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1 Introduction

The moduli spaces of instantons remain the subject of much research and new construc-
tions continue to be presented in the literature. What is perhaps most remarkable is the
wide variety of different approaches that can be deployed to construct the complicated
Hilbert series describing these moduli spaces, along with the possibility of generating their
expansions from the combinatorics of a few relatively simple building blocks. The con-
struction methods range from those that are purely group theoretic in nature, through
methods associated with semi-simple subgroup decompositions, to those that draw upon
supersymmetric (“SUSY”) quiver gauge theories.

The vacuum moduli space of a 3d NV = 4 SUSY quiver gauge theory has a Higgs
branch and a Coulomb branch, with their rings of chiral operators each described by a
Hilbert series. The field content within such a Hilbert series can be represented in various
ways; a basic approach is simply to count chiral operators and to present a dimensional or
“unrefined” Hilbert series. A full way of describing the field content within a Hilbert series
is to calculate the irreducible representations (“irreps”) within which the chiral operators
transform under the global symmetry. Such a series can be presented in terms of the
highest weight Dynkin labels of the irreps of the symmetry group(s) that occur within the
theory, along with their multiplicities. This is a new technique [2], which permits the rich
and systematic description of a wide range of moduli spaces. An alternative new approach,
also developed herein, is to describe the representation content of a Hilbert series in terms of
Hall Littlewood polynomials and related functions; these can be chosen to encode quantum
numbers (such as R-charges) and so to provide a faithful description of a moduli space.
Both of these latter approaches, which involve the use of generating functions for characters
and Hall Littlewood polynomials, together with Weyl integration, to decompose a Hilbert
series, represent important developments within the Plethystics Program [1].

It was shown in [2] how simple encodings for the full sets of invariants for the basic
representations of any group can be found by determining the highest weight generating
functions (“HWG”) for the Hilbert series of the appropriate SQCD quiver gauge theories.
This has relevance, for example, for phenomenologists who are using Hilbert series in the
construction of Lagrangians [3], as a robust way of counting invariants in scenarios which
are intractable by traditional methods.

The aim of this paper is to examine a number of these approaches in the context
of instanton moduli spaces, to try to elucidate the manner in which they are related by
common group theoretic constructs, and to develop methods for extending the range of
possible constructions. Furthermore, while some of these constructions, such as Coulomb
branch quiver theories, are essentially reductive in nature, so that it is difficult to recover
the design of the construction from the resulting Hilbert series, other constructions, such
as those involving Hall-Littlewood polynomials, are reversible, so that the specification for
the construction can be recovered from any generating function for the (refined) Hilbert
series. We refer to this reversible process as deconstruction. We emphasise that we focus
on the analysis of character decompositions of Hilbert series of instanton moduli spaces; we
do not analyse the underlying instanton theories, such as the ADHM construction, which
are already well covered in the literature [4].



As discussed in [5], the moduli space of single G-instantons over C? decouples into the
SU(2) component associated with the C? and a reduced moduli space associated with the
Yang-Mills group G. Our principal focus will be on the reduced moduli spaces of single
instantons (“RSIMS”). These possess the simplest group theoretic descriptions and are
therefore good candidates for study.

Many new results are contained in sections 4 and 5 of this paper. In tables 9 and
10 we give a systematic treatment of the generating functions that effectively yield the
Clebsch Gordan coefficients for the various possible decompositions of the RSIMS of G
into the irreps of the maximal semi-simple subgroups of G. These are relevant, not just for
the study of the structure of SUSY gauge theories, which is our main focus, but may be
applied in any context where a moduli space described by the symmetrisations of an adjoint
representation is subject to some form of symmetry breaking. As an example, the Hilbert
series of the moduli space that results from the RSIMS of GG after gauging a subgroup can
be found directly from the character HWGs given in tables 9 and 10 (or from the more
general expression (4.3)), by eliminating terms containing Dynkin label fugacities for the
subgroup that has been gauged away.

From the perspective of SUSY gauge theories, the decompositions of RSIMS in sec-
tion 5 generalise, in a systematic manner, the findings of [6] on the description of the
RSIMS of E series groups by tri-punctured spheres wrapped by M5 branes (and dressed
by sub-group partition data). Thus, in tables 17 to 22, we show how the RSIMS of any
group can be decomposed into A series modified Hall Littlewood functions. These pro-
vide an alternative basis to characters for the faithful description of moduli spaces and, in
cases where the moduli space is of high dimension, these mHL descriptions can be more
tractable than those involving characters. Importantly, since the A series modified Hall
Littlewood functions match the Coulomb branches of T'(SU(N)) quiver theories with ex-
ternal charges, these decompositions also highlight new dualities and other relationships
between the Higgs and Coulomb branch constructions of RSIMS and other quiver theories.
For example, we identify in table 26 how certain families of groups, whose RSIMS are
given by star shaped Coulomb branch quiver theories, bear similar relationships to their
T(SU(N)) building blocks.

We anticipate that the multiple methods of analysing the Hilbert series of RSIMS
developed herein can be applied to the moduli spaces of a wide range of SUSY quiver
theories. These include moduli spaces associated with nilpotent orbits of Lie Groups,'
which appear within SUGRA theories, star shaped quiver theories and, in due course,
multiple instanton theories, whose moduli spaces, while known in principle, so far lack a
suitable basis for their simple expansion.

A construction of the Hilbert series for any number of instantons with G taken as
SU(N) was given in [7, 8]. It was subsequently shown [5, 9] how such character expansions
of instanton moduli spaces can be constructed on the Higgs branches of particular N = 2
SUSY quiver gauge theories, not just for SU(NV), but for any Classical symmetry group. In
all cases, the RSIMS correspond to fields transforming as highest weight symmetrisations

IThe RSIMS series studied herein constitute minimal nilpotent orbits.



of the adjoint representation of GG. The details of the quiver theory constructions required
to yield these character expansions differ according to the symmetry group. We give a brief
review of these in section 6.

We follow the literature [5, 9, 10] in taking the property of transforming in a sym-
metrisation of the adjoint as the defining characteristic of the reduced moduli space of a
single instanton. Working with this definition, it is in principle a relatively straightforward
exercise to construct a refined Hilbert series (“HS”) for the RSIMS of any group using
plethystic character generating functions. We do this by following a group theoretic analy-
sis that starts from the Weyl Character Formula [10, 11]. In section 2, we set out the general
methodology and give the plethystic character generating functions for low rank Classical
groups and for G2 and Fj. The results correspond to those obtained by following [12].
This approach is naturally agnostic with respect to any explicit field construction for the
instanton moduli spaces, but provides useful insight into their group-theoretic structure.

More recently, a completely different approach to the construction of instanton moduli
spaces has been developed. This draws upon early work on the GNO lattice [13], as well as
more recent developments in N = 4 quiver theory [14-17]. Specifically, the approach in [18]
uses the Dynkin diagram of the extended (or untwisted affine) Lie algebra corresponding
to the instanton symmetry group G to specify a Coulomb branch quiver theory. Initially
formulated for instanton moduli spaces of simply laced ADE symmetry groups [19], the
construction has been extended to non simply laced BCFG groups [20]. There are interest-
ing relationships between these Coulomb branch quiver theories and those for T'(SU(N)),
as will be discussed.

In section 3, as a useful preliminary, we summarise the relationship between Lie al-
gebras and their affine counterparts. We also set out the Coulomb branch quiver theory
methodology for constructing RSIMS by mapping monopole charges from the GNO lattice
of the affine Dynkin diagram of G to the root lattice of G. For SU(2), SU(3), SO(5) and G,
we demonstrate the analytic equivalence of this Coulomb branch monopole construction
to the RSIMS obtained from the character generating functions set out in section 2. It
follows that these Coulomb branch constructions are also equivalent to the Higgs branch
constructions set out in section 6. These are examples of 3d mirror symmetry between
the Coulomb branches of one class of SUSY gauge theories and the Higgs branches of a
different class of SUSY gauge theories [19].

While the Higgs branch constructions draw upon the basic irreducible representations
(“irreps”), such as fundamentals, vectors and spinors, of G, the Coulomb branch con-
structions draw directly upon the root system of G. Further types of RSIMS construction
draw upon the characters or modified Hall-Littlewood (“mHL”) polynomials of semi-simple
subgroups of G, which can be identified from extended Dynkin diagrams. We list in ta-
ble 1 these different approaches to RSIMS construction, indicating the groups for which
the various constructions are known. The notable gap is the absence of a Higgs branch
construction for Exceptional groups.

The mHL polynomials for SU(NN) are equivalent (up to a normalisation factor) to the
Hilbert series generated by T'(SU(N)) quiver theories. Constructions out of mHL poly-
nomials, guided by a string theoretic analysis of M5 branes wrapping spheres with three



Type of RSIMS Construction Section Groups
Character Generating Function 2 ABCDEFG
Higgs Branch 6 ABCD
Coulomb Branch 3 ABCDEFG
Subgroup Representations 4 ABCDEFG
modified Hall-Littlewood Polynomials 5 ABCDEFG
Table 1. Types of RSIMS construction.
Generating Function g™ (coordinates)
HWG GO (t 4, m;)
Character ggroup (mi, x;)
Refined HS (CSA coordinates) GO (14, 2;)
Refined HS (roots) GO (4, ;)
Unrefined HS (distinct counting) GO (¢ 4)
Unrefined HS glroup (¢)

Table 2. Types of generating function.

punctures, are known for Eg, F; and Fg instantons [6]. We show in section 5 how to use the
orthogonality and completeness properties of these mHL polynomials to deconstruct the
RSIMS of any Classical or Exceptional group into a sum of mHL polynomials, or equiva-
lently, how to construct any RSIMS out of some combination of T'(SU(N)) quiver theories.

We do not analyse the moduli spaces of multiple instanton theories herein. While
progress has been made on these moduli spaces [9, 10, 20], they do not have an equally
simple description in terms of the representation theory of their constituent groups due to
mixing effects between the instanton and global symmetry groups. We comment on the
dualities and other relationships between the various types of RSIMS construction in the
concluding section.

Notation and terminology. We freely use the terminology and concepts of the Plethys-
tics Program, including the Plethystic Exponential (“PE”), its inverse, the Plethystic
Logarithm (“PL”), the Fermionic Plethystic Exponential (“PEF”) and, its inverse, the
Fermionic Plethystic Logarithm(“PFL"”). The reader is referred to [21] or [2] for a sum-
mary. Where no ambiguity arises, we may refer to RSIMS simply as instantons.

We present the characters of groups either in the generic form X,y or, more specifi-
cally, using Dynkin labels such as [n1, ..., n]Group, where r is the rank of the group (drop-
ping subscripts if no ambiguities arise). We may refer to series, such as 1+ f+ f2+..., by
their generating functions 1/ (1 — f). We rely on the use of distinct coordinates/variables
to help distinguish the different types of generating function, as indicated in table 2.

These different types of generating function are related and can be considered as a
hierarchy in which the highest weight generating functions, character and refined HS gen-



erating functions fully encode the group theoretic information. We label unimodular Cartan
subalgebra (“CSA”) coordinates for weights within characters by x or y, using subscripts
when necessary. We label simple root coordinates by z;, where ¢ ranges from 1 to rank r.
We generally label field counting variables with ¢. Depending on the constructions used
for RSIMS, they appear enumerated either by ¢ or ¢? - the moduli spaces are the same.
Finally, we often deploy highest weight notation [2], which uses fugacities to track highest
weight Dynkin labels, and describes the structure of a Hilbert series in terms of the highest
weights of its consituent irreps. We typically denote such Dynkin label counting variables
for representations based on characters with m; and those for Hall-Littlewood polynomials
with h;, although we may also use other letters, where this is helpful. We define these
counting variable to have a complex modulus of less than unity and follow established
practice in referring to them as “fugacities”, along with the monomials formed from the
products of CSA coordinates.

2 RSIMS from character generating functions

A reduced single instanton moduli space consists of highest weight symmetrisations of
the adjoint representation [5]. This comprises the subsequence of irreps generated by
symmetrisations of the adjoint, whose highest weights have the longest root length. They
are distinguished by having Dynkin labels that are a non-negative integer multiple of those
of the adjoint. We are therefore seeking to construct class functions, whether expressed as
infinite sums, or as rational quotients of polynomials, that generate the series, expanded

in terms of CSA coordinates:
[oe)

ggstanton (t7 ZCZ) = Z [7191, s >n07’]tna (21)

n=0
where [0y, ..., 60,] are the Dynkin labels for the highest weight of the adjoint representation
6. We can express such a series using HWG notation [2], which results from mapping the
characters in the series to fugacities for highest weight Dynkin labels. Using the Dynkin
label fugacities {my,...,m,} and taking the Dynkin labels of the highest weight of the
adjoint representation as [0y, ..., 60,], the instanton series can equivalently be expressed in
terms of monomials as:

o0
G G _ 0 0y
Yinstanton (t7 xl) < Yinstanton (t7 my,..., mT) = Z m? .. T)’L;L "
n=0 (22)
=PE [m?l e mfﬁt} .
Obtaining a generating function for (2.1) is not straightforward, since a symmetrisations of

the adjoint just using the PE function invariably give rise to many representations besides
the required series:

PE([61,....60,] t] =>  Sym™[01,...,6,]t"
0 (2.3)
= Z [nO1,...,n0,]t" + ... [other irreps].
n=0



Group Adjoint PL[ggE[adj 1 (t,m;)]
A1 =B =0y 2] t2 +m%t
2+ 13 4+ m13t3 + mp?t3
AQ [17 1] ' ?
+mimat + mimat? — my3me3t6
2 4 44 2 242 2
By [0,2] t +2t3+ i tTl ' +2mz4t8
+mo®t® + mimo“t®T — mp*mao™t
CQ [2,0] As By with mq < mo
D, [2,0] & [0, 2] 212 + m3t + mit

Table 3. HWGs for PE of adjoint for low rank classical groups.

Thus, for SU(2), character expansion yields the result:
PE[[2]t] = 1 4 [2]t + > + [4] > + [2] 3 + [6] £ + ...

[e.9]

= ) [2ng]emtee

ni,n2=0
) 0o (2.4)
= o Z:O [2n]t"

1 su@)
- (1 _ t2)ginstanton (t, xz) .

We can summarise this series most efficiently using HWG notation:
PE[[2]t] & 14 m?t + 2 + m*? + m*t> + m®3 4. ..
=1/(1—-t3/(1 —m?*) (2.5)
= PE[t* + m?t].
Using HWG notation, we set out in table 3 the results of such a symmetrisation exercise

for a selection of low rank groups. Returning to our SU(2) example, we can read off the

relations:
PE[[2]t] & PE [t? + m?t]
1 2
1 SU(2
= (1 _ t2)ginst(ar)1ton (t’ m) .

(2.6)

In this case, a simple rearrangement of (2.4) or (2.6) gives us the generating function we
seek, so that:
SU
go® (ta) = (1—12) PE[[2)4. (2.7)

instanton
This ansatz generalises to RSIMS series associated with any group, with the important pro-
viso that the pre-factor to the PE term is generally a non-trivial class function transforming
in some combination of irreps, rather than just a polynomial in the fugacity t:

gicristanton (t7 xl) = ‘Pigstanton [X(‘TZ)7 t] PE [Qt] . (28)



The class function Pmstam(nn

the quiver gauge theory constructions described in later sections. For groups where the

[X(x;),t] can be found by a variety of routes, including from

adjoint combines one or more basic irreps (i.e. has Dynkin labels equal to one or zero only),
the RSIMS generating function can also be obtained by simplifying a character generating
function; this is the route that has been taken here for Gs,? and for Fj.

To elaborate on this method, we can, as shown in [2], obtain a generating function
for the characters X'(z;) of any representation of a group G from the Weyl Character
Formula as:

a2 detlwl [T ¢ _l;nj %ij (2.9)

9% (mi, ;) =
z Ha€<1>+ wEW j

where the Weyl vector is = [[; #i = [[,ca /2 and the m; are Dynkin label fugacities.
This generating function specialises to the RSIMS series as:

Wi
Z det [w HJ— (2.10)

t,x;) =
Z) 1 —t HZ xiwijej

Yinstanton ( T Hae<1>+
The Weyl group matrices required for calculations can be obtained from Mathematica
add-on programs such as LieArt [22].

An equivalent formula for the generating functions of RSIMS is provided by [10, 12].
This method expresses (2.10) purely in terms of roots and their inner products, thereby
avoiding the need for explicit determination of the full Weyl group of matrices.

Since the highest weight 6 of the adjoint representation is a longest root, and since
root length is invariant under Weyl group reflections, the action of elements w € W of
the Weyl group, § — w6, can be used to decompose the Weyl group into a subgroup
Wo = {wo} = {w : wh = 0}, which leaves 0 invariant, and its cosets {w,} = {w : w0 = 7},
where 7y are the long roots. By choosing a representative w, from each coset, we can write
any Weyl group element as w = w,wyp, for some element of W.

Under such a decomposition, the subgroup Wy is the Weyl group of the Lie algebra
Gy C G, that is determined by the maximal subset of the simple roots of G that are not
linked to the extended (or affine) node of the Dynkin diagram for G (see later). The simple
roots of G have the property of being orthogonal to the (highest weight of the) adjoint of
G. These Weyl group decompositions are described in table 4.

Using such a decomposition, we can rewrite (2.10) as:

det [w-]
G ) — Y w wo
Ginstanton (L Ti) = E -2z H e<1>+ =y E det [wo) I |;U v . (2.11)
’YE@long wOEWO

By drawing on Weyl’s identity [23], which can be applied equally to W and to Wjy:

Z det[w wa” = H (xa/Q —afa/Q), (2.12)

weWw acd+

2The G9 instanton generating function has also been calculated using dimensional analysis [5].
%based on [12], corrected for the C series.



G (W [Prong| | [Wol = [W]/|Piong] Go

Ay | (n+1D)!| n(n+1) (n—1)! Ap_o
B2 | 2"l | 2n(n—1) 2=l (p —2)! Ay X B

C, 27! 2n 21 (p —1)! Cr_1
Dp>y4 | 277! | 2n(n—1) 2"=2 (n — 2)! Ay X Dp_o

Eg 72.6! 72 6! As

E; 72.8! 126 2°.6! Dy

Eg | 192.10! 240 72.8! E;

Fy 1152 24 23.3! Cs

G 12 6 2! A

Table 4. Weyl group decomposition by action on adjoint.

and by following the group theoretic calculations in [10, 12], we can reduce (2.11) to a
general result for an RSIMS. This can be written most concisely as:

1
(1= (1~ 2 ) [ocaamt (1 — @)

ggstanton (tv xi) = Z (213)

’YE(I)long

As previously, the terms 7 and x® in (2.13) represent monomials in CSA coordinates and
(cr,7y) is the inner product that selects the required subsets of the roots. It follows from
the form of (2.13), in which ¢ appears coupled to long roots only, that the dimension of
the refined RSIMS is given by the number of long roots.

The class functions P&

stanton Call be separated out, once the various generating func-

tions have been calculated using either (2.10) or (2.13), and we tabulate these in tables 5
and 6 for low rank Classical and Exceptional groups.

The numerator class functions PG, . for A3, Bs, C3, D3, Dy and Fj are some-
what lengthy and are given in appendix A. The isomorphisms By = (5 and As = D3 are
apparent under interchange of Dynkin labels and their fugacities. All the Pifstanton class
functions take a particular form when viewed as polynomials in ¢, being palindromic (or
anti-palindromic) with some maximum degree d and with the absolute values of the coef-
ficients of t* and t%~* being equal. Also, for simple groups, the coefficient of t° is always

equal to unity and that of ¢ always vanishes.

; G
The class functions Pl oo

itly,* although it remains feasible to use (2.13) in unfactored form. It is a straightforward

for the E series groups have yet to be calculated explic-

matter to verify that the Taylor expansions of all these generating functions in powers of ¢
yield the characters of the reduced single instanton moduli spaces in accordance with (2.1).

4Owing to memory constraints in Mathematica.



RSIMS
Series ‘Pigstanton
HWG

Ay m?t (1—¢%)[0,0] PE[[2] ¢]

42 44 6
Ao | mumot (1 ottt [(1’7(1)]) PE [[1,1]¢]

PE

—t2 213 — 1 [1,1]
As mimst pAs PE[[1,0,1]{]

instanton

1—t2—104+¢% [0,0]
-2t + 45 [0,2]
By m3t —12 4 £3 415 — 15 [1,0] PE [[0, 2] {]
-2t + 45 [1,2]
—t2 + 13 445 — 15 [2,0]

Bs mat pbs PE[[0,1,0] ]

instanton

[0, 0]
[0, 1]
Cy my %t —2 43 +15—15 (0,2 PE[[2,0]1]
[2,0]
[2,1]

Cy m2t pCs PE[[2,0,0] ]

instanton
2 —2t% — 23 + 25 [0, 0]
Dy | mit+m3t —t+ 212 —t* [0,2] PE[[2,0]¢ + [0,2] ]
—t+ 12483 —t* [2,0]

D momst pbs PE[[0,1,1] ]

instanton

Dy mat phs PE[[0,1,0,0]¢]

instanton

Table 5. RSIMS generating functions for low rank classical groups.

3 RSIMS from Coulomb branches of extended Dynkin diagrams

3.1 Introduction

The monopole construction of RSIMS in [18, 20], also referred to as a Coulomb branch
construction of RSIMS, draws upon a lattice determined by the simple roots and dual
Coxeter labels of G.5 It exploits an intriguing and highly non-trivial relationship between
G and a unitary product group defined by the dual Coxeter labels of GG, and inherits further
structure from the extended Dynkin diagram of G.°

The monopole construction is built directly upon the root space of the Lie algebra and
assembles RSIMS out of sums of monomials in simple roots. For A series constructions,
the simple roots are each associated with a U(1) symmetry group. The algorithm used in
the general monopole construction works, however, with U(NN) rather than U(1) symmetry

This lattice is often referred to as a GNO lattice [13].
SFor simply laced groups, the extended Dynkin diagram of G differs from the extended Dynkin diagram
of the GNO dual of G.

~10 -



| RSIMS B
Series Pinstanton PE
HWG
Eg megt to be calculated PE[[0,0,0,0,0,1]¢]
E- myt to be calculated PE[[1,0,0,0,0,0,0]¢]
Eg mrt to be calculated PE[[0,0,0,0,0,0,1,0]¢]
Fy mit P PE[[1,0,0,0] ]
1—#2 -9+ [0,0]
—t4 5+ 5 —#70,1]
2+ 3 4+48—120,2]
’ PE|[1
Go mat L5445 4T [0.3] E[[1,0]¢]
3=t =7+ 48 [1,0]
3 -t =T+ 48 [1,1]

Table 6. RSIMS generating functions for exceptional groups.

groups. A U(N) group is assigned to each simple root of an algebra, having its rank set by
the dual Coxeter label a; of the simple root . Thus, any Lie group of rank r is associated
with a unitary product group [];_; ®U(a;). The monopole construction also counts root
monomials according to a precise definition of conformal dimension that depends upon
the linking pattern of the extended (or untwisted affine) Dynkin diagram [24] of the Lie
algebra, as well as upon root length information encoded in the Cartan matrix, as will be
elaborated.

3.2 Affine Lie algebras

It is useful to give a brief summary of the relationship between a simple Lie algebra and
its related untwisted affine Lie algebra. For further detail the reader is referred to [11]. An
affine Lie algebra is formed by generalising a Cartan matrix A% through the addition of
an extra row and column, corresponding to an extra simple root and an extra eigenvalue
operator, or, equivalently, to adding an extra node to the Dynkin diagram. Specifically, a
Cartan matrix A%, with entries 2 on the diagonal, is modified to form an untwisted affine
Cartan matrix according to the schema:

affine AY = AY [col] (3.1)
— [adjoint] 2 )’

where the column vector [col] is obtained by transposing the Dynkin labels of the adjoint
representation and replacing all non-zero entries with —1 or —2 (in the case of A;, for
example), such that the affine Cartan matrix acquires a zero determinant and becomes
degenerate.” For reference, we tabulate in figures 1 and 2 the extended (or untwisted
affine) Dynkin diagrams for the simple Classical and Exceptional groups respectively [11].

"There is also a class of twisted affine Lie algebras [11], whose Cartan matrices are similarly degenerate,
but in which the extra node is connected to a representation other than the adjoint. The Dynkin diagrams
of these twisted affine Lie algebras do not correspond to canonical extended Dynkin diagrams [24] and are
not studied herein.

- 11 -
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Figure 1. Extended Dynkin diagrams for simple classical groups up to rank 5. Blue nodes denote
long roots with length 2. Red nodes denote short roots. A black node denotes the long root added
in the affine construction. The dual Coxeter labels giving the U(N) symmetry for each node are

also shown.

Series & Rank Exceptional Groups

2 0O 00
- 00000

E6

. ?
. ¢

Figure 2. Extended Dynkin diagrams for exceptional groups. Blue nodes denote long roots with
length 2. Red nodes denote short roots. A black node denotes the long root added in the affine
construction. The dual Coxeter labels giving the U(NN) symmetry for each node are also shown.

The defining feature of an affine Lie algebra is that the affine Cartan matrix is de-
generate positive semidefinite, having a zero determinant and one zero eigenvalue; this in
turn means that the additional root and eigenvalue operators are linear combinations of
the other operators. Naturally, the rank is unchanged. The linear relationship between
the operators is encapsulated in the Coxeter labels a; and dual Coxeter labels a; of each
node. These labels are respectively the left and right eigenvectors with zero eigenvalue of
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the affine Cartan matrix: . .
> @A =0=) " AVa;. (3.2)
i=0 =0

The two types of Coxeter label differ according to the length of the simple root to which
they refer: the ratio between the dual Coxeter label and the Coxeter label of a root is equal
to the ratio of its length to the length of the longest root [11].

The Cartan matrix for an affine Lie algebra can be reduced to that for a regular Lie
algebra by the elimination of a row and its corresponding column (not necessarily the row
and column that were added to form the affine Cartan matrix). An important feature
of the construction is that both the dual Coxeter and Coxeter labels of other nodes are
invariant under the addition or subtraction of untwisted affine nodes.

The eigenvector of the Cartan matrix with zero eigenvalue given by the dual Coxeter
labels has important properties: it defines a linear relationship between the eigenvalue
operators H7 and a central charge C, which is invariant under the action of the root (i.e.
raising/lowering) operators E* [11]:

C =Y Hia, (3.3)
j7=0

[C,EL] = 0. (3.4)

In the case where the central charge C is zero, the untwisted affine Lie algebra is equivalent
to the original Lie algebra, with some degeneracy/redundancy amongst operators and
Dynkin labels of irreps.® For the purpose of the monopole construction of RSIMS, we
work with a central charge of zero and simply make use of the linking pattern of the
extended Dynkin diagram, as encoded in the untwisted affine Cartan matrix, and its dual
Coxeter labels.

3.3 Coulomb branch or monopole construction

Having covered some preliminaries, we can now give the general monopole construction of
RSIMS, which is valid for all simple Classical and Exceptional Lie groups. This follows the
schema, refined from [18]:

1
Jinstanton (t7 Z) = n§:0 [ad.] n] t - 21 ] (1 tdi,j(Q)) ) (35)

The formula makes use of simplifying notation, which requires explication to give an un-
ambiguous construction:

1. The variable t is a fugacity for the Dynkin labels of the adjoint representation.

2. The label z is a collective coordinate for a monomial zj ...z, in the simple roots of
the Lie algebra.

8Other constructions are also studied, such the addition of derivations to the affine Lie algebra [11] to
realise an algebra with a non-zero central charge.
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3. The rank of the U(N;) symmetry group of a simple root is given by the dual Coxeter
label a; of its node on the Dynkin diagram.

4. The label ¢ is a collective coordinate for the monopole fluxes (or “GNO charges”)
Ha1,--oan s {ara, - a4 N, }}, arranged into subsets for each U(1V;) symme-
try group.

5. The term 29 combines the collective z and ¢ coordinates into overall charges for each

Ny
r Z]’:l qi,j

monomial in the roots and is expanded as 2¢ = [[;_; z;

6. The limits of summation for the monopole charges are 0o > ¢;1 > ... q;j > ... qiN, >
—oo for i = 1,...7. (In the case of U(1) symmetry it is convenient to drop the
redundant second index on g¢; ;.)

7. The terms d; ; give the degrees of the Casimirs of the residual U(XV;) symmetries that
remain for each root under each assignment of ¢ charges (explained below).

8. The term A (q) gives the conformal dimension (explained below) associated with each
assignment of ¢ charges.

The determination of residual symmetries for each root under each assignment of monopole
charges follows [18]. We construct a partition of INV; for each root, which counts how many
of the charges ¢; ; are equal, such that A(¢g;) = (Ai1,..., i n;), where Zjvzll Xij = N; and
Aij > Aij+1. The terms A; j in the partition give the ranks of the residual U(/N) symmetries
associated with each root, so that it is a straightforward matter to compound the terms in
the degrees of Casimirs, recalling that a U(IV) group has Casimirs of degrees 1 through N:

(S
Il Q
Z

1,J

1 1
— = — ) (3.6)
H (1 _ tdm(q)) 225‘11) (1 _ tk)

[N
I
-

So, for example, if ¢; j = ¢; 1 for all j,k, then {d;1,...d; n,} = {1,...N;} and if ¢; ; # ¢;
for all j, k, then {di,h ces di,Ni} = {1, . 1}

Thus far, all the group theoretic parameters involved in the monopole construction of
the reduced moduli spaces of single instantons have simply been those of the Classical or
Exceptional Lie group. The calculation of conformal dimension also draws upon the linking
pattern of the extended Dynkin diagram, or, equivalently, the extended Cartan matrix A;;.
The conformal dimension is given by the formula:

T s

1
A=z D Dlmdy - gGadil | =D D i —ainl BT
J>120 m,n i=1 m>n
Affine A;;#0

In the conformal dimension formula, the extra affine root, labelled by ¢ = 0 is typically
assigned a U(1) monopole charge gy of zero. Nonetheless, it still plays a role in the first
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term in (3.7) in accordance with the linking pattern in the extended A;; Cartan matrix.
There are other possible gauge choices, as will be discussed.

The above procedure gives an algorithm for the monopole construction of RSIMS for
any simple Classical or Exceptional group, including those of the non-simply laced BCFG
series, in addition to the ADE series. However, in order for the formulae to be valid for
non-simply laced groups, it is essential to use the dual Coxeter labels associated with the
nodes of the Dynkin diagram [20]; it is also essential that differences in root lengths are
treated using the extended Cartan matrix, as implemented in (3.7).

The character of the adjoint representation of any group is given by the sum of its
roots, which have as their basis a set of simple roots, plus the rank of the group. The root
space is in turn spanned by the monomials z¢ = 2% ... 2,7, used in (3.5). An RSIMS
construction using the root space therefore requires the collection of the root monomials
into representations, at the correct positive and negative integer powers and multiplicities.
As set out above, central roles are played by the fugacity ¢, in conjunction with its exponent,
the conformal dimension A(q), and the U(N) symmetry groups associated with the dual
Coxeter labels of the roots.

We can obtain further insight into the mechanisms behind the workings of the monopole
construction by studying the structure of the root space of the adjoint representation and
its symmetrisations, and we do this in the following sections.

The conformal dimension, as defined, has a number of important properties. Firstly,
as we illustrate below, conformal dimension is invariant under the Weyl group of reflections
of the root space and so effects a foliation of a root space into sets of dominant weights
and their associated orbits. Secondly, this foliation requires that the conformal dimension
is a non-negative integer.” This requirement of integer shifts around the root space driven
by the ¢ charges is satisfied as a result of the balanced property of all the extended Dynkin
diagrams, shown in figures 1 and 2. A quiver is defined as balanced [15], if the U(NN) charge
on each node obeys the rule:

1
Ni:5 dz t |Aij| Ny, (3.8)
. adjacen
Je{ njodes

where the weighting factors |A;;| are taken from the Cartan matrix as before. Under this
condition, the unit displacement of any one of the ¢ charges, taking account of all the links
in (3.7), always leads to a unit (or zero) shift in conformal dimension.

We can obtain an expression for the unrefined moduli space or Hilbert series associated
with the monopole construction g&_.. . (1,t) by the simple expedient of setting the root
space coordinates to unity. Then, since the number of poles contributed by each U(NV;)
group depends only on rank N;, and is invariant under the gauge group breaking by the

We note in passing that [15] classifies theories as “good”, “ugly” or “bad”, depending on whether
conformal dimension is 1, 1/2 or 0. In the case of the RSIMS construction, conformal dimension ranges
over all non-negative integer values.

~15 —



monopole flux ¢, the dimension of this moduli space can be expanded as:

> 8@ 11 (12)] . (3.9)

q ,J

Dim [ggstanton (17 t) ] = Dim + Dim

The dimension of each of the r.h.s. terms is determined by the sum of the ranks of the
U(NV;) symmetry groups associated with the nodes of the Dynkin diagram, that is to say,
the sum of the dual Coxeter labels, in both cases. Hence, the dimension of the unrefined
moduli space generated by the monopole construction is equal to twice the sum of the dual
Coxter labels of the group. As noted in [2], the dimension of an RSIMS is equal to twice
the sum of the dual Coxeter labels of the group.'® This provides a non-trivial consistency
check on the monopole construction.

While we cannot, at this time, present a general analytic proof of the equivalence
between monopole constructions of RSIMS and those based on character generating func-
tions, we can, in principle, demonstrate the analytic equivalence on a case by case basis;
we do this below for Aj, Ao and Bs. We can also check that expansion of each monopole
construction generates the RSIMS series of characters (which we have done to as high an
order as is practicable for all the Classical and Exceptional groups).

3.4 Construction for simply laced groups

We now set out how the ADE series RSIMS constructions emerge from the general con-
struction given by (3.5), (3.6) and (3.7). The treatment largely follows [20]. We then
analyse the A series, showing the formal equivalence of monopole instanton constructions
for A1 and As to ones based on character generating functions, and using the root structure
of As to illustrate the group theoretic properties of the conformal dimension construct.

3.4.1 A series

The monopole construction for A series instantons of rank 2 and above is based on the
extended Cartan matrix, defined in accordance with the schema (3.1), and the dual Coxter
labels of the simple roots (shown as a column vector), where we have labelled the affine

root by 2g:
21 2 -1 ... 0 0 -11
29 —1 2 - 0 0 0 1
. (3.10)
Zr—1 0 0 - 2 -1 0 1
Zr 0 0 .o —1 2 —-111
20 -1 0 - 0 -1 2 1
For A1, the extended Cartan matrix and dual Coxeter labels are:
2 -2 11
. : (3.11)
zo | —2 2 1

10T his corresponds to the relationship between the dimension of a reduced single instanton moduli space
and the quaternionic dual Coxter number established in [5], recalling that the (dual) Coxeter number of a
Lie algebra is given by the sum of the (dual) Coxeter labels plus 1.
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Applying the prescription set out in (3.5), (3.6) and (3.7), we obtain the equation for an
A series RSIMS:

[e.e]

1
Ay _ E r A
Jinstanton — (1— t)T 21Tz Tt (q)’ (3.12)
q1;---qr=—

where
r—1
A(g) = (Iqﬂ +) g — gl + Iqr|)~ (3.13)
=1

The resulting monopole constructions for A; and As can be rearranged into the equivalent
character generating functions. For A, where we are working with root space vectors ex-
pressed as z; in the basis of simple roots, rather than as 22 in the basis of CSA coordinates,

we have:
gll?létanton = Z qut‘ql
lh*—OO
( ST + Z 2y — )
q1=0 q1=0 (3'14)
_ 1—12
(1—=t) (1 —21t) (1 —t/21)
= (1-¢*)PE[[2]¢].

This yields the instanton character generating function for A; given in table 5.
For Ay the rearrangement of the series, which follows the boundaries of the Weyl

chambers of the group, is more intricate:

[e.9]

A _ 1 a1 92,45 (g1 |+lq1—q2 |+
glnitanton - (1 —t)2 Z 211222t2(‘q1| |91 —g2|+g2])
q1,42=—00
S oS (A M P ) e
| T (e sy ‘“z;“)t‘h
(1—1t)? — =0 (2" —i—zl‘h—l—z’”—i-z ‘h)t‘n
+ 2 =0 2g2=0 (Zl 25"+ 2 ) tlate) 41

_ (1—t2—t*415)— (t2—2t3—|—t4) (Zl+22+Z122+2;1+251+2;1251 + 2)
T (1= 21t) (1= 29t) (1 — 2129t) (1- zflt) (1- 2yt ) (1 =27 Lag ) (1—1t)?

= (1 -2 —t* +1%)[0,0] — (£* — 263 + ¢*) [1,1]) PE[[1, 1] ¢].
(3.15)
Once again, we obtain the instanton character generating function for A, as given in table 5.
Some insight into the structure of the monopole formula can be obtained by reversing
the above procedure and seeking to derive the monopole constructions from the plethys-
tic generating functions for RSIMS identified in section 2. For A;, summing (2.13), the
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derivation proceeds as below:
Ay 1 1

Yinstanton — (1 _ Z) (1 _ é) + (1 _ %) (1 _ tz)

0o o
— Z Z t(zzb—a + taza—b

a=0 b=0 a=0 b=0

00 oo
_ b+q .9 b—q.q
SO ey S o o
q=—00 b=max(0,—q) q=—00 b=max(0,q)
1 0o
= (tmaX(Oﬁ—q)Jrq + tmaX(O,q)—q> 24
1-t¢
g=—00

:11_t< S gl 3 ) .

qg=—00 q=—00 q=—00

The key steps in the derivation include (i) Taylor expansion of the summand associated
with each long root, (ii) rearrangement of the limits of summation, such that the summands
share the same simple root fugacities 2z and the charges ¢ range from —oo to oo, (iii)
implementation of sums with the respect to the charges that are not carried by the simple
roots and (iv) simplification of the resulting piecewise functions. When boiling down the
latter it is useful to draw on identities that follow from the complex unimodular nature of
the root space coordinates.

While we should in principle be able to find such derivations for higher rank groups,
the simplification of the piecewise functions becomes increasingly non-trivial. Thus, for
SU(3), we have:

1
A
gmztanton = Z (1 1) (1 1

o0
D3PI S e

Weyl q1=—00 g2=—00 c:max((),fqg) b:maX(O,fchl)

1 t Z Z Z Z Ztln gztmax(o,c+q1)

Weyl q1=—00Qq2=—00 c= max(O —q2)

a+q1—q2)

21 29

Weyl q1=—00 g2=—00 a=0

1_t22 Z Z lehzgz

Weyl g1=—00 g2=—00

X (tmaX(O’QI’Q1_q2) — (1 — t) min (0, max (q1,q1 — q2)))

= — Z Z Z a1 fl2tm&X (0,q1,q1— q2) (3.17)

Weyl g1=—00 g2=—00
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where we have used an identity, which is valid for the root coordinates:

Z Z {282 min (0, max (¢1, ¢1 — ¢2)) = 0. (3.18)

q1=—00 g2=—00
We continue by carrying out the Weyl reflections to obtain:

Aa Q1 ‘I2 max(0,—q1,92—q1) | ymax(0,q1,q1—q2) | ymax(0,—q2,—q1)
(e Z Z 2128 (¢ +t +t

glnstanton
q1=—0 q2=—0
+ pmax(0,-¢2,q1-92) 4 $max(0,92,42—q1) 4 tmaX(O,Q%%))

T Z Z 0 (2+t‘q1|+t|q2|+t|ql @l | ¢3la—al+zlalts |q2|>

g1=—00Qg2=—00

= — Z Z 2002 (tQ\th a2l+3la|+2 \qzl)

q1=—00 g2=—00
(3.19)
where we have rearranged the parts of the six piecewise functions and then used unimodular
coordinate identities to eliminate five of the resulting functions:

o0 o0 o
Soor=0= > > apega-el (3.20)

q1=— g1=—00 g2=—00
A key feature of the monopole construction is the manner in which conformal dimension
foliates the root space into sets of Weyl group orbits that correspond to the adjoint and
its symmetrisations. This is shown in figure 3 for the first few orbits of As, where we label
states in terms of their root space coordinates, rather than their weight space coordinates
(Dynkin labels).

3.4.2 D series

The monopole construction for D series RSIMS of rank 4 and above is based on the extended
Cartan matrix, defined in accordance with the schema (3.1), and the dual Coxter labels of
the simple roots (shown as a column vector), where we have labelled the affine simple root

by zo:
21 2 -1 ... 0 0 0 0 |1
z | -1 2 ... 0 0 0 —-112
zZr—2 | 0 0 2 -1 -1 0 |2} (3.21)
Zr—1 | O 0 -1 2 0 0 |1
Zr 0 o ... =1 0 2 0 |1
20 0O -1 ... O 0 0 2 |1

Applying the prescription set out in (3.5), (3.6) and (3.7), we obtain the equation for a D
series RSIMS of rank 4 or greater:

o0 [e.9]

D, _ § ' § ’ Q1 ,_q2,11492,2 Qr—2,1+qr—2,2 qr—1. qr
Yinstanton 217 %2 ceeZr—2 “r—1 Zr
q1,Gr—1,4r=—00 4j1>4qj2>—00
=152 D Alq)
r—2>35>2 r
X Py (4 (g, t)t=\Y,

(3.22)
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O ® ® ®
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44 -2 0 2 4
21

Figure 3. Root space of As foliated by conformal dimension. The colour sequence corresponds to
conformal dimensions of 0 for (0,0), 1 for the Weyl orbit of (1,1), 2 for the Weyl orbits of (2,2),
(1,2) and (2,1), and 3 for the Weyl orbits of (3,3), (2,3) and (3,2). The adjoint representation is
given by the orbit of (1,1) with conformal dimension 1 plus 2 orbits with conformal dimension 0.

where
— 451 = 45,2 * /(1 - t2)
PP (0.1) = e H{ (3.23)
Sl g Fa2:1/(1—1)
and
1
30 =3 Sl + -+ 55 s
k=245=1 (3.24)

r—2
+ Z G2, — ¢r—1| + Z \Gr—2,i — G| ) = k1 — e
i=1 i=1 k=2

The construction can, in principle, be rearranged into the character generating functions
shown in table 5, similarly to the cases of the A series constructions shown above.

As in the case of the A series, the conformal dimension measure has the effect of foli-
ating the root system into orbits of dominant weights associated with successive multiples
of the adjoint representation.

Also, the gauge choice gg = 0 has alternatives and, indeed, any one of the monopole
charges can be defined to zero, providing the summand is modified to include both z
and go and care is taken over the Py () symmetry factors. For star shaped quivers, such
as Dy, a particularly convenient choice of gauge is g2 2 = 0, and this leads directly to a
decomposition into a symmetric sum over all the representations of four 7'(SU(2)) quiver
theories, as discussed in section 5.
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3.4.3 E series

The monopole construction for Fg instantons is based on an extended Cartan matrix and
dual Coxter labels of the form:

#l2 -1 0 0 0 0 o0]1
»|-1 2 -1 0 0 0 -1]2
| 0 -1 2 -1 0 -1 0 |3
z] 0 0 -1 2 -1 0 0 |2] (3.25)
|0 0 0 -1 2 0 0|1
%x| 0 0 -1 0 0 2 —1|2
%[0 0 0 0 0 -1 2|1

Applying the prescription set out in (3.5), (3.6) and (3.7), we obtain the monopole equation
for an Fjg instanton:

00 [e's)
Eg _
Jinstanton —

q1,45=—00 4j,1295,2>—
7j=2,4,6

o0
E Zlq1 22q2,1+q2,2ZBQ3,1+Q3,2+Q3,3Z4Q4,1+Q4,2z5q5 ZGQ6,1+116,2

g3,124G3,22G3,3>—00

x Py, (a,6) 1),

(3.26)
where
1
PEs (g, t) =
uim (0 = s )
x If [g31 # @32V @31 # q3,3 V @32 # @33, (L +t +1°)]
(3.27)
xIf [g31 # @32 N @31 # @33N @32 # ¢33), (1 +1)]
< J1 ™lgin # g, (1+ 1))
7=2,4,6
and
1 1=2,7=3
A(q) = 2( Sl —aail+ D> D lasy — awil +ZI(J4@ — gs| +Z|q62|)
i=1 k=2,4,6 i,j=1
) , (3.28)
Z |ak,i — an,5| — Z |93, — g3,51-
k=2,4,6i>)>1 i>j>1

We do not give the explicit instanton constructions for E7 and Eg groups; however, these
follow a similar pattern to the Eg construction. The constructions for the ADE series given
above are equivalent to those in [18]. Again, the gauge choice ¢o = 0 has alternatives. For
star shaped quivers, such as Fjg, a particularly convenient choice of gauge is ¢33 = 0, and
this leads directly to a decomposition into a symmetric sum over all the representations of
three T'(SU(3)) quiver theories, as discussed in section 5.
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3.5 Construction for non-simply laced groups
3.5.1 B series

The monopole construction for B series instantons is based on the extended Cartan matrix,
defined in accordance with the schema (3.1), and its dual Coxeter labels, where we have
labelled the affine simple root zy:

21 2 -1 ... 0 0 0 |1
z | -1 2 ... 0 0 —-1|2
zZr—1 | O o ... 2 =2 0 |2
Zr 0 o ... =1 2 0 |1
20 0O -1 ... O 0 2 |1

Applying the prescription set out in (3.5), (3.6) and (3.7), we obtain the monopole equation
for a B series instanton of rank 2 and above:

oo o0
giﬁgtanton = Z Z 21 Z2Q2,1+¢12,2 . erqu71’1+qT71’2qurpg(y'N) (q’ t) tA(Q),
q1,4r=—00 qj,129;522—00
r—12j>2
(3.30)
where :
——
PP (q,1) = [Ti=2 1 (g1 # gj2. (1 +1)] (3.31)
U(N) (1 . t)r(]_ . tg)r—Q
and
1({ & r—2 2
Alq) = 2< > (g — a2l + lgzsl + 120015 — @) + D> D ks — Qe )
=1 k=2i,j=1
(3.32)
=D laks — @l
k=2 i>j

We can extract the monopole construction for By from (3.30), (3.31) and (3.32) and rear-
range it into the character generating function for Bs in table 5:

o0

By _ 1 a1, 4245 (12q1—g2|+la21)
Jinstanton — (1 _ t)2 Z 21" 292t 2

q1,42=—0C

Zf::() 233120 (21D 2982 + 21 N2y~ 92) 101

* ng:o Z;;):?th (217 29% + 21T 297 92) @27 a1)
~ 2= (21912920 + 2y 012y~ 201 ) ¢ 01

— ) oo (21T 2T 2y TV g ®) O Ta2) (3.33)
— D=0 (21T + 2T
=D gy=0 (229 + 27 92) 102
+1
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1—t2 =14+ [0,0]
=2t + 15 [0,2]
= | -2+ 4+ —1°[1,0] | PE[[0,2]¢]. (3.34)
-2t + 45 [1,2]
2,

Similarly to the A series, we can also derive the monopole expression for By RSIMS
from the plethystic formula (2.13). The long roots are given by {z1, 21202, 2171, 21 1272}
and, selecting those Weyl reflections that transform between z; and the other long roots,

we obtain:
Bs

1
Jinstanton — Z (1 _ tzl) (1 — 1/,21) (1 — ZQ) (1 — 1/2’122)

Weyl:®€long
0O 00 00 00

— Z Z taabdcd

Weyl:d€long a=0 b=0 c=0 d=0
o [o.¢] o0 [o.¢]

- Z Z Z Z Z 2,1 202 b+

Weyl:®€long q1=—00 g2=—00 d=max(0,—g2) b=max(0,—d—q1)

o o o
— a 1 5 Z Z Z Zzllhz2q2tmax(07d+Q1,d+q1—q2)

Weyl:®€long g1=—00 g2=—00 d=0

1
=i 2 Sy

Weyl:®€long g1=—00 gg=—00
X (tmaX(O’ql’ql_qZ) — (1 — t) min(0, max(q1,q1 — ¢2)))

1 0 00
= o X 2 X Ao,

Weyl:®€long g1=—00 g2=—00

(3.35)
where we have used an identity, that is valid for unimodular coordinates:
o0
> Z 2" 2§ min(0, max(q1, g1 — g2)) = 0. (3.36)

q1=—x q2=—00
We continue by carrying out the relevant Weyl reflections and rearranging the piecewise
functions to obtain the RSIMS:

B2 — 1 t s E E qu ‘J2 tmaXO —q1,92— Q1)+tmax(07*Q1:lJ1*QQ)

95 instanton

q1=—00 g2=—00 + tmax(0,q1,02—a1) tmaX(Oﬂll"Il_q?))

a-0 — Z Z 201 t2|2q1 P2+ la2| | ¢lar— Q2\+t\q1|+1) (3.37)

qQ1=—00 q2=—00

— E E ququtz\Q(h P@2l+3 |Q2|
(1—1)

qQ1=—00 q2=—00

where we have eliminated piecewise terms using root identities, as before.
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3.5.2 C series

The monopole construction for C series instantons is based on the extended Cartan matrix,
defined in accordance with the schema (3.1), and its dual Coxeter labels, where we have
labelled the affine simple root zg:

21 2 -1 ... 0 0 —-1|1
z | -1 2 ... 0 0 0 |1
zr—1 | O o ... 2 -1 0|1
Zr 0 o ... =2 2 0 |1
zo | —2 0 ... 0 0 2 |1

Applying the prescription set out in (3.5), (3.6) and (3.7), we obtain the monopole equation
for a C series instanton:

Cr A
Jinstanton — 1 —t Z 2112”0 (Q), (339)

q;i=—00
where

r—2

Alg) = <q1| + 3 105 — dial + et - 2%«\) (3.40)
=1

It follows from (3.33), (3.39) and (3.40) that the constructions for By and C5 are isomorphic

under interchange of root labels, as required by consistency.

3.5.3 F4 and G2

The monopole construction for the Fy instanton is based on the extended Cartan matrix,
defined in accordance with the schema (3.1), and its dual Coxeter labels, where we have
labelled the affine simple root zp:

211 2 -1 0 0 -1
| -1 2 =2 0
zz|1 0 -1 2 -1
24 0 0 -1 2
zo| -1 0 0 0

(3.41)

N OO O
— =N W N

Applying the prescription set out in (3.5), (3.6) and (3.7), we obtain the monopole equation
for a F, instanton:

(o] o
Fy

glnstanton = E : § :

4j1245,22-°0 q2,12q2,2242,3>—00
j=1,3

(3.42)

[e.e]

Z + +q2,2+ + Fy A
Zlql,l Q1,2Z2¢I2,1 q2,2 Q2,323¢I3,1 q3,2z4q4PUle)t (q)’

g4=—00
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where
pFs [Tz 5 g1 # g2, 1 +1]

U(N) (a.t) = (1—8)*1 =231 —13)

< If (30,5 ¢ qui # qoj, (14 +1%)] (3.43)

X If 130,71 g = qo,5, (1 + )]

and
1 2 2 3 2
Alg) =5 D il + 0>  (aqri — qol + 12025 — a3al) + D lasa — aal
i=1 i=1 j=1 =1 (3.44)
=Y gk = ar2l = > lgzi — 2,41
k=1,3 i>j

The monopole construction for the G instanton is based on the extended Cartan matrix,
defined in accordance with the schema (3.1), and its dual Coxeter labels, where we have
labelled the affine simple root zg:

n| 2 -3 -1]2
| -1 2 0|1} (3.45)
0| -1 0 2|1

Applying the prescription set out in (3.5), (3.6) and (3.7), we obtain the monopole equation
for a (G5 instanton:

o0 [o¢]
G Gy LA
gingtanton = Z Z 21q1’1+Q17222q2PU(2N)t (Q)a (346)
q1,1>q1,22>—00 q2=—00
where If 911 # qua, (14 1)
Q17 q12, (1L +
P& (g, t) = —= : 3.47
and
12
Alg) =5 > (gl + 131 — qal) = lgr1 — 12 - (3.48)
i=1

We can use the root structures of By, Cy and G5 to illustrate how the monopole construction
combines the Weyl group orbits of dominant weights into irreps that are symmetrisations
of the adjoint representation. Recall we are labelling states in terms of their root space
coordinates in figures 4, 5 and 6, rather than their weight space coordinates (Dynkin labels).

In all cases the RSIMS can be expressed as sums of orbits of dominant weights in the
root lattice (weights in the interior of the positive root space). The conformal dimension
remains constant around each orbit. More than one dominant weight can have the same
conformal dimension. The orbits are combined, at multiplicities determined by the Pg( N)
factors, to give the adjoint representation and its symmetrisations. For all rank 2 groups,
the adjoint is given by the orbits with conformal dimension 1 plus two orbits with conformal
dimension 0. The isomorphism between Bo and (5 is evident upon interchange of simple
roots (and Dynkin labels).
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Figure 4. Root space of By foliated by conformal dimension. The colour sequence corresponds to
conformal dimensions of 0 for (0,0), 1 for the Weyl orbits of (1,2) and (1,1), 2 for the Weyl orbits
of (2,4), (2,3) and (2,2), and 3 for the Weyl orbits of (3,6), (3,5), (3,4) and (3,3). The long root of
the adjoint representation is (1,2).
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Figure 5. Root space of Cs foliated by conformal dimension. The colour sequence corresponds to
conformal dimensions of 0 for (0,0), 1 for the Weyl orbits of (2,1) and (1,1), 2 for the Weyl orbits
of (4,2), (3,2) and (2,2), and 3 for the Weyl orbits of (6,3), (5,3), (4,3) and (3,3). The long root of
the adjoint representation is (2,1).

3.6 Coulomb branch quiver theories

We have analysed these monopole constructions largely from a group theoretic perspective,
however, in the case of the ADE series RSIMS, they correspond to the Coulomb branches of
particular SUSY quiver gauge theories, being N' = 4 superconformal gauge theories in 2+1
dimensions [18]. The Coulomb branches of these theories are HyperKéahler manifolds. The
related brane configurations involve D2 branes against a background of D6 branes [20].
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Figure 6. Root space of G5 foliated by conformal dimension. The colour sequence corresponds to
conformal dimensions of 0 for (0,0), 1 for the Weyl orbits of (2,3) and (1,2), and 2 for the Weyl
orbits of (4,6), (3,6), (3,5) and (2,4). The long root of the adjoint representation is (2,3).

As shown in [20], the BC series RSIMS correspond to quiver gauge theories for brane
configurations which include orientifold planes. (The orientifold planes are required to
ensure that the constructions can reproduce the root systems of the Lie algebras.)

In these theories, the quiver gauge theory is specified by the extended Dynkin diagram,
with the dual Coxeter numbers a; associated to each node, determining the U(V;) gauge
fields carried by the nodes. The zero central charge of the affine Lie algebra corresponds
to an overall gauge invariance condition on the field combinations on the Coulomb branch.
Since the affine root and its Dynkin label are redundant, by virtue of the degeneracy of
the affine Cartan matrix, they can be gauged away, that is to say, we can describe the field
combinations on the Coulomb branch purely by reference to the non-affine roots, combined
into root monomials at some integer powers.

The delicate aspect of the monopole construction lies in the collection of root mono-
mials into characters of representations of the Lie group that are precisely enumerated
by the fugacity t, the exponents of which give the spin of the SU(2)-R global symme-
try. This collection process depends crucially on the R-charges assigned to the BPS bare
monopole operators carrying the GNO charges ¢. In schematic terms, these R-charges or
conformal dimensions are given by application of the following general formula [18] to the

quiver diagram:

A= 5 Y@~ Y @l (3.49)

i=1 p;ER acd
—_———
contribution of N=4  contribution of N=4
hyper multiplets vector multiplets

The first part of (3.49) is the R-charge of the A’ = 4 hyper multiplets. The second part is
the R-charge of the ' = 4 vector multiplets. It is instructive to compare (3.49) with (3.7).

We can see that the first term in (3.7) shows precisely how the affine root is connected
to other roots in the summation over matter fields. The contributions to the R-charge are
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from fields linking adjacent nodes in the quiver diagram and so correspond to bifundamental
chiral operators within the N' = 4 hypermultiplets.

The second term on the r.h.s. of (3.49), which is described as a sum over the positive
root space, has been restated in (3.7) in terms of the ¢ charges. The charges ¢, which can
be positive or negative, are assigned to the simple roots corresponding to the nodes of the
Dynkin or quiver diagram. Each node in the diagram carries a U(N) gauge field associated
with the A/ = 4 vector multiplets. The symmetry breaking that arises internally to each
U(N) representation whenever its monopole flux ¢ contains a number of different charges
serves to reduce the overall R-charge.

Importantly, the formula (3.7) clarifies the dimensional measures |p;(¢)| and |a(q)| that
are necessary for the RSIMS constructions to be faithful; these have to be implemented
as the sum of absolute differences between the various U(N;) charges, described by their
quantum numbers ¢; ;, modulated by any differences in the root lengths encoded in the
Cartan matrix.

Having observed that the R-charge collects sets of roots and their orbits, these still need
to be assigned correctly to representations enumerated by t. This assignment is moderated
or “dressed” by the term (3.6), which enumerates the degrees of the Casimirs of the U(N)
gauge groups that remain unbroken under each set of GNO charges q. (When a U(N)
symmetry is completely broken, a node has a U(1)"V symmetry). The Casimirs in turn
correspond to the set of symmetric invariant tensors of the adjoint representations of the
surviving subgroup of the U(NV) symmetries.

4 RSIMS from regular semi-simple subgroup representations

We saw in section 3 how the RSIMS of a group can be constructed as Coulomb branch
quiver theories on extended Dynkin diagrams. These extended Dynkin diagrams are by
definition degenerate and this property can be used to establish mappings between the
weight space of the Lie algebra of a parent (or ambient) group and the weight spaces of
its subalgebras. As pointed out in [24], this mapping between algebras and subalgebras is
equivalent to a mapping between the parent group and its subgroups. Rank is preserved
through this procedure, which represents a form of symmetry breaking.

Such mappings are obtained by one or more elementary transformations [24]. These
are effected by removing a node from the extended Dynkin diagram of the parent group
G, which corresponds to the elimination of a row and column from the extended Cartan
matrix. The resulting matrix can be decomposed in block diagonal form as a direct sum
of regular Cartan matrices of subgroups {Gi,...,Gy} where m > 1. It then follows [11]
that the character of any representation of G maps to the character of some representa-
tion of the simple or semi-simple product group G; ® ...G,,. Since only one row and
column are removed from the extended Cartan matrix, rank is preserved by an elementary
transformation.'’ A simple or semi-simple subgroup obtained by this method is described

" These relationships differ from isomorphisms. While the map from the parent group to a subgroup
is injective, it is generally not surjective, so that not all irreps of the subgroup can be mapped from
representations of the parent.
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Group Subgroups Type

By >9 B, 9s®Dy,...,Bi®D,_1,D, Maximal

Cr>2 Cr1®Cq,..., C’[r/ﬂ ® CLT/QJ Maximal

D>y D, 5® Ds,..., D[r/z] ® DLT/QJ Maximal
Eg As @ A1, As ® As ® Ay Maximal
E; Dg® A1, A5 ® Ay, Ar Maximal
E; A3 ® A3 ® Ay Non-maximal

Eg Er:® A, EBg ® Ay, Ay ® Ay, Ag, Dg Maximal
Eg A7 @ A1, A5 ® Ao ® A1, Ds ® A3 | Non-maximal

Fy C3® A1, Ay ® Ay, By Maximal
Fy A3 ® Ay Non-maximal
Go Al ® Al, As Maximal

Table 7. Regular semi-simple subgroups from single elementary transformation.

as regular.'?> A subgroup is further described as mazimal if it is not possible to interpose
another subgroup between it and the parent. Multiple elementary transformations can be
chained to yield further regular, but non-maximal, semi-simple subgroups.

In the case of the A series, the resulting mappings are trivial, since the removal of a node
from the extended Dynkin diagram invariably returns the original diagram (modulo some
cyclic permutation of simple roots). In the case of other Classical and Exceptional group
series, several non-trivial mappings may be possible, depending on the choice of the node
removed. We list in table 7 all the regular semi-simple proper subgroups of the Classical
and Exceptional series arising from a single elementary transformation. While all the
regular simple or semi-simple subgroups of Classical groups arising from a single elementary
transformation are maximal, Fy, E7 and Eg have non-maximal regular subgroups that can
also be reached via a maximal subgroup in a two step mapping.

Our focus here is on two particular types of mapping into regular subgroups. In this
section 4 we focus on mappings associated with maximal regular semi-simple subgroups.
These include the decompositions of the Weyl group set out in table 4 (for series other
than type A). In section 5 we shall focus on mappings to regular subgroups consisting of A
series groups only, which are not generally maximal. In both cases we shall use HWGs to
show how the irrep branching relationships resulting from these subgroup mappings permit
elegant decompositions of the RSIMS of a group into the moduli spaces of its subgroups.

4.1 RSIMS from maximal regular semi-simple subgroups

Regular subgroup mappings are determined by the choice of node for elimination from the
extended Dynkin diagram. Elimination from the extended Dynkin diagram of a (non-A
series) Classical or Exceptional group of the node corresponding to the Dynkin label of
the adjoint representation gives a mapping into a subgroup that contains the group Gy

12This method does not yield special subalgebras, which all involve rank reduction.
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B4-B2@D2 000 }—.-. 0o 00
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C2-CleAl *—o *=——=0 o0
C35028A1 =0 *=—0—0—0 o =90
C4-C3®Al *—o—o—0 *=—0—0—0—0 @ o—e=0
D4-D26D2 0—{ x XK X
D5-D3ED2 0—0—< >—< o0 oo
D6-D48D2 0—0—0—< >“‘< o0 .—{
E6-A5®A1 o—o I o—o E oo ©
E7-D68Al ..I... ...I... H—o—<.
E8-E7@Al "I'." "I"'.' : ®
F45A1RC3 *—0=0—0 *—0—0=00 o 0o
G2>Al®Al =0 *—o—0 e

Figure 7. Dynkin diagrams for mapping of non-A series groups into maximal subgroups by adjoint
node elimination. Blue nodes denote long roots with length 2. Red nodes denote short roots.
A black node denotes the long root added in the affine construction, which is always linked to
the adjoint node. The eliminated root is uniquely determined by the subgroups (up to graph

automorphisms). Rank is preserved.

shown in table 4. These subgroups are all maximal and semi-simple. The Dynkin diagram
manipulations are set out in figure 7 and the resulting adjoint irrep branchings into irreps
of the subgroups are set out in table 8.

These mappings based on elimination of the adjoint node do not exhaust the regular
subgroups in table 7 and mappings can be found to the other subgroups by eliminating

other nodes.
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Under all these subgroup mappings, the adjoint representation of the parent group
splits into the direct sum of the adjoint representations of the subgroups, plus a product
group representation.

Importantly, each such mapping allows us to establish a bijection between the CSA
coordinates of the weight space of the parent group and the CSA coordinates of the weight
space of a maximal sub group.'> However, while the mapping from irreps of the parent
group to the representations of the product group is injective, it is not surjective, and
one cannot generally map any representation of the product group back to a parent group
representation; this is only possible for specific representations (such as those identified by
the RSIMS deconstruction).

4.2 RSIMS deconstruction to subgroup HWG

Given such a coordinate mapping from a parent group G of rank r to a subgroup G . ..QG,,
of equal rank, we can take g¥. . (¢ x;), express it in terms of the CSA coordinates

{y1,...,yr} of its subgroup, and use a character generating function gGl@ Gm(

mi,y;) for
the irreps of the subgroup to project ginstanton (t,y;) onto the irreps of the subgroup. The
subgroup irreps are tracked using the Dynkin label fugacities {m1,...,m,} and the pro-
jection coefficients obtained are polynomials in the fugacity t.

The analysis depends on the completeness of the characters [ni, ..., n,] of the subgroup,
which permits the decomposition of the instanton moduli space in terms of the coefficients

Ch,,...n, defined from:

o0
G _ . k
ginstanton(tvxi) = Z[k ad]]($i) v,
h=0 (4.1)
glnbtanton t yl Z Cnl, e t nlv s 77%"](%)’

and upon Weyl integration, which allows us to use character generating functions to project
out an HWG function in terms of {¢,m;}:
gmstanton t m] chl, 5T t ”ﬂrll1 e m:}r
(4.2)

G Gm * G
= % d:“’(@/l) 9x 18 (mj7 Yi ) Yinstanton (t7 yl)
G1R...G

For further detail on the use of character generating functions to project out HWGs the
reader is referred to [2].

The HWGs for all the maximal regular simple and semi-simple subgroup mappings of
Classical group RSIMS are set out in table 9 and those for a number of Exceptional group
RSIMS are set out in table 10. These include all the maximal regular subgroup mappings
identified in table 7 (of which those in table 8 are a subset). For convenience, the HWGs
are presented using their PLs. There are many observations that can be made about the
structure of these highest weight moduli spaces.

13 An example of CSA coordinate map calculation is contained in section 5.5.1.
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Firstly, these moduli spaces are all generated by a small number of representations of
the product group. They include, in all cases, the adjoint representations of each of the
constituents of the product group at order t.

Next, taking a geometric perspective, all the moduli spaces of Classical RSIMS de-
constructions are either freely generated, being products of geometric series, or complete
intersections, being quotients of products of geometric series. In all cases there is a further
generator in addition to the adjoints at order t involving the vector representation(s). In
the case of symplectic groups, there is a relation at order 2. For orthogonal groups, there
may also be additional generators at order > and a relation at order t* at most.

The dimensions of the HWG moduli spaces, which are given by the number of gen-
erators less relations, vary from two in the case of the symplectic groups up to at most
six for orthogonal groups. The apparent complexity of many of the decompositions can be
simplified further. Assuming minimum ranks of 2 and 3 respectively for any B and D series
subgroups, we can write the HWG for a Classical RSIMS deconstruction into a maximal
pair of subgroups in the form:

g 2 PE[(0+0 +ved)t+ (1+g+g +vev)t? —godtl],

4.3
ggsmnton — PE [(9 +0 +ov® v/) t—g® g'tZ] , (4.3)

where the adjoint, vector and graviton (symmetrised vector) representations of the two
(primed and unprimed) subgroups are represented by {6, v, g} respectively. Importantly,
since the form of the HWG does not change for higher rank BCD series groups, we con-
jecture that these expressions give us complete descriptions of RSIMS decompositions into
regular semi-simple subgroups for all Classical Lie algebras.

Some of the HWGs for deconstructions of Exceptional RSIMS follow the same pat-
tern as the HWGs for Classical RSIMS, being freely generated or complete intersections,
and having dimensions between two and six. Notably, these simple HWGs include those
obtained by adjoint node elimination, as in table 8. They also include the HWGs of branch-
ings into a simple regular subgroup (other than for Eg to Ag). However, for the E and F
series, some maximal regular subgroups lead to complicated HWGs; these are not complete
intersections, have generators at higher orders of ¢ and have dimensions that vary up to at
least 38 (as explained below). The HWGs for the non-maximal regular subgroups are also
complicated. So far, we have not been able to calculate all these HWGs.

4.3 Dimensions of HWGs and Hilbert series for RSIMS

It is interesting to relate the dimensions of an HWG to the dimensions of the Hilbert
series for the same RSIMS. Recall that the dimension of an (unrefined) Hilbert series for
an RSIMS is always equal to twice the sum of the dual Coxeter labels for the group [2].
The difference in dimension of the two moduli spaces is accounted for by the degree of
the dimensional polynomial for the weight space spanned by the subgroup irreps. As an
example, for irreps of Ay, with Dynkin labels [n1, ns], we have the dimensional formula:

Dim[nl,ng] = (1+n1)(1+n2)(2+n1+n2)/2, (4.4)
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and so the degrees of the dimensional polynomial are 2 for irreps of the type [n; > 0,0]
or [0,ny > 0] and 3 for irreps of the type [n; > 0,n9 > 0], which include the adjoint
representation. This degree of 3 equals the difference between the dimension of the Hilbert
series for the Ay RSIMS (1 + 4t +2)/(1 — ¢)4, which is 4, and the unit dimension of the
corresponding HWG 1/(1 — mymat).

Assuming that a weight lattice is saturated (i.e. that all Dynkin labels are non-zero),
the degree of the dimensional polynomial is always equal to the number of positive roots.
By using the standard dimensional polynomials we can reconcile the dimensions of the
various moduli spaces as set out in table 11. It is important to note that if the HWG
irreps do not saturate the subgroup weight lattice, this reduces the degree of the relevant
dimensional polynomial.

Thus, we can explicate the relationship between a given mapping, the weight lattice of
the subgroup and the difference in dimensions between the Hilbert series for the RSIMS and
the subgroup HWG. When a subgroup has a weight lattice with a dimensional polynomial
of low degree, this is balanced by an increase in the dimension of the HWG. Given some
mapping, the degree of the dimensional polynomial of the saturated weight lattices of the
subgroup places a lower bound on the dimension of the HWG, as indicated in table 10 for
the unknown HWGs.

For A series groups, the number of positive roots is only (r? +)/2, compared with r?
or 2 — r/2 for B/C or D series groups, and so A series dimensional polynomials tend to
be of lower degree. Thus, many Exceptional group mappings to A series subgroups lead
to HWGs with a high dimension. While these are all calculable in principle, using (4.1)
and (4.2) , this can be difficult in practice due to computing constraints. This raises the
question as to whether it is possible to deconstruct RSIMS using moduli spaces that have
a higher dimensional degree than Lie group representations and so lead to low dimensional
HWGs. We find that such moduli spaces can be provided by modified Hall-Littlewood
polynomials.

5 RSIMS from A series Hall-Littlewood polynomials

Constructions for the RSIMS of Eg, F7 and Eg instantons based on Hall-Littlewood poly-
nomials have been given in [6]. These draw upon branching relationships between the
characters of irreps of these groups and those of A series subgroups. The constructions
in [6] are guided by a conjectured characterisation of punctures on spheres, which helps
to identify combinations of A series modified Hall-Littlewood polynomials that yield the
desired moduli spaces. We take a different approach and carry out the direct decomposi-
tions of RSIMS, all of which have known group theoretic constructions, as discussed earlier,
in terms of the modified Hall-Littlewood polynomials of A series groups. Hall-Littlewood
polynomials can also be constructed for other Classical or Exceptional groups, but the
analysis herein is limited to those of unitary groups. Our strategy exploits the fact that
Hall-Littlewood polynomials provide a basis for single parameter class functions [23], such
as RSIMS. In order to find the coefficients defining these decompositions, we construct a
set of generating functions for Hall-Littlewood polynomials and exploit their orthogonal-
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u)” U (N) Hall-Littlewood
Measure IL %’ X you [Tz (1 — /) x [Tz m
(Plethystic) +PE [— (adjoint — rank)] PE [(adjoint — rank) ¢]
Basis my = HL) (1) sy = HL, (0) HL) (¢)

Table 12. Components of Hall-Littlewood measure for U(N).

ity properties under Weyl integration, using an appropriate measure. Our decompositions
then follow group mappings into regular semi-simple subgroups, in a similar manner to the
previous section.

5.1 Hall-Littlewood polynomials and their generating functions

Hall-Littlewood polynomials are symmetric polynomials in a set of coordinates that are pa-
rameterised by an additional variable [23], and so correspond in a natural way to plethystic
class functions built from the CSA coordinates for characters of unitary groups combined
with a counting fugacity ¢. Hall-Littlewood polynomials can be labelled by the Dynkin
labels of irreps of U(N), or, equivalently, by partitions of N objects, or by Young tableaux.
They are most helpfully defined in terms of their orthogonality properties under Weyl inte-
gration using an explicit measure, as presented in [6], for example. There are various choices
of normalisation possible: [6] chooses a normalisation under which the Hall-Littlewood poly-
nomials are strictly orthonormal; [23] chooses a normalisation under which they become
symmetric monomial functions for ¢ = 1. We shall use a third normalisation scheme, also
used in [25], that follows naturally from their generating functions. Under all these nor-
malisation schemes, the Hall-Littlewood polynomials revert to Schur polynomials, i.e. the
characters of irreps of U(V), for ¢t = 0.

Hall-Littlewood polynomials incorporating the characters of irreps of SU(V) are closely
related to those for U(NN), however, care needs to be taken over the choice of coordinates, la-
belling of partitions and normalisation. We shall ultimately work with the Hall-Littlewood
polynomials and related functions for SU(V), however, we derive their properties from
those of the polynomials for U(N).

We set out in table 12 the structure of the Hall-Littlewood measure. This is the product
of the usual Haar measure for U(N) (given by the first two factors) with an additional
plethystic function parameterised by t. Clearly the parameter ¢ is key in determining the
basis functions on a space with the Hall-Littlewood measure. Thus, it can be seen that the
measure reverts to the U(NN) Haar measure for t = 0, or to the U(1)" Haar measure for
t = 1. The corresponding basis functions H Ly(t) become either Schur polynomials sy, or
monomials my, respectively, in these limits [23].

Hall-Littlewood polynomials which are orthogonal with respect to this defined measure
are given by [6]:

HL) (x;,t) = Z w(xi‘l...x}\\[” HH), (5.1)
J

wESN i<j "
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where the x; are CSA coordinates for U(N) and A = (A1,...,Ay) is the partition corre-
sponding to Dynkin labels [ni,...,ny] for U(N) through the relationship

N N
()\1,...,)\]',...,)\]\[) = <Zni,...,2ni,...,n1\z>. (52)
i=1 =7

(This bijection allows us to refer to a Hall-Littlewood polynomial by either HLy or HLj;.)
The sum in (5.1) is taken over the Weyl group of U(NN), which is the symmetric group
Sn. The orthogonality of the HL) and their complex conjugates, under an inner product
incorporating the Hall-Littlewood measure, is given by:

jl{ dpwr, HLy (24, t) HL, (2%5,t) = dx,0y (2), (5.3)
U(N)

where we are using abbreviated notation dupy, for the Hall-Littlewood measure,

1
ji dpmL = H s N. ( (1- wj/l‘k)) ( II 1_%/%) (5.4)

i

and we have introduced the normalisation function v)():

m;i(A)

=111 5

>0 j=1

1—t3

(5.5)

In the wvy(t) function, the product is taken over each distinct integer i, including zero,
appearing in the partition A according to its multiplicity m; [23].'* In effect, vy(t) is
determined by the number and location of zeros amongst the Dynkin labels corresponding
to a given partition. It is important to distinguish Dynkin labels for Hall-Littlewood
polynomials from those for U(N) characters; we shall ultimately wish to work with both
types of label to describe the relationships between the two types of class function.

The Hall-Littlewood polynomials (5.1) provide a complete basis for class functions
that combine the characters of a unitary group with coefficients given by polynomials in
the parameter t [23].

We now follow the HWG methodology introduced in [2] and define the fugacities
{h1,...,hy} for the Dynkin labels [n1,...,ny|uL. Note that we prefer to use Dynkin label
fugacities h; for Hall-Littlewood polynomials and m; for characters. We then convert (5.1)
from partition to Dynkin label notation and rearrange to obtain a highest weight generating
function for the HL or HL;:

gur (x4, t, hy) = Z HL[m,...,nN] (4,1) h?l e h%N

ni ny n1 nN - nN 1 —tx; /xz
— Z (Z hit ... hy +.. H — xjj/xl ) 5.6)

wWES N i<j
N
1 1—txj/z;
- Y ] N,y P )
weSN ( el Sy g | i<j L —xj/w;

141n [23] the HL, are normalised by dividing by vx(t) and in [6] they are normalised by dividing by \/vx ().
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From (5.3), it follows that the complex conjugates of the generating functions gpr,(x;, t, h;)
have the orthogonality property:

j{ dpmr gun (2%, t, hi) HLy (24, t) = vy (t) b, (5.7)
U(N)

where we have defined h* = I h;”(/\). We can obtain more a useful contragredient gener-
ating function, which generates polynomials that are orthonormal (rather than just orthog-
onal) to the HL(z;,t), by gluing together the gpr, (2*;,t, h;) with a generating function for
the inverse of the vy.

Let us briefly describe this gluing procedure. Suppose we have two power series in ¢
given by A(t) = > > ja,t" and B(t) = Y .2, bnt"™. We can glue the coefficients together
into a single series by introducing conjugate U(1) fugacities into the counting variables for
the two series and then using Weyl integration to project out the U(1) singlets of their
product. Thus:

S (2) b (2) 17 f{m Za ) (a#72) Y b @) (a2)" 5s)

Applying such a transformation to the problem at hand, we define:

giit. (2], t, i) ZHLA SR [oA(), (5.9)

and

=> o (h). (5.10)
A

It then follows that we have the desired orthonormality relations:
74 dpunae, G (75 £, hi) HLy (21, 8) = B, (5.11)
U(N)
where the gar, (2}, ¢, hi) can be calculated by the gluing procedure (5.8):
g (of ) = ¢ dua) ot (102 g, (o781 2g,). (5.12)
U(1)

In this procedure, we introduce a dummy set of U(1)" coordinates {qi,...,qy} and map
these to the Dynkin label fugacities {h1,...,hn} — {q1h11/2, . ,thN1/2}. We map a
conjugate set of U(1)" coordinates to the fugacities in the v~'(¢, h;) generating function.
Weyl integration using the U (1)N measure then selects singlets, for which the vy factors
exactly cancel.

The final input required for calculations is provided by the generating functions
v~1(t,h;). These are shown in table 13 for some low rank unitary groups. Generating
functions for higher rank U(N) groups can be obtained as required from the formula:

[1,...1]

_ ﬁ Y ﬂ - (5.13)
1—h; Uy () 1+ (1 = nghy)’

i=1 [n]=[0,...,0]
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Group vl (¢, hy)

U (1) 1
1+h
U(2) =TTy
U (3) 1+h1t+h2t+h1t2+h2t2+h1 h2t3
(I=h1)(1—h2)(1—hg)(1+t)(1+t+t2)

1+ hit + hot + hat + hqt? + 2hat? 4 h3t? + hyhat?
+h1t3 + h2t3 + hlhgt?’ + hgts —+ h1h3t3 =+ h2h3t3
+hot* 4 hyhot* + 2h1hst* 4 hohst?
+h1h2t5 + h1h3t5 + h2h3t5 + h1h2h3t6
(1—h1)(1—h2)(1—h3)(1—ha)(1+t)* (14+t2) (1+t+12)

Table 13. Generating functions for 1/v)(t).

where the summation is carried out over all possible combinations of zero and unit Dynkin
labels: [n] = {[n1,...,nn] :n; =0 or 1} and the v}, (t) follow from (5.5).

The orthonormal generating functions gnr,(«},t, h;) allow us to decompose any class
function F'(x;,t) into a weighted sum of Hall-Littlewood polynomials. We first define the
decomposition coefficients Cy(t) from:

F (i, t) =Y Cx (t) HLy (2, 1). (5.14)
A

We can then obtain a highest weight generating function C(t, h;) for the C)(t) using the
guL(x},t, h;) generating functions and the property (5.11):

C(t,hi) =Y Ca(t)h* = 72(]\7) dpmr guL (%, t, hy) F (zi,t) . (5.15)
A

Individual C)\(¢) can be extracted from C(t, h;) by Taylor expansion, followed by matching
the coefficients of the monomials h*. Furthermore, to establish consistency, we can also
implement a second gluing procedure to recover the initial generating function F'(z;,t)
from the generating functions C(t, h;) and gur,(x;, t, h;):

F (a:i, t) = f du C (t, h/qz) JHL ((Ei, t, hqz-) . (5.16)
U~ hel

Having introduced the Hall-Littlewood polynomials, and shown how to construct their

generating functions so that we can work with them, it is convenient, for the purpose of

the construction of RSIMS, to follow the approach in [6] and to define a modified set of

symmetric functions that are closely related to the HL ), but which incorporate the fugacity

t in their denominators and are orthonormal under a different measure. Specifically, we
rearrange the orthonormality relations:

j{ dpare, HLy (25, ) L, (21, 1) = S, (5.17)
U(N)
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as:

% dptmur, mHLy (1‘1‘, t) mHLM(:c*i, t) = 5>\M7 (518)
U(N)
where
7{ dumHL_H . o 1—xj/xk) TT - tay/ae) | (5.19)
o J#k
and
1
HL) (z;,t) = —— | HL, (=;,1), etc.. 5.20
L (r1,8) = | T] gy 7 | B o ) ete (520)

J#k
The mHL) functions have the same dependence on the partition A as the HL) polynomials,
but incorporate the plethystic function PE[(adjoint — rank) t] as a pre-factor. This has
the effect of multiplying all the HL) by symmetrisations of the adjoint. This feature can
make the mHL) functions extremely useful in the subgroup deconstruction of RSIMS,
since the necessary symmetrisations of the adjoint irreps of the subgroup are automatically
incorporated in the mHL,. This can, in certain cases, permit a dramatic reduction in the
dimensions of the HWG describing an RSIMS deconstruction, as will be shown.
The generating functions gmpr, (i, t, h;) follow in a straightforward manner:

gmHL (xz-, t, hz) = ( H w>gHL (l‘i, t, hz) . (5.21)
J7#k

In order to obtain the Hall-Littlewood polynomials of SU(N), rather than U(N), we need
to make certain changes to the expressions (5.1) to (5.21). First, we replace the coordinates
x; of U(NN) by the monomials of the character of the SU(/N) fundamental. This substitution
forces the last Dynkin label ny to zero; this label is conventionally dropped when describing
irreps of SU(N), although it needs to be reinstated when calculating the normalisation
factors vy (t). Finally, we replace the Haar measure of U(N) by that of SU(N).

5.2 Modified Hall-Littlewood polynomials and characters of SU(IN)

All the three types of symmetric function studied herein (characters, HL and mHL) provide
complete bases for the class functions of a group. It is useful to be able to express these
functions in terms of each other. If we have knowledge of the coefficients (which are
generally quotients of polynomials in ¢) for such decompositions, we can describe a moduli
space in the most convenient basis, while retaining the ability to translate to the other
bases. HWGs provide an efficient method both for encoding these relationships and for
working with them.

The general prescription for the decomposition of an mHL polynomial into characters
follows similar principles to (5.14) and (5.15). Thus, suppose we wish to find the coefficients
Cip), i) (t) for the decomposition of mHL, (z,) in terms of characters:

mHLy, (1) ZCn] ] (£) X () (5.22)
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Group grﬁHL(h)aX(m)

SU (2) (e g

1+ mymat? — hymim3t3 — ham3mat3 — hyhomim3t?
+mm3tt — hym3m3t* — hom2m3t* + hyiham$m3tt
—him3m3td — hamim3at® + h1h2m1m2 + hihom3m3t?

(l—mlmgt)(l—m{’tg’)(1—mgt3)(1—h1m1)(1 hzmg)(l—h1m%t)(1—h2m%t)

SU (3)

Table 14. HWGs for decomposition of mHL into characters.

We have already constructed generating functions, both for mHL polynomials and for
characters:

gmHL (z,t,h) = ZmHL[n (z,t)h
[n]

m) = Z Xy (2)m™
[n']

So, we can use Weyl integration to combine these to yield a generating function for the

(5.23)

Cin), i) (t) coefficients:

g (£, h,m) chn] ] (¢

[nl '] (5.24)
= dugih (ot g 0" m).

To illustrate, we set out in table 14 the HWGs grﬁHL _,x for the decomposition of
mHL polynomials for SU(2) and SU(3) into characters. Thus the HWG for the mHL of
SU(2) is the product of two factors 1/(1 — m?t) and 1/(1 — hm), where h is a fugacity
for the Dynkin labels of SU(2) mHL and m is a fugacity for the Dynkin labels of SU(2)
characters. The first factor matches the HWG for the SU(2) RSIMS. The second factor
gives the dependence of the SU(2) mHL on the characters of SU(2). So, for example,
mHLyyy = ([1] + [3]t + [5]6% + [7]t° + ..).

It is important to note that the HWGs which provide the inverse maps from characters
to mHL polynomials are different, since the orthonormal mHL polynomials are not simply
given by complex conjugation and the measure also differs. For example, the inverse
HWG from characters of SU(2) to mHL polynomials of SU(2) is given by gﬁ(m) mHL() =
(1 — h2t)/(1 — hm), as can be verified.

These HWGs show that the mHL polynomials include the RSIMS factor
1/(1 — mym,t). This can help to reduce the dimension of the HWG for the decomposition
of an RSIMS into mHL polynomials, as discussed earlier. We can find other decomposi-
tions, as desired, by working in a similar manner with different combinations of HL., mHL
and characters.
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Figure 8. The T(SU(N)) quiver consists of a SU(N) flavour node connected to gauge nodes
U(N — 1) through U(1).

5.3 Modified Hall-Littlewood polynomials and T'(SU(IN))

One of the remarkable aspects of modified Hall-Littlewood polynomials is that they corre-
spond to the Coulomb branches of SUSY N = 4 quiver gauge theories in 2+1 dimensions
known as T(SU(N)) [25]. These Coulomb branch constructions have similarities with the
RSIMS constructions described in section 3. However, the leading node carries SU(V)
flavour charges and connects to a linear chain of gauge nodes carrying monopole charges
from U(N —1) down to U(1) as in figure 8. These quivers are balanced (as described earlier).

Following [25], we obtain the T(SU(N)) series of functions from such a quiver by adapt-
ing the Coulomb branch prescription, as set out in (3.5) to (3.7), to include external charges
described by a partition A = (A1,...,Ay). With a little further work, the construction can
be rearranged into a recursive set of relations for T'(SU(N)):

T (SU(N)) (A z,t)

S i ( Pogv (@1, . an—1) 2~ %7 Zi 0 2 DI el 2- 235 £ lama ) |
B> 1> 00 \ X T(SUN=1)(q1,---,qN-1,225 -+, 2N—1,1t)

(5.25)
In this formula, z = (21,...,2n-1) is a system of SU(N) simple roots, the CSA coordinate

for the highest weight of the SU(V) fundamental is:

N-1 N
x = (H zZN_i> , (5.26)

i=1
and the symmetry factors, which depend on each partition of gauge field charges
(q1,...,qN), are given by:

N

1
PU(N) (qlu-.~7qN):H11_tdz(ql’7q]\’). (5.27)
1=
The recursion relations assume the (qi,...,qy) form an ordered partition, but range over

both positive and negative integers. In each case the summation corresponds to one of the
gauge nodes. We set T'(SU(1)) = 1 and it then follows that the first non-trivial member of
the series is:

1 oo
T(SU @) Onsderz1,0) = e gy 5 Bl (5.28)

g=—00

where z; = 22.
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As shown in [25], the T'(SU(N)) quivers correspond to modified Hall-Littlewood poly-
nomials of SU(N) if the flavour partition (A1,...,An) is chosen such that Ay = 0, where-
upon all the other partition labels are non-negative and (A1,...,\,=ny—1) map to highest
weight Dynkin labels [n1, ..., n,| for SU(NV), through the relationship (A1,...,Aj, ..., ) =
(X ni,. .., D i My e - ,ny). The correspondence is modulated by a pre-factor, so that
the precise relationship is:

mHL(,, . (2,1) = PG T (SU (r 4+ 1)) (A (ng, ..., ne) L 2, 1) (5.29)

The exponent of the pre-factor is given by the contraction of the Weyl vector p, which
is (1,...,1) in a canonical basis of CSA coordinates, with the Dynkin labels of the mHL
polynomial, using the group metric tensor G;;.'> We return to the subject of T(SU(N))
in the concluding section.

5.4 Extended Dynkin diagrams and A series subgroups

We have seen in section 4 how the RSIMS of a Classical or Exceptional group can be
decomposed in terms of the irreps of a subgroup. In order to explore RSIMS decompositions
in terms of the mHL of SU(N) we must work with regular A series subgroups. These
are not generally maximal. Proceding as before, we describe a selection of the relevant
elementary transformations in figures 9 and 10, which give the Dynkin diagrams, and in
table 15, which shows the resulting branching of the adjoint representation of the parent into
subgroup irreps. In the case of C series groups of rank greater than two, each elementary
transformation splits off a single A; subgroup, and therefore multiple such elementary
transformations are in general required to map a C series group to its A series subgroups.

We have not included in table 15 the elementary transformation of A series groups into
themselves. We have however included non-maximal subgroups that can only be reached
via an intermediary subgroup, such as C3 — Co ® A1 — A1 ® A1 ® A;. It follows that,
by using multiple elementary transformations, any group can be mapped into one or more
regular A series simple or semi-simple subgroups.

Importantly, each such mapping establishes a diffeomorphism between the CSA coor-
dinates of the parent group and those of its subgroups. However, while the coordinate map
is bijective, the mapping of irreps from the parent group into the irreps of the A series
product group is only injective; one cannot generally map all the representations of the
subgroup back to those of the parent; this is possible only for specific representations (such
as those arising in the RSIMS construction).

5.5 RSIMS decomposition to modified Hall-Littlewood polynomials

We are now ready to show how modified Hall-Littlewood polynomials can be deployed,
together with the branching relations described above, to construct the RSIMS for any

15While mHL polynomials with similar properties can be defined for other groups, the T(G) quiver
theories that have been proposed for these polynomials, other than for isomorphisms with the A series, face
some critical issues.
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Mapping Parent Affine Subgroups
B2-AlgAl =0 *=—0—0 o0
B3-aleale | @—0—0 00
Al
B3-A3 0
Bi-a3eal | @—0—0=0@ }—0-. oo O
C3.A18C02 *—0—=0 &=_—"=0 ® 09
C4A18C3 *—0—0=0 *=—0—0—0—0 ® o0
D4-AlEAL® [ N N M
Al®Aal
D5-A38A1® ’—‘—< >‘< oo 00
Al

Figure 9. Mappings of selected BCD groups via their extended or affine Dynkin diagrams into A
series subgroups by single elementary transformations. Blue nodes denote long roots with length
2. Red nodes denote short roots. A black node denotes the long root added in the extended
Dynkin diagram. The eliminated root is uniquely determined (up to graph automorphisms) by the
subgroups. Rank is preserved. (Multiple elementary transformations can be used to map C series
groups fully.)

Mapping Parent Affine Subgroups

E6->A20A2® oo I o—o E o 60 oo
A2

E6-5A5®AL o—o—Co—C0—0 O

E7-A38A3® ..I..' ...:... o—0—0 o000 O
Al

E7->A5®A2 o—0—C—0—0  O—0
E7-A7 o000 00

ES8>A5RA2® ..:.... ..I..... o0 O o000
Al

E8-A7®Al O 0000000
E8-A4®A4 0090 o909
E8-A8 00000090
FASA3®AL o*—0=0—0 *—0—0—0—0 *—eo9o ¢
F4->A2®A2 oo o0
G2-Al®Al o—0 *—0—0 o0

G2-A2 [ o ]

Figure 10. Mappings of exceptional groups via their extended or affine Dynkin diagrams into A
series subgroups by single elementary transformations. Blue nodes denote long roots with length
2. Red nodes denote short roots. A black node denotes the long root added in the extended
Dynkin diagram. The eliminated root is uniquely determined (up to graph automorphisms) by the
subgroups. Rank is preserved. 46
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group out of mHL polynomials. We start by generalising the three way schema given in [6]
and define the decomposition:

)
G — 1 4k
Yinstanton (tami) = [k adJ] ",
k=0
G—ARQB®---D A
gins—gan(t%)n® (t’yi) = Z C/\»Ny--.,U(t)mHL[nA} (yiat) X

[nA] ] [no]

X mHLﬁ”] (yj,t)--- mHL[?ZU] (g, t) .

(5.30)
The characters of representations of the parent group G, of rank r, correspond to charac-
ters of the semi-simple group A® B® --- D, and so ggstamon can be expressed using the
subgroup CSA coordinates {y; : i = 1,...,7}. The C), _ ,(t) coefficients range over all
irreps {[na], [ny] ..., [ne]} of the respective subgroups, identified by their Dynkin labels
or partitions.

We derive the C) ,,, .. »(t) coefficients using a general procedure that gives the decompo-
sition of the RSIMS of any group into modified Hall-Littlewood polynomials of subgroups.
To do this, we exploit the fact that ggstanton (t, ;) has a known generating function, and so
we can use the generating functions gy, and their orthonormal conjugates gmpr,, described
earlier, to obtain a generating function for the C , . (). This follows from (5.30) as:

C(hahp,....hp,t) = > Crpo () ha™hp™ - hp™
Al [no]

. — 5.31
= % d:umHL g;?lHL (yl )L hA) gI?lHL (y] , L hB) T ( )
ARB®---D

G—>A®RB®---D
x grgHL (yk*’ t’ hD) gins?an%?)n® (t’ yl) :

The expression (5.31) can be evaluated to obtain a rational function in terms of the fugac-
ities {ha, hp,...,hp,t}. Individual C), . ,(t) coefficients can be extracted by equating
powers in {ha,hp,...,hp} following Taylor expansion. A key advantage of this approach
is that the generating function gives the C) , . ,(t) to all orders in . We focus on con-
structions that map RSIMS to semi-simple A series subgroups and their g1, functions.

5.5.1 D, example
We outline below the construction of the RSIMS of D4 from the mHL) functions of four
Aj subgroups. Specifically, we wish to calculate the coefficients C} ., ,(t) such that:

tanton (@:0,¢,dst) = >~ Oy (HmHLA (a,8)

Finstanton

A7 b ]
e « mHL, " (b,t) mHL, ™" (¢, ) mHL, (d, t).

(5.32)
We start with the expansion for gijz;*tanton (w,x,y, z,t) obtained by the methods in section 2,
where {w, x,y, z,t} are CSA coordinates for D4 (we do not show this here since it is rather
lengthy). By eliminating the second node, we obtain the root and CSA coordinate mappings
in table 16 from the extended Cartan matrix for D4 and the Cartan matrices for the four
Aj subgroups.
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Dy Dy AARAIRARA AARAIRA QA
roots  coords roots coords

21 w?x Za a®

29 22 Jwyz - -

23 y?/x 2 b2

24 22/x Ze 2

20 1/x 2d d?

Table 16. D, to A;®* root and CSA coordinate mappings.

We solve the root mapping to obtain the coordinate mapping {w - 5T = d%,
Yy — g,z — 5} and use this to transform gﬁé‘tamon (w,z,y,2,t) to gig;‘tanton (a,b,c,d,t).
We then introduce generating functions for the gpmr, using the Dynkin label fugacities

ha,hp,hc,hp and specialise (5.31) as:

C(ha,hp,hc,hp,t) = Z Chrpuwp (t) ha*hp"hc” hp?
A, v,p=0

f dpmst, 9250 (0,6, ha) gl (0,6, g) X
A1RAI®AI®AL
X gr’?llHL (c*,t, he) gihL (d*,t,hp) X gﬁgtanton (a,b,c,d,t).
(5.33)
For A;, the Hall-Littlewood polynomials follow from (5.1) and can be expressed in terms
of characters [n] as:

n=0:1+1¢
HL?& (X, ) ={ n=1:[1] : (5.34)
n>2:[n]—tn-2]
Their generating function follows from (5.6) and can be encoded as a highest weight gen-
erating function, using h as the HL Dynkin label fugacity:

gil (X,t,h) =PE[[1]h] (1 +t — ht[1]). (5.35)

The conjugate orthonormal Hall-Littlewood polynomials HL?& follow from (5.12) as:

n=0:1
HL M (X, 8) = n=1:]1] . (5.36)
n>2:[n|—tn-—2]

The generating function for the E differs from (5.35) for the gﬁ‘i in its numerator:

gil (X, t,h) = PE[[1] h] (1 — R%t). (5.37)
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The modified Hall-Littlewood polynomials mHL‘[?j, mHLm and their generating functions
all differ from the above by the pre-factor, PE[[2]t — ¢]:

gL (X, t,h) = PE[2]t — t] giil (X, 1, h),

(5.38)
g (Xt h) = PE[[2]t — t] gfil (X,t,h).

We can evaluate (5.33) by taking the conjugate generating functions from (5.38), expanding
the characters, and applying Weyl integration to obtain:
1 — 2R

ha,hg, he, hp,t) = . .
C (ha,hp, ho, ho, t) (1 —2)(1 — hahghchpt)(1 — hahghohpt?) (5:39)

This simple HWG is of a diagonal form, in which the Dynkin label fugacities of different
subgroups always appear with matching exponents. Taylor series expansion yields the
explicit non-zero C)\(t) coefficients:

n=0:(1-1)"
Clnltnlfalln) (£) = { n>1: fn(l _ 2)—1. (5.40)

These can be checked by substitution back into (5.32) followed by Taylor expansion or
gluing to recover the RSIMS for D,4. The coefficients follow a pattern related to the U(N)
symmetry dressing factors discussed in section 3.

5.5.2 Branching coefficients for RSIMS

We can repeat the procedure described for Dy for a selection of lower rank Classical and
Exceptional groups. We summarise the results in tables 17 to 22, giving both the generating
functions from which the C') coefficients can be extracted, and the values for a selection of
the C) coefficients themselves. The denominators of the generating functions for the C)
express the generators of the series in terms of highest weight fugacities. The numerators
of the generating functions encode a finite set of relations.

Naturally, the structures of the series of branching coefficients C) differ between the
various groups, modulo isomorphisms. Nonetheless there are a number of interesting pat-
terns and similarities that can be observed.

1. A Series. The C) coefficients all constitute finite series that are symmetric under
complex conjugation (reversal of Dynkin label fugacities). Since the mHL already
contain symmetrisations of the adjoint by construction, the role of the C) coefficients
for A, is largely to recode in terms of Hall-Littlewood polynomials the class functions
of characters within the f)iﬁsTtanton numerators set out in table 5. Thus, although the
coefficients for decompositions in terms of Hall-Littlewood polynomials differ from
those in terms of characters, the same irreps are typically involved. Indeed a compar-
ison of tables 5 and 17 shows that (up to As) the Hall-Littlewood polynomial irreps
match those involved in a character expansion, but that their polynomial coefficients

in ¢ are considerably simpler.!6

6 For Ay, the Hall-Littlewood irreps are a subset of those in PA4instanton (not presented herein).

— 50 —



(&
(£31A01q I10J POYIUIO oI V| I0] SJUSIDIPI0D X)) omos) GINISY SoLes Y 10} s[eriouA[od T PoyIpou Jo SJUSIdIe0)) LT S[qel,

oI T YEY Ty Ty
o (P By — Tyt Ty + By Ty =) +
ww Amvﬁmﬁﬂﬁ + mwﬁm:\ — w@m@m:\ + NMQNNQV +

o) = ey
...... ) ms\mﬁ:\ + mwdw:\ — wﬁmm£|
4— = 01Tl S\ TR YT — TR Ty By Ry Ty i
14
mwl — :,oroib 7 mw@m@ - mﬂ\ms\ + mw@mﬁ& - w@m@m@ﬁ&l 4
[ = 000l v YTy — Syey + Fy Ty + Ty Ty — -
el (GPYBy + vy 8y 4 Ty ty — By Ty 4 By ly) +
o+ (g + Fyey) —
I
— = [¢'0'd]
1= s;ﬂb = ﬁ{o_b o g i
¢ -0 (Fu®y + Bygy) grt
Mw g = o By (14 T) - ey
U = o G (1 1) g
L= 0 1
- =1y
1 = [0l Y — T °y
1= S_D 1 %
SJuaIdJe0)) X)) X)) 10} HMH dnoin)

~ 51 —



"(£31401q 10] peIYTIO OIv Vg I0J SHUSIOYJ0D Y) owios) GINISY Seles g 1o sperwouijod T POYIPOU JO SHUSIDYP0)) ‘T S[qEL

(22Y4—1)(z2—1)

guryoureIg

wwmdmm\&:&wﬁl
Y MYy
¢ tg 1v
I +
(1—1) /5 = 0<elle—vel o 8y Yy — SyTy Ty Ly
_ = [o<ug][z'z—u'e]
Aw MW NNWJQW w _ SA\ZN:QQFQN ﬂw e NmQNMQﬂQIT IT Am\w\ nmﬁ\ rﬁ\w\ ?Qv
( )/ Z [o<ug][z 1—u‘0] T T el '
P e = o (e = g vew
&\ e - —
(¢ — 1) /1 = Loy g
¢ NmQN~\|
1 +
O\ YT = By Ty~
T
= C\?FE_H@E“ = [l (1 IyOyayVy—1)(39yOy—1)(39yVy—1),(z1—1) o
(F = 1) (1= 1)) Jut = Ol0Nl0<t ete TP T Y — YUY TY VY~ (Gyoyayvy)
(42— 1)/1 = lllolloliol g1 TP TY Y — Ty 2y Ty — Velvelyely
¢ ATYPYEYYY + A0y + aYVYy + 1
G-1)/ut= ?::N:SQ Dy dyVy =y 2uoym (O ey V) -
(;2— 1) /T = lolollol {1 ey ey
p1 = [y
- PEYTYTY 4 9Ty + 8y Ty — (8y 2y ) -
1 = lollollo] UM = AU — gl — U+ T 4
y = ity (&1 V)
qayv 4
1 = lolol BT T v o1y q
1="0lp I v g
(se1y1003N,)
squaIgeo)) ) XD 10y HDMH dnoir)

~52 -



*(£91A01q 10] POYIIIO AR ¥ puR £ I0] STUAIOYP0D ) omios) SINISY SoLIes ) 10§ spetoui[od TH POYIPOUW JO SIUSIOIFO0)) ‘6T S[qel,

7 = [l ATyOydyvy +
Qyy + dydy + dyVy+ (Ty oy tdy vy) |
7 = [Witlollo]H * Oydy + DyVy + dyvy * Iy @y eIy y 9
1 = [oJlol[o]fo] I
Oy tdy v
1= E::O_Q KDQ%Q + OyVvy + mﬁv\ﬁv +1 . A @sv\a Q@ M: €9
1 = [ollollo] Vevew
1= [y (dy ‘Vy)
[ = lollol FHTY AT @ Ty 0
1=l I v o
(seryroesn )
SJULIdIe0) X1 D 101 HWH dnoix)

suryourIg

— 53 —



pojo axe (7 I0J SJUSIOIFO0D Y,) ouwog

‘(£91801q 10§

[e ‘0] © [0°g] st yurolpe &) SINISY solos (] 10§ s[erwous[od TH POYIpoOW jo SYULLYFI0) "0F O[qeL

qyvy = y a49ym
(Y —1) (7 — 1)

oFEYSY Ty Ly —
o (BySy Tty y — Sylyy + Syeytyy) +

(8y vy ey oy ‘Ty)

suryoueIg

@ — ﬁv \:w = F:::Q:éb Sa
(1 — 1) /1 = bllooal, o (G = Suguzy + Syeyye) + Velve
ot (B gy — by — Syvy — Sy + Sytylyy) +
o (Byy — Lyy — syty — Tyy) +
T
(3= 1) /up = MMM, dydydyVy =y auaym (Ay Oy gy Vy) ,
(40— 1) /1 = Wlololiol Gu-Dlei—1) velyelyely | O
14
ww| = _Nro«m_b NmQNHwa|
g = 0T = eroly (cPuey + Fugy) i+ (2 2y “Top)
Aw + vawl — :di@ ey ly @ + Hv A= - &q
(1= Dgt— = 020y G (1) g1
1= Sd,o_b 1
1— = Fd_b = S#N_D AMQ ;xﬁv
‘ 7= S#O_D wmmﬁ - w«mﬁ —C :\ P :\ NQ
(senroesSny)
SHURIOIJO0)) X)) YD 10] HMH dnoixn)

~ 54 —



2. B Series. With the exception of B3 — Ag, the C) coefficients constitute infinite series
for all mappings of rank above two. For By — A1 ® A1 ® A; the generator of this
infinite series is given by the hshp?he monomial corresponding to the [1][2][1] irrep,
and for By the generator is given by the h2hy monomial corresponding to the [2][0,1,0]
irrep, both as identified in the branchings of the adjoint shown in table 15. As to be
expected from the graph automorphisms in figure 9, the C\ exhibit symmetry under
interchange of Dynkin fugacities h4 < hp for By, ha < he for B3 — A1 ® A1 ® Ag
and h; < hsz for B3 — Az and By — A3 ® A;.

3. C Series. In all cases, the C), coeflicients constitute finite series and the branching
relations are completely symmetric under interchange of the Ay subgroups.

4. D Series. For rank 4 and above, the C), coefficients constitute an infinite series. For Dy
the generator of this infinite series is given by the hahphchp monomial corresponding
to the [1][1][1][1] irrep and for Ds the generator is given by the hohshp monomial
corresponding to the [0,1,0][1][1] irrep, both as identified in the branchings of the
adjoint shown in table 15. As to be expected from the Dynkin diagrams in figure 9, the
C\ exhibit symmetry under interchange of Dynkin fugacities hy < hp < ho < hp
for Dy, and hy < hp for Ds.

The C) coefficients for Exceptional groups do not fall into any simple pattern, but
some categories can be identified in tables 21 and 22:

1. Finite series. For Go — A, the series of coefficients is finite.

2. Go, B3, Dy — nA; family. The C) for Go — A; ® A; form a complete intersection,
which has a generator given by the ha®hp monomial corresponding to the [3][1]
irrep. Interestingly, the generating functions for Gg, Bs, Dy — nA; differ only in
the composition of their respective monomials hA?’hB, hahg®he and hahghchp.
The reasons can be traced to the folding relationships between the extended Dynkin
diagrams of these groups.

3. Fy, Eg — nAs family. For Fy to Ao® Ao, the generators are given by the haihpg? and
h.2hp2? monomials corresponding, respectively, to the [0,1][0,2] and [1,0][2,0] irreps.
For Eg to A ® Ay ® As, the generators are given by the ha1hpihcor and hashpaohos
monomials corresponding, respectively, to the [1,0][1,0][1,0] and [0,1][0,1][0,1] irreps
and the C'y coefficients are invariant under complex conjugation and under exchange
of subgroups hy < hp < he. Interestingly, the structure of the generating functions
for Fy and Ej is the same, differing only by their respective monomials h4;h B2 and
haihpihci. The source can be traced to the folding relationship between the extended
Dynkin diagrams of these two groups. Even though the generating function for the
C) is not a complete intersection, the C) coefficients form a simple pattern.

In the case of the other Exceptional group decompositions, the HWGs typically have com-
plicated numerators.
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Interestingly, the denominators of the C) coefficients for all groups appear to take a
simple form determined by the zeros of the Dynkin labels in a similar manner to the Pg( N)
factors encountered in the Coulomb branch monopole construction for RSIMS.

In [6], it is conjectured that, whenever three modified Hall-Littlewood polynomials of
the A series are combined by a three punctured sphere, the C) , () branching coefficients
should follow a symmetric diagonal pattern, such that they are only non-zero when the par-
titions {\, u, o} are the same for each subgroup. This is exemplified by the C'\ monomials
for Eg which take the form ha;hp;hc;. For the highly symmetric root system of Dy, where
the branching occurs symmetrically into four A; subgroups, an extension of this symmet-
ric diagonal pattern to four punctures applies. However, the structures of the monomials
for non-simply laced groups such as B3 are more subtle, involving different weights, and
therefore lie outside a symmetric diagonal ansatz. This is also the case for many of the
other mappings we have studied.

The C) coeflicients for Eg match those in [6], when adjusted for normalisation of the
modified Hall-Littlewood polynomials. However, the patterns of the C)\ coeflicients for
E; — A3 ® A3 ® A; and, presumably, Eg — A5 ® Ay ® A;, differ markedly from [6], even
though the resulting RSIMS are the same. This is because our approach in this section has
been to decompose RSIMS in terms of modified Hall-Littlewood polynomials as defined
by (5.20). On the other hand, [6] applies a non-mazimal puncture methodology when
the subgroups are of different rank. This further modifies the mHL into a set of non-
orthogonal functions that cannot be deployed as a basis. The non-maximally punctured
mHL constructions for E7 and Ejg in [6] do, however, follow from the monopole construction
adapted to star shaped quivers, as discussed in section 3, by the gauge choices of ¢34 = 0
and g36 = 0 for E7 and Eg respectively.

Generally, the decomposition of RSIMS using mHL polynomials leads to HWGs with
a small number of generators, as can be seen from table 23. This arises because the mHL
polynomials contain embedded generators equal in number to the roots of the product
group.!” The difference between the Hilbert series dimension and the number of HWG
generators plus the mHL dimension is balanced by the constraints or relations, if any, that
follow from the HWG numerators. We can analyse these in terms of (a) the simple number
of relations, calculated by setting all the HWG fugacities h to unity, and (b) the effect
of constraints due to the precise structures of the HWG numerators, taking into account
differences between the h fugacities. We calculate the impact of these latter constraints
by difference in table 23 and observe that they only arise for some HWG numerators that
have relations involving subgroups containing Ay or higher rank groups.

6 RSIMS from Higgs branches via product/factor groups

6.1 Weyl integration/Molien series construction for classical groups

A quite different set of constructions for the Hilbert series of the moduli spaces of instantons
has been studied using the Higgs branch of SUSY quiver gauge theories [5]. These Hilbert

1"Recall that in the case of HWGs built on characters of representations, the number of embedded
generators is limited by the degree of the dimensional polynomial of the group, which equals the number
of positive roots.
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HS HWG HWG mHL
Group | Dimension Subgroup Generators  Relations | Constraints | Dimension

Sab,c,d (a) (b) (©) ()

Ay 2 A 0 0 0 2
Ao 4 As 0 -1 -1 6
As 6 As 0 -1 -5 12
Ay 8 Ay 0 -2 -10 20
B 8 As 0 -1 -3 12
A3 2 0 0 6

By 12 A3 ® Ay 2 -2 -2 14
APY 5 -1 0 8

Cy 4 AP? 0 0 0 4
Cs 6 AP3 0 0 0 6
Cy 8 APt 0 0 0 8
Dy 10 APt 2 0 0 8
Ds 14 Az @ AY? 2 -2 -2 16
Fs 22 A3 4 0 0 18
As ® Ay 2 -2 -8 30

E; 34 A$? @ A 12 —4 0 26
FEg 58 As @ Ay @ A > 20 ? ? 38
Fy 16 A3 ® Aq 2 0 0 14
AF? 4 0 0 12

APY 15 -7 0 8

Gy 6 A 0 0 0 6
A2 2 0 0 4

a) Number of poles in denominator of HWG determined by setting h fugacities to 1.
b) Number of poles in numerator of HWG determined by setting h fugacities to 1.
c¢) Hidden constraints on HWG/mHL lattice calculated by difference.

d) Dimension of mHL polynomial equals number of roots of sub-group.

(
(
(
(
Table 23. Dimensions of RSIMS Hilbert series and HWGs from A series mHLs.

series enumerate the gauge invariant objects (“GIOs”) of fields transforming in particular
representations of Classical product groups, described by their characters. Before proceed-
ing to discuss their field theoretic interpretations, it is useful to summarise the generating
functions and the product group structures. These are set out in table 24, where we focus
once again on RSIMS.

In all cases, the RSIMS are constructed from one or more basic representations of the
Yang-Mills symmetry group GG through symmetrisation or anti-symmetrisation, followed by
projection of the GIOs (or singlets) of the quiver gauge group through Weyl integration or a
Molien average. Different quiver gauge groups are required to yield the RSIMS, depending
on the Yang-Mills group. Some balancing HyperKéhler quotient terms may also be required
to remove unwanted irreps. It is straightforward to verify that evaluation of the contour
integrals gives precisely the constructions for RSIMS shown in table 5.

In the case of G equals SU(N), an RSIMS is built by taking the PE of (i) a quark trans-
forming in a product group comprising the SU(/V) fundamental and a U(1) representation
with (ii) an antiquark transforming in the SU(V) anti fundamental and a conjugate U(1)
representation. The Weyl integral projects out singlets of the U(1) quiver gauge group and
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thus eliminates all tensor products other than those containing equal numbers of quarks
and antiquarks. These tensor products all transform in some symmetrisation of the adjoint
representation of G, or as singlets. The balancing factor of (1 — ¢?) takes a quotient which
eliminates the singlets resulting from the quark-antiquark tensor products, leaving only the
adjoint representation and its symmetrisations.

In the case of G equals SO(n), the adjoint is formed from the vector representation by
anti-symmetrisation. The chosen product group representation is built from the vector of
the SO(n) series and a quiver gauge field transforming in the C; fundamental. The series
generated by the PE contains representations which have the same symmetry properties
with respect to both parts of the product group. Thus, anti-symmetrisations of the SO(n)
vector representation are coupled to the antisymmetric rank two invariant tensor of the
symplectic C] group. Projecting out these antisymmetric C'; invariants by Weyl integration
therefore selects objects transforming in the adjoint representation of the SO(n) instanton
symmetry group. The quotient term PE[—[2], 2] is necessary since the generating function
otherwise also generates singlets of the quiver gauge group that are not part of the RSIMS.

In the case of USp(2n) Yang-Mills groups, the adjoint is formed from the fundamental
of the group by symmetrisation. In this case the chosen quiver gauge group is the discrete
O(1) group, which is isomorphic to Z,. The singlets of the quiver gauge group are obtained
from a Molien sum [21], which replaces Weyl integration over a continuous group by an
average over a discrete group.

It is interesting to note that the various isomorphisms between Classical groups give rise
to alternative possible product group and quiver gauge group choices for the construction
of instantons for A, By, C1, By, Cy, As and D3 Yang-Mills symmetry groups. Specifically,
we can use the isomorphisms to construct instanton moduli spaces from the spinor as well
as vector representations of Bs and D3 instanton symmetry groups.

Constructions of this type are not known for cases where the Yang-Mills group is an
Exceptional group; while the adjoint of an Exceptional group is formed by antisymmetri-
sation of the fundamental representation, many other irreps are generated in addition and
no simple quotient has yet been identified for their exact cancellation.

6.2 Higgs branch quiver theories

We now turn briefly to the field theoretic interpretation of these product group construc-
tions of RSIMS. These theories arise on the Higgs branches of various SUSY quiver theories
that involve fields transforming in both quiver gauge and instanton Yang-Mills Classical
group representations. The RSIMS are created from the product groups shown in table 24
arise when the fields in table 25 are symmetrised using the PE in the background of a su-
perpotential. The F-term vacuum constraints that result from the superpotentials shown
give rise to relations that correspond exactly to the balancing terms in table 24. Only the
quiver theories with SU(N) or SO(n) instanton symmetry groups have such non-trivial bal-
ancing terms. In the case of the USp(2n) instanton symmetry groups, the F-term vacuum
constraints simply cause the fields to vanish and do not give rise to such relations.

As elaborated in [4, 5] these quiver theories arise on systems of Dp branes against a
background of Dp+4 branes in type II string theories. Specifically taking p=3, we obtain
a 3+1 dimensional space-time with A/ = 2 SUSY, spanned by the D3 branes.
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. . Quiver Gauge | Yang Mills .
Quiver Theory Fields Charges Iireps Superpotential
) 1 [0,...0]
SU(N) x U(1) x U(1)gunge | X12 1/q [1,...0] Tr (X129 X21)
Xo1 q [0,...1]
S 2] [0,...0]
SO (n) x USP(2) pauee Tr (Qae™ Spee™Qq)
geue Q i 1,...0]
A 1 [0,...0]
USp (2n) x O(1) .5 e Tr (QAQ
(2) X O g Q +1 [1,...0] ( )

Table 25. Field content of Higgs branch quiver theories for RSIMS.

Group | Higgs Branch Quiver Coulomb Branch Quiver
SU(2)
SU (N) N-1 nodes

Figure 11. Quiver diagrams for Higgs and Coulomb branch A series RSIMS. Blue nodes denote
U(1) gauge groups. Red nodes denote flavours. The quiver for SU(2) is self-dual under mirror
symmetry. The Coulomb branch quivers correspond to extended Dynkin diagrams when the flavour
nodes, which have zero monopole charges, are identified.

The instantons can be assigned positions on the transverse directions on the D7 branes
parameterised using C2. When there is only one instanton, the fields specifying the global
position of the instanton decouple from the quiver gauge and instanton Yang-Mills fields
and this gives rise to an RSIMS that is determined solely by the quiver gauge and Yang-
Mills field representations. The brane construction corresponding to the unitary theories
is straightforward, however the orthogonal and symplectic theories require the use of ori-
entifold planes [5].

The Higgs and Coulomb branch quiver theories for A series RSIMS are related by mir-
ror symmetry [15, 26]. Without digressing further on this important topic, we summarise
in figure 11 the Higgs branch and Coulomb branch quiver theories corresponding to the A
series RSIMS, which are mirror to each other.

— 62 —



7 Discussion and conclusions

The construction of RSIMS using group theoretic methods based on the Weyl Character
Formula is, in principle, straightforward for both Classical and Exceptional groups.'® As
discussed in section 2, the single instanton moduli space constructions for both Classical
and Exceptional groups given in [12] can be counted within this category, being derivable
from the Weyl Character Formula. What is remarkable is that these instanton moduli
spaces can also be obtained by four further quite different methods, three of which have
precise interpretations within SUSY quiver gauge theories.

1. Coulomb branch RSIMS constructions under N' = 4 SUSY in 2+1 dimensions were
given in [18] for simply laced groups and in [20] it was shown how these constructions
can be extended to non-simply laced groups. These quiver gauge theory constructions
discussed in section 3 describe a product group of U(N) monopole operators labelling
points in the root lattice of the Classical or Exceptional group.

2. Higgs branch RSIMS constructions under N' = 2 SUSY in 3+1 dimensions are given
in table 25 [5]. These quiver gauge theory constructions discussed in section 6 build
instanton moduli spaces as the GIOs of symmetrisations of (the characters of) chiral
scalar fields transforming under various product group representations. They are
only known for Classical instanton symmetry groups.

3. We have shown in section 4 how it is possible to use mappings the weight space of
any Classical or Exceptional group and its semi-simple subgroups to deconstruct an
RSIMS in terms of the moduli spaces of its subgroup irreps. In section 4 we focused
on maximal semi-simple subgroups reached via a single elementary transformation.
In the case of all Classical and some Exceptional groups, such mappings lead to simple
HWGs in terms of subgroup irreps, whose moduli spaces are complete intersections
of dimension six or less.

4. In section 5 we have shown how it is possible to extend the subgroup decomposi-
tion approach to utilise A series modified Hall-Littlewood polynomials, in place of
the characters of representations. These correspond to T'(SU(N)) Coulomb branch
quiver theories in the presence of background charges. This method leads to an in-
teresting simplification of the HWGs for certain families of RSIMS deconstructions,
as discussed further below.

Analysis confirms, on a case by case basis, the identity of the refined Hilbert series (or
character expansions) resulting from the different constructions. The methods all lead to
identical moduli spaces.

The relationship between the RSIMS of a group and its subgroup moduli spaces is of
particular interest. As shown in section 4, in the case of a pair of maximal semi-simple

18Subject only to computational challenges for higher rank groups.
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subgroups of BCD Classical groups'? reached via a single elementary transformation, we
have the simple schema for an RSIMS deconstruction into a subgroup HWG:

gl S PE[(0+0 +vev)t+ (1+g+g +vev)t2 —godtl],

7.1
gi?lstanton—>PE[(9+9’+U®U’)t—g®g’tQ] , (71)

where 0, v and g refer to adjoint, vector and graviton (symmetrised vector) representations,
respectively.

These Classical group RSIMS split into subgroup moduli spaces with their HWGs
defined, at order ¢, by the adjoint representations of subgroups together with the vector
representation of the product group formed by the sub-groups. The HWGs have the same
form for all the orthogonal and symplectic groups studied (providing the component sub-
groups have sufficient rank) and we conjecture that this remains so for higher rank parent
groups. These HWGs are all of dimension six or less.

In the case of Exceptional groups, not all mappings to maximal semi-simple subgroups
lead to HWGs of low dimension, and the dimensional analysis in section 4 shows that this
results from the low degrees of the dimensional polynomials of the subgroups, relative to
the dimensions of the Hilbert series for the parent group RSIMS.

A sequence of elementary transformations to a regular semi-simple subgroup always
leads to a decomposition of the adjoint representation of the parent that includes the adjoint
representations of its subgroups [11]. This makes it possible to find HWGs of low dimension
utilising modified Hall-Littlewood polynomials. These incorporate the plethystic function
PE[(adjoint — rank)t] in their construction and, as shown in section 5, have dimensional
polynomials with a higher degree than those of corresponding representations. Specifically,
the degree of the dimensional polynomial of an mHL polynomial is bounded by the number
of roots of the subgroup, rather than the number of positive roots, as in the case of a
representation based on characters, leading to a factor of two difference.

The resulting low dimensions of the the HWGs built on mHL polynomials leads, in
some cases, to particularly simple decompositions of RSIMS into A series subgroups. In
particular, the HWGs for A and C series groups (and their isomorphisms) and those for
mappings to a single A series subgroup (such as Go — Ag, By — As, [E7 — A7, Eg — Ag))
are given by finite series of mHL polynomials. There are also two families, Gy, B3, Dy — A;"
and Fy, Eg — As™/? that have simple HWGs of dimension 2 and 4 respectively, as shown
in table 26.

These decompositions of RSIMS in terms of mHL polynomials reflect structural re-
lationships between Coulomb branch quiver theories for extended Dynkin diagrams and
those for T(SU(N)). We indicate in figure 12 the quiver diagrams involved in these family
relationships. The extended Dynkin diagrams can be constructed by identifying the flavour
nodes of the T'(SU(NV)) quivers; this construction is provided algebraically by the C) co-
efficients, obtained from the HWGs. As noted in sections 3 and 5, the Coulomb branch
constructions map directly to the mHL constructions under a gauge choice that sets the
lowest U(1) monopole charge of the central node of the Dy or Eg extended Dynkin diagram
to zero.

19 Assuming minimum ranks of 2 and 3 respectively for any B and D series subgroups.
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Family HWG for Cy

Go:h= hi\hB
r _p244
GQ, Bg, D4 — A1® (17t2)(1172t§(17ht2) Bg th= hAh2BhC
Dy :h=hahghchp

Fy: hi = hah%,
®r/2 1+h1t2+hot?+hit3+hot3+h hot® 4 -1t Ail'Bj
Py, Eg = A%/ =2 (1) (1P ) (T—hat) o
Eg : hi = haihpihci

Table 26. RSIMS HWGs from T'(SU(N)) families.

It is clear that quiver diagrams play a profound role in encoding precise relationships
between the root spaces of Classical and Exceptional groups and the Coulomb branches of
SUSY gauge theories with unitary symmetry groups. Although much work remains to be
done to provide a complete account, we can identify some key relationships.

Firstly, the quiver diagrams for all the affine Dynkin diagrams and T'(SU(V)) theories
are balanced, as defined in section 3. This ensures that any integer assignment of charges
to nodes under the Coulomb branch construction leads to integer conformal dimension, as
is necessary for conformal dimension to map to shifts around the root lattice of a group.
When the extended Dynkin diagram is taken as the quiver, conformal dimension turns out
to be 1 for those field configurations corresponding to the roots of a group; interestingly,
this applies equally for non-simply laced groups, notwithstanding the presence of roots of
different lengths.?® Thus, in the RSIMS construction, conformal dimension increases by
1 for each new set of dominant weights and orbits introduced by each symmetrisation of
the adjoint. In SUSY field theory, conformal dimension corresponds to the R-charge of
fields within multiplets. Since conformal dimension defines a foliation of the root space of
a Classical or Exceptional group, the R-charges can be viewed as corresponding to sets of
adjacent orbits or shells in root space.

Secondly, each Coulomb branch monopole construction also depends crucially on its
U(N) symmetries, which correspond to key group theoretic parameters. In the case of the
RSIMS construction, these U(N) symmetries match the dual Coxeter numbers of the nodes
in the extended Dynkin diagram. We have shown how the matching of extended Dynkin
diagram U(N) symmetries to those of T(SU(N)), leads to simple HWGs for RSIMS in
terms of mHL polynomials. In cases where the fit between T'(SU(/V)) structures and the
extended Dynkin diagram is not so good, we can still deconstruct an RSIMS in terms of
mHL polynomials, but at an increase in the complexity of the relations encoded in the
HWG numerators.

Conclusion. A wide variety of methods can be deployed to construct and deconstruct the
single instanton moduli spaces of any Classical or Exceptional group. We have shown how

20Providing the prescription for conformal dimension in section 3 based on the off-diagonal entries in the
Cartan matrix is adhered to.
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Figure 12. Quivers for RSIMS deconstructions to T(SU(N)) families. The Extended Dynkin
diagrams are labelled as follows: blue nodes denote long roots, red nodes denote short roots, black
nodes denote the long roots added in the affine construction and the dual Coxeter numbers of each
node are shown. T(SU(N)) square quiver nodes are labelled by the number N of flavours and
round nodes by U(V) gauge symmetries. The RSIMS deconstruction maps the central node of the
Extended Dynkin diagram to the T'(SU(N)) flavour nodes.

generating functions for characters and Hall-Littlewood polynomials, and the related mod-
ified Hall-Littlewood polynomials, can be used to give efficient decompositions of RSIMS
in terms of HWGs that draw on their semi-simple subgroups. These decompositions are
faithful and the original series can be recovered by recombining characters, or mHL poly-
nomials as appropriate, with the C'y series of coefficients generated by the HWGs. In many
cases, the C'\ coefficients depend in a simple way on the Dynkin labels of the subgroup
representations or mHL polynomials. While these calculations can be implemented in a
purely algebraic manner, relationships between SUSY quiver theories play a valuable role
in guiding the identification of constructions that lead to simple HWGs; conversely the re-
lationships between moduli spaces that we have identified translate to precise relationships
between different SUSY quiver theories.
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Further work. It could be interesting to extend our use of generating functions for Hall-
Littlewood polynomials to the moduli spaces of non-unitary groups and to explore the
circumstances under which these provide simple deconstructions of such spaces.

We have identified two classes of star shaped T'(SU(N)) quiver theories involving Eg to
A§®3 and Dy to A?‘l, such that each class is defined by a common HWG when deconstructed
into mHL polynomials. If such families are generalised to include theories with more
and/or higher rank limbs, can we formulate the principles and find the HWGs for their
deconstruction into simpler components?

It may also be interesting to explore whether these approaches can be used to obtain
simple descriptions of other moduli spaces of physical interest, including multiple instanton
moduli spaces.
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—3tP2 11t o200t 42785 2318042717 3818 2432749120 -122¢% 4+ (2,1, 0, 2
132622 -122t234+91t24-43¢2°-3t26427t27-31t224+27¢2°-20t30+11 31 -3¢3?
£ o3t a5t o777 et 1321742020 - 40¢t2 4+ (2,1, 0, 3)
44 t%2 240123 4+29t2% 13625 —£26 4 7¢27 - 7t£28 4 5¢£2% - 3¢30 4¢3
—t1% 43620 -3¢21 42422 _3¢2343¢24 2 {2, 1, 0, 4}
e o3t a7t o15e 238 - 25¢% 416817 4
5t -35¢12 470t -100t%1 +112t%2-100t2% +70t%* - {2, 1,1, 0}
35t25 4+ 5t20 416127 —25t28 423127 -15¢30 4731 -3+¢32 433
e oaett g o106t + 6t 268745020 -69¢2 + 2,1, 1, 1)
T6t%2-69t2+50t%-26t2°+6t2°+6t?7-10t28+8t2%-4t30 4¢3t
£t o4t 4+8t20 1262 4142212234824 -4+¢£25 426 {2, 1, 1, 2}
£ -4+ 7¢620-8¢2+8e22-8e2 720420420 {2, 1, 2,0}
e3P o3etf a8t 13820197 4 (2, 2, 0, 0}
2222 -19t27 +13¢29-8¢£22+ 4263284327t
—t 3t o412 5620 - 72488227623 4582448254320t {2, 2, 0, 1}
£t 2t a5t ogt et o6ttt o5t _ gl 12¢20 m 1282 112122 - (3, 0, 0, 0}
12623 +12t24-6t2°-5t2049t27 6t 4+ 6127 -8t30+5¢3 233 4¢3
ot -4t r12eP 19t 23248042181 -
9t 15t +40t20 -52t21 + 5422 -52+¢23 440124 -15¢t2° - {3, 0,0, 1}
9t26 421127 -24t2% 4238271930 +12¢31 - 4¢32 ¢35 ,4¢3¢
ot -4tl?v14tBP 24128t 298026t -
8t -26t1?+59t20 7721 +82t%2-77t%3+59t%4-26t2° - {3, 0, 0, 2}

8t204+26t27-29t28 428127 2243041431 - 4¢32 _£35,¢3¢
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P hstanton (€) Character
—tl? et o133t 158 150 416t -6t 1981+ 431205421 45622 - (3,0, 0, 3}
54123443124 -19t25-6t2%4+16t27-15t28 415827 -13t30+6¢3 —t32
£ o3t et oate a2 o5¢1?2 413820 216t 4 (3,0, 0, 4}
16t22-16t23+13t24-5¢25-2t2044t27-4£2844+¢29_3¢30,4¢30
tl7_2t18+2t20_t21_t23+2t24_2t26+t27 {3, O, O, 5}
—t? et 2ttt o5e2 010t —20tM 42980 29810 4
19t -t - 22¢19 4 46t20-69t21+80t%%-69t23 146124 -221t2° - {3, 0,1, 0}
£20419t%7-29t22 429627 -20t30+10t3 -5¢€32 4233 43 o3
ttostel2r12¢etd 20t 4285 -31e0 421 ¢ 4
2t 35t 472¢20-99t21+108t22-99t23+72t24-35t2%+ (3, 0,1, 1}
2120 4+21t27-31t28428¢27-20t30+12¢3 - 532 433
—t a3t ot 10t 11t 7 28 17810 4 36 €20 - 51 £2 4 (3,0, 1, 2}
56t22-51t23+36t2% 17t +2t26+7t27-11t284+10t27-6t304+3¢3_t32
—te 21T 31?5820 _ 722t h 82272345620 3¢5 4227 28 {3, 0,1, 3}
2t o5t y5e o520 587 4268 15817 42620 -33¢21 + (3,0, 2,0
36t22_33t23+26t24_15t25+2t26+5t27_5t28+5t29_5t30+2t31
£t 5612410620 -11¢2L 410822 -11¢23+10t%%-5¢254+¢2° {3, 0, 2, 1}
tH o3t 4t oet 10t 11t 6t 3812617422820 233828438122 - (3, 1, 0, 0}
336234222412t 4382046827 -11t28 410827 -6t30 443 o 3¢32 433
St 3 s e 7 e o7 e e 3 45t o 15110 4 25820 34 £20 4 (3,1, 0, 1)
38t%22 3412342524 - 15t25 4582643127728 4 7¢22 5¢30,3¢31 32
t15_2tl6+3t18_4t19+5t20_9t21+12t22_9t23+5t24_4t25+3t26_2t28+t29 {3, ]_, O, 2}
£ 4t 7¢20-8¢21 48822 -8t23 4724 - 4+t£2% 426 {3, 1, 1, 0}
ottt ret oottt a2t _ 2P e 5820 211 €2 o (4, 0, 0, 0}
14122 -11t22 4582826254220 4227 —6t28 46t27 2230 4¢3 232 4¢33
t11—3t12+4t13—6t14+1Ot15—10t16+4tl7+3t18—8t19+14t20—23t21+28t22— {4, O, O, 1}
23623 4+14t%4-8t2°+3t%°4+4t27-10t%8+10t%7-6t3044¢30-3¢32 ¢33
tt o2t 2eB o35S _e et i3t 28 m 6l 411820 21782120122 - (4,0, 0, 2)
17t 411t -6t +2t2° 43827 —6t284+5t27-3t30+2¢31-2¢32 4¢3
€102 e0 2618 £ 620 g2t L e 22 - 4623 4 624 _ 25 4 2 220 - 2 £28 4 ¢2? {4, 0, 0, 3}
a3t gt e atP o4t e3P -7 12670 - 1587 + (4,0, 1,0
1677 -15t22+ 12t -7+t 43627 -4t 1427 -4t 4387 -t
_¢l4 15 _ 116 18 _ 19 20 _
T7:t21i;t221i7;2t3+5i2§7;?:5+t267t28+2t297t30 {40 0011
—t£12 4 3¢203¢21 4282238234324t {4, 1, 0, 0}
—t1°+t11+t13—t14+t17—t18—t19+2t20— {5’ O, O, O}
2t2l+2t22_2t23+2t24_t25_t26+t27_t30+t31+t33_t34
£13 o 14 £15 19 ;9 £20 421 123 5 24 425, 129 5 30 431 {5, 0, 0, 1}
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C Cp,

Cgs (h,hl,h2,h3,t) 1 to 176

1+2hhlt2+h2t2+2hh3t2+h?2t3+2hhl1t3+2h2t3+h2h2t3+2hh3t3+2hl1h3t3-
hZhl1h3t3+2hhlt*-h3hl1t*+hl?t?+h2t*+h?h2t*+hhlh2t*-h3hl1h2t*-
h2h22t%+2hh3t*-h3h3t?+3hl1h3t*-2hhl1?2h3t*+hh2h3t*-h3h2h3t%-
h2hl1h2h3t*+h32t*-2hhl1h3?2t*+hhl1t5+h12t5-h2h12t5-hh13t5+h2t5+h?2h2t5-
h*h2t5+3hhlh2t5-h3h1h2t5-h?h12h2t5-2h2h22t5+hh3t5+3hl1h3t5-
h2hl1h3t°+h?hl1h3t5-3hhl12h3t>+3hh2h3t>-h3h2h3t>-4h?2hl1h2h3t%+

h*hl1 h2h3t5+h32t5-h?2h3?2t>-3hhl1h32t5-h?2h2h32t5-hh33t5+h12t6-
2h?2h12t6-hh13t6+h?h2t6+3hh1h2t6-2h3h1h2t8+h5h1h2t6-2h2h12h2t6-
h2h22+t6-h3h1h22t6+2h1h3t6-2hh12h3t6+h3h12h3t5-h1°h3t6+3hh2h3t6-
2h3h2h3t6+h5h2h3t6+2hl1h2h3t6-7h2hl1h2h3t6+h*hl1h2h3t6-hhl12h2h3t6+
h3h12h2h3t6-h3h22h3t6+h32t6-2h?h32t6-2hhl1h32t6+h3hl h32t6-
h12h32t6-3h2h12h32+t%-2h2h2h32t6-hhl1h2h32t6+h3h1h2h32t6-hh33tb-
hl1h33t6-h2h12t’-hh13t?’+3hh1h2t’-3h3h1h2t?’+h12h2t?-3h2h12h2t7 +
h*hl12h2t7-h2h22t7-h*h22t’-3h3h1h22t’+h1h3t’-hh12h3t’-h13h3t7 -
h2h1®*h3t7’+hhl1*h3t?+3hh2h3t?’-3h3h2h3t’+2hl1h2h3t’-7h2hl1h2h3t7+
3h*hl1h2h3t?’-h®hl1h2h3t’-4hhl12h2h3t?’+h3h12h2h3t?+h?2h13h2h3t7 -
3h3h22h3t7+h*hl1h22h3t7-h?2h32t7-hh1h32t7-2h12h32t7-5h2h12h32t7 +
hh13h32+t7+h2h32t7-3h2h2h32t’+h*h2h32t7-4hhl1h2h32t7+h3hl h2h32t7 -
hh33t7-h1h33t7-h?2h1h33t?’+hh12h33t?+h?2h1h2h33t? +hhl1 h3*t7’-h2h12t8-
h3h13t8+hhl1h2t8-2h3h1h2t8+h12h2t8-4h2h12h2t8+2h*h12h2t8-hh13h2t8-
2h*h22t8-3h3h1h22t®8+h°h1h22t8-h?2h1h3t8+hh12h3t8-2h3h12h3t8-
h1*h3t®-h2h1*h3t8+hhl*h3t8+hh2h3t8-2h3h2h3t8+2hlh2h3t8-
7h?2h1h2h3t8+3h*hl1h2h3t8-5hh12h2h3t®8+h3h12h2h3t®8-h>h12h2h3t8+
2h?2h1°h2h3t8-3h3h22h3t8+h5h22h3t8-2h2h1h22h3t8+3h*hlh22h3t8+
h3®h12h22h3t®-h2h32t8+hh1h32t8-2h3h1h32t8-2h12h32t8-4h2h12h32¢8+
2h*h12h32t8+h2h32t8-4h2h2h32t8+2h*h2h32t8-5hhl1h2h32t8+h3hl h2h32t8-
h®hl1h2h32t8-h12h2h32t8+2h2h12h2h32t8+2h*h12h2h32t8+h3hl1 h22h32t8

Ce7 (h,h1l,h2,h3,t) 177 to 352

~h3h33t®-h1h33t®-h?h1h3°t®-hh2h33t®+2h?h1h2h33t® +hhl1h3%t®-h3h13¢’-
2h*h1h2t?+h12h2t°-3h?2h12h2t?+h*h12h2t®-hh1*h2t®-h*h22t°-3h3hlh22t?+
2h°h1h22t°-h?h1?2h22t?+h*h1?h22t°-h?h1h3t® +hh12h3t®-2h>h1%2h3t° -
3h2h1*h3t°+h*h13h3t°+hh1*h3t°-2h*h2h3t?+h1h2h3t?-3h2h1h2h3t?+
h*h1h2h3t?-5hh12h2h3t?+3h3h12h2h3t°-h1>h2h3t°+3h?h1*h2h3t?-3h3h22h3t?+
2h°h22h3t°-2h?h1h22h3t?+4h*h1h22h3t°-h®hl1h22h3t?+4h3h12h22h3t%+
hhl1h32t°-2h3h1h32t%-2h12h32t?-2h?2h12h32t?+3h*h12h32t -hh13h32t%+
2h?h1*h3%2t?+h2h32t?-3h?h2h32t?+h*h2h32t°-5hhl1h2h32t?+3h®hl1 h2h32¢°-
2h12h2h32t?+h?2h12h2h32t?+4h*h12h2h32t?+hh13h2h32t%-h2h22h32t% + h* h22 h32¢2 +
4h*h1h22h32t°-hh33t°-3h?h1h33t°+h*h1h33t’-hh12h33t?+h?2h13h33¢? -
hh2h33t?-h1h2h33t°+3h?h1h2h33t?+hh1?h2h33t?+hhl1h3*t®+2h?2h1%2h34t% -
h3h13t%-h3h1h2t-2h?2h12h2t° +h*h12h2t°-hh13h2t!®+h5h13 h2 10 - h? h22 £10 -
h3h1 h22 £+ h>hl1 h22 £ -h?h12h22t°+3h*h1?2h22t°+h3h13h22t1%-2h3h12h3 £10 -
2h?h1*h3t°+h*h13h3t°+h3h14h3t°-h3h2h3t°-h2hl1h2h3t®+h*hlh2h3t10-
3hh12h2h3t%+2h3h12h2h3 ¢ +2h°h12h2h3t%-h13h2h3t%+3h?2h13h2h3 10+
hh1*h2h3t°-h3h22h3t1%+h>h22h3t°-2h2h1 h22h3t1%+6h?*hl h22h3 t10-
2h®h1h22h3t1°+5h3h12h22h3t1%-h%h12h22h3t1°-2h3h1h32t1%+3h*h12h32 10—
2hh1*h32¢°+3h3h13h32t°+3h2h1*h32t1%-2h2h2h3%2 %+ h*h2h32t®-3hhl1h2h3%t104
2h*h1h2h32t°4+2h°h1h2h32t1°-3h12h2h32t1°+3h2h12h2h32t1%+3h*h12h2h32 10—
2h®h12h2h32t° 4+ 2hh1°h2h32t%+2h3h13h2h3%2t10-h2h22h3%2 10+ 3 h*h22h32 10+
5h®hl1 h22h32+t1°-h5hl1h22h32t1%+h2h12h22h32¢10_h3h33¢1°-2h2hlh33¢10+
h*h1h33t°-2hh12h33t°+3h3h12h33t1°-h13h33t®+2h?h13h33t°_hh2h33 10+
h®>h2h33t°-h1h2h3%t°+3h?2h1 h2h33t°+2hh12h2h33t1%+2h*h12h2 h33 10 -
h?2h13h2h33 £+ h3h22h33 ¢+ h3®h1 h34t%+3h2h12h3%t® +hhl1 h2h3%t®-h2h1?2h2t!!+
h®h13h2 t!! + h® h1 h22 £ - h?h1?2 h22 £ + 4 h* h12 h22 t11 + h® h1® h22 t!1 - h® h12 h3 ti! -
h2h13h3t1+h*h1*h3 ¢l +h3h14*h3t-h?h1h2h3t1+2h3h12h2h3t!11+2h%h12h2 h3 t1! -
h13h2h3t+2h?2h1*h2h3 ¢! +2h*h13h2h3t1-h®h1*h2h3 t!t +hh1*h2h3 !+
h®h22h3 t! -h?hl1 h2?2h3 t' +3h*h1h22h3 t! -h®hl1 h22h3 t!' +5h3h12h22 h3 t!! -
3h°h12h22h3t! +h?h1°h22h3 ¢ -h*h13h22h3 ¢ -h3h1h32t11+2h2h12h32 i1+
2h*h12h3%2t1 -3hh13h32t? +5h°h13h3%2t! + 4 h2 h1* h32 t!! - h® h14 h32 £ -
h2h2h32t1+2h*h1h2h32¢t1+2h5h1h2h32t11-3h12h2h32t1+4h2h12h2h32 ¢!
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Ce7 (h,h1,hZ2,h3,t) 353 to 528

4h*h12h2h3? ¢! -3h®°h12h2h32t1+2hh13h2h32t11 +2h3h1°h2 h32 £ - h?* h1* h2 h32 t1! -
h?2h22h32t! +4h*h22h32 1 + 5h3hl1 h22 h32 £ - 3h5h1 h22 h32 ! + 2 h? h12 h22 h32 t11 +
2h*h12h22h32 1 -h3h13h22h32 ¢ -h?h1 h33 ¢ +h*h1 h33 £ -3 hh1%2 h33 £+
5h3h12h33 ¢ -h13h33 ¢! +3h?h13h33 ¢ - h* h13h33 ¢t + hh1* h33 £ + h5 h2 h33 £ -
h1h2h33t!1+2h?2h1h2h33t11+2h*h1h2h33t1-h®h1h2h33t1+2hh1?2h2h33 £l
2h3h12h2h33 £ -h?*h13h2h33t! + h3h22 h33 1 + h? h1 h22 h33 £ - h* h1 h22 h33 1! -
h®h12h22h33 ¢! + h>h1 h34 £ + 4 h?h12h34 £ - h* h12h34 £ + hh1® h34 £ + hhl1 h2 h34 ¢! -
h*h12h2h3* t! + h®>h1®h2 t?2 + 3h* h12 h2?2 t'12+ h® h13h22 t'12 + h®h1*h3 t?2 -h* h1 h2 h3 t1% +
2h*h12h2h3t2+2h%h12h2h3t2+3h*h1*h2h3t2-h®h1*h2h3 t2+hh1*h2 h3 t!2 -
h®h1*h2h3t'2+2h*hl1h22h3 t'2-h®h1 h22h3t'2+3h3h12h22h3t'?-2h5h12h22h3 t1%+
h2h1® h22 h3t2-2h*h1*h22 h3t2-h*h1*h22h3 t2+h*h12h32t12 -hh13h32t12+
5h3>h1®h32t2+3h?h1*h32t2 - h*h1*h3%t? +2h*h1 h2 h3%2 t?2 + 2 h> h1 h2 h32 t12 -
2h12h2h3%2t'2 +3h?h12h2h32t'2+3h*h12h2h32¢'2 -3 h®h12h2h32¢2 + 2hh1®h2 h32 ¢12 +
2h*h1°h2h32t12-3h°h13h2h32t'2+h?h1*h2h32t2-2h*h1*h2 h32t12+ 3 h* h22 h32 t12 +
3h3h1h22h3%2t2 -2h°h1h22h32t'2+3h?2h1?2h22h3%¢2-2h3h13h22h32t'2-hh1?h33t1%2+
5h3h12h33t2-2h13h33t2+6h?2h13h33t12-2h*h13h33t12+hh1*h33t12-h3h1*h33 £12+
h®h2h3%t2+3h*h1h2h33t2-h®h1h2h33t2+2hh12h2h33t12+2h3h12h2h33 £12 -
3h5h12h2h3%t12 +h?2h13h2h33t2-h*h1®h2h33 2 -h3h1?* h2 h33 t'2+ h3 h22 h33 t12 4+
h2 h1 h22 h33 £12 -2 h* h1 h22 h33 12 -2 h3h12h22 h33 12+ h3 h1 h3% t12+ 3 h? h12 h3* t12 -
h*h12h3%t2+hh13h3*t2-h3h13h34t2 -h2h1?*h3* t'2+ hhl1 h2 h3* £'2-h%hl1 h2 h3* t!2 +
h?h12h2 h34t'2-2h*h12 h2 h34 2 - h®h13h2 h34 t'2 - h3h1 h22 h34 £!2 + 2 h* h12 h22 £13 +
h®h13h22t!3 +h®h1?h2h3t3+3h*h1°h2h3 t3 -h6h1*h2h3t® -h°h1*h2 h3 13+
h*hl1h2?2h3 t!3 -h%h1?2h22h3t® +h?h13h2?2h3 t3 -3 h*h13h22h3 t3 -h3h1®h22 h3 t13 +
4h3h13h32¢3 +h? h14h32 ¢ - h*h1*h32 ¢t + h>hl1 h2 h32t13+4h?h1? h2 h32 £13 4
h*h12h2h32t13 - 2h%h12h2h32 £ +3h*h13h2h32 13 -5h>h13h2 h32t!3 + h? h1* h2 h32 ¢13 -
3h*h1*h2h3%2 ¢33 +h® h1* h2 h32t13 + 2 h* h22 h32 £13 - h5 h1 h22 h3?2 t13 + 3 h? h12 h22 h32 £13 -
2h*h12h22h3%2t13 -2h®h12h22h32¢ -2h3h13h22h32 ¢33 +h5h13 h2?2 h32 £33 + 4 h® h1? h33 13 -
h13h33t2®+4h?h13h33 £ -2h*h1*h33t3¥+2hh1*h33 ¢t -3h*h1*h33t3 +3h*h1 h2 h33 £13 -
h®h1h2h33t13 +3h%h12h2h33 ¢33 -5h5h12h2h33 ¢t +h?h13h2h33t3 -3 h*h13h2h33¢13 +
h® h13h2 h33t13 -2 h3h1*h2 h33 13 + h® h22 h33 £ + h2 h1 h22 h33 t13 - 3 h* h1 h22 h33 t13 -
2h*h12h22h33 £33 +h5h12h22h33t3 - h*h1® h22h33 £33 +h?h12h34t13 - h* h12 h34 t13 +
2hh1®h34t13-3h3h1°h34t13 -h?2h1*h34 £33 -h5h1 h2 h34 ¢!3 + h? h12 h2 h3% t13 -
3h*h12h2h3% 13 +h®h12h2 h34t3 - 2h3h1®h2 h34 £ - h>h1 h22 h34 t13 + h5 h13 h22 t14
2h*h1*h2h3t -h>h1*h2h3 t* -h*h13h22h3 t% - h®h1®h22 h3 t** - h® h1? h22 h3 t1*

Ce7 (h,h1,h2,h3,t) 529 to 704

h3h13h32t +2h?h12h2h32t% +2h*h12 h2 h32t1¥ -h®h12h2h32t* -hh13h2 h32t14
h®h1®h2h32t¥ -5h°h1*h2h32t¥ +2h?h1*h2h32t¥ -4 h* h1* h2 h32 £ + h® h1* h2 h32 t14 +
2h?h12h22h32t1 -4 h*h1? h22 h32 £ -2 h® h12 h22 h32t'4 -2 h3 h13 h22 h32 £ +
h®h13h22h32 ¢t -h*h1*h22h32t% +h3h12h33t¥ +3h2h13h33 £ -2 h*h13 h33 14 +
hh1*h3%t¥ -3h°h14h3%t¥ +2h*h1h2h3%t¥ -hh12h2h33t!% +h3h12h2 h33 £ -
5h5h12h2h3%t! +3h?2h13h2h33t¥ - 7h*h1°h2h33 ¢ + 2 h® h13h2 h33 t14 -
2h3h1*h2h33 t¥ +h®h1?* h2 h33 1% + h® h22 h33 t1¥ - h* h1 h22 h33 t14 - h® h1 h22 h33 t14 -
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