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1 Introduction

The correlation functions of stress-energy tensors are very natural quantities to study in any

conformal field theory. It is well known that the two-point function is fixed by conformal

symmetry whereas the higher point correlation functions can have a very complicated

form. Namely, they are given by a linear combination of numerous Lorentz structures

arising as solutions to the conformal Ward identities consistent with the conservation of

the stress-energy tensor. Their total number depends both on the number of points and the

dimension of the space-time. In particular, in a four-dimensional conformal field theory,
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the three-point correlation function involves three different Lorentz structures [1–3]. They

coincide with the three-point correlation functions of stress-energy tensors in a free theory

of scalars, fermions and gauge fields, respectively. For four-point functions, the situation

is much more complicated — not only the number of Lorentz structures increases to 22,

but each of them involves some function of the conformal cross-ratios [4]. This makes

the calculation of the four-point correlation function of stress-energy tensors an extremely

difficult task. To the best of our knowledge, there exists no closed expression for such

correlation function in the literature.

The problem becomes significantly simpler if the underlying conformal theory has su-

persymmetry. In general, it leads to additional constraints on the correlation functions of

the stress-energy tensors and, therefore, greatly reduces the number of independent func-

tions of cross-ratios.1 In the four-dimensional maximally supersymmetric N = 4 theory

this number shrinks to one, so that the four-point correlation of stress-energy tensors de-

pends on a single scalar function. The same function determines the four-point correlation

function of the scalar 1/2 BPS operators O20
′ . The reason for this is that the two opera-

tors, O20
′ and Tµν , belong to the same N = 4 supermultiplet, the so-called stress-energy

supermultiplet T , and their correlation functions are related to each other by N = 4 super-

conformal Ward identities. The general solution to these identities, defining the four-point

correlation function of the supercurrents 〈T (1) . . . T (4)〉, was derived in [11]. Different

correlation functions involving O20
′ and Tµν appear as its components.

In this paper, we derive the explicit expression for the four-point correlation function of

stress-energy tensors in an N = 4 superconformal theory. We show that it has a remarkably

simple and suggestive form (see eqs. (3.19)–(3.22) below) allowing us to extend the obtained

results to a larger class of four-point correlation functions involving the stress-energy tensor

and other conserved currents. Our analysis relies only on N = 4 superconformal symmetry

and does not use the dynamics of the theory. In the special case of N = 4 supersymmetric

Yang-Mills theory (SYM), the four-point correlation functions are determined by the scalar

function Φ(u, v), which has been extensively studied at weak and at strong coupling.

Among all four-point correlation functions described by 〈T (1)T (2)T (3)T (4)〉, those

involving two stress-energy tensors play a special role. They can be used to compute inter-

esting (infrared safe) observables, the so-called energy-energy correlations [12], measuring

the flow of energy in the final states created from the vacuum by some source J(x) [13–17].

The choice of the source is arbitrary and physically interesting cases involve the 1/2 BPS

operator O20′ , the stress-energy tensor, the R-symmetry current and the Lagrangian of

the theory, all belonging to the stress-energy supermultiplet T . The last two cases are

of particular interest since they can be thought of as prototypes of the electromagnetic

current in QCD and of the effective coupling of Higgs boson to gluons in the Standard

Model, respectively.

The energy-energy correlations can be obtained from the four-point correlation func-

tion 〈0|Tµ1ν1(1)Tµ2ν2(2)J(3)J(4)|0〉 through a limiting procedure described in great detail

in [18, 19]. Using this approach, the energy-energy correlations have been computed in

1For some general results on superconformal correlation functions see, e.g., [5–10].
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N = 4 SYM theory for a scalar source J = O20′ at next-to-leading order both at weak

and at strong coupling [20–22]. Based on general physical considerations, we would expect

that the flow of energy in the final state should depend on the choice of the source. Us-

ing the obtained results on the correlation functions, we find that, quite surprisingly, the

energy-energy correlations in N = 4 superconformal theory are the same for the different

source operators mentioned above and, therefore, are universal.

The paper is organized as follows. In section 2 we describe the properties of the stress-

energy supermultiplet and present the general expression for the four-point correlation

function satisfying the N = 4 superconformal Ward identities. In section 3 we explain how

to extract the four-point correlation function of stress-energy tensors from the supercorrela-

tor 〈T (1)T (2)T (3)T (4)〉. Then we use the special properties of the N = 4 superconformal

generators to derive its explicit expression. In section 4 we extend the analysis to correla-

tion functions involving conserved currents. We argue that they have a remarkably simple

universal form and illustrate this by a few examples. In section 5 we apply the obtained

expressions for the correlation functions to the evaluation of the energy-energy correlations

for different source operators. Section 6 contains concluding remarks. Two appendices

contain technical details.

2 Superconformal Ward identities

In this section, we summarize the properties of the correlation functions of the N = 4

stress-energy supermultiplet. As was already mentioned, this supermultiplet includes the

1/2 BPS scalar operator O20′ , all the conserved currents and the Lagrangian of the theory.

These operators appear as various components in the expansion of the supercurrent T in

powers of the Grassmann variables.

2.1 Stress-energy supermultiplet

For θ = θ̄ = 0, the lowest component of T is the scalar operator O20′ . It has conformal

weight 2, belongs to the representation 20′ of the R-symmetry group SU(4) and has the

following form

O20′(x, y) = OAB,CD(x)YABYCD = T (x, θ, θ̄, y)
∣∣
θ=θ̄=0

, (2.1)

where the SU(4) indices take values, e.g., A = 1, . . . , 4. The auxiliary tensors YABYCD

have been introduced to project the operator OAB,CD(x) onto the representation 20′. They

satisfy the relations YAB = −YBA and ǫABCDYABYCD = 0 and can be parameterized as

YAB = u+c
A ǫcdu

+d
B =

[
ǫab −yab′

yba′ y
2ǫa′b′

]
, (2.2)

where y2 = det ‖yaa′‖ = 1
2yaa′ybb′ǫ

abǫa
′b′ and we used composite indices A = (a, a′) with

a, a′ = 1, 2 and similarly for B = (b, b′). The variables yaa′ have the meaning of coordinates

of the operator O20′(x, y) on the four-dimensional coset SU(4)/
(
SU(2)× SU(2)′×U(1)

)
of

the R-symmetry group.
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In addition, the supercurrent T describes a short supermultiplet of the 1/2 BPS type.

This means that it is annihilated by half of the super-Poincaré generators and, therefore,

it effectively depends on 4 chiral and 4 antichiral Grassmann variables, θaα and θ̄α̇a′ (with

α, α̇ = 1, 2 and a, a′ = 1, 2), respectively. The stress-energy tensor can be obtained by

applying N = 4 supersymmetry transformations to (2.1) and can be extracted from T

with the help of the differential operator [11]

Tαα̇,ββ̇(x) =

[
− (∂θ)

a
α(∂θ)βa(∂θ̄)α̇a′(∂θ̄)

a′

β̇
− (∂θ)

a
(α(∂x)β)(β̇(∂y)aa′(∂θ̄)

a′

α̇)

+
1

6
(∂x)(αα̇(∂x)β)β̇(∂y)aa′(∂y)

a′a

]
T (x, θ, θ̄, y)

∣∣
θ=θ̄=0

, (2.3)

where we switched to spinor notation, Tαα̇,ββ̇ = σµ
αα̇σ

ν
ββ̇
Tµν (see appendix A for details) and

denoted the weighted symmetrization of the indices by, e.g., A(αβ) =
1
2(Aαβ + Aβα). The

first term in the brackets in (2.3) selects the (θ2)αβ(θ̄
2)α̇β̇ component of the supercurrent,

whereas the second and third terms involve total derivatives acting on lower components

of T . These are typical conformal and R-symmetry descendant terms, which have to be

subtracted in order to ensure the expected properties of the stress-energy tensor: current

conservation (∂x)
α̇αTαα̇,ββ̇(x) = 0 and zero R-charge or, equivalently, independence on the

y-variables, (∂y)
a′aTαα̇,ββ̇(x) = 0.

In a similar manner, the R-symmetry current is related to the supercurrent T by the

following differential operator [11]

Jαα̇,aa′(x, y) =

[
(∂θ̄)α̇a′(∂θ)αa +

1

2
(∂x)αα̇(∂y)aa′

]
T (x, θ, θ̄, y)

∣∣
θ=θ̄=0

, (2.4)

where the second term in the brackets is again the subtraction of a descendant needed to

ensure the current conservation, (∂x)
α̇αJαα̇,aa′(x, y) = 0.

2.2 Auxiliary spinor variables

Let us start with the two- and three-point correlation functions of the supercurrent T (i) ≡

T (xi, θi, θ̄i, yi). The N = 4 superconformal symmetry fixes them up to a normalization

constant [23–27]

〈T (1)T (2)〉 =
c

2
(D12)

2,

〈T (1)T (2)T (3)〉 = cD12D23D31 , (2.5)

where Dij is a free (super) propagator

Dij =
y2ij
x̂2ij

=
ŷ2ij
x2ij

, (2.6)

with x̂α̇αij = xα̇αij + θ̄α̇a
′

ij (y−1
ij )a′aθ

αa
ij and ŷaa

′

ij = yaa
′

ij + θαaij (x−1
ij )αα̇θ̄

α̇a′

ij for xij = xi − xj and

similarly for yij , θij and θ̄ij (see appendix A for our conventions for rising and lowering

Lorentz and the SU(2) indices). In the N = 4 SYM theory with the SU(N) gauge group

we have c = N2 − 1.
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Putting θ = θ̄ = 0 on both sides of (2.5) we reproduce the known expressions for the

two- and three-point correlation functions of the 1/2 BPS operators (2.1). To obtain the

correlation functions of the stress-energy tensor from (2.5), we have to apply the differential

operator defined in (2.3) to each T (i) in (2.5). After a lengthy calculation we arrive at the

expected result for the two-point correlation function (with x12 = x1 − x2)

〈Tα1α̇1,β1β̇1
(x1)Tα2α̇2,β2β̇2

(x2)〉 = 160 c
(x12)(α1α̇2

(x12)β1)β̇2
(x12)(α2α̇1

(x12)β2)β̇1

(x212)
6

. (2.7)

Likewise, we can use the second relation in (2.5) to reproduce the known result for the three-

point correlation function of stress-energy tensors in an N = 4 superconformal theory [5].

We can simplify (2.7) by contracting the Lorentz indices of the stress-energy tensors

with auxiliary light-like vectors nµ
i (with n2

i = 0)

T (i) ≡ nµ
i n

ν
i Tµν(xi) =

1

4
λα
i λ̄

α̇
i λ

β
i λ̄

β̇
i Tαα̇,ββ̇(xi) , (2.8)

where nα̇α
i = nµ

i (σ̃µ)
α̇α = λα

i λ̄
α̇
i with λi and λ̄i being arbitrary two-component (anti)chiral

commuting spinors. Then, we find from (2.7)

〈T (1)T (2)〉 = 160 c

(
〈1|x12|2]〈2|x21|1]

)2

(x212)
6

, (2.9)

where we used the standard notation for 〈i|xij |j] ≡ λα
i (xij)αα̇λ̄

α̇
j .

The auxiliary variables λi and λ̄i serve two main purposes. They automatically sym-

metrize the correlation function with respect to the chiral and antichiral Lorentz indices

and, in addition, they simplify the conformal properties of the stress-energy tensor. To

see this, we exploit the freedom in defining λi and λ̄i to assign to them weights under

conformal inversion I[(xi)αα̇] = (x−1
i )αα̇. Then, we choose [28]

I[λα
i ] = w(xi)(x

−1
i )α̇βλiβ , I[λ̄α̇

i ] = w(xi)λ̄iβ̇(x
−1
i )β̇α, (2.10)

with a scalar weight factor w(xi) = (x2i )
n that can be chosen at our convenience. In

this section, we put w(xi) = 1 for simplicity but, as shown in section 4.1, the choice of

w(xi) = x2i is more convenient for discussing the conformal properties of the four-point

correlation functions.

We would like to mention that the variables λi and λ̄i have a natural interpretation in

the context of scattering amplitudes where they are used to describe the helicity states of

scattered massless particles. The invariance of the scattering amplitudes in planar N = 4

SYM under transformations (2.10) led to the discovery of the dual conformal symmetry

in this theory [28]. As we will see in the next section, the final expression for the four-

point correlation function of stress-energy tensors involves the same N = 4 dual conformal

invariants that have been encountered in the study of the scattering amplitudes.

With the assignment (2.10) and with w(xi) = 1 the quantity 〈i|xij |j] entering (2.9)

transforms covariantly under inversion, I
[
〈i|xij |j]

]
= 〈i|xij |j]/(x

2
ix

2
j ) leading to the simple

transformation property of the two-point correlation function (2.9)

I
[
〈T (1)T (2)〉

]
= (x21x

2
2)

2〈T (1)T (2)〉 . (2.11)
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We deduce from this relation that the projected stress-energy tensor (2.8) transforms under

conformal transformations as a scalar conformal primary operator with conformal weight 2,

I
[
T (i)

]
= (x2i )

2T (i) [29, 30]. Notice that, by definition, T (i) is a homogenous polynomial

in λi and λ̄i of degree 2. These two facts will play an important role in what follows.

2.3 Four-point correlation functions

In distinction with (2.5), the four-point correlation function of the supercurrents is not

fixed by N = 4 superconformal symmetry. The corresponding Ward identities imply that

this correlation function can be decomposed into a sum of two terms carrying different

information about the states propagating in various OPE channels

G4 = 〈T (1)T (2)T (3)T (4)〉 = G
(0)
4 + G

(anom)
4 . (2.12)

Here G
(0)
4 receives contributions only from the protected operators in the theory whereas all

the unprotected operators contribute to G
(anom)
4 . The latter operators acquire anomalous

dimensions which explains the superscript ‘anom’. As a consequence, the form G
(0)
4 is fixed

by N = 4 superconformal symmetry and is given by an expression analogous to (2.5)

G
(0)
4 = c(D12D23D34D41 +D13D23D24D14 +D12D24D34D13)

+
c2

4
(D2

12D
2
34 +D2

13D
2
24 +D2

14D
2
23) , (2.13)

where the second line corresponds to the disconnected contribution.

The second term G
(anom)
4 has more complicated form and, in contrast with (2.13), it is

not a rational function of the distances x2ij . It admits the following representation

G
(anom)
4 = (D13D24)

2 I4(x, θ, θ̄, y) , (2.14)

where the propagators Dij were defined in (2.6) and I4 depends on the four superspace

points. The product of propagators (D13D24)
2 carries the (super)conformal weights of

the supercurrents whereas I4 is invariant under N = 4 superconformal transformations,

J I4 = 0 with the generators J = {QA
α , S̄

A
α̇ , Q̄

A
α̇ , S

A
α , . . . } given in (2.20) below.

As was shown in [11], the invariant I4 admits two equivalent representations

I4 = Q8S̄8

[
θ41 θ

4
2 θ

4
3 θ

4
4

F (x)

(D13D24)2

]

= Q̄8S8

[
θ̄41 θ̄

4
2 θ̄

4
3 θ̄

4
4

F (x)

(D13D24)2

]
, (2.15)

where Q8 =
∏

α,AQA
α and S̄8 =

∏
α̇,A S̄A

α̇ denote the products of the 8 chiral Poincaré

supercharges and the 8 generators of antichiral special superconformal transformations,

respectively, and similarly for the generators of opposite chirality. Since the generators Q

and S̄ are nilpotent and form an abelian subalgebra, {Q, S̄} = 0, it immediately follows

from the first relation in (2.15) that I4 is annihilated by these generators. Similarly, it

follows from the second relation in (2.15) that I4 is also annihilated by Q̄ and S.

– 6 –
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The expression in the brackets in (2.15) contains the product of all the available (anti)

chiral Grassmann variables, θ4i =
∏

α,a θ
αa
i and θ̄4i =

∏
α̇,a′ θ̄

α̇a′

i , as well as a scalar func-

tion F depending only on the coordinates xi. The Bose symmetry of (2.14) implies that

F (x) should be invariant under the exchange of any pair of points xi ↔ xj . In addition,

the invariance of (2.15) under conformal transformations leads to the following inversion

property of F [11]

I[F (x)] = (x21x
2
2x

2
3x

2
4)

4F (x) . (2.16)

It allows us to express F (x) in terms of a function of conformal cross-ratios

F (x) =
Φ(u, v)

uv(x213x
2
24)

4
, u =

x212x
2
34

x213x
2
24

, v =
x223x

2
14

x213x
2
24

. (2.17)

The symmetry of F (x) under exchange of points translates into the crossing symmetry

relations

Φ(u, v) = Φ(v, u) =
1

v
Φ

(
u

v
,
1

v

)
. (2.18)

Substituting (2.15) and (2.17) into (2.14) we find that the general expression for G
(anom)
4

depends on a single function Φ(u, v). The same applies to the variety of four-point corre-

lation functions that appear as components in the expansion of G
(anom)
4 in powers of the

Grassmann variables. In particular, putting θi = θ̄i = 0 on both sides of (2.14) we find that

the function Φ(u, v) defines the four-point correlation function of 1/2 BPS operators O20′ .

The latter correlation function has been thoroughly studied in N = 4 SYM [31, 32] and the

function Φ(u, v) is known in this theory both at weak [33–36] and at strong coupling [37–39].

2.4 Master formula

Let us simplify relation (2.14). To begin with, we rewrite it using the first relation in (2.15)

G
(anom)
4 = (D13D24)

2Q4Q′4S̄4S̄′4

[
θ41 θ

4
2 θ

4
3 θ

4
4

F (x)

(D13D24)2

]
, (2.19)

where we used the composite index A = (a, a′) to split the product of 8 generators QA
α

into Q4 =
∏

α,aQ
a
α and Q′4 =

∏
α,a′ Q

a′

α and similarly for the product of generators S̄a
α̇ and

S̄a′

α̇ . These generators act on the superspace coordinates (xi, θi, θ̄i, yi) (with i = 1, . . . , 4)

at each point and are given by the sum over the 4 points of the following anticommuting

differential operators

Qα
a =

∂

∂θaα
,

Qα
a′ = θ̄a′α̇

∂

∂xαα̇
+ ya′

a ∂

∂θaα
,

S̄aβ̇ = −θ̄a′β̇
∂

∂ya′a
+

∂

∂θaα
xαβ̇ ,

S̄b′β̇ = xαβ̇ θ̄b′α̇
∂

∂xαα̇
+ yb′

a ∂

∂θaα
xαβ̇ − θ̄a′β̇y

a
b′

∂

∂yaa′
+ θ̄b′α̇θ̄a′β̇

∂

∂θ̄a′α̇
. (2.20)
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The explicit form of the N = 4 transformations generated by these operators can be found

in appendix B.

We notice that the super-propagator (2.6) is annihilated by all the generators (2.20)

except S̄a′

α̇ . This allows us to simplify (2.19) as

G
(anom)
4 = Q4Q′4S̄4S̃′4

[
θ41 θ

4
2 θ

4
3 θ

4
4 F (x)

]
, (2.21)

where the notation was introduced for

S̃b′β̇ = (D13D24)
2S̄b′β̇(D13D24)

−2

=
∑

i

θ̄i,b′α̇
∂

∂xi,αα̇
xi,αβ̇ + yi,b′

a ∂

∂θai,α
xi,αβ̇ − θ̄i,a′β̇y

a
i,b′

∂

∂yai,a′
+ θ̄i,b′α̇θ̄i,a′β̇

∂

∂θ̄i,a′α̇
. (2.22)

The only difference as compared with the last relation in (2.20) is that, in the first term,

xαβ̇ appears to the right of the derivative.

As follows from (2.20), the generators Qα
a and S̄aβ̇ do not involve spatial derivatives

∂/∂x and, therefore, in the expression on the right-hand side of (2.21), they only act on

the product of Grassmann variables. In this way, we arrive at the following relation2

G
(anom)
4 = Q′4S̃′4

[
(x212x

2
13x

2
14)

2(x−1
13 θ13 − x−1

12 θ12)
4(x−1

14 θ14 − x−1
12 θ12)

4F (x)
]
, (2.23)

where the expression inside the brackets is invariant under the exchange of any pair of

points and is independent of yi and θ̄i. This is the master formula that we shall use in the

following section.

According to (2.23), the dependence of G
(anom)
4 on yi and θ̄i comes entirely from the

product of generators Q′4S̃′4 =
∏

a,αQ
α
a′

∏
b′,β̇ S̃b′β̇ . Obviously, the expression on the right-

hand side of (2.23) is not symmetric under the exchange of chiral and antichiral sectors

which seems to be in a contradiction with the expected reality property of the supercurrent

T [40]. Nevertheless, this symmetry is restored owing to relation (2.15). If we use the

second relation in (2.15) we would derive another equivalent form of (2.23) in which the

variables θi and θ̄i are exchanged.

3 Four-point correlation function of stress-energy tensors

In the previous section, we presented the general expression for the correlation function

of the supercurrents, eqs. (2.12), (2.13) and (2.23). To obtain the four-point correlation

function of the stress-energy tensors

GTTTT (x) = 〈T α̇1β̇1

α1β1
(x1)T

α̇2β̇2

α2β2
(x2)T

α̇3β̇3

α3β3
(x3)T

α̇4β̇4

α4β4
(x4)〉 (3.1)

we have to go through two steps: expand the supercorrelator G4 in powers of Grassmann

variables, and then apply to G4 the four differential operators defined in (2.3), one for each

stress-energy tensor.

2To evaluate Q4S̄4(θ41 . . . θ
4
4) it is convenient to use the integral representation Q4θi =

∫

d4ǫ exp(Q·ǫ)θi =
∫

d4ǫ θ′i and similarly for S̄4 and apply relations (B.2) and (B.4) from appendix B.
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As follows from (2.12), the resulting expression for this correlation function can be

decomposed into a sum of two terms,

GTTTT = G
(0)
TTTT (x) +G

(anom)
TTTT (x) . (3.2)

Here the first term G
(0)
TTTT comes from (2.13). It is a rational function of the distances

x2ij , independent of the variables yi. Like the three-point correlation function, it can be

decomposed into the sum of three different Lorentz structures coinciding with the four-

point correlation functions of stress-energy tensors in a free theory of scalars, fermions and

gauge fields, respectively. To save space, we do not present their explicit expressions.

Let us turn to the second term on the right-hand side of (3.2) generated by (2.23).

Since the differential operator in (2.3) is given by a sum of three terms, the operator that

we have to apply to G
(anom)
4 in order to extract G

(anom)
TTTT contains 34 = 81 different terms.

Nevertheless, as we show in this section, it is sufficient to examine only one term, the one

containing the maximal number of derivatives with respect to the Grassmann variables. It

comes from the first term inside the brackets in (2.3) and selects the following component

of the supercorrelator

G
(anom)
4 =

4∏

i=1

(θ2i )
αiβi(θ̄2i )α̇iβ̇i

×Gα̇1β̇1...α̇4β̇4

α1β1...α4β4
+ . . . , (3.3)

where (θ2)αβ = θαaθβa , (θ̄2)α̇β̇ = θ̄α̇a′ θ̄
a′

β̇
and dots denote the remaining components.

3.1 Maximal number of derivatives recipe

Let us first compute Gα̇1β̇1...α̇4β̇4

α1β1...α4β4
. Matching (3.3) to (2.23), we observe that the 8 chiral

variables θi on the right-hand side of (3.3) can only come from the expansion of the ex-

pression inside the brackets in (2.23). Moreover, since the latter expression has the same

degree 8 in the θ’s, we can neglect the terms containing derivatives ∂θi in the product of

generators Q′4S̃′4 in (2.23). In this way, from (2.20) and (2.22) we obtain a simplified form

of the generators Q′ and S̃′,

Qα
a′ =

∑

i

θ̄i,a′α̇
∂

∂xi,αα̇
,

S̃b′β̇ =
∑

i

θ̄i,b′α̇
∂

∂xi,αα̇
xi,αβ̇ + θ̄i,b′α̇θ̄i,a′β̇

∂

∂θ̄i,a′α̇
. (3.4)

Here in the second relation we also take into account that (−θ̄a′β̇ y
a
b′ ∂yaa′ ) does not contribute

due to the y-independence of the expression inside the brackets in (2.23).

In order to arrive at (3.3), we have to extract the (θ̄21)α̇1β̇1
. . . (θ̄24)α̇4β̇4

component from

the product of generators Q′4S̃′4 in (2.23). This turns out to be an extremely nontrivial

task, mainly due to the presence of the second (nonlinear) term in the second line of (3.4).

There is however a shortcut that allows us to overcome this difficulty. In what follows we

shall refer to it as the ‘maximal number of derivatives’ recipe.

Let us examine the action of Q′4S̃′4 on a test function f(x, θ) independent of the

variables θ̄i. Replacing the generators by their explicit expressions (3.4) we find that the
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expansion of Q′4S̃′4f(x, θ) involves various terms including those containing the maximal

number (equal to 8) of derivatives with respect to xi. To identify such terms we can safely

neglect the second (nonlinear) term in S̃b′β̇ and, in addition, ignore the noncommutativity

of xi and ∂xi
. Introducing the notation pi = ∂xi

and treating xi and pi as commuting

variables we get

Q′4S̃4f(x, θ) =

( 4∑

i=1

θ̄ipi

)4( 4∑

i=1

θ̄ipixi

)4
f(x, θ) + . . .

=
1

(x234)
2

(∑

i

θ̄ipixi3

)4(∑

i

θ̄ipixi4

)4
f(x, θ) + . . . , (3.5)

where we used the shorthand notation (θ̄ipi)
α
a′ ≡ θ̄i,a′α̇p

α̇α
i and (θ̄ipixi)b′β̇ ≡ θ̄i,b′α̇p

α̇α
i xi,αβ̇

and denoted by dots terms with fewer spatial derivatives. By construction, (3.5) only

describes the terms containing 8 spatial derivatives acting on a test function.

We are now ready to formulate the maximal number of derivatives recipe. It consists

of two steps: (i) expand (3.5) in powers of θ̄i and move all pi to the left of xi, and then

(ii) replace pi = ∂xi
so that the derivatives act on all xi to the right. It turns out that the

resulting expression gives the exact result for Q′4S̃4f(x, θ), including the terms shown by

dots in (3.5). The proof of this statement can be found in appendix B.

Let us now apply the above recipe to identify the (θ̄21)α̇1β̇1
. . . (θ̄24)α̇4β̇4

component of

Q′4S̃4f(x, θ). We first use the second relation in (3.5) to get

Q′4S̃4f(x, θ) =

( 4∏

i=1

(θ̄2i )α̇iβ̇i
pα̇iαi

i pβ̇iβi

i

)
Mα1β1...α4β4

(x)f(x, θ) + . . . , (3.6)

where Mα1β1...α4β4
(x) is symmetric under the exchange of the spinor indices αi ↔ βi. It

admits a concise representation in terms of the auxiliary spinors introduced in (2.8)

Mα1β1...α4β4
(x) =

∂2

∂λα1

1 ∂λβ1

1

. . .
∂2

∂λα4

4 ∂λβ4

4

M(x, λ) , (3.7)

where M(x, λ) is given by

M(x, λ) =
(
〈1|x−1

12 x24|4〉〈3|x31x12|2〉 − 〈1|x−1
12 x23|3〉〈4|x41x12|2〉

)2
, (3.8)

with 〈1|x−1
12 x24|4〉 = λα

1 (x
−1
12 x24)α

βλ4,β . Obviously, the expression on the right-hand side

of (3.7) does not depend on the auxiliary spinors λi. They were introduced to make the

symmetry of (3.7) under the exchange of indices more transparent. It is straightforward to

verify thatM(x, λ) is invariant under the exchange of any pair of points, (xi, λi) ↔ (xj , λj).

In addition, applying (2.10) with w(xi) = 1 we find that it transforms covariantly under

inversion

I[M(x, λ)] = (x21x
2
2x

2
3x

2
4)

−2M(x, λ) . (3.9)

Let us now go through the second step of the recipe. Since all pi in (3.6) are located to

the left of some x-dependent functions, we replace pi = ∂xi
on the right-hand side of (3.6)
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and obtain the exact expression for this particular component of Q′4S̃4f(x, θ). Notice that

in the resulting expression the spatial derivatives act both on Mα1β1...α4β4
(x) and on the

test function f(x, θ).

Going back to (2.23) we choose the test function in (3.6) to match the expression inside

the brackets in (2.23),

f(x, θ) = (x212x
2
13x

2
14)

2(x−1
13 θ13 − x−1

12 θ12)
4(x−1

14 θ14 − x−1
12 θ12)

4F (x) . (3.10)

In order to compute (3.3) we only need its component proportional to (θ21)α1β1
. . . (θ24)α4β4

.

Going through the calculation we find

f(x, θ) =
∏

i

(θ2i )
αiβiMα1β1...α4β4

(x)F (x) + . . . , (3.11)

where Mα1β1...α4β4
(x) is given by (3.7) and the dots denote other components. Finally, we

substitute the last relation into (3.6) and match the result to (3.3) to find

Gα̇1β̇1...α̇4β̇4

α1β1...α4β4
=

4∏

i=1

(∂xi
)α̇iγi(∂xi

)β̇iδi
[
Mα1β1...α4β4

(x)Mγ1δ1...γ4δ4(x)F (x)
]
. (3.12)

Here the nontrivial information about the particular N = 4 superconformal theory is

encoded in the function F (x) defined in (2.17).

3.2 Restoration of the symmetry

We recall that relation (3.12) defines a particular component of the supercorrelator (3.3).

To get the four-point correlation function of the stress-energy tensors (3.1), we have to

add to (3.12) the contribution of the remaining 80 terms mentioned in the beginning of

this section. To understand their role, let us check whether (3.12) is consistent with the

expected properties of the stress-energy tensor.

To simplify the analysis, consider the correlation function

Gα̇1β̇1

α1β1
= 〈T α̇1β̇1

α1β1
(x1) . . .〉 , (3.13)

where the dots denote other operators. Then, the symmetry and conservation properties

of the stress-energy tensor, Tµν − Tνµ = gµνTµν = ∂µTµν = 0, yield the Ward identities3

Gα̇1β̇1

α1β1
−Gβ̇1α̇1

β1α1
= ǫα1β1ǫα̇1β̇1

Gα̇1β̇1

α1β1
= (∂x1

)α1

α̇1
Gα̇1β̇1

α1β1
= 0 . (3.14)

In addition, Gα̇1β̇1

α1β1
should transform covariantly under conformal transformations with

weight at point x1 corresponding to a conformal primary operator of Lorentz spin (1, 1)

and dimension 4.

Let us verify that (3.12) satisfies relations (3.14). It is easy to see that the first two

relations in (3.14) are automatically satisfied due to the symmetry of (3.7) under the

3Strictly speaking, relation (3.14) is valid up to contact terms [2, 41, 42]. For four-point correlation

functions in an N = 4 superconformal theory, the contact terms are only due to the rational part of (3.2),

whereas the anomalous contribution to (3.2) is less singular and satisfies homogenous Ward identities.
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exchange of indices, ǫα1β1Mα1β1...α4β4
(x) = 0. Examining the last relation in (3.14) we

find, using the identity ∂α
α̇∂

α̇γ = ǫαγ�,

(∂x1
)α1

α̇1
Gα̇1β̇1...α̇4β̇4

α1β1...α4β4
∼ ǫα1γ1�x1

[
Mα1β1...α4β4

(x)Mγ1δ1...γ4δ4(x)F (x)
]
. (3.15)

Since this expression is different from zero for a generic function F (x), we conclude

that (3.12) does not respect the conservation of the stress-energy tensor. This is not

surprising since (3.12) is only a part of the correlation function (3.1) and for the expression

on the right-hand side of (3.15) to vanish we have to add the contributions of the remaining

80 terms.

We notice that (3.15) would automatically vanish if the expression inside the brackets

on the right-hand side of (3.15) and (3.12) are symmetric under the exchange of indices

α1 and γ1. Similarly, the vanishing of (∂xi
)αi

α̇i
Gα̇1β̇1...α̇4β̇4

α1β1...α4β4
would follow from the symmetry

under αi ↔ γi. This suggests that the net effect of the remaining 80 terms is to symmetrize

the product of two M-tensors in (3.12) with respect to the indices (αi, βi, γi, δi). Taking

into account (3.7) we find that (up to an overall normalization factor) this amounts to

replacing in (3.12)

Mα1β1...α4β4
(x)Mγ1δ1...γ4δ4(x) −→

∏

i

(∂λi
)αi

(∂λi
)βi

(∂λi
)γi(∂λi

)δi [M(x, λ)]2, (3.16)

with M(x, λ) given by (3.8). Upon this substitution, (3.12) respects the conservation of

the stress-energy tensor.

Let us now examine the conformal properties of (3.12). As before, it is convenient to

inspect the inversion properties. Denoting the expression inside the brackets in (3.12) by

Fαβγδ, we find using (2.16), (3.7) and (3.9) that it transforms covariantly

I[Fαβγδ] =
∏

i

(xi)
α′

i

α̇i
(xi)

β′

i

β̇i

(xi)
γ′

i

γ̇i
(xi)

δ′
i

δ̇i
Fα′β′γ′δ′ . (3.17)

Then, we use Gα̇1β̇1...α̇4β̇4

α1β1...α4β4
=
∏4

i=1 ∂
α̇iγi
xi

∂β̇iδi
xi

Fαβγδ and apply the identity (A.5) to find

I[Gα̇1β̇1...α̇4β̇4

α1β1...α4β4
] =

∏

i

(x2i )
2(xi)

αi

γ̇′

i

(xi)
βi

δ̇′
i

∂
γ̇′

i
γ′

i
xi

∂
δ̇′
i
δ′
i

xi
(xi)

α′

i

α̇i
(xi)

β′

i

β̇i

Fα′β′γ′δ′

=
∏

i

(x2i )
2(xi)

αi

γ̇′

i

(xi)
βi

δ̇′
i

(xi)
α′

i

α̇i
(xi)

β′

i

β̇i

G
γ̇′

1
δ̇′
1
...γ̇′

4
δ̇′
4

α′

1
β′

1
...α′

4
β′

4

+ . . . , (3.18)

where the dots in the second relation denote inhomogenous ‘bad’ terms coming from the

commutators [∂
γ̇′

i
γ′

i
xi

∂
δ̇′
i
δ′
i

xi
, x

α′

i

i,α̇i
x
β′

i

i,β̇i

]. Due to the presence of such terms, Gα̇1β̇1...α̇4β̇4

α1β1...α4β4
does not

transform covariantly. Their contribution however involves terms like ǫα
′γ′

Fα′β′γ′δ′ and it

would vanish if Fα′β′γ′δ′ is symmetric with respect to the indices α′ and γ′. This is exactly

what happens if we apply (3.16) to (3.12).

Thus, we conclude that the substitution (3.16) not only ensures the conservation of

the stress-energy tensor but also restores the correct conformal properties of the four-point

correlation function.

The question remains however whether (3.16) correctly describes the additional con-

tribution to (3.12) coming from the last two terms on the right-hand side of (2.3). Going

through a lengthy and tedious calculation we verified that this is indeed the case.
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3.3 Simplified form of the correlation function

Combining together (3.12) and (3.16), we arrive at the following remarkably simple result

for the four-point correlation function of stress-energy tensors

Gα̇1β̇1...α̇4β̇4

α1β1...α4β4
(x) =

4∏

i=1

(∂xi
)α̇iγi(∂xi

)β̇iδi(∂λi
)αi

(∂λi
)βi

(∂λi
)γi(∂λi

)δi
{
[M(x, λ)]2F (x)

}
.

(3.19)

More precisely, this relation describes the ‘anomalous’ (non-rational) contribution to (3.2).

We recall that F (x) is the nontrivial dynamical function defined in (2.17) and M(x, λ) is

a kinematical function given by (3.8). Relation (3.19) is one of the main results of this

paper.

Since M(x, λ) is a homogenous polynomial of degree 2 in λα
i , the expression on the

right-hand side (3.19) does not depend on the auxiliary spinors λi. This polynomial admits

an elegant representation when expressed in terms of new variables

ZI
i =

(
λα
i

(xi)
α̇βλiβ

)
≡

(
|i〉

xi|i〉

)
, I = (α, α̇) , (3.20)

which satisfy the following determinant relation

〈1 2 3 4〉 ≡ ǫIJKLZ
I
1Z

J
2 Z

K
3 ZL

4

= 〈1|x−1
12 x23|3〉〈4|x41x12|2〉 − 〈1|x−1

12 x24|4〉〈3|x31x12|2〉 . (3.21)

Then, we find from (3.8) another equivalent representation

M(x, λ) = 〈1 2 3 4〉2, (3.22)

in which the properties of M(x, λ) becomes more transparent. An alternative and simpler

derivation of (3.22) is given in section 4.2. As we show there, the relation (3.22) follows

from the consistency of (3.19) with the expected conformal properties of the correlation

functions of stress-energy tensors.

Relations (3.20) and (3.21) are very familiar from the dual space description of scatter-

ing amplitudes. There, the variables λi and pi = xi−xi+1 define the helicity and the on-shell

momentum of each scattered particle, respectively, and the dual conformal symmetry is

realized as SL(4) transformations of ZI
i . Relation (3.21) defines the simplest four-point

dual conformal invariant and serves as a building block in constructing four-dimensional

integrands for the scattering amplitudes in planar N = 4 SYM [43, 44].

As explained in the previous subsection, relation (3.19) respects the conservation and

conformal symmetry of the stress-energy tensor, independently of the form of F (x). The

expression on the right-hand side of (3.19) involves 8 spatial derivatives acting on the prod-

uct of two functions. Obviously, its expansion yields a very lengthy expression involving

the 22 different Lorentz structures mentioned in the Introduction, each of them involving

derivatives of F (x). The very fact that the correlation function in an N = 4 superconfor-

mal theory admits a compact representation (3.19) leads to important consequences that

we explain in section 5.

– 13 –



J
H
E
P
1
2
(
2
0
1
5
)
1
3
3

We can further simplify (3.19) by considering the correlation function of the opera-

tors (2.8). This amounts to projecting the Lorentz indices on both sides of (3.19) with the

auxiliary spinors λi and λ̄i

G
(anom)
TTTT =

1

44

4∏

i=1

λαi

i λβi

i λ̄i,α̇i
λ̄i,β̇i

Gα̇1β̇1...α̇4β̇4

α1β1...α4β4
. (3.23)

Introducing the notation for the differential operator

Di = λ̄i,α̇(∂xi
)α̇α(∂λi

)α ≡ [i|∂xi
|∂λi

〉 , (3.24)

we finally obtain from (3.19) a very compact representation for the correlation function

G
(anom)
TTTT = 44 (D1D2D3D4)

2
[
〈1 2 3 4〉4F (x)

]
. (3.25)

Here the additional normalization factor comes from λα
i (∂λi

)α〈1 2 3 4〉
4 = 4 〈1 2 3 4〉4.

We notice that, at first glance, relations (3.19) and (3.25) are not symmetric under

the exchange of the chiral and antichiral sectors, αi ↔ α̇i and βi ↔ β̇i. As was already

mentioned in the previous section, thanks to relation (2.15), the correlation functions (3.19)

and (3.25) admit another equivalent representation in which the chiral and antichiral indices

are interchanged.

4 Four-point correlation functions of currents

In the previous section we demonstrated that the calculation of the correlation function

of stress-energy tensors can be greatly simplified by employing the maximal number of

derivatives recipe. It allowed us to obtain the very special representation (3.12) for the

relevant component of the supercorrelator G4, and then to promote it to the complete

expression for the correlation function by simply symmetrizing the product of Lorentz

tensors with respect to the chiral indices, eq. (3.16).

In this section we argue that the same approach can be applied to the four-point

correlation functions involving other components of the stress-energy supermultiplet, for

example, the R-symmetry current (2.4).

4.1 Ansatz

Instead of going through the computation of the various correlation functions, let us try to

generalize (3.19) and formulate an ansatz for the correlation function involving conserved

currents J α̇1...α̇S
α1...αS

(x) of Lorentz spin (S/2, S/2)

Gα̇1...α̇S

α1...αS
(x, . . . ) = 〈0|J α̇1...α̇S

α1...αS
(x) . . . |0〉 , (4.1)

where the dots denote the remaining operators. For S = 1 and S = 2 the operator

J α̇1...α̇S
α1...αS

(x) coincides with the R-symmetry current and the stress-energy tensor, respec-

tively. In close analogy with (3.12), we assume that the correlation function (4.1) has the

following general form [11]

Gα̇1...α̇S

α1...αS
(x, . . . ) = ∂α̇1γ1

x . . . ∂α̇SγS
x

[
Mα1γ1...αSγS (x)F (x)

]
, (4.2)
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where ∂α̇γ
x ≡ ∂/∂xγα̇ and the number of spatial derivatives matches the Lorentz spin of the

operator. If other operators in the correlation function (4.1) carry nonvanishing Lorentz

spin, the expression on the right-hand side of (4.2) contains additional derivatives acting

on their coordinates.

To ensure the conservation of the current, we require that Mα1γ1...αSγS (x, . . . ) be

completely symmetric with respect to all 2S chiral indices. Indeed, we verify that

(∂x)
α1

α̇1
Gα̇1...α̇S

α1...αS
(x, . . . ) ∼ ǫα1γ1�x

[
Mα1γ1...αSγS (x)F (x)

]
= 0 (4.3)

for an arbitrary x-dependent completely symmetric tensor Mα1γ1...αSγS (x, . . . ). Let us also

demand that (4.2) has the correct transformation properties under inversion4

I
[
Gα̇1...α̇S

α1...αS
(x, . . . )

]
= (x2)2xα1

β̇1

xβ1

α̇1
. . . xαS

β̇S

xβS

α̇S
Gβ̇1...β̇S

β1...βS
(x, . . . ) , (4.4)

where we do not display the weight factors corresponding to the other operators. Taking

into account (2.16) and the identity (A.6), we find that (4.4) and (4.2) lead to

I[Mα1γ1...αSγS (x)] = (x2)−S−2xβ1

α̇1
xδ1γ̇1 . . . x

βS

α̇S
xδSγ̇S Mβ1δ1...βSδS (x) . (4.5)

As before, we can simplify this relation by projecting all chiral Lorentz indices by the

auxiliary spinor λ,

MS(x, λ) = λα1λγ1 . . . λαSλγSMα1γ1...αSγS (x) . (4.6)

Taking into account the transformation properties of the auxiliary spinors under inver-

sion (2.10), we find from (4.5)

I[MS(x, λ)] = w2S(x)(x2)−S−2MS(x, λ) , (4.7)

where w(x) = (x2)n with an arbitrary n. In the previous section we used w = 1 but it is

now more convenient to choose w = x2, so that I[λα] = xα̇βλβ .

The x-dependent factor on the right-hand side of the last relation defines the local con-

formal weight associated with the current of spin S. If the correlation function (4.1) con-

tains four currents with different spins Si, the total conformal weight of the corresponding

function MS1S2S3S4
(x, λ) is given by the product of four such factors, one for each current.

As a consequence, MS1S2S3S4
(x, λ) depends on four auxiliary spinors λi (with i = 1, . . . , 4)

and satisfies two main requirements: (i) to be a homogenous polynomial in λα
i of degree

2Si and (ii) to transform under inversion as

I[MS1S2S3S4
(x, λ)] =

∏

i

(x2i )
Si−2MS1S2S3S4

(x, λ) . (4.8)

In addition, if two operators are identical with, e.g., S1 = S2, in virtue of the Bose symmetry

of the correlation function, the function MS1S1S3S4
(x, λ) should be invariant under the

exchange of points 1 and 2.

4We recall that inversion swaps the chirality of the Lorentz indices.
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Having determined MS1S1S3S4
(x, λ), we can reconstruct the four-point correlation

function of the currents J
α̇1...α̇Si
α1...αSi

(xi). To simplify the resulting expression, we project

all Lorentz indices by the (anti)chiral auxiliary spinors λi and λ̄i and define

GS1S2S3S4
(x, λ, λ̄) = λα1

1 . . . λ
δS4

4 λ̄1,α̇1
. . . λ̄4,δ̇S4

G
α̇1...α̇S1

,β̇1...β̇S2
,γ̇1...γ̇S3

,δ̇1...δ̇S4

α1...αS1
,β1...βS2

,γ1...γS3
,δ1...δS4

(x) . (4.9)

This function admits the following representation (up to an overall normalisation factor)

GS1S2S3S4
(x, λ, λ̄) = DS1

1 DS2

2 DS3

3 DS4

4

[
MS1S2S3S4

(x, λ)F (x)
]
, (4.10)

where the differential operator Di is defined in (3.24). This relation generalizes (3.25) to

the case of currents of spin Si = 1, 2. Moreover, it is also applicable for Si = 0 in which case

the corresponding operator is the 1/2 BPS operator O20′ . Notice that the R-symmetry

current and the 1/2 BPS operator have an R-charge and depend on the auxiliary variables

y. In the representation (4.10), this dependence is carried by the function MS1S2S3S4
(x, λ).

As shown in [11], relations (4.2) and (4.10) can be generalized to the fermionic N = 4

supersymmetry currents J α̇
α1α2

and J α̇1α̇2
α , which are also members of the stress-energy

supermultiplet. They carry Lorentz spins (3/2, 1/2) and (1/2, 3/2), respectively, and should

appear in pairs in a non-vanishing correlation function. The only difference as compared

with (4.2) is that the numbers of (chiral) α- and γ-indices of the fully symmetric tensor

M do not match. As a result, in the general case of operators of Lorentz spin (Si/2, S
′
i/2),

their four-point correlation function is given by (4.10) with DSi

i replaced by D
S′

i

i . As

already mentioned, there exists another, equivalent representation of the same correlation

function involving the conjugate operators D̄Si

i = [∂λ̄i
|∂xi

|i〉Si and conjugate antichiral

tensor MS′

1
S′

2
S′

3
S′

4
(x, λ̄).

4.2 Special solutions

Let us construct some solutions to (4.8). We notice that (4.8) defines MS1S2S3S4
(x, λ) up

to multiplication by an arbitrary function of the conformal cross-ratios u and v defined

in (2.17). Such a function will in general induce additional singularities for x2ij → 0. To fix

the ambiguity, we shall assume that MS1S2S3S4
(x, λ) should not have such singularities.

We expect that MS1S2S3S4
(x, λ) is a rational function of the distances x2ij admitting an

analytic continuation to complex space-time coordinates. The rational behind this is that

the analysis of the conformal properties of MS1S2S3S4
(x, λ) can be simplified by employing

Dirac’s embedding formalism. There the complexified Minkowski space is realized as a

light-cone in complex projective space CP
5 with homogenous coordinates XIJ = −XJI

(with I, J = 1, . . . , 4) satisfying ǫIJKLX
IJXKL = 0. The complex coordinates xα̇α define

a particular parameterization of XIJ

XIJ =

[
ǫαβ −xβ̇α

xα̇β x2ǫα̇β̇

]
, XIJ =

1

2
ǫIJKLX

KL =

[
x2ǫαβ −xαβ̇
xβα̇ ǫα̇β̇

]
, (4.11)

with composite indices I = (α, α̇) and J = (β, β̇). Then, the conformal transformations

correspond to global SL(4;C) transformations of XIJ . The attentive reader will notice the
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similarity between (4.11) and (2.2). Indeed, xαα̇ and yaa′ appear on an equal footing as

bosonic coordinates of the supercurrent.

In addition to (4.11), we also need the variables (3.20) that carry the dependence on

the chiral spinors λ. As was already mentioned, there exists some freedom in choosing

the weight factor w in (2.10). The advantage of the choice w = x2 is that the action of

inversion on ZI corresponds to a global SL(4) transformation5

I[ZI
i ] =

(
xi|λi〉

−|λi〉

)
= ΩI

J Z
J
i . (4.12)

We can use the variables XIJ
i and ZI

i (with i = 1, . . . , 4) to define various SL(4)

invariant quantities. Taking into account the identity ZI
i (Xi)IJ = 0 we can define three

different Z-dependent structures

〈1 2 3 4〉 = ǫIJKLZ
I
1Z

J
2 Z

K
3 ZL

4 ,

X[12]3 = ZI
1 (X3)IJZ

J
2 ∼ 〈1|x13x32|2〉 ,

X1[234] = ZI
1 (X2)IJ(X3)

JK(X4)KL(Z1)
L ∼ 〈1|x12x23x34x41|1〉 , (4.13)

where the first structure already appeared in (3.21). X[12]3 and X1[234] are antisymmetric

with respect to the points indicated inside the brackets, whereas 〈1 2 3 4〉 is completely

antisymmetric with respect to the four points. We verify that, as expected, they transform

covariantly under inversion

I[〈1 2 3 4〉] = 〈1 2 3 4〉 , I[X[12]3] =
1

x23
X[12]3 , I[X1[234]] =

1

x22x
2
3x

2
4

X1[234] . (4.14)

We are now ready to construct solutions to (4.8).

Let us first revisit the four-point correlation function of stress-energy tensors, S1 =

S2 = S3 = S4 = 2. Denoting the corresponding solution to (4.8) as MTTTT (x, λ), we

deduce from (4.8) that it should take the form of a homogenous polynomial in ZA
i of degree

4, invariant under inversion and under the exchange of any pair of points. Examining (4.14)

we immediately find the solution

MTTTT (x, λ) ∼ 〈1 2 3 4〉4, (4.15)

which agrees with (3.25). There exist other solutions, e.g. X1[234]X2[341]X3[412]X4[123]/∏
i<j x

2
ij , but in contrast with (4.15) they have singularities for x2ij → 0.

The second example is the correlation function of two stress-energy tensors and two 1/2

BPS operators, S1 = S2 = 2 and S3 = S4 = 0. The corresponding function, MTTOO(x, λ),

is a homogenous polynomial in Z1 and Z2 of degree 2. According to (4.8), it should have

conformal weight 1/(x23x
2
4)

2 under inversion and be invariant under the exchange of points

1 ↔ 2 and 3 ↔ 4. We use (4.14) to obtain

MTTOO(x, λ) ∼
(
X[12]3X[12]4

)2
=
[
〈1|x13x32|2〉〈1|x14x42|2〉

]2
. (4.16)

5In fact, ZI can be identified as coordinates on twistor space.
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As in the previous case, there are other solutions involving X1[234] but we have to discard

them since they are singular for x2ij → 0. In distinction with (4.15), the function MTTOO

should also depend on the variables y at points 3 and 4. This dependence is unambiguously

fixed by the R-symmetry and amounts to an additional factor of (y234)
2 on the right-hand

side of (4.16). This factor has the meaning of the Clebsh-Gordon coefficient corresponding

to the singlet representation in the tensor product decomposition 20′ × 20′.

The third example is the correlation function of two stress-energy tensors and two

R-symmetry currents, S1 = S2 = 2 and S3 = S4 = 1. Going along the same lines as in the

two previous cases, we arrive at

MTTJJ(x, λ) ∼ 〈1 2 3 4〉2X[12]3X[12]4 = 〈1 2 3 4〉2〈1|x13x32|2〉〈1|x14x42|2〉 . (4.17)

The y-dependence of the R-current Jaia
′

i(xi, yi) leads to an additional factor of y
a3a

′

4

34 y
a4a

′

3

34

on the right-hand side of this relation. As in the previous case, it corresponds to the singlet

representation in the tensor product 15× 15.

We notice that, up to an overall normalization factor, the obtained expres-

sions (4.15), (4.16) and (4.17) satisfy the following interesting relation

(MTTJJ)
2 ∼ MTTTT MTTOO . (4.18)

4.3 Comparison with known results

Combined with (4.10), relations (4.16) and (4.17) yield predictions for the correlation func-

tions involving two stress-energy tensors. The same correlation functions can be computed

using the approach described in section 3.

As an example, we can consider the correlation function 〈T (1)T (2)O(3)O(4)〉 contain-

ing two 1/2 BPS scalar operators. Following (3.3), we identify the
∏

i=1,2(θ
2
i )

αiβi(θ̄2i )α̇iβ̇i

component of (2.23), and then apply the maximal number of derivatives recipe to obtain

a representation similar to (3.12). In close analogy with (3.16), the restoration of the

conservation of the stress-energy tensor and its conformal properties can be achieved by

symmetrizing the correspondingM-tensor with respect to the Lorentz indices. Going along

these lines we obtain

〈T (1)T (2)O(3)O(4)〉 = (D1D2)
2
[
(y234)

2〈1|x13x32|2〉
2〈1|x14x42|2〉

2F (x)
]
. (4.19)

In the same way, for the correlation function containing two R-symmetry currents we find

〈T (1)T (2)Ja3a
′

3(3)Ja4a
′

4(4)〉

= (D1D2)
2D3D4

[
y
a3a

′

4

34 y
a4a

′

3

34 〈1 2 3 4〉2〈1|x13x32|2〉〈1|x14x42|2〉F (x)
]
, (4.20)

where Jaia
′

i(i) = J
aia

′

i

αα̇ (xi)λ
α
i λ̄

α̇
i . Comparing these relations with (4.16) and (4.17) we

observe perfect agreement.

We can apply the same technique to computing the correlation functions of other

components of the stress-energy supermultiplet. The components T = . . . + θ4L(x) +
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θ̄4L̄(x)+ . . . are of particular interest since they define the chiral (L) and antichiral (L̄) on-

shell Lagrangians of the theory, with L̄(x) = L†(x) and i
(
L(x)− L̄(x)

)
being a topological

term,

〈T (1)T (2)L(3)L̄(4)〉 = (D1D2)
2
�

2
x4

[
MTTLL̄(x, λ)F (x)

]
,

〈L(1)L̄(2)L(3)L̄(4)〉 = �
2
x2
�

2
x4

[
(x224)

4F (x)
]
, (4.21)

withMTTLL̄(x, λ) = (X[12]4)
4 = 〈1|x14x42|2〉

4. It easy to verify using (A.7), (4.8) and (2.16)

that the expressions on the right-hand side of (4.21) have the correct transformation prop-

erties under inversion. The second correlation function in (4.21) is equivalent to the result

of [45] obtained by a different method. The latter has been used as a nontrivial consis-

tency check of two AdS5 × S5 supergravity calculations, that of the dilaton/axion amplitude

in [46] and that for the bottom component of the same massive multiplet in [38].

Another class of correlation functions containing three 1/2 BPS operators and a con-

served current has been studied in [11]. We can use these results to obtain

〈T (1)O(2)O(3)O(4)〉 = D2
1

[
y223y

2
34y

2
24

(
X1[234](x, λ)

)2
F (x)

]
,

〈Jaa′(1)O(2)O(3)O(4)〉 = D1

[
Yaa′

1[234](y, x)X1[234](x, λ)F (x)
]
, (4.22)

where X1[234] was defined in (4.13) and the notation was introduced for

Y1[234] = x212x
2
34y

2
23y

2
24Y1[34] + x223x

2
14y

2
24y

2
34Y1[23] + x213x

2
24y

2
23y

2
34Y1[42] , (4.23)

with Y aa′

1[ij] = (y1iyijyj1)
aa′ . Here Y1[234] and Y aa′

1[ij] carry the dependence on the y-variables

and are completely antisymmetric under the exchange of the points indicated inside the

brackets. We recall that the R-current and the 1/2 BPS operator belong to the SU(4)

representations 15 and 20′, respectively. The three terms in the expression for Y1[234]

correspond to three overlapping SU(4) representations in the tensor products 15× 20′ and

20′ × 20′.

Thus, we demonstrated on various examples that the correlation functions of conserved

currents in an N = 4 superconformal theory have the general form (4.10) in which the

information about the quantum numbers of the currents is encoded in the M-function. In

particular, if the currents carry R-charge, the M-function can be decomposed into a sum

of various irreducible components corresponding to overlapping SU(4) representations in

the different channels.

We would like to emphasize that the expressions for the correlation functions presented

in this section are valid up to overall normalization factors. The latter can be determined,

e.g., from the consistency with the operator product expansion.

5 Application to energy-energy correlation

In this section, we use our results for the four-point correlation functions to compute the

energy-energy correlation (EEC) in an N = 4 superconformal theory. This infrared safe

observable describes the flow of energy in the final state created from the vacuum by some
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source [12]. More precisely, EEC(n1, n2) measures the correlation between the energy fluxes

in two different directions defined by light-like four-vectors n1 and n2 (with n2
1 = n2

2 = 0).

As such, it is expected to be a regular positive-definite function of the angles defining the

relative orientation of n1 and n2.

5.1 Generalized optical theorem

The energy-energy correlation admits the following representation in terms of a correlation

function [13–17]

EEC(n1, n2) = σ−1

∫
d4x ei(xq)G(x;n1, n2) ,

G(x3 − x4;n1, n2) = 〈E(n1)E(n2)J(x3)J(x4)〉W , (5.1)

where the Fourier integral fixes the total momentum of the final state to be q. The nor-

malization factor σ is fixed by the requirement that, in the rest frame of the source, for

q = (E,~0) and ni = (1, ~ni), the energy-energy correlation averaged over the spatial orien-

tation of the unit vectors ~ni has to satisfy the condition
∫
dΩ~n1

dΩ~n2
EEC(n1, n2) = 1.

The correlation function G(x34;n1, n2) involves the so-called energy flow operators,

E(n1) and E(n2), which are expressed in terms of integrated stress-energy tensors (see [14,

15] for the explicit expression). The operator J(x) defines the source. If the source is

created by a conserved current of spin S, the operator J(x) depends on the polarization

tensor e

J(x) = eα1...αS

α̇1...α̇S
J α̇1...α̇S

α1...αS
(x) . (5.2)

The operator J(x) = J†(x) is given by a similar expression with e replaced by the con-

jugated polarization tensor ē. The subscript W in the second line of (5.1) indicates that

this is the Wightman (not time-ordered) four-point function. It is related to its Euclidean

counterpart via analytic continuation.

To compute (5.1) it proves convenient to perform a conformal transformation and go

to new coordinates xµ → zµ [20, 47]

z+ = −
1

x+
, z− = x− −

xx̄

x+
, ~z =

~x

x+
, dz2 =

dx2

(x+)2
, (5.3)

where the notation was introduced for the light-like coordinates x± and ~x = (x, x̄),

xαα̇ = xµ(σ
µ)αα̇ =

[
x+ x̄

x x−

]
, dx2 = dx+dx− − dx dx̄ . (5.4)

Then, if the source (5.2) is defined by an operator of spin S and dimension ∆S , the function

G(x34;n, n
′) in (5.1) is given by the four-point correlation function integrated over the light-

cone coordinates of the two stress-energy tensors

GS(x34;n1, n2) =
(z+3 z

+
4 )

∆S−S

(n+
1 n

+
2 )

3
eα1...αS

α̇1...α̇S
ēβ1...βS

β̇1...β̇S

Λα̇1γ1
α1γ̇1

(3)Λβ̇1δ1

β1δ̇1
(4) . . .Λα̇SγS

αS γ̇S
(3)Λβ̇SδS

βS δ̇S
(4)

×

∫ ∞

−∞

dz−1 dz
−
2 〈T (0

+, z−1 , ~z1)T (0
+, z−2 , ~z2)J

γ̇1...γ̇S
γ1...γS

(z3)J
δ̇1...δ̇S
δ1...δS

(z4)〉W ,

(5.5)
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where the product of the z-dependent factor and Λα̇γ
αγ̇(i) = ∂zγi,γ̇/∂x

α
i,α̇ in the first line

arises from the conformal transformation (5.3) of the two currents. Here T (z+i = 0, z−i , ~zi)

(with i = 1, 2) are the stress-energy tensors (2.8) whose Lorentz indices are projected

onto the same auxiliary spinors λα
0 = (1, 0) and λ̄α̇

0 =
(
1
0

)
satisfying λα

0 zαα̇λ̄
α̇
0 = z+. The

nontrivial dependence of (5.5) on the light-like vectors n1 and n2 comes through the variable

~zi = ~ni/n
+
i , depending on the light-cone coordinates of these vectors.

According to (5.1) and (5.5), the definition of the energy-energy correlation depends

on the choice of the source J . Later in this section, we consider four choices for J : a

1/2 BPS operator, an R-symmetry current, a stress-energy tensor and a Lagrangian of the

theory.6 We will show that, in virtue of N = 4 superconformal symmetry, the energy-

energy correlations are given in all four cases by the same expression and, therefore, do not

depend on the choice of the source.

5.2 Integrated correlation functions

Let us first examine the Euclidean version of the correlation function entering (5.5). In

close analogy with (3.2), this correlation function can be split into a sum of rational and

anomalous pieces. As was shown in [18, 19], the contribution of the former to the energy-

energy correlation (5.1) vanishes for generic n1 and n2 and, therefore, can be discarded.7

The anomalous contribution to the correlation function in (5.5) can be found

from (4.10) for S1 = S2 and S3 = S4 = S. More precisely, in order to match (5.5),

we have to identify the auxiliary spinors, λ1 = λ2 = λ0 and λ̄1 = λ̄2 = λ̄0. Taking into

account that λ0 and λ̄0 satisfy λα
0 zαα̇λ̄

α̇
0 = z+ for an arbitrary four-vector z, we can simplify

the expression for the differential operators D1 and D2 defined in (3.24) (see (A.4))8

Di = λ̄0,α̇(∂zi)
α̇α(∂λi

)α = −λα
0 (∂λi

)α∂z̄i − ∂z−
i

. (5.6)

In addition, we can safely neglect terms containing ∂z−
i

≡ ∂/∂z−i since they produce a

contribution to the correlation function (4.10) that integrates to zero after substitution

in (5.5). Since the expression inside the brackets in (4.10) is a homogenous function of λi,

we can replace Di ∼ ∂z̄i for i = 1, 2. In this way, we obtain from (4.10)

〈T (1)T (2)JS(3)JS(4)〉 = (∂z̄1∂z̄2)
2(D3D4)

S
[
MTTJSJS (z, λ)F (z)

]
+ . . . , (5.7)

where the dots denote terms containing total derivatives with respect to z−1 and z−2 , and

we used the shorthand notation for T (i) = T (0+, z−i , ~zi) and

JS(k) = λγ1
k λ̄k,γ̇1 . . . λ

γS
k λ̄k,γ̇SJ

γ̇1...γ̇S
γ1...γS

(zk) . (5.8)

For a source defined by the Lagrangian of the theory, we find from (4.21) that the correlation

function (5.7) takes a slightly different form

〈T (1)T (2)L(3)L̄(4)〉 = (∂z̄1∂z̄2)
2
�

2
z4

[
MTTLL̄(z, λ)F (z)

]
+ . . . . (5.9)

6In all cases except the last one we have ∆S − S = 2. The Lagrangian appears as O(θ4) component of

the stress-energy supercurrent T and it has dimension 4 and spin zero.
7More precisely, it is proportional to a delta function with support at χ = q2(n1n2)/

(

2(qn1)(qn2)
)

= 1.
8Notice that we have to apply to derivative ∂λi

before putting λi = λ0.
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As before, to obtain the correlation function in (5.5), it suffices to differentiate both sides

of (5.7) with respect to the auxiliary spinors λk and λ̄k with k = 3, 4.

At the next step, we use the expressions for MTTJSJS obtained in the previous section

to evaluate them in terms of the z-coordinates. For instance, for the 1/2 BPS operator

O20′ we apply (4.16) to get (with zij = zi − zj)

MTTOO = (y234)
2
[
〈0|z13z32|0〉〈0|z14z42|0〉

]2
= (y234)

2z̄412(z
+
3 z

+
4 )

2. (5.10)

Here in the first relation we rewrote (4.16) in z-coordinates, added the y-dependent factor

and identified the auxiliary spinors |1〉 = |2〉 = |0〉. In the second relation, we replaced

(zi)αα̇ by its expressions (5.3) and (5.4) in terms of light-cone variables and took into

account that z+1 = z+2 = 0.

For the Lagrangian, the stress-energy tensor and the R-current, we apply rela-

tions (4.21), (4.15) and (4.17), respectively, and go through similar calculations to find

MTTLL̄ = z̄412(z
+
4 )

4,

MTTTT = z̄412〈3|ω|4〉
4,

MTTJJ = y
a3a

′

4

34 y
a4a

′

3

34 z̄412z
+
3 z

+
4 〈3|ω|4〉

2, (5.11)

where 〈3|ω|4〉 = λα
3 λ

β
4 ωαβ and the matrix ωαβ is given by

ω =

[
0 z+3

−z+4 z34

]
. (5.12)

Examining (5.10) and (5.11) we observe an interesting property: the obtained expres-

sions for the M-functions are independent of the coordinates z−1 and z−2 and, at the same

time, they have the same dependence on z̄12. The former property implies that, upon

substitution of (5.7) and (5.9) into (5.5), the integration over z−1 and z−2 can be reduced

to evaluating the following integral

∫ ∞

−∞

dz−1 dz
−
2 F (z) =

1

(~z 2
12z

2
34)

3z+3 z
+
4

G(γ) , (5.13)

where the function F (z) was defined in (2.17). Here the z-dependent factor on the right-

hand side carries the scaling dimension of the integral, so that G(γ) is dimensionless.

Moreover, the detailed analysis shows [11, 18, 19] that the argument of G(γ) is a rational

function of γ = γ(zi) whose form is much simpler when expressed in terms of x-coordinates

γ = 2
(x34n1)(x34n2)

x234(n1n2)
. (5.14)

The explicit expressions for G(γ) in N = 4 SYM at weak and at strong coupling can be

found in [18]. We do not need them for our purposes.
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5.3 EEC for a scalar source

To avoid the technical difficulties related to the Lorentz structure of the source, let us first

consider (5.5) with a scalar source J given by the 1/2 BPS operator O20′ or the Lagrangian

L. We apply (5.7)–(5.11) and (5.13) to get for ∆O
20′

= 2, ∆L = 4 and S = 0

GO(x34;n1, n2) = (y234)
2 (z+3 z

+
4 )

3

(n+
1 n

+
2 ~z

2
12z

2
34)

3
(z̄12)

3(∂z̄1∂z̄2)
2
[
z̄12 G(γ)

]
,

GL(x34;n1, n2) = (z+4 )
4
�

2
z4

(z+3 z
+
4 )

3

(n+
1 n

+
2 ~z

2
12z

2
34)

3
(z̄12)

3(∂z̄1∂z̄2)
2
[
z̄12 G(γ)

]
, (5.15)

where the subscript on the left-hand side indicates the choice of the source. We can now

use (5.3) to write the expressions on the right-hand side in terms of xi. This can be done

with the help of the identity

[
γ2(1− γ)2G′′(γ)

]′′
= (z̄12)

3(∂z̄1∂z̄2)
2
[
z̄12 G(γ)

]
=

1

16
(x234)

3
�

2
x3

G(γ)

x234
, (5.16)

which can be verified by a straightforward calculation. Taking into account that 2(n1n2) =

n+
1 n

+
2 ~z

2
12 and x234 = z234/(z

+
3 z

+
4 ) we arrive at Lorentz covariant expressions for the integrated

correlation functions

GO(x34;n1, n2) =
(y234)

2

128(n1n2)3
�

2
x3

G(γ)

x234
,

GL(x34;n1, n2) =
1

128(n1n2)3
�

2
x3
�

2
x3

G(γ)

x234
. (5.17)

We notice that the two expressions are related to each, GL ∼ �
2
x3
GO.

To compute the energy-energy correlation (5.1), we have to analytically continue rela-

tions (5.17) to get the Wightman correlation functions, and then Fourier transform them

with respect to x34 = x3 − x4. It is easy to see that the Fourier transforms of GO and GL

are proportional to the same dimensionless function, e.g.

∫
d4x eixq GL(x;n1, n2) =

(q2)3

128(n1n2)3
F(χ) , (5.18)

where the notation was introduced for χ = q2(n1n2)/
(
2(qn1)(qn2)

)
and

F(χ) = q2
∫

d4x eiqx
GW (γ)

x2 − i0x0
. (5.19)

Here GW (γ) corresponds to the particular analytic continuation of its Euclidean counterpart

G(γ). Together with the ‘−i0x0’ prescription in the denominator this ensures that the

Fourier integral (5.19) is different from zero only for q2 > 0 and q0 > 0, as it should be for

a physical quantity measuring the flow of energy in a final state with total momentum q. As

a consequence, F(χ) is different from zero for 0 < χ < 1. In the rest frame of the source, for

q = (E,~0) and ni = (1, ~ni) (with ~n2
i = 1), the scaling variable χ = (n1n2)/2 = (1− cos θ)/2

is related to the angle θ between the unit vectors ~n1 and ~n2.
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Substituting (5.17) into (5.1) we find that the energy-energy correlations in both cases

are proportional to F(χ). The proportionality factor can be determined by imposing the

normalisation condition ∫ 1

0
dχEEC(χ) =

1

2
, (5.20)

which follows from the requirement for the total energy in the final state to be equal to

the momentum transferred q. In this way, we arrive at

EECO = EECL =
F(χ)

χ3
, (5.21)

with χ = (n1n2)/2 = (1− cos θ)/2 in the rest frame of the source.

5.4 EEC for a tensor source

For a scalar source, Lorentz invariance implies that EEC(n1, n2) can only depend on the

relative angle χ between n1 and n2. For a source defined by the R-current and the stress-

energy tensor, this is not necessarily the case due to the dependence of EEC(n1, n2) on the

polarization vectors (5.2). Nevertheless, as we show in this subsection, the energy-energy

correlations in an N = 4 superconformal theory do not depend on the choice of the source

and are given by the universal scaling function (5.21).

For a source given by a current of spin S, an additional complication arises in (5.5)

due to the necessity to deal with Lorentz indices. Let us first examine the expression in the

second line of (5.5) with the four-point correlation function replaced by (5.7). According

to (5.11), the M-functions corresponding to the R-current and stress-energy tensor do not

depend on z−1,2 and admit the following representation MTTJSJS ∼ z̄412〈3|ω|4〉
2S(z+3 z

+
4 )

2−S

for S = 1 and S = 2, respectively. Then, we find from (5.7)
∫ ∞

−∞

dz−1 dz
−
2 〈T (1)T (2)JS(3)JS(4)〉

∼ (D3D4)
S(z+3 z

+
4 )

2−S〈3|ω|4〉2S(∂z̄1∂z̄2)
2z̄412

∫ ∞

−∞

dz−1 dz
−
2 F (z)

= (D3D4)
S 〈3|ω|4〉2S

(z+3 z
+
4 )

S+2

(z+3 z
+
4 )

3

(~z 2
12z

2
34)

3
(z̄12)

3(∂z̄1∂z̄2)
2
[
z̄12 G(γ)

]
, (5.22)

where in the second relation we applied (5.13).

We observe the striking similarity of (5.22) with the first relation in (5.15). An im-

portant difference is however that the last relation involves the derivatives D3,4 and the

matrix element 〈3|ω|4〉 defined in (3.24) and (5.12), respectively. They induce the depen-

dence of (5.22) on the auxiliary spinors λi and λ̄i with i = 3, 4. To obtain the correlation

function in the second line of (5.5), we have to differentiate (5.22) with respect to λi and

λ̄i. In this way, we arrive at the following differential operator

PS(∂x3
, ∂x4

) = (z+3 z
+
4 )

2eα1...αS

α̇1...α̇S
ēβ1...βS

β̇1...β̇S

×
S∏

i=1

Λα̇iγi
αiγ̇i

(3)Λβ̇iδi

βiδ̇i
(4)(∂λ3

)γi(∂λ4
)δi(∂λ̄3

)γ̇i(∂λ̄4
)δ̇i (D3D4)

S 〈3|ω|4〉2S

(z+3 z
+
4 )

S+2
,

(5.23)
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where Λα̇γ
αγ̇(i) = ∂zγi,γ̇/∂x

α
i,α̇ and Di = λ̄i,α̇(∂zi)

α̇α(∂λi
)α. It is easy to see that it does not

depend on the auxiliary spinors and is given by a linear combination of powers of the

differential operators ∂z3 and ∂z4 . Using (5.3) they can be converted into the differential

operators ∂x3
and ∂x4

. For S = 1, 2 the explicit expressions for PS(∂x3
, ∂x4

) are given below

in (5.26). Notice that (5.23) only depends on points 3 and 4.

Combining together (5.22) and (5.23) we find from (5.5) with the help of the iden-

tity (5.16)

GS(x34;n1, n2) =
1

128(n1n2)3
PS(∂x3

, ∂x4
)�2

x3

G(γ)

x234
. (5.24)

We observe that the only difference with (5.17) is the appearance of the differential operator

PS(∂x3
, ∂x4

) that carries the dependence on the polarization tensor of the current. Upon

the Fourier transform (5.1), this operator is replaced by PS(q,−q)

∫
d4x eixq GS(x;n1, n2) =

(q2)3

128(n1n2)3
PS(q,−q)F(χ) , (5.25)

where the function F(χ) is given by (5.19). Going through a lengthy calculation we find

from (5.23)

PS=1(q,−q) = q2eαα̇ē
α̇
α +

1

2

(
eαα̇q

α̇
α

)(
ēβ
β̇
qβ̇β
)
= 2q2eµēµ + 2(eµqµ)(ēνq

ν) ,

PS=2(q,−q) = 6
(
eα1β1

α̇1β̇1

qα̇1
α1
qβ̇1

β1

)(
ēα2β2

α̇2β̇2

qα̇2
α2
qβ̇2

β2

)
+ 36q2

(
eα1β1

α̇1β̇1

qβ̇1

β2

)(
ēα2β2

β2β̇2

qα̇2
α1

)
ǫα̇1β̇2ǫβ1α2

= 24
[
(eµνqµqν)(ēµνq

µqν) + 12q2eµρēρνqµq
ν − 6(q2)2eµν ēµν

]
, (5.26)

where eµ = 1
2e

α
α̇(σ

µ)α̇α and eµν = 1
4e

αβ

α̇β̇
(σµ)α̇α(σ

ν)β̇β are the polarization tensors for currents

of spin S = 1 and S = 2, respectively.

The very fact that the expression on the right-hand side of (5.25) factorizes into a

product of the polynomial PS(q,−q) and the universal scaling function F(χ) immediately

implies that the energy-energy correlations (5.1) normalized according to (5.20) cease to

depend on the spin of the current and the polarization tensor. We therefore conclude

that in N = 4 superconformal theory the energy-energy correlations do not depend on the

choice of the source

EECJ = EECT = EECO = EECL =
F(χ)

χ3
. (5.27)

In the N = 4 SYM theory, the function F(χ) is known at next-to-leading order both at

weak [21] and at strong coupling [18, 20, 22].

6 Conclusions

In this paper, we have studied the four-point correlation functions of the conserved currents

in N = 4 superconformal theory. Contracting the Lorentz indices of the currents with

auxiliary spinors we found that the correlation functions have a remarkably simple form —

they are given by total spatial derivatives acting on some scalar functions, with the number
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of derivatives related to the spin of the currents. The scalar functions factor out into the

product of a universal dynamical function and kinematical M-functions depending on the

chiral auxiliary spinors and the space-time coordinates of the operators. We demonstrated

that the requirement for the correlation functions to respect the conservation of the currents

and to have correct conformal properties lead to powerful constraints on the M-functions.

This allowed us to determine them for various correlation functions without doing any

calculations.

The obtained results for the M-functions revealed a surprising similarity with the

known expressions for the scattering amplitudes in N = 4 SYM theory. Promoting the

auxiliary spinors to new, twistor-like coordinates of the operators and assigning them a def-

inite conformal weight, we found that the M-functions are built from very special blocks

which have been previously identified as the simplest, four-point dual conformal invari-

ants for the scattering amplitudes. We believe that this is not accidental and hints at the

existence of an additional symmetry of the correlation functions. Our results are in agree-

ment with the recent findings of [48] for a new class of N = 4 superconformal invariants.

They admit a compact representation if expressed in terms of twistor variables analogous

to (3.20) and their linear combinations describe the multiple-point correlation functions

of N = 4 supercurrents in the chiral sector. It would be interesting to generalize such a

representation to include the dependence on the anti-chiral variables θ̄.

It is natural to ask whether the higher-point correlation functions of the stress-

energy tensor admit the same ‘derivative’ representation as the four-point functions.

It is interesting to note that a similar representation exists for the two-point function

〈T (1)T (2)〉 ∼ (D1D2)
2[〈12〉4/(x212)

2], but not for the three-point function since otherwise it

would imply the vanishing of the two-point function, in virtue of the Ward identities [42].

We recall that the distinguishing feature of the derivative representation is that the result-

ing expression for the correlation function satisfies the homogenous Ward identities (3.14).

In general, the contact terms in the Ward identities are proportional to correlation func-

tions with fewer points. Then, the absence of contact terms for the anomalous contribution

to the four-point function is an immediate consequence of the protectedness of the two- and

three-point functions in an N = 4 superconformal theory. Since the four-point function is

not protected, we do not expect the higher-point correlation functions to obey homogenous

Ward identities, thus making the derivative representation problematic.

One of the byproducts of our analysis is the prediction for the four-point correlation

function of stress-energy tensors in planar N = 4 SYM theory at strong coupling. It is

given by (3.2), (3.25) and (2.17) with the function Φ(u, v) replaced by its expression found

in [37–39]. Via the AdS/CFT correspondence this correlation function is dual to the four-

graviton scattering amplitude in AdS5. Due to the complexity of the corresponding Witten

diagrams, such an amplitude has not been computed so far. The fact that the correlation

function has the special form described above should simplify the problem and make the

calculation feasible.
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A Conventions

A four-dimensional vector xµ can be represented by a 2× 2 matrix

xαα̇ = xµ(σ
µ)αα̇ =

[
x+ x̄

x x−

]
, x2µ = det ‖xα̇α‖ = x+x− − x x̄ . (A.1)

We use the following conventions for rising/lowering indices

xαα̇ = ǫαβxβα̇ , xα̇α = xαβ̇ǫ
β̇α̇, xα̇α = ǫαβxββ̇ǫ

β̇α̇ =

[
−x− x̄

x −x+

]
, (A.2)

where the completely antisymmetric tensors are normalized as ǫ12 = ǫ12 = ǫ1̇2̇ = ǫ1̇2̇ = 1

and satisfy the relations

ǫαβǫγβ = δαγ , ǫα̇β̇ǫγ̇β̇ = δα̇γ̇ . (A.3)

Defining the derivatives by (∂x)
α̇αxββ̇ = δαβ δ

α̇
β̇
, we find for λ̄0,α̇ = (0,−1)

(∂x)
α̇α =

[
∂x+ ∂x
∂x̄ ∂x−

]
, λ̄0,α̇(∂x)

α̇α = −

(
∂x̄
∂x−

)
. (A.4)

It is straightforward to verify that under inversion I[xαβ̇ ] = (x−1)βα̇ = xβα̇/x
2 the deriva-

tives transform as

I
[
∂α̇1β1

]
= (x2)2xα1

γ̇1
∂γ̇1γ1xβ̇1

γ1

1

(x2)2
= xα1

γ̇1
xβ̇1
γ1
∂γ̇1γ1 ,

I
[
∂α̇1β1∂α̇2β2

]
= (x2)2xα1

γ̇1
xα2

γ̇2
(∂γ̇1γ1∂γ̇2γ2)xβ̇1

γ1
x
β̇′

2
γ2

1

(x2)2
,

I
[
∂α̇1β1∂α̇2β2∂α̇3β3

]
= (x2)2xα1

γ̇1
xα2

γ̇2
xα3

γ̇3
(∂γ̇1γ1∂γ̇2γ2∂γ̇3γ3)xβ̇1

γ1
xβ̇2
γ2
xβ̇3
γ3

1

(x2)2
. (A.5)

The generalization to an arbitrary number of derivatives is straightforward

I
[
∂α̇1β1 . . . ∂α̇nβn

]
= (x2)2xα1

γ̇1
. . . xαn

γ̇n
(∂γ̇1γ1 . . . ∂γ̇nγn)xβ̇1

γ1
. . . xβ̇n

γn

1

(x2)2
. (A.6)

This relation can be proved by induction. Contracting the indices on both sides of (A.6)

with ǫβiβi+1
and using the identity ∂α̇1β1∂α̇2β2ǫβ1β2

= −ǫα̇1α̇2�, we obtain

I
[
�
]
= (x2)3�

1

x2
, I

[
∂α̇1β1�

]
= (x2)3xα1

γ̇1
(∂γ̇1γ1�)xβ̇1

γ1

1

x2
, I[�2] = (x2)4�2,

(A.7)

where � = ∂µ∂µ.
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B N = 4 superconformal generators

In this appendix we elucidate the origin of the maximal number of derivatives recipe that

we used in section 3.1 to compute various components of the super correlation function.

It is well known that the special superconformal S̄-transformations can be realized as

a superposition of inversion and chiral super-Poincaré Q-transformations

S̄A
α̇ = I QA

α I , (B.1)

with the composite index A = (a, a′). The super-Poincaré transformations generated by

Qa
α and Qa′

α take the form

x′i,αα̇ = xi,αα̇ + ǫa
′

α θ̄i,a′α̇ , y′ai,a′ = yai,a′ ,

θ′ai,α = θai,α + ǫaα + ǫa
′

α y
a
i,a′ , θ̄′i,a′α̇ = θ̄i,a′α̇ , (B.2)

where x′i = eǫ·Q+ǫ′·Q′

xi and similarly for the other coordinates. The action of inversion on

the supercoordinates looks as

I
[
xαβ̇i

]
= (x−1

i )βα̇, I
[
yia′

a
]
= yia′

a + θaαi (x−1
i )αα̇θ̄

α̇
i,a′

I
[
θai,α
]
= (x−1

i )βα̇θ
a
i,β , I

[
θ̄i,a′α̇

]
= −θ̄i,a′β̇(x

−1
i )β̇α . (B.3)

Combining these relations we obtain from (B.1) the global form of the S̄-transformations

x′′i = xi(1− ξ̄′θ̄i)
−1, y′′i = (1− θ̄iξ̄

′)−1(yi + θ̄iξ̄) ,

θ̄′′i = θ̄i(1− ξ̄′θ̄i)
−1, θ′′i = θi + xi(1− ξ̄′θ̄i)

−1(ξ̄ + ξ̄′yi) , (B.4)

where x′′i = e ξ̄·S̄+ξ̄′·S̄′

xi and we did not display the Lorentz and SU(4) indices for the sake

of simplicity. One can verify that the generators of the transformations (B.4) are given by

the operators S̄a
α̇ and S̄a′

α̇ defined in (2.20).

The expression for the supercorrelator (2.23) involves the differential operator S̃b′β̇

which is related to the generator S̄b′β̇ by a similarity transformation (2.22). It is easy to

see using (2.20) that

S̃b′β̇ = S̄b′β̇ + 2
∑

i

θ̄i,b′β̇ =
1

(x21x
2
2x

2
3x

2
4)

2
S̄b′β̇(x

2
1x

2
2x

2
3x

2
4)

2

=
1

(x21x
2
2x

2
3x

2
4)

2
I Qb′β I(x

2
1x

2
2x

2
3x

2
4)

2, (B.5)

where in the second line we applied (B.1). It follows from the first relation that

{S̃b′β̇ , Qa′α} = 0. Then, we apply (B.5) to get

S̃′4 =
1

(x21x
2
2x

2
3x

2
4)

2
I Q′4 I(x21x

2
2x

2
3x

2
4)

2, (B.6)

where S̃′4 =
∏

b′,β̇ S̃b′β̇ and similarly for Q′4.
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Let us now examine the action of Q′4 on a test function f(x). Replacing the Q′-

generator by its explicit expression (2.20) we find

Q′4f(x) =
∏

a′,α

[ ∑

1≤i≤4

θ̄i,a′α̇(∂xi
)α̇α
]
f(x)

=
1

12

∑

1≤i1,i2,i3,i4≤4

(θ̄i1∂i1)
α1a

′

1(θ̄i2∂i2)
α2

a′
1

(θ̄i3∂i3)
a′
2

α2
(θ̄i4∂i4)a′2α1

f(x) , (B.7)

where we used the notation for (θ̄i∂i)
αa′ = (θ̄i)

a′

β̇
(∂xi

)β̇α and the SU(2) indices a and a′

are lowered and raised in the same manner as the Lorentz indices, e.g, θa = ǫabθb and

θ̄a′ = ǫa′b′ θ̄
b′ (see appendix A). Each term on the right-hand side of (B.7) involves four

spatial derivatives and the same number of θ̄-variables.

We can use (B.6) together with (B.7) to obtain an analogous expression for S̃′4f(x).

To this end, we first apply inversion to both sides of (B.7)

I Q′4f(x) = I Q′4 I (x21x
2
2x

2
3x

2
4)

2φ(x) = (x21x
2
2x

2
3x

2
4)

2S̃′4φ(x) , (B.8)

with φ(x) = I[(x21x
2
2x

2
3x

2
4)

2f(x)]. To evaluate I Q′4 I we apply the identity

I
[
(θ̄∂)a1α1 . . . (θ̄∂)anαn

]
= (x2)2(θ̄∂)a1β1 . . . (θ̄∂)anβn xα̇1

β1
. . . xα̇n

γn

1

(x2)2
(B.9)

that follows from (A.6) and (B.3). In this way, we arrive at

S̃′4φ(x) =
1

12

∑

1≤i1,i2,i3,i4≤4

(θ̄i1∂i1)
α1a

′

1(θ̄i2∂i2)
α2

a′
1

(θ̄i3∂i3)
α3a

′

2(θ̄i4∂i4)
α4

a′
2

× (xi1)α1α̇1
(xi2)α2α̇2

(xi3)
α̇2
α3
(xi4)

α̇1
α4

φ(x) . (B.10)

Notice that the spatial derivatives in the first line do not commute with the product of x’s

in the second line. Let us compare (B.10) with the analogous relation in which we replace

S̃′ by its explicit expression (2.20)

S̃′4φ(x) =
∏

a′,α̇

[ ∑

1≤i≤4

(θ̄i ∂i)
a′α(xi)αα̇ + θ̄ a′

i,β̇
θ̄i,b′α̇(∂θ̄i)

b′β̇

]
φ(x) . (B.11)

We observe that in order to reproduce (B.10) it is sufficient to neglect the second term inside

the brackets in (B.11), and then move all spatial derivatives to the left of all x-dependent

factors. It is this shortcut that we used in section 3.1.
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