ΛiθjkΛk − i

(

p

3!

)

θikΛkΛj

−
(

q2

5!

)

ΛiθjkθklΛl −
(

p2

5!

)

θikθklΛlΛj −
(

pq

3!3!

)

θikΛkθjlΛl

+i

(

q3

7!

)

ΛiθjkθklθlmΛm + i

(

p3

7!

)

θikθklθlmΛmΛj

+ i

(

pq2

6!

)

θikΛkθjlθlmΛm + i

(

p2q

6!

)

θikθklΛlθjmΛm

}

. (3.9)

This product is analysed in the appendix A, equation (A.1). It can be cast in a very

simple form,

U i (p)U j (q) ≈ i e−i(p+q)
√
2X+

L

(

p− q

4

)

ηijΛΛk

(

θσkθ
)

, (3.10)

where the symbol ≈ means equal up to BRST-exact terms and will be recurrent in the

upcoming results. For (p+ q) 6= 0, the right hand side can also be written as a BRST-exact

expression:

e−i(p+q)
√
2X+

L ΛΛk

(

θσkθ
)

=

( −2

p+ q

){

Q,

[

Λ

p+ q
+

i

2
Λk

(

θσkθ
)

]

e−i(p+q)
√
2X+

L

}

. (3.11)

Therefore,

U i (p)U j (q) ≈







0 (p+ q) 6= 0,

i
(p

2

)

ηijΛΛk

(

θσkθ
)

(p+ q) = 0,
(3.12)

When it comes to U i (p)Y ȧ (q), the procedure is very similar:

U i (p)Y ȧ (q) = e−i(p+q)
√
2X+

L

{

i

q
Λiλȧ −

1

2!
ΛiΛj

(

θσj
)

ȧ
+

p

3!q
θijΛjλȧ

+
iq

4!
ΛiθjkΛk

(

θσj
)

ȧ
+

ip

2!3!
θijΛjΛk

(

θσk
)

ȧ
− ip2

5!q
θijθjkΛkλȧ

+
q2

6!
ΛiθjkθklΛl

(

θσj
)

ȧ
+

p2

2!5!
θijθjkΛkΛl

(

θσl
)

ȧ

+
pq

3!4!
θijΛjθklΛl

(

θσk
)

ȧ
− p3

7!q
θijθjkθklΛlλȧ

}

. (3.13)
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After the identification of the BRST-exact terms (also left to the appendix, equation (A.5)),

the above expression can be written as

U i (p)Y ȧ (q) ≈ − 1

2!
e−i(p+q)

√
2X+

L σi
aȧΛ

[

1

2
Λj

(

σjθ
)

a
− Λθa

]

. (3.14)

Observe that

e−ip
√
2X+

L Λ

[

1

2
Λj

(

σjθ
)

a
− ΛΛθa

]

= − i

p

[

Q, e−ip
√
2X+

L

(

1

2
Λj

(

σjθ
)

a
− ΛΛθa

)]

, (3.15)

so when (p+ q) 6= 0, U i (p)Y ȧ (q) is BRST-exact:

U i (p)Y ȧ (q) ≈















0 (p+ q) 6= 0,

1

2!
σi
aȧΛ

(

Λθa −
1

2
Λj

(

σjθ
)

a

)

(p+ q) = 0.
(3.16)

The same analysis can be done for the product Y ȧ (p)Y ḃ
(q), so the conclusion is that

U
(2)

(p, q) is BRST-exact unless (pm + qm) = 0. In that case it is given in terms of the

zero-momentum cohomology:

U
(2)

(p, q) ≈ δp+q

(

1

2

)

Λ

(

1

2
Λj

(

σjθ
)

a
− Λθa

)

{

ai
(

σiχ
)

a
− bi

(

σiξ
)

a

}

+δp+q

(

i

2

)

ΛΛi

(

θσiθ
) {

pajbj + iξȧχȧ

}

. (3.17)

Here,
(

ai, ξȧ
)

and (bi, χȧ) are the polarisations of Aȧ (p) and Aȧ (q) respectively.

It is also possible to build an integrated version for U
(2)

(p, q). Denoting it by V
(2)

(p, q),

the expression

V
(2)

(p, q) =

‰

{[(

Πi − i
√
2pN i

)

Ai (p) +
(

∂θȧ + ipdȧ
)

Aȧ (p)
]

λ
ḃ
A

ḃ
(q)

}

−
‰

{

λȧAȧ (p)
[(

Πi − i
√
2qN i

)

Ai (q) +
(

∂θ
ḃ
+ iqd

ḃ

)

A
ḃ
(q)

]}

(3.18)

is BRST-closed since

[

Q, V
(2)

]

=

‰

{

∂
[

λȧAȧ (p)
]

λ
ḃ
A

ḃ
(q) + λȧAȧ (p) ∂

[

λ
ḃ
A

ḃ
(q)

]}

=

‰

∂U
(2)

(p, q) . (3.19)

It turns out that the above construction is relevant for the extension of the DDF

operators to the ghost number two cohomology. For this reason, it will be put in a more

symmetrical way. Note that

ΛΛi

(

θσiθ
)

= − 1

12
θijΛiΛj +

{

Q,

[

1

2
Λ
(

θσiθ
) (

θσiθ
)

− 1

12
θij

(

θσiθ
)

Λj

]}

. (3.20)
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Therefore, after a gauge transformation

U
(2)

(p, k) ≈ δp+q

(

1

2

)

Λ

(

1

2
Λj

(

σjθ
)

a
− Λθa

)

{

ai
(

σiχ
)

a
− bi

(

σiξ
)

a

}

−δp+q

(

i

24

)

θikΛiΛk

{

pajbj + iξȧχȧ

}

. (3.21)

The integrated vertices associated to the right hand side of the above equation will be

denoted by W ∗
a (0) and c+0 , respectively, and are given by

W ∗
a (0) ≡ −

‰

{

Λ

(

da +Πi

(

σiθ
)

a
+
√
2∂X−θa −

1

2

(

θσi∂θ
) (

σiθ
)

a

)}

+
√
2

‰

{

∂X+

(

1

2

(

σiθ
)

a
Λi + Λθa

)}

, (3.22)

c+0 ≡ 1

6

‰

{

ΠiθijΛj −
3√
2
N iΛi −

3

2

(

θσid
)

Λi −
1

2

(

θσi∂θ
)

θijΛj

}

, (3.23)

such that

V
(2)

(p, q) ≈ 1

2
δp+qW

∗
a (0)

{

ai
(

σiχ
)

a
− bi

(

σiξ
)

a

}

− iδp+qc
+
0

{

pajbj + iξȧχȧ

}

, (3.24)

and

[Q,W ∗
a (0)] =

‰

∂

{

Λ

(

1

2
Λi

(

σiθ
)

a
− Λθa

)}

, (3.25)

{

Q, c+0
}

=
1

24

‰

∂ (ΛiΛkθik) . (3.26)

The notation W ∗
a (0) will become clear soon. It represents the zero-momentum limit of the

antifield DDF operator.

Clearly all the results derived here can be extended to the frame where P+ 6= 0. In

this case, the analogous operators are defined to be

W
∗
ȧ (0) ≡ −

‰

{

Λ

(

dȧ +Πi

(

σiθ
)

ȧ
+
√
2∂X+θȧ +

1

2

(

θσi∂θ
) (

σiθ
)

ȧ

)}

+

‰

{√
2∂X−

(

1

2

(

σiθ
)

ȧ
Λi + Λθȧ

)}

, (3.27)

c−0 ≡ 1

6

‰

{

ΠiθijΛj −
3√
2
NiΛi +

3

2

(

dσiθ
)

Λi +
1

2

(

∂θσiθ
)

θijΛj

}

. (3.28)

Having a simple interpretation in terms of the integrated zero-momentum vertices, the

operators c±0 will be shown to play a similar role to the zero mode of the bosonic string c

ghost, cf. equation (B.11) of the appendix. In order to understand this relation, the BRST

cohomology at ghost number two has to be further discussed.

3.2 Extended DDF construction

Given the superfield Aαβ of (3.3), it might be possible to find a gauge transformation similar

to what was done for the physical states in the DDF description, where the dependence on

half of the θ’s was removed, leaving only the physical polarisations in a particular frame.
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Instead of following this procedure and determining a convenient choice for the gauge

parameters in (3.6), a more direct approach will be considered with the action of the

operators c±0 on the gauge fixed massless states λȧAȧ, cf. equation (2.28b). Since they have

ghost number one and
{

Q, c±0
}

= 0, the resulting operator shall have ghost number two

and be BRST-closed. It is straightforward to compute the anticommutators to obtain:

{

c+0 , λȧAȧ (k)
}

= −1

2
ΛλȧAȧ, (3.29)

{

c−0 , λȧAȧ (k)
}

= ΛΛiAi

=
{

Q,Λ
(

θȧAȧ

)}

+ Λ
(

λȧAȧ

)

≈ Λ
(

λȧAȧ

)

. (3.30)

The first operator, ΛλȧAȧ, can be easily shown to be BRST-exact (see appendix A).

However this is not the case for Λ
(

λȧAȧ

)

, which is the analogous DDF gauge fixed operator

for the massless ghost number two cohomology. For completeness, observe that the action

of the operators W ∗
a (0) and W

∗
ȧ (0) is completely neglectable, as they satisfy

{Qa, c
+
0 } ≈ W ∗

a (0) , (3.31)

{Qȧ, c
−
0 } ≈ W

∗
ȧ (0) . (3.32)

The Jacobi identity in its turn implies that both [W ∗
a (0) , λȧAȧ (k)] and [W

∗
ȧ (0) , λċAċ (k)]

are BRST-exact.

Defining

Λ
(

λȧAȧ

)

≡ a∗iU
∗
i + ξ

∗
ȧY

∗
ȧ, (3.33)

the superfield expansion for each polarisation is given by

U
∗
i (z; k) ≡ Λ

{

Λi −
ik

3!
θijΛj −

k2

5!
θijθjkΛk +

ik3

7!
θijθjkθklΛl

}

e−ik
√
2X+

L , (3.34a)

Y
∗
ȧ (z; k) ≡ Λ (θσi)ȧ

{

1

2!
Λi −

ik

4!
θijΛj −

k2

6!
θijθjkΛk +

ik3

8!
θijθjkθklΛl

}

e−ik
√
2X+

L

+Λ

(

i

k

)

λȧe
−ik

√
2X+

L . (3.34b)

It is worth to take a look at the statistics of the polarisations. Now the SO(8) vector

polarisation, denoted by a∗i , should have fermionic statistics, while the polarisation ξ
∗
ȧ is

an SO(8) bosonic spinor. In the following, however, the physical polarisation statistics will

be kept (bosonic vector and fermionic spinor), as the known properties of the superfields

Ai and Aȧ will be used constantly, avoiding possible misunderstandings.

Maybe the best way to convince oneself that the vertices (3.34) truly describe the

antifields is to show that they are dual to the physical massless states. Consider the two-

point amplitude

f
[

(ai, ξȧ), (a
∗
i , ξ

∗
ȧ), k, p

]

=
〈

λȧAȧ (k) · Λλ
ḃ
A

ḃ
(p)

〉

, (3.35)
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where λȧAȧ (k) describes the fields with polarisations (ai, ξȧ) and Λλ
ḃ
A

ḃ
(p) the proposed

antifield vertex with polarisations (a∗i , ξ
∗
ȧ). According to the analysis of subsection 3.1, the

product U (2) (k, p) = λȧAȧ (k) · λḃ
A

ḃ
(p) is BRST-exact unless k + p = 0, that is

U (2) (k, p) = δk+p

(

1

2

)

Λ

(

1

2
Λj

(

σjθ
)

a
− Λθa

)

(

ai(σ
iξ

∗
)a − a∗i (σ

iξ)a

)

−δk+p

(

i

24

)

θikΛiΛk

(

kaja
∗
j + iξȧξ

∗
ȧ

)

+
{

Q,Z(1)
}

, (3.36)

where Z(1) is a ghost number one SO(8) superfield unimportant to the present analysis, as

it decouples from the amplitude computation:

f
[

(ai, ξȧ), (a
∗
i , ξ

∗
ȧ), k, p

]

= −
〈

ΛU (2) (k, p)
〉

= δk+p

(

1

2

)〈

−ΛΛ

(

1

2
Λj

(

σjθ
)

a
+ Λθa

)〉

(

ai(σ
iξ

∗
)a − a∗i (σ

iξ)a

)

+δk+p

(

i

24

)

(

kaja
∗
j + iξȧξ

∗
ȧ

)

〈

ΛθikΛiΛk

〉

+
〈{

Q,ΛZ(1)
}〉

= δk+p

(

i

24

)

(

kaja
∗
j + iξȧξ

∗
ȧ

)

〈

ΛθikΛiΛk

〉

. (3.37)

Observe that

ΛΛ

(

−1

2
Λj

(

σjθ
)

a
+ Λθa

)

=
1

2

[

Q,Λi

(

θσiθ
)

(

−1

2
Λj

(

σjθ
)

a
+ Λθa

)]

, (3.38)

explaining the vanishing of the mixed polarisations term (ai(σ
iξ

∗
)a − a∗i (σ

iξ)a).

Now it remains to show that ΛθikΛiΛk is proportional to the pure spinor integration

measure, given by

〈(λγmθ) (λγnθ) (λγpθ) (θγmnpθ)〉 .

This result is discussed in the appendix, after equation (A.26), and it can be shown that:

ΛΛiΛjθji =
1

60
(λγmθ) (λγnθ) (λγpθ) (θγmnpθ)

−1

6

[

Q,ΛΛi

(

θσjθ
)

θji
]

−3

4

[

Q,ΛΛθijθji
]

+
5

6

[

Q,ΛΛi

(

θσjθ
)

θji
]

. (3.39)

Therefore

f
[

(ai, ξȧ), (a
∗
i , ξ

∗
ȧ), k, p

]

∝ δk+p

(

kaja
∗
j + iξȧξ

∗
ȧ

)

, (3.40)

as expected from the field-antifield 2-point amplitude. This shows that Λλ
ḃ
A

ḃ
(p) is indeed

a proper antifield vertex.

From the above construction, the duality between fields and antifields is explicit. The

supersymmetry transformations are still very simple but with an extra BRST-exact ingre-
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dient:

[Qȧ, U
∗
i ] = [Q, θȧU i] (3.41a)

≈ 0,

{Qȧ, Y
∗
ḃ} = {Q, θȧY ḃ

} (3.41b)

≈ 0,

[Qa, U
∗
i ] = ikσi

aȧY ȧ, (3.41c)

{Qa, Y
∗
ȧ} = −σi

aȧU i. (3.41d)

The integrated vertex associated to (3.34), denoted by V ∗
L.C., can be easily guessed by

observing the role of the operator Λ. Note that

{

Q,Λ
[(

Πi − i
√
2kN i

)

Ai +
(

∂θȧ + ikdȧ
)

Aȧ

]}

= −Λ∂
(

λȧAȧ

)

. (3.42)

Knowing that ∂Λ = −
√
2 [Q, ∂X−], the obvious proposal for V ∗

L.C. is

V ∗
L.C.

(

k; a∗i , ξ
∗
ȧ

)

=

‰

{

Λ
(

Πi − i
√
2kN i

)

Ai + Λ
(

∂θȧ + ikdȧ
)

Aȧ +
√
2∂X−λȧAȧ

}

,

(3.43)

which is BRST-closed by construction:

{Q, V ∗
L.C.} = −

‰

∂
(

ΛλȧAȧ

)

= 0, (3.44)

It is important to note here that V ∗
L.C. has to be appropriately ordered, since it contains

products of operators that diverge when approach each other, e.g. ∂X− and Aȧ. The

prescription used here is the usual normal ordering where : A (z)B (y) : means the absence

of contractions between two generic operators A and B. From now on, this will be implicit

in order to leave the notation simpler.

As a consistency check, it is possible to show that

[

c+0 , VL.C.

(

k; ai, ξȧ
)]

≈ +

˛

{

Λ

2

[

ΠiAi − i
√
2kN iAi + ∂θȧAȧ + ikdȧAȧ

]

}

+

√
2

2

˛

{

∂X+
(

λȧAȧ

)}

(3.45)

[

c−0 , VL.C.

(

k; ai, ξȧ
)]

≈ −V ∗
L.C.

(

k; ai, ξȧ
)

(3.46)

The vertex (3.45) is the integrated form of Λ
(

λȧAȧ

)

, which is BRST-exact. And the

vertex (3.46) agrees with the proposed one in (3.43), up to gauge transformations.

The natural step now is to understand the algebra of V ∗
L.C.. It is clear that it does

not constitute a creation-annihilation algebra as the operators are now charged under the

ghost number current. On the other hand, it gives rise to some interesting features.

Similarly to (2.41), there might be some subtleties when determining the algebra for

(k + p) = 0. The details are discussed in the the appendix, equation (A.18). Computing
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the commutator between VL.C. and V ∗
L.C., one obtains

[

VL.C.(k; ai, ξȧ), V
∗
L.C.(p; a

∗
i , ξ

∗
ȧ)
]

≈ −ikδp+k

{

ai(σ
iξ

∗
)a − a∗i (σ

iξ)a

}

W ∗
a (0)

+2kδp+k

{

kaja
∗
j + iξȧξ

∗
ȧ

}

c+0 , (3.47)

and the operators c+0 and W ∗
a (0) naturally appear in the extension of the algebra.

Going further and analysing the anticommutator of V ∗
L.C. with itself, a similar result is

found (equation (A.20) of the appendix). The anticommutator assumes an elegant form,

{

V ∗
L.C.(k; a

∗
i , ξ

∗
ȧ), V

∗
L.C.(p; b

∗
i , χ

∗
ȧ)
}

≈ −4kδk+p

{

ka∗jb
∗
j + iξ

∗
ȧχ

∗
ȧ

}

M, (3.48)

where

M ≡ 1

6

‰

{

Λ

(

ΠiθijΛj −
1

2

(

θσi∂θ
)

θijΛj

)

+

√
2

4
∂X−θijΛiΛj

}

−1

4

‰

{

Λ
(√

2ΛiN i + Λi

(

θσid
)

)}

(3.49)

is the integrated version of the pure spinor integration measure. Note that

[Q,M ] =
1

24

‰

∂
(

ΛΛiΛjθji
)

, (3.50)

which is in accordance with the measure displayed in (3.39). All these results have a clear

analogous in the bosonic string, cf. equations. (B.13) and (B.14) of the appendix.

3.3 The antifield spectrum

Before generalising the construction of the spectrum to the antifields, it is worth to under-

stand better the properties of the massless vertices introduced above.

First of all, this sector has an analogous property to (2.44), meaning that the mass-

less unintegrated vertices of (3.34) can be obtained from the action (3.43) on the zero-

momentum state Λ:

[

V ∗
L.C.(k; a

∗
i , ξ

∗
ȧ),−

Λ

2

]

= ikΛλȧAȧ +
ik

2

[

Q,Λ θȧAȧ

]

. (3.51)

The zero-momentum limits of ΛλȧAȧ and V ∗
L.C.(k; a

∗
i , ξ

∗
ȧ) present a subtlety for the

SO(8) vector polarisation. Observe that

lim
k→0

U
∗
i (k) = ΛΛi

=
1

2
{Q, θijΛj} (3.52)

is BRST-exact. A closer look clarifies this issue and the expected zero-momentum state

lies in fact at the next order in k. The easiest way to solve this issue is to rescale the
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polarisation a∗i → k−1a∗i , so that

lim
k→0

ΛλȧAȧ

(

k;
a∗i
k
, ξ

∗
ȧ

)

= − i

3!
a∗i

(

3ΛθijΛj + ΛθijΛj

)

+ ξ
∗
ȧΛ

(

− 1

2!
Λi (θσi)ȧ + Λθȧ

)

+

{

Q, lim
k→0

(

1

2k
θijΛje

−ik
√
2X+

L

)}

−
{

Q, lim
k→0

(

i

k
Λθȧe

−ik
√
2X+

L

)}

. (3.53)

Note that this is just a feature of the procedure used here to determine the antifield vertices,

i.e. the action of the c−0 operator, and does not mean that the vertices obtained in this way

are ill defined.4

The same analysis applies to the zero-momentum limit of V ∗
L.C.. Defining

V ∗
L.C.(k;

a∗i
k
, ξ

∗
ȧ) ≡ a∗iV

∗
i (k) + ξ

∗
ȧW

∗
ȧ (k) ,

it can be shown that

lim
k→0

V ∗
L.C.

(

k;
a∗i
k
, ξ

∗
ȧ

)

= a∗iV
∗
i (0) + ξ

∗
ȧW

∗
ȧ (0)

+
(

iξ
∗
ȧ

√
2
)

lim
k→0

{

Q,
1

k

‰

(

∂X−θȧe
−ik

√
2X+

L

)

}

.

+a∗i lim
k→0

[

Q,
1

k

‰

{

(

θσid
)

+
1

2
θijΠj +

√
2N i

}

e−ik
√
2X+

]

+

(

1

2
a∗i

)

lim
k→0

[

Q,
1

k

‰

{

∂θij
(

θσjθ
)

+ θij
(

∂θσjθ
)}

e−ik
√
2X+

]

−
(√

2a∗i

)

lim
k→0

[

Q,
1

k

‰

{

Π− (

θσiθ
)}

e−ik
√
2X+

]

, (3.54)

where

V
∗
i (0) = −i

‰

Λ

{

(

θσid
)

+
1

2
θijΠj +

√
2N

i − 1

3!
θij

(

θσj∂θ
)

}

−i

‰

Λ

{

(

θσid
)

+
1

2
θijΠj +

√
2N i +

1

2
θij

(

∂θσjθ
)

}

−i

‰

Λ

{

1

2
∂θij

(

θσjθ
)

−
√
2Π− (

θσiθ
)

}

−i
√
2

‰

{

∂X+

(

Λij

(

θσjθ
)

+
1

2
θijΛj

)

+
1

3!
∂X−θijΛj

}

(3.55a)

W
∗
ȧ (0) = −

‰

{

Λ

(

dȧ +Πi

(

σiθ
)

ȧ
+
√
2∂X+θȧ +

1

2

(

θσi∂θ
) (

σiθ
)

ȧ

)}

+

‰

{√
2∂X−

(

1

2

(

σiθ
)

ȧ
Λi + Λθȧ

)}

(3.55b)

4In fact, this can be understood in the Lorentz group analysis. From the light-cone point of view, there

is a U (1) charge associated to the Lorentz generator L+−. For example, the massless vertices U i and Y ȧ

have charge 0 and 1

2
, respectively. On the other hand, the associated antifields U

∗

i and Y
∗

ȧ have charge −1

and − 1

2
. This is so because the operator c−0 has charge −1 with respect to L+−. While this works well

for the pair {Y ȧ, Y
∗

ȧ} (since the spinor field and antifield have opposite charge), the vector pair {U i, U
∗

i }

develop this asymmetry under the action of c−0 . This is the origin of the odd limit discussed above.
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The existence of singular terms in the zero-momentum limit of (3.53) and (3.54) is due to

a singular gauge choice and could be of course removed by a gauge transformation.

Concerning the antifield spectrum, one starts defining the ground state similarly to

the ghost number one case,

|0, k〉∗ = lim
z→0

ΛλaAa (k) |0〉
≡ ai |i, k〉∗ + ξa |a, k〉∗ , (3.56)

cf. equation (2.45), such that

ΛλaAa (k) ≈
{

c+0 , λaAa (k)
}

. (3.57)

The excited states are built by the action of the creation operators VL.C. of (2.36) on (3.56).

This is exactly the same as presented in [10] for the physical states, the only difference being

the ground state, which has now ghost number two.

In this way, each physical state has a correspondent antifield. This map can be made

more precise with the action of the c+0 operator. Since
[

c+0 , VL.C.

]

≈ 0, given any DDF

state in the physical spectrum (P− 6= 0) of the form

|ψ〉 =
∏

k

∑

n

Ck,nV
n
L.C. (k) (ai |i〉+ ξa |a〉) , (3.58)

one can define the antifield by

|ψ〉∗ ≡ c+0 |ψ〉

≈
∏

k

∑

n

Ck,nV
n
L.C. (k) (ai |i〉∗ + ξa |a〉∗) . (3.59)

It should be kept in mind that the VL.C.’s in the above construction have independent

polarisations among each other, in such a way that any element of the cohomology can be

described by either (3.58) or (3.59) for a given set of polarisations {a1i , a2i , . . . , ξ
1
ȧ, ξ

2
ȧ, . . . , },

up to Lorentz transformations and gauge transformations.

Observe that both |ψ〉 and |ψ〉∗ depend only on half of the λα components. The

components λȧ clearly decouple from the ground states (2.46) and (3.56) while the ghost

contributions from the creation operators are all encoded in N i = − 1√
2
(λσiω). If the frame

P+ 6= 0 is chosen for the ground state instead, the DDF spectrum will depend only on λȧ.

Another interesting property of the unintegrated vertices U
∗
i and Y

∗
ȧ is that they can

be written as singular BRST-exact states, in a direct analogy with (B.8) in the bosonic

string. The key ingredient here is

Λe−iǫ
√
2X−

L = − i

ǫ

[

Q, e−iǫ
√
2X−

L

]

, (3.60)

so that any infinitesimal massive deformation of the form : ΛλȧAȧ (k) e
−iǫ

√
2X−

L : is a

BRST-exact state:

:
(

ΛλȧAȧ (k) e
−iǫ

√
2X−

L

)

:= − i

ǫ

[

Q, :
(

λȧAȧ (k) e
−iǫ

√
2X−

L

)

:
]

. (3.61)
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This corresponds to a well known property of the massless antifields. Analysing, for exam-

ple, the gauge transformations of (3.6), it is easy to show that both a∗m and ξ∗α are pure

gauge if kmkm 6= 0, i.e. if they are massive.

For the P− 6= 0 sector, the same property holds

:
(

ΛλaAa (k) e
−iǫ

√
2X+

L

)

:= − i

ǫ

[

Q, :
(

λaAa (k) e
−iǫ

√
2X+

L

)

:
]

, (3.62)

which is trivially extended to the massive spectrum. Since [Q, VL.C.] = 0, any DDF antifield

of the form |ψ〉∗ is a singular BRST-exact state. Although hidden in the covariant descrip-

tion, this result is equivalent to the statement that BRST-closedness does not impose the

mass-shell condition on ghost number two vertex operators.

It is useful to point out that the action of c±0 is meaningful only in the ghost number

one cohomology. One can try, for example, to build a ghost number three state by the

successive action of c−0 ’s:

|ψ〉∗∗ =
(

c−0
)2 |ψ〉 .

It can be shown, however, that

{

c−0 , c
−
0

}

≈ 0, (3.63a)
{

c+0 , c
+
0

}

≈ 0. (3.63b)

In other words, they are nilpotent within the BRST cohomology. The proof is left to the

appendix, equation (A.29). The remaining option is the linear combination

|ψ〉∗∗ = c−0 c
+
0 |ψ〉+ α c+0 c

−
0 |ψ〉 , (3.64)

where α is an arbitrary constant. Taking the ground state as a reference, one can define

|0, k〉∗∗ ≡ c−0 |0, k〉∗ , (3.65)

with |0, k〉∗ ≈ c+0 |0, k〉. Since c−0 |0, k〉 ≈ 0, |0, k〉∗∗ can be cast as

|0, k〉∗∗ ≈
{

c−0 , c
+
0

}

|0, k〉 . (3.66)

The anticommutator
{

c−0 , c
+
0

}

is easily obtained from (3.47). Observe that

{

c−0 ,
[

VL.C.(k; ai, ξȧ), V
∗
L.C.(−k; a∗i , ξ

∗
ȧ)
]}

≈ +ikδp+k

(

ai(σ
iξ

∗
)a − a∗i (σ

iξ)a

)

[

c−0 ,W
∗
a (0)

]

+2kδp+k

(

kaja
∗
j + iξȧξ

∗
ȧ

)

{

c−0 , c
+
0

}

. (3.67)

Using the results of (3.46) and (3.63), the Jacobi identity on the left hand side of the above

equation implies that

{

V ∗
L.C.(k; ai, ξȧ), V

∗
L.C.(−k; a∗i , ξ

∗
ȧ)
}

≈ −ikδp+k

(

ai(σ
iξ

∗
)a − a∗i (σ

iξ)a

)

[

c−0 ,W
∗
a (0)

]

−2kδp+k

(

kaja
∗
j + iξȧξ

∗
ȧ

)

{

c−0 , c
+
0

}

, (3.68)
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which was already computed in (3.48). Comparing both sides of the equation, one obtains

{

c−0 , c
+
0

}

≈ 2M, (3.69a)
[

c−0 ,W
∗
a (0)

]

≈ 0, (3.69b)

where M is defined in (3.49).

|0, k〉∗∗ is then proportional to M |0, k〉. A direct computation shows that

{M,λaAa (k)} is trivial, which in its turn implies that

|0, k〉∗∗ ≈ 0. (3.70)

A similar analysis can be made for states of the form V ∗
L.C. (k) |0〉∗ but the conclusion is the

same: given the DDF structure discussed here, it is impossible to build any higher ghost

number state with nonzero momentum, in accordance with the known statements about

the pure spinor cohomology.

Next section will discuss the role of the b ghost in the structures presented so far,

showing that the fields and antifields are indeed in one-to-one correspondence.

4 Siegel gauge and the physical state condition

The DDF perspective on the pure spinor cohomology shows that there is an essential dif-

ference between states at ghost number one and two. Although the physical states are

mirrored by the antifield spectrum, it was shown that the latter has a singular kinematic

condition much like their correspondent in bosonic string theory, as follows from the dis-

cussion after equation (3.62).

For the bosonic string, there is a way to make this distinction very precise, which is

currently known as the Siegel gauge. Physical states are defined to be in the cohomology

of the BRST charge plus an extra condition: they have to be annihilated by the b ghost

zero mode, b0. This is a simple requirement, as one will be selecting only the states

which have no c ghost zero mode, c0, and they all fall in the ghost number one spectrum.

The physical state condition can be understood as a consequence of the unitarity of the

scattering amplitudes, that can be shown to imply the projection onto the subspace of

states annihilated by b0. In fact, it is easy to show that the physical states are b0-exact

because the cohomology of b0 is trivial due to the relation

{b0, c0} = 1. (4.1)

However, the pure spinor formalism does not have a fundamental (b, c) system. The

b ghost is a composite operator and the c ghost is simply absent. In order to understand

the implications of the Siegel gauge in the cohomology, it is useful to recall first some basic

properties of the pure spinor b ghost.

4.1 Quick review on the b ghost

In general terms, the fundamental property of a b ghost is

{Q, b} = T, (4.2)
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which is ultimately related to the BRST invariance of loop amplitudes because of the

connection with the energy-momentum tensor, T . When expanded in Laurent modes, two

equations are particularly interesting:

{Q, b0} = L0, (4.3)

{Q, b−1} = L−1. (4.4)

Observe that any BRST-closed operator U with conformal weight h can be written as a

BRST-exact operator for h 6= 0,

U =
1

h
{Q, [b0, U ]} , (4.5)

and that there is a simple recipe for constructing the integrated vertex associated to U ,

defined by

V ≡
‰

[b−1, U ] , (4.6)

and satisfying {Q, V } =
�

∂U .

The first proposal of a b ghost like field in the pure spinor formalism was presented

in [21], with a complicated set of picture raised operators. This is so because there is

no natural ghost number −1 field, as the pure spinor conjugate, ωα, has a gauge freedom

associated to the pure spinor constraint and always appear in gauge invariant combinations

such as the ghost number current, J , the Lorentz ghost current, Nmn, and the energy-

momentum tensor, Tλ = −ωα∂λ
α. The simplest way to overcome this difficulty is to

introduce a constant spinor Cα, such that the product Cαλ
α is nonzero (different patches

of the pure spinor variable require different C’s to ensure this condition). The noncovariant

b ghost is defined to be

bnc ≡
CαG

α

Cβλβ
, (4.7)

with

Gα =
1

2
Πm (γmd)α − 1

4
Nmn (γ

mn∂θ)α − 1

4
J∂θα − 7

2
∂2θα. (4.8)

Note that Gα satisfies

{Q,Gα} = λα (Tmatter + Tλ) , (4.9)

such that

{Q, bnc} = T, (4.10)

where T is the total energy-momentum tensor.

A covariant version of the b ghost was presented later in [22], with the introduction of

the so-called non-minimal formalism. The non-minimal variables consist of two conjugate

pairs, (ω̂α, λ̂α) and (sα, rα), such that the BRST charge is modified to

Qnm =

‰

{λαdα + ω̂αrα} . (4.11)

λ̂α is also a pure spinor, i.e. (λ̂γmλ̂) = 0, while rα is constrained through (λ̂γmr) = 0.

They decouple from the spectrum (quartet argument) and Qnm has the same cohomology
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of Q. The b ghost assumes a more robust form, enabling a systematic investigation of its

properties. For the purposes of this work, it is sufficient to state that b is defined by

b = −sα∂λ̂α+

(

λ̂αG
α
)

(

λ̂λ
) −2!

(

λ̂αrβH
αβ

)

(

λ̂λ
)2 −3!

(

λ̂αrβrγK
αβγ

)

(

λ̂λ
)3 +4!

(

λ̂αrβrγrλL
αβγλ

)

(

λ̂λ
)4 (4.12)

with

Hαβ =
1

4 · 96γ
αβ
mnp (dγ

mnpd+ 24NmnΠp) , (4.13a)

Kαβγ = − 1

96
Nmnγ

[αβ
mnp (γ

pd)γ] , (4.13b)

Lαβγλ = − 3

(96)2
NmnN rsηpqγ[αβmnpγ

γ]λ
qrs . (4.13c)

Here [αβγ] means antisymmetrisation of the spinor indices.

The relevant properties for the analysis of the physical state condition are nilpo-

tency [23, 24] and non-uniqueness of b . The former can be stated as

b (z) b (y) ∼ 0, (4.14)

and naturally brings questions about its cohomology, which is of course connected to the

Siegel gauge discussion. While for the bosonic string (4.14) is trivially satisfied, the com-

posite character of the pure spinor b ghost makes it far from obvious and b0 is likely to have

a nontrivial cohomology. The absence of a c ghost makes this subject even more intriguing.

Concerning non-uniqueness, different operators b and b′ satisfying (4.2) have to differ

by a BRST-exact term (it follows from the discussion around equation (4.5)). This is a

useful property, as different forms of the b ghost might be suitable in different contexts.

Although nilpotency is not assured by these deformations, it can be stated for a general

class of BRST-exact terms [25].

These results will be used in the investigation of the Siegel gauge in the pure spinor

cohomology that follows.

4.2 The physical state condition

According to equation (4.5), any operator O in the cohomology of Q has to be a worldsheet

scalar. This implies, in particular, that the (anti)commutator [b0,O] has to be BRST-

invariant. In fact, [b0,O] can either be (1) vanishing, (2) BRST-exact, or (3) also an

element of the BRST cohomology. Given that b0 itself is defined up to BRST-exact terms,

the conditions (1) and (2) should be physically equivalent. In this sense, the so-called

Siegel gauge (1) is a stronger condition than what is required from the consistency of the

above analysis.

Due to the composite nature of pure spinor b ghost, the implementation of the Siegel

gauge is not trivial. For the massless spectrum, the first discussions on the subject were

presented in [26, 27]. While the work of Grassi and Vanhove discussed the Siegel gauge

by explicitly computing the action of the noncovariant b, Aisaka and Berkovits assumed
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nilpotency of the non-minimal b ghost and built the massless ghost number one vertex Ũ

as a b0-exact state coming from the antifield Aαβ , cf. equation (3.1):

Ũ =
[

b0, λ
αλβAαβ

]

.

It is clear that Ũ = U + [Qnm,Λ] and the condition {b0, Ũ} = 0 is satisfied only in a gauge

in which the non-minimal variables are present. Both approaches are simple enough when

the massless spectrum is concerned but can hardly be extended to the massive levels. The

explicit action of b0, even in its simplest form, would be a cumbersome computation and

determining the BRST-exact pieces to understand the physical implications would be far

from trivial. Besides, the cohomology of b0 is not known and the construction of b0-exact

states is not assured, as there might be ghost number two states in the cohomology of b0.

However, since the DDF spectrum relies on massless vertex operators, the analysis of

the Siegel gauge can be performed in a straightforward way. One can start by examining

the double poles of the operator Gα in the OPE’s with the massless vertices of (2.32)

and (3.33):

zGȧ (z) λ
ḃ
A

ḃ
(k) ∼ regular, (4.15a)

zGa (z) λ
ḃ
A

ḃ
(k) ∼ regular, (4.15b)

zGȧ (z) Λλ
ḃ
A

ḃ
(k) ∼ 1

z
(2ik)λȧλḃ

A
ḃ
(k) , (4.15c)

zGa (z) Λλ
ḃ
A

ḃ
(k) ∼ regular. (4.15d)

Note the appearance of the momentum factor k, in accordance with the previous section

(see footnote 4). From (4.15) and the discussion on the non-uniqueness of b, it follows that

{

b0, λȧAȧ (k)
}

≈ 0, (4.16a)
[

b0,ΛλȧAȧ (k)
]

≈ 2ik λȧAȧ (k) . (4.16b)

These equations should hold for any well-defined version of the b ghost, whether in the min-

imal or non-minimal formalism.5 The extension to the integrated vertices (2.36) and (3.43)

is straightforward, as they can be built from the unintegrated vertices with the action of

the mode b−1, up to gauge transformations:

[

b0, VL.C.

(

k; ai, ξȧ
)]

≈ 0, (4.17a)
{

b0, V
∗
L.C.

(

k; a∗i , ξ
∗
ȧ

)}

≈ −2ik VL.C.

(

k; a∗i , ξ
∗
ȧ

)

. (4.17b)

5One can define non-covariant versions of the b ghost as

b− ≡ CȧGȧ

C
ḃ
λ
ḃ

, b+ ≡ CaGa

Cbλb

,

which clearly satisfy {Q, b±} = T . With this definition, the equations in (4.16) are true for b− while for

b+ they do not work at all. The key word here is well-defined. When one chooses to work with the DDF

spectrum in the P− 6= 0 frame, for example, the components λa decouple and the states depend only on

λȧ. This effectively means λa = 0 and then b+ is a singular operator in this subspace. This is of course

just a hint on the solution of this puzzle and a more formal understanding has yet to be achieved.
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It is in principle possible to build a creation/annihilation algebra already in the Siegel

gauge through the b0-exact construction just described. However, the b ghost will clearly

spoil the structure depicted in (2.41) with the introduction of BRST-exact pieces. Besides,

massive states might acquire higher and higher powers of inverse λα, e.g. (λ̂λ)−1 in the

non-minimal formalism. This is a potential problem due to existence of the operator

ξ =
λ̂ · θ

λ̂ · λ− r · θ

=
λ̂ · θ
λ̂ · λ

11
∑

n=0

(

r · θ
λ̂ · λ

)n

, (4.18)

which trivialises the BRST cohomology, for {Q, ξ} = 1. Also, high inverse powers of λαλ̂α

are hard to deal with when regularising the scattering amplitudes [28]. Because of these

subtleties, the b0-exact creation operators are not advantageous.

In the full analysis, when arbitrary states of the DDF spectrum are considered, the

general conclusion is

b0 |ψ〉 ≈ 0, (4.19a)

b0 |ψ〉∗ ≈ |ψ〉 , (4.19b)

where |ψ〉 and |ψ〉∗ were defined in (3.58) and (3.59). In other words, if the BRST co-

homology is spanned by the DDF spectrum, there is no BRST-closed ghost number two

element in the b0 cohomology. Also, any BRST-closed ghost number one vertex can be

written as b0-exact, up to a gauge transformation.

Therefore, the physical state condition for the pure spinor formalism can be compactly

written as

b0 |O〉 ≈ 0, (4.20)

which is compatible also with the unitarity analysis of the amplitudes, in a direct analogy

with the bosonic string. Here, |O〉 is a state defined by the state-operator map of a generic

operator O in the BRST cohomology.

Given the roles of the operators b0 and c±0 as mapping vertex operators of different

ghost numbers, there should be a relation among them that exposes this inversion character.

The results stated above can be made a bit more precise by investigating this relation, as

will be shown next.

4.3 The DDF conjugates of b0

As mentioned in the Introduction, the bosonic string analogous of the quantity {b0, c±0 }
is very clear. For the pure spinor superstring, however, this quantity is much harder to

obtain by brute force, due to the complicated nature of the operators involved. At this

point, the extended DDF algebra comes in handy, allowing an indirect computation of the

anticommutator.

Consider the quantity defined by

I ≡
{

b0,
[

VL.C.

(

k; ai, ξȧ
)

, V ∗
L.C.

(

p; a∗i , ξ
∗
ȧ

)]}

. (4.21)
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The Jacobi identity implies that

I =
{

[

b0, VL.C.

(

k; ai, ξȧ
)]

, V ∗
L.C.

(

p; a∗i , ξ
∗
ȧ

)}

+
[

VL.C.

(

k; ai, ξȧ
)

,
{

b0, V
∗
L.C.

(

p; a∗i , ξ
∗
ȧ

)}]

.

(4.22)

The inside (anti)commutators can be replaced according to equation (4.17), so the result is

I ≈ 2ip
[

VL.C.

(

p; a∗i , ξ
∗
ȧ

)

, VL.C.

(

k; ai, ξȧ
)

]

≈ 2
√
2ikδk+p

(

kaja
∗
j + iξȧξ

∗
ȧ

)

P+, (4.23)

cf. the creation/annihilation algebra of (2.41).

On the other hand, using (3.47), I can be written as

I = ikδp+k

{

ai(σ
iξ

∗
)a − a∗i (σ

iξ)a

}

[b0,W
∗
a (0)] + 2kδp+k

(

kaja
∗
j + iξȧξ

∗
ȧ

)

{

b0, c
+
0

}

. (4.24)

According to equation (4.17), [b0,W
∗
a (0)] ≈ 0, as W ∗

a (0) is a zero-momentum vertex, and

the first term on the right hand side is BRST-exact. Therefore,

I ≈ 2kδp+k

(

kaja
∗
j + iξȧξ

∗
ȧ

)

{

b0, c
+
0

}

. (4.25)

Comparing now the equations (4.23) and (4.25), one obtains

{

b0, c
+
0

}

≈ i
√
2P+. (4.26)

The same procedure can be followed in the DDF frame P− 6= 0, so that

{

b0, c
−
0

}

≈ i
√
2P−. (4.27)

In spite of having a very simple form, equations (4.26) and (4.27) differ from the

bosonic case by an essential term, as they were derived up to BRST-exact quantities. In

their full form, they can be cast as

i
√
2P± =

{

b0, c
±
0

}

+
{

Q, ξ±
}

, (4.28)

where ξ± depends on several quantities that can be traced back to the specific form of the

chosen b ghost. It should be emphasised again that these results hold for both minimal

and non-minimal formalisms, although the latter allows a clearer interpretation due to the

non-minimal variables.6

As a consistency check, consider the action of equation (4.28) in certain sets of states:

• suppose there is a ghost number one state |φ〉 annihilated by b0 with P+ = 1, then

i
√
2 |φ〉 = b0c

+
0 |φ〉+

{

Q, ξ+
}

|φ〉 . (4.29)

6In this case, the result (4.28) is not so surprising, because the non-minimal b ghost and the BRST

current are the fermionic generators of a N = 2 topological algebra [22]. Thanks to C. Maccaferri for this

observation.
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Besides, if |φ〉 is BRST-closed, then

i
√
2 |φ〉 = b0c

+
0 |φ〉+Qξ+ |φ〉 . (4.30)

According to the spectrum analysis of section 3, c+0 |φ〉 should be a BRST-closed

ghost number two state. Therefore, if |φ〉 is annihilated by b0, then it is b0-exact up

to a gauge transformation:

i
√
2 |φ〉 ≈ b0 |φ〉∗ . (4.31)

• now, suppose there is a ghost number two state |φ〉∗ in the same conditions (BRST-

closed and annihilated by b0), then

i
√
2 |φ〉∗ = b0c

+
0 |φ〉∗ +Qξ+ |φ〉∗ . (4.32)

As discussed for the antifields, c+0 |φ〉∗ is BRST-exact and the above equation implies

that |φ〉∗ itself is BRST-exact. In particular, if |φ〉∗ is an element of the BRST

cohomology, this leads to a contradiction. Therefore, it is not possible to have a

ghost number two state in the BRST cohomology annihilated by b0.

These results are in agreement with the physical state condition of (4.20).

5 Summary and conclusions

Given the success of the DDF construction in determining the physical spectrum [5, 10, 11],

the starting point of the analysis introduced here for the ghost number two cohomology

was a convenient solution for the massless superfield Aαβ of (3.1). It should correspond

to the ground state of the antifield spectrum. In the frame with momentum P− 6= 0, the

nonvanishing components can be cast as

A
ȧḃ

=
1

2
(θȧAḃ

+ θ
ḃ
Aȧ)−

1

8
η
ȧḃ
(θċAċ), (5.1)

where Aȧ is displayed in (2.28b). Unlike what happens for the massless field, there is a

dependence on θȧ that cannot be removed by a gauge transformation. The equation of

motion D((αAβγ)) = 0 is satisfied, as can be readily seen from the BRST-closedness of

U∗ = λȧλḃ
A

ȧḃ
, and the solution above is the antifield equivalent of the SO(8)-covariant

Yang-Mills superfields introduced in [19]. There is of course an analogous solution in the

frame P+ 6= 0, with nonvanishing components Aab.

It is interesting to point out that (5.1) did not come from an ingenious gauge choice

but from the action of the operator c−0 on the massless ghost number one states, cf. equa-

tion (3.30). This operation conveniently enables the construction of both integrated and

unintegrated massless vertices of the ghost number two cohomology. The former, for ex-

ample, is given by

V ∗ =

‰

{

Λ
(

Πi − i
√
2kN i

)

Ai + Λ
(

∂θȧ + ikdȧ
)

Aȧ +
√
2∂X−λȧAȧ

}

(5.2)
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and can be shown to satisfy {Q, V ∗} = −
�

∂(λȧλḃ
A

ȧḃ
). At this level, supersymmetry of

the polarisations is manifest up to BRST-exact terms. Not surprisingly, the operators c±0 ,

together with their supersymmetric partners, naturally emerge in the extension of the DDF

algebra to the next ghost number level.

As in the bosonic string, the antifield vertices have a very peculiar kinematic prop-

erty. Roughly speaking, the ghost number two vertices correspond to singular BRST-exact

operators. For the massless case, for example, one has

:
(

λȧλḃ
A

ȧḃ
e−iǫ

√
2X−

L

)

:= − i

ǫ

[

Q, :
(

λȧAȧ (k) e
−iǫ

√
2X−

L

)

:
]

. (5.3)

The limit ǫ → 0 is singular, so the vertex is in the cohomology. However any massive (ǫ 6= 0)

deformation is BRST-exact. Another way of stating this property is saying that BRST-

closedness does not impose the mass-shell condition for the antifields. In the covariant

description of the vertex, this property is hidden.

The doubling of the pure spinor cohomology can be simply described as the action

of the operators c±0 , which play the role of the c ghost zero mode. In fact, c+0 and c−0
constitute a sort of DDF conjugates of the b ghost zero mode, b0. This can be stated as

{

b0, c
±
0

}

= i
√
2P± −

{

Q, ξ±
}

, (5.4)

and the conjugate interpretation holds in the subspaces of momentum P+ 6= 0 and P− 6= 0.

Recall that the b ghost is not a unique fundamental field in the pure spinor formalism and

the operators ξ+ and ξ− clearly depend on its specific form. Although the demonstration of

the above relation relied on the extended DDF algebra, its validity is not restricted to the

BRST cohomology. This illustrates the power of the DDF construction, since very general

statements can be made by knowing only a couple of properties of the massless operators.

Due to the BRST-exact piece in (5.4), the analysis of the b0 cohomology could be

carried out only within the BRST-closed operators. It was shown that every ghost number

one state is b0-exact up to a gauge transformation. Besides, assuming that the antifield

spectrum is also spanned by the DDF operators, there is no ghost number two state in the

BRST cohomology annihilated by the b ghost zero mode. Among other implications, this

result enables a formal definition of a physical state condition in the pure spinor superstring,

b0 |φ〉 ≈ 0, (5.5)

where |φ〉 is a generic BRST-closed state and the equality holds up to BRST-exact terms.

The condition (5.5) applies to the open string or to the holomorphic sector of the closed

string. In the last case, the antiholomorphic sector should be annihilated by the corre-

sponding b ghost zero mode, denoted by b̄0.

It is worth noting that the symmetric way in which Q and b0 appear in (5.4) might

be interpreted as coming from their dual roles in the topological string algebra of the non-

minimal formalism [22]. There is a very unusual c ghost like field introduced in [25] which

was shown to satisfy

b (z) c (y) ∼ 1

(z − y)
, (5.6)
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but its singular character prevents any well-defined attempt to trivialise the b ghost co-

homology through this construction. In fact, this proposal for the c ghost seems to be

completely unrelated to the DDF motivated c±0 operators introduced in equations (3.23)

and (3.28). Also, for any choice of b, the vanishing of the term {Q, ξ±} is very unlikely

to happen (even for the simplest case, ξ± is a cumbersome operator), which is a strong

indication of a nontrivial cohomology for b0.

The cohomology of the b ghost remains a mystery in the pure spinor formalism. A

natural starting point would be to study the massless subspace and maybe even develop

a DDF-like approach to extend it to higher mass states. There is no analogous feature in

the other superstring formalisms so it is hard to stablish a guiding direction at this point.

The interest in this subject resides mostly on the implementation of the Siegel gauge in the

superstring field theory. There, fields and antifields should appear in a symmetrical way

and a better understanding of the Siegel gauge might help to clarify the second quantized

version of the pure spinor formalism. The bosonic closed string field, for example, is

annihilated by the holomorphic-antilomorphic combination (b0 − b̄0), and it is not known

how this condition extends to the pure spinor case.
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A Some explicit computations

This appendix contains some of the results that were not completely developed in sections 3

and 4. It is a collection of demonstrations rather than a cohesive text. There is no logical

connection between each part and they are organised according to their order of appearance

in the paper.

Composition of U i (p)U j (q). According to equation (2.33), the product U i (p)U j (q)

can be cast as

U i (p)U j (q) = e−i(p+q)
√
2X+

L

{

ΛiΛj − i
( q

3!

)

ΛiθjkΛk − i
( p

3!

)

θikΛkΛj

−
(

q2

5!

)

ΛiθjkθklΛl −
(

p2

5!

)

θikθklΛlΛj −
( pq

3!3!

)

θikΛkθjlΛl

+i

(

q3

7!

)

ΛiθjkθklθlmΛm + i

(

p3

7!

)

θikθklθlmΛmΛj

+ i

(

pq2

6!

)

θikΛkθjlθlmΛm + i

(

p2q

6!

)

θikθklΛlθjmΛm

}

, (A.1)

where the higher powers of θa vanish because there are only 8 independent components

and it is an anticommuting variable.
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At this point, it is better to rewrite the expression inside the curly brackets in a more

suggestive way. Observe that

ΛiΛj =
1

2

{

Q,Λi

(

θσjθ
)}

− 1

2

{

Q,Λj

(

θσiθ
)}

− 1

4

{

Q,
(

Λθij + Λθij
)}

+
1

8

{

Q,
(

Λikθkj − θikΛkj

)}

, (A.2)

and

ΛiθjkΛk =
1

2

{

Q,Λi

(

θσkθ
)

θjk
}

− 1

2

{

Q,
(

θσiθ
)

Λkθjk
}

− 1

4

{

Q,Λθikθjk
}

+
1

8

{

Q,Λθikθkj
}

+
1

8

{

Q,
(

Λilθlk − θilΛlk

)

θjk
}

+
1

4

{

Q, θij
(

θσkθ
)

Λk

}

−
{

Q,
(

θσiθ
)

θjkΛk

}

+3Λ
(

θσiθ
)

Λj − 3ΛΛi

(

θσjθ
)

+
3

2
ΛΛθij +

3

4
Λ
(

θikΛkj − Λikθkj
)

+
3

2
ηijΛΛk

(

θσkθ
)

. (A.3)

Going further on higher orders of θ, the BRST-exact structures are recurrent and

straightforward to determine:

U i (p)U j (q) =
1

2

{

Q,
[

Λi

(

θσjθ
)

− Λj

(

θσiθ
)]

e−i(p+q)
√
2X+

L

}

−1

4

{

Q,

[

Λθij + Λθij −
1

2

(

Λikθkj − θikΛkj

)

]

e−i(p+q)
√
2X+

L

}

−i
( q

4!

){

Q,
[

2Λi

(

θσkθ
)

− 2
(

θσiθ
)

Λk

]

θjke
−i(p+q)

√
2X+

L

}

+i
( q

4!

)

{

Q,

[

Λθik −
1

2

(

−θilΛlk + Λilθlk
)

]

θjke
−i(p+q)

√
2X+

L

}

+i
( p

4!

){

Q,
[

2Λj

(

θσkθ
)

− 2
(

θσjθ
)

Λk

]

θike
−i(p+q)

√
2X+

L

}

−i
( p

4!

)

{

Q,

[

Λθjk −
1

2

(

−θjlΛlk + Λjlθlk
)

]

θike
−i(p+q)

√
2X+

L

}

−i
( q

3!

)

{

Q,

[

1

8
Λθikθkj +

1

4
θij

(

θσkθ
)

Λk −
(

θσiθ
)

θjkΛk

]

e−i(p+q)
√
2X+

L

}

+i
( p

3!

)

{

Q,

[

1

8
Λθjkθki +

1

4
θji

(

θσkθ
)

Λk −
(

θσjθ
)

θikΛk

]

e−i(p+q)
√
2X+

L

}

+i e−i(p+q)
√
2X+

L

(

p− q

4

)

ηijΛΛk

(

θσkθ
)

+O
(

θ6
)

, (A.4)

which gives the equation displayed in (3.10).

Composition of U i (p)Y ȧ (q). For the product U i (p)Y ȧ (q), the analysis is very sim-

ilar. The explicit expression, according to (2.33) and (2.34), is

U i (p)Y ȧ (q) = e−i(p+q)
√
2X+

L

{

i

q
Λiλȧ −

1

2!
ΛiΛj

(

θσj
)

ȧ
+

p

3!q
θijΛjλȧ

+
iq

4!
ΛiθjkΛk

(

θσj
)

ȧ
+

ip

2!3!
θijΛjΛk

(

θσk
)

ȧ
− ip2

5!q
θijθjkΛkλȧ
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+
q2

6!
ΛiθjkθklΛl

(

θσj
)

ȧ
+

p2

2!5!
θijθjkΛkΛl

(

θσl
)

ȧ

+
pq

3!4!
θijΛjθklΛl

(

θσk
)

ȧ
− p3

7!q
θijθjkθklΛlλȧ

}

. (A.5)

Here again, the BRST-exact structures are straightforward to obtain. For example,

Λiλȧ = −
[

Q,Λiθȧ
]

, (A.6)

ΛiΛj

(

σjθ
)

ȧ
= +

1

4

[

Q,
(

Λikθkj − θikΛkj

) (

σjθ
)

ȧ

]

−
[

Q, θijΛjθȧ
]

−
[

Q,Λj

(

θσiθ
) (

σjθ
)

ȧ

]

− 1

2

[

Q,Λθij
(

σjθ
)

ȧ

]

−1

6

[

Q,Λθij
(

σjθ
)

ȧ

]

+
1

2

[

Q,
(

θσjθ
)

Λj

(

σiθ
)

ȧ

]

+σi
aȧΛ

[

1

2
Λj

(

σjθ
)

a
− ΛΛθa

]

− 2ΛΛiθȧ, (A.7)

θijΛjλȧ = −
[

Q, θijΛjθȧ
]

+ 6ΛΛiθȧ. (A.8)

Gathering these results, it is possible to show that

U i (p)Y ȧ (q) = − i

q

[

Q,Λiθȧe
−i(p+q)

√
2X+

L

]

+
1

2

[

Q, θijΛjθȧe
−i(p+q)

√
2X+

L

]

−1

8

[

Q,
(

Λikθkj − θikΛkj

) (

σjθ
)

ȧ
e−i(p+q)

√
2X+

L

]

+
1

2

[

Q,Λj

(

θσiθ
) (

σjθ
)

ȧ
e−i(p+q)

√
2X+

L

]

+
1

4

[

Q,Λθij
(

σjθ
)

ȧ
e−i(p+q)

√
2X+

L

]

+
1

12

[

Q,Λθij
(

σjθ
)

ȧ
e−i(p+q)

√
2X+

L

]

−1

4

[

Q,
(

θσjθ
)

Λj

(

σiθ
)

ȧ
e−i(p+q)

√
2X+

L

]

− p

3!q

[

Q, e−i(p+q)
√
2X+

L θijΛjθȧ

]

− 1

2!
e−i(p+q)

√
2X+

L σi
aȧΛ

[

1

2
Λj

(

σjθ
)

a
− Λθa

]

+O
(

θ5
)

. (A.9)

The higher powers of θa can be worked out too, although they are much more complex.

The final result is displayed in equation (3.14).

BRST-exactness of
{

c
+
0 , λȧAȧ (k)

}

. It was claimed in the text that ΛλȧAȧ (k) is

BRST-exact. Analysing first the vector polarisation, given by

ΛU i (z; k) = Λ

{

Λi −
ik

3!
θijΛj −

k2

5!
θijθjkΛk +

ik3

7!
θijθjkθklΛl

}

e−ik
√
2X+

L , (A.10)

the aim here is to identify the BRST-exact structures. To do that, the following identities

are very useful:

ΛΛi =
1!

3!
{Q, θijΛj} (A.11a)

ΛθijΛj =
3!

5!
{Q, θijθjkΛk} (A.11b)
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ΛθijθjkΛk =
5!

7!
{Q, θijθjkθklΛl} (A.11c)

ΛθijθjkθklΛl =
7!

9!
{Q, θijθjkθklθlmΛm}

= 0. (A.11d)

The last equation vanishes because θijθjkθklθlmΛm contains nine θa’s. Inserting these

equations in ΛU i (z; k), it is easy to show that

ΛU i (z; k) =

(

1

3!
{Q, θijΛj} −

ik

5!
{Q, θijθjkΛk} −

k2

7!
{Q, θijθjkθklΛl}

)

e−ik
√
2X+

L ,

=

{

Q,

(

1

3!
θijΛj −

ik

5!
θijθjkΛ− k2

7!
θijθjkθklΛl

)

e−ik
√
2X+

L

}

+Λ

(

ik

3!
θijΛj +

k2

5!
θijθjkΛk − i

k3

7!
θijθjkθklΛl

)

e−ik
√
2X+

L . (A.12)

This procedure can be repeated, such that

ΛU i (z; k) =

{

Q,

[

1

3!
θijΛj −

ik

5!
θijθjkΛk −

k2

7!
θijθjkθklΛl

]

e−ik
√
2X+

L

}

+

{

ik

5!
{Q, θijθjkΛk}+

k2

7!
{Q, θijθjkθklΛl}

}

e−ik
√
2X+

L

=

{

Q,

(

1

3!
θijΛj −

ik

5!
θijθjkΛk −

k2

7!
θijθjkθklΛl

)

e−ik
√
2X+

L

}

+

{

Q,

(

ik

5!
θijθjkΛk +

k2

7!
θijθjkθklΛl

)

e−ik
√
2X+

L

}

+Λ

{

−k2

5!
θijθjkΛk + i

k3

7!
θijθjkθklΛl

}

e−ik
√
2X+

L

=

{

Q,

(

1

3!
θijΛj −

ik

5!
θijθjkΛk −

k2

7!
θijθjkθklΛl

)

e−ik
√
2X+

L

}

+

{

Q,

(

ik

5!
θijθjkΛk +

k2

7!
θijθjkθklΛl

)

e−ik
√
2X+

L

}

−k2

7!
{Q, θijθjkθklΛl} e−ik

√
2X+

L

=

{

Q,

(

1

3!
θijΛj −

ik

5!
θijθjkΛk −

k2

7!
θijθjkθklΛl

)

e−ik
√
2X+

L

}

+

{

Q,

(

ik

5!
θijθjkΛk +

k2

7!
θijθjkθklΛl

)

e−ik
√
2X+

L

}

−
{

Q,

(

k2

7!
θijθjkθklΛl

)

e−ik
√
2X+

L

}

. (A.13)

The final result is

ΛU i (z; k) =

{

Q,

(

1

3!
θijΛj −

k2

7!
θijθjkθklΛl

)

e−ik
√
2X+

L

}

. (A.14)
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For the spinor polarisation, the supersymmetry charge Qa comes in hand, as it com-

mutes with Q. Because
{

Qa, U i

}

= −ikσi
aȧY ȧ,

[

Qa,ΛU i

]

= λaU i − ikσi
aȧ

(

ΛY ȧ

)

=
[

Q, θaU i

]

− ikσi
aȧ

(

ΛY ȧ

)

, (A.15)

which implies that

ikσi
aȧ

(

ΛY ȧ

)

=

[

Q,

{

Qa,

(

1

3!
θijΛj −

k2

7!
θijθjkθklΛl

)

e−ik
√
2X+

L

}]

+
[

Q, θaU i

]

. (A.16)

Therefore, ΛλȧAȧ (k) = aiΛU i − ξȧΛY ȧ is BRST-exact, as claimed.

Commutator
[

V ∗

L.C., VL.C.

]

. This commutator is straightforward to obtain from the

SO(8) decomposed OPE’s:

dȧ (z)Π
i (y) ∼

(

σi∂θ
)

ȧ

(z − y)
, (A.17a)

dȧ (z)X
+
L (y) ∼ regular, (A.17b)

dȧ (z) dḃ (y) ∼ −
√
2η

ȧḃ
Π+

(z − y)
, (A.17c)

N i (z)λȧ (y) ∼ 1√
2

σi
aȧλa

(z − y)
. (A.17d)

The less trivial part is to organise the result in a simple way. For (k + p) 6= 0, it can

be cast as

[V ∗
L.C.(p), VL.C.(k)] = +2ikV

(2)
(p, k)

+ik

˛

∂
{

λȧAȧ (p) θċAċ (k)
}

+
k

k + p

˛

∂
{

Λ
[

Ai (p)Ai (k)− ikAȧ (p)Aȧ (k)
]}

+

√
2k

k + p

[

Q,

˛

{

∂X− [

Ai (p)Ai (k)− ikAȧ (p)Aȧ (k)
]}

]

−ik

[

Q,

˛

{(

Πi − i
√
2pN i

)

Ai (p) θċAċ (k)
}

]

−ik

[

Q,

˛

{(

∂θȧ + ipdȧ
)

Aȧ (p) θċAċ (k)
}

]

, (A.18)

where V
(2)

(p, k) was defined in (3.18). For (k + p) = 0, it is a bit more subtle. It can be

shown that

[V ∗
L.C.(−k), VL.C.(k)] = +2ikV

(2)
(−k, k)

−
‰

∂

[

1

2
ΛAi (k)Ai (−k)− ikλȧAȧ (−k) θċAċ (k)

]
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+
ik

2

˛

∂
[

Λθa
(

σiA (k)
)

a
Ai (−k)

]

+
ik

2

˛

∂
[

ΛθaAi (k)
(

σiA (−k)
)

a

]

− 1√
2

[

Q,

‰

{

∂X−Ai (k)Ai (−k)
}

]

+
ik√
2

[

Q,

‰

{

∂X−θa
(

σiA (k)
)

a
Ai (−k)

}

]

+
ik√
2

[

Q,

‰

{

∂X−θaAi (k)
(

σiA (−k)
)

a

}

]

+2i
(

kaja
∗
j + iξȧξ

∗
ȧ

)

[

Q,

˛

Ñ

]

−ik

[

Q,

˛

{(

Πi + i
√
2kN i

)

Ai (−k) θċAċ (k)
}

]

−ik

[

Q,

˛

{(

∂θȧ − ikdȧ
)

Aȧ (−k) θċAċ (k)
}

]

, (A.19)

where Ñ ≡
(

N + 1
2θapa − 1

2θȧpȧ
)

and N = N+− is the Lorentz ghost current . Following

the analysis of the subsection 3.1, V
(2)

(p, k) is BRST-exact for a non null resulting momen-

tum and proportional to c+0 when p = −k. This demonstrates the resulting commutator

displayed in (3.47).

Anticommutator
{

V ∗

L.C., V
∗

L.C.

}

. A direct computation gives
{

V ∗
L.C.

(

k; a∗i , ξ
∗
ȧ

)

, V ∗
L.C. (p; b

∗
i , χ

∗
ȧ)
}

= −2i (k − p)V (3) (k, p)

−ik

‰

∂
[

Λ θ
ḃ
A

ḃ
(k)λȧAȧ (p)

]

−ik

{

Q,

‰

[

Λ
(

θ
ḃ
A

ḃ
(k)

)

(

Πi − i
√
2pN i

)

Ai (p)
]

}

−ik

{

Q,

‰

[

Λ
(

θ
ḃ
A

ḃ
(k)

) (

∂θȧ + ipdȧ
)

Aȧ (p)
]

}

−ip

{

Q,

‰

[

Λ
(

Πi − ik
√
2N i

)

Ai (k)
(

θȧAȧ (p)
)

]

}

−ip

{

Q,

‰

[

Λ
(

∂θ
ḃ
+ ikd

ḃ

)

A
ḃ
(k)

(

θȧAȧ (p)
)]

}

+
√
2

{

Q,

‰

[

Λ∂X−Ai (k)Ai (p)
]

}

+i
√
2 (k − p)

{

Q,

‰

[

Λ∂X−Aȧ (k)Aȧ (p)
]

}

(A.20)

where

V (3) (k, p) ≡
‰

{

Λ
(

Πi − ik
√
2N i

)

Ai (k)λȧAȧ (p)
}

+

‰

{

Λ
(

∂θ
ḃ
+ ikd

ḃ

)

A
ḃ
(k)λȧAȧ (p)

}
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−
‰

{

Λ
(

Πi − ip
√
2N i

)

Ai (k)λḃ
A

ḃ
(p)

}

−
‰

{

Λ
(

∂θȧ + ipdȧ
)

A
ḃ
(k)λ

ḃ
A

ḃ
(p)

}

+

‰

{√
2∂X−λ

ḃ
A

ḃ
(k)λȧAȧ (p)

}

(A.21)

is the analogous of the operator V (2) (k, p) but now with a massless composition of one

field, λȧAȧ (p), and one antifield, Λλ
ḃ
A

ḃ
(k). Observe that

[

Q, V (3) (k, p)
]

=

‰

∂
(

ΛλȧAȧ (p)λḃ
A

ḃ
(k)

)

. (A.22)

Following the same steps as before, it is now trivial to show that V (3) (k, p) is pure gauge

for (k + p) 6= 0. As for (k + p) = 0, V (3) (k,−k) is proportional to an SO(8) version of

the integrated vertex associated to the pure spinor measure of integration, given by M

in (3.49). This demonstrates the result (3.48).

For completeness, the integrated form of the covariant measure can be written in a

very simple way,

Mcov =

‰

{(8∂Xm + (θγm∂θ)) (λγnθ) (λγpθ) (θγmnpθ)} , (A.23)

satisfying

[Q,Mcov] =

‰

∂ {(λγmθ) (λγnθ) (λγpθ) (θγmnpθ)} . (A.24)

Note that [Q, ∂Xm] = 1
2∂ (λγmθ) and

(λγmθ) (λγnθ) (λγp∂θ) (θγmnpθ) = (λγmθ) (λγnθ) (λγpθ) (θγmnp∂θ) , (A.25)

which follows from ηmn

(

γmαβγ
n
γλ + γmαγγ

n
βλ + γmαλγ

n
βγ

)

= 0 and the pure spinor constraint.

SO(8) decomposition of (λγmθ) (λγnθ) (λγpθ) (θγmnpθ). After some algebraic

manipulations, the pure spinor measure can be cast in a simple SO(8) version:

(λγmθ) (λγnθ) (λγpθ) (θγmnpθ) = 60
(

ΛΛΛijθji + ΛΛΛijθji
)

+10
(

ΛΛiΛjθji + ΛΛiΛjθji
)

(A.26)

Considering now the BRST-exact quantities
[

Q,ΛΛi

(

θσjθ
)

θji
]

= ΛΛiΛjθji − 3ΛΛΛijθji, (A.27a)
[

Q,ΛΛθijθji
]

= 2ΛΛΛijθji − 2ΛΛΛijθji, (A.27b)
[

Q,ΛΛi

(

θσjθ
)

θji
]

= ΛΛiΛjθji − 3ΛΛΛijθji, (A.27c)

the measure can be rewritten as

1

10
(λγmθ) (λγnθ) (λγpθ) (θγmnpθ) = (1 + C) ΛΛiΛjθji

+A
[

Q,ΛΛi

(

θσjθ
)

θji
]

+(6− 2B − 3C) ΛΛΛijθji

+B
[

Q,ΛΛθijθji
]

+ C
[

Q,ΛΛi

(

θσjθ
)

θji
]

+(6− 3A+ 2B) ΛΛΛijθji

+(1 +A) ΛΛiΛjθji. (A.28)
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A deeper analysis shows that this is the most general construction for the measure in

SO(8). The particular case with A = −1, B = −9
2 and C = 5 is displayed in equation (3.39).

In lower dimensions, the analysis is not so simple because there are more independent

contributions. In [29], there is a very complete discussion for the case D = 4.

Anticommutator
{

c
+
0 , c

+
0

}

. Given the operator c+0 in (3.23), its anticommutator with

itself is computed to be:

{

c+0 , c
+
0

}

=
1

6

‰

{

ΠiθijΛjΛ− 1

2

(

θσi∂θ
)

θijΛjΛ

}

−1

4

‰

{√
2ΛiN iΛ +

(

θσid
)

ΛiΛ
}

+

‰

Λ∂Λ

+

√
2

16

‰

∂X+ΛiθijΛj −
5

48

‰

(θ∂θ) ΛiθijΛj

+
2

144

‰

θik∂ΛkθijΛj +
5

144

‰

∂θikΛkθijΛj . (A.29)

The easiest way to see that
{

c+0 , c
+
0

}

is BRST-exact is recognising that it is the integrated

version of a BRST-exact expression. Observe that

[

Q,
{

c+0 , c
+
0

}]

=
1

4

‰

∂ [ΛΛiθijΛj ] .

Now using equation (A.3), the surface term can be rewritten as

ΛΛiθijΛj =
[

Q,
(

Λi + Λi

) (

θσjθ
)

θijΛ
]

− 1

4

[

Q,ΛΛikθkjθij
]

. (A.30)

Therefore,
{

c+0 , c
+
0

}

is BRST-exact. A similar procedure can be used to show that
{

c−0 , c
−
0

}

is also trivial.

B Fields and antifields in bosonic string theory

The bosonic string action after gauge fixing can be simply written as

SB =
1

2π

ˆ

d2z

{

1

2
∂Xm∂Xm + b∂c+ b∂c

}

, (B.1)

together with the (holomorphic) BRST charge

QB =

‰

{cTm + bc∂c} , (B.2)

such that Tm = −1
2∂X

m∂Xm is the matter energy-momentum tensor and Q2
B = 0 for

D = 26. The ghost energy-momentum tensor is Tgh = −2b∂c+ c∂b. Notice that

{QB, b} = Tm + Tgh, (B.3)

which implies that the cohomology of QB is nontrivial only for null conformal weight

states. In terms of the eigenstates of the momentum operator Pm = 1
2π

�

∂Xm, it is
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straightforward to determine the cohomology of the bosonic string. The zero-momentum

part is given by
{

1, c∂Xm, c∂c∂Xm, c∂c∂2c
}

,

which is organised according to the ghost number current JB =
�

cb. The last state is the

tree-level ghost measure of integration.

The ground states correspond to the tachyon and antitachyon vertices,

Ut = c eik·X , (B.4)

U∗
t = c∂c eik·X . (B.5)

In bosonic string theory, the cohomology at ghost number two is in one-to-one corre-

spondence with the physical states, defined to be at the ghost number one cohomology. In

short terms, for each physical state it is possible to obtain its dual (antifield) by the action

of the c ghost zero mode, c0. For example, the massless gauge boson, described by the

vertex

am c ∂Xmeik·x, (B.6)

immediately determines its antifield,

a∗m c ∂c ∂Xmeik·x. (B.7)

In the state-operator map, ∂c is associated to c0.

BRST-closedness of (B.6) with respect to QB implies amkm = kmkm = 0. For the

antifield, however, this is a bit more subtle, as the massless condition is not imposed. It is

straightforward to rewrite it as a (singular) BRST-exact expression

a∗m c ∂c ∂Xmeik·x = −
(

2

k2

)

a∗m

[

QB, c ∂X
meik·x

]

. (B.8)

In fact, this can be extended to the massive states as well and the whole antifields spectrum

presents an analogous expression. This is an odd feature when amplitudes are concerned

as it would induce the presence of δ
(

k2 +m2
)

insertions instead of the usual poles/cuts

structures. It can be shown, in fact, that unitarity implies the decoupling of states that are

not annihilated by the b ghost zero-mode, b0. That is why b0 |ψ〉 = 0 is called a physical

state condition.

Determining the cohomology and all the gauge transformations is not an easy task

when the goal is to find the physical degrees of freedom. In this sense, an explicit gauge

fixing of the reparametrisation and residual symmetries might be more interesting. This

leads to the well known light-cone gauge, where the excitation modes from the light-cone

directions (X+, X−) decouple from the spectrum (in this case, there are no ghosts).

DDF operators. In [30], it was proposed a method of constructing the physical vertex

operators that can be used to match the the BRST-description and the nice features of the

light-cone spectrum, which is known as DDF construction.

It is based on a particular choice of the Lorentz frame that enables an explicit decou-

pling of the unphysical degrees of freedom. In particular, the massless states are set to

– 40 –



J
H
E
P
1
2
(
2
0
1
5
)
1
3
6

have momentum ki = 0 and k− 6= 0 (or k+ 6= 0) non-null, so that the integrated vertex

associated to (B.6) is given by

V
i
(k) =

‰

∂Xie−ik
√
2X+

L . (B.9)

This corresponds to the physical polarisations, since V
+

is pure gauge and V
−

is not

BRST-closed. Observe that

[

V
i
(k) , V

j
(p)

]

=
√
2kηijδk+pP

+, (B.10)

which constitutes a creation/annihilation algebra whenever acting on states with P+ 6= 0.

The reason for the
√
2 factor is to make it compatible with the pure spinor description in

the main text. There, this is a convenient choice for the superfield expansions.

Extended DDF algebra. The integrated vertices associated to the zero-momentum

states c∂c∂X± are given by

c±0 ≡ −
√
2

‰

∂c∂X±. (B.11)

The normalisation is chosen in order to make the comparison with the results of sec-

tion 3 easier.

It is possible to generalise the DDF construction to the antifields vertex operators. In

the frame P− 6= 0, they are defined as

V
∗
i (k) ≡ −

[

c−0 , V i (k)
]

,

= −2ik

‰

∂c∂Xie
−ik

√
2X+

L , (B.12)

and the creation/annihilation algebra is easily extended:

[V
i
(k) , V

∗
j (p)] = 2

√
2kpδij

‰

∂c∂X+e−i(k+p)
√
2X+

L ,

= δij

√
2kp

(k + p)2

[

Q,

‰

∂X−e−i(k+p)
√
2X+

L

]

+ 2k2c+0 δk+pδ
i
j , (B.13)

{V ∗
i (k) , V

∗
j (p)} = 4ηijkp

‰

(

∂c∂2c
)

e−i(k+p)
√
2X+

L ,

= −i

(

2
√
2kp

k + p

)

ηij

{

Q,

‰

(

∂c∂X−) e−i(k+p)
√
2X+

L

}

− 4k2ηijMbos.

(B.14)

Here, Mbos ≡
� (

∂c∂2c
)

, such that

[Q,Mbos] =

‰

∂
(

c∂c∂2c
)

, (B.15)

i.e. Mbos is the integrated vertex associated to the ghost measure c∂c∂2c.
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Spectrum. To obtain the physical spectrum associated to the bosonic cre-

ation/annihilation algebra, one has to define a ground state. This enables a one-to-one

map with the light-cone spectrum. The natural option is the tachyon vertex

Ut (z; k) = c exp

{

−ik
√
2X+

L +
i√
2k

X−
L

}

, (B.16)

with kmkm = −m2 = 2. Choosing, for simplicity, k =
√
2
2 , the ground state will be defined

by the state-operator map

|0〉t ≡ lim
z→0

Ut

(

z; k =

√
2

2

)

|0〉 . (B.17)

Due to the OPE

e−ik
√
2X+

L (y) eiX
−

L (z) ∼ (y − z)
√
2k : ei(X

−

L
−
√
2kX+

L ) : + . . . (B.18)

it is straightforward to show that V
i
(k) |0〉t = 0 for k ≥ 0. For k < 0, this operation makes

sense only for k = − m√
2
, with m ∈ Z

+. This is the only way the OPE above will have

integer poles. Defining

V
i

m ≡
‰

∂Xie−imX+

L , (B.19)

states of the form
∏

i

∏

m>0

∑

n

Ci,m (n)
(

V
i

−m

)n

|0〉t , (B.20)

are BRST-closed by construction and span the (left-moving) light-cone spectrum of the

bosonic string, with mass

m2
closed = 2N − 2, (B.21)

and N ∈ Z
∗. The coefficients Ci,m (n) are just numerical constants. Note that for the

particular solution X+
L = ln z and the Laurent expansion

∂Xi =
∑

n

αi
n

zn+1
, (B.22)

the operator in (B.19) takes the form

V
i

m = αi
m, (B.23)

making the map between the light-cone gauge and the DDF operators even more explicit.

The simplest (excited) DDF state is the massless vector, given by

V
i

−1 |0〉t ⇒ c ∂XieiX
−

L . (B.24)

The differences between open and closed string will not be discussed here, but can be

found in [10] for the pure spinor case.
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