
J
H
E
P
1
2
(
2
0
1
5
)
1
1
8

Published for SISSA by Springer

Received: September 11, 2015

Accepted: December 3, 2015

Published: December 17, 2015

Construction and deconstruction of single instanton

Hilbert series

Amihay Hanany and Rudolph Kalveks

Theoretical Physics Group, The Blackett Laboratory, Imperial College London,

Prince Consort Road, London SW7 2AZ, U.K.

E-mail: a.hanany@imperial.ac.uk, rudolph.kalveks09@imperial.ac.uk

Abstract: Many methods exist for the construction of the Hilbert series describing the

moduli spaces of instantons. We explore some of the underlying group theoretic relation-

ships between these various constructions, including those based on the Coulomb branches

and Higgs branches of SUSY quiver gauge theories, as well as those based on generat-

ing functions derivable from the Weyl Character Formula. We show how the character

description of the reduced single instanton moduli space (“RSIMS”) of any Classical or

Exceptional group can be deconstructed faithfully in terms of characters or modified Hall-

Littlewood polynomials of its regular semi-simple subgroups. We derive and utilise Highest

Weight Generating (“HWG”) functions, both for the characters of Classical or Exceptional

groups and for the Hall-Littlewood polynomials of unitary groups. We illustrate how the

root space data encoded in extended Dynkin diagrams corresponds to relationships be-

tween the Coulomb branches of quiver gauge theories for RSIMS and those for T (SU(N))

moduli spaces.

Keywords: Supersymmetric gauge theory, Solitons Monopoles and Instantons, Global

Symmetries

ArXiv ePrint: 1509.01294

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP12(2015)118

mailto:a.hanany@imperial.ac.uk
mailto:rudolph.kalveks09@imperial.ac.uk
http://arxiv.org/abs/1509.01294
http://dx.doi.org/10.1007/JHEP12(2015)118


J
H
E
P
1
2
(
2
0
1
5
)
1
1
8

Contents

1 Introduction 2

2 RSIMS from character generating functions 6

3 RSIMS from Coulomb branches of extended Dynkin diagrams 10

3.1 Introduction 10

3.2 Affine Lie algebras 11

3.3 Coulomb branch or monopole construction 13

3.4 Construction for simply laced groups 16

3.4.1 A series 16

3.4.2 D series 19

3.4.3 E series 21

3.5 Construction for non-simply laced groups 22

3.5.1 B series 22

3.5.2 C series 24

3.5.3 F4 and G2 24

3.6 Coulomb branch quiver theories 26

4 RSIMS from regular semi-simple subgroup representations 28

4.1 RSIMS from maximal regular semi-simple subgroups 29

4.2 RSIMS deconstruction to subgroup HWG 31

4.3 Dimensions of HWGs and Hilbert series for RSIMS 35

5 RSIMS from A series Hall-Littlewood polynomials 36

5.1 Hall-Littlewood polynomials and their generating functions 38

5.2 Modified Hall-Littlewood polynomials and characters of SU(N) 42

5.3 Modified Hall-Littlewood polynomials and T (SU(N)) 44

5.4 Extended Dynkin diagrams and A series subgroups 45

5.5 RSIMS decomposition to modified Hall-Littlewood polynomials 45

5.5.1 D4 example 48

5.5.2 Branching coefficients for RSIMS 50

6 RSIMS from Higgs branches via product/factor groups 58

6.1 Weyl integration/Molien series construction for classical groups 58

6.2 Higgs branch quiver theories 61

7 Discussion and conclusions 63

A PG
instanton for low rank classical groups 67

B P F4
instanton 69

C CE7 79

– 1 –



J
H
E
P
1
2
(
2
0
1
5
)
1
1
8

1 Introduction

The moduli spaces of instantons remain the subject of much research and new construc-

tions continue to be presented in the literature. What is perhaps most remarkable is the

wide variety of different approaches that can be deployed to construct the complicated

Hilbert series describing these moduli spaces, along with the possibility of generating their

expansions from the combinatorics of a few relatively simple building blocks. The con-

struction methods range from those that are purely group theoretic in nature, through

methods associated with semi-simple subgroup decompositions, to those that draw upon

supersymmetric (“SUSY”) quiver gauge theories.

The vacuum moduli space of a 3d N = 4 SUSY quiver gauge theory has a Higgs

branch and a Coulomb branch, with their rings of chiral operators each described by a

Hilbert series. The field content within such a Hilbert series can be represented in various

ways; a basic approach is simply to count chiral operators and to present a dimensional or

“unrefined” Hilbert series. A full way of describing the field content within a Hilbert series

is to calculate the irreducible representations (“irreps”) within which the chiral operators

transform under the global symmetry. Such a series can be presented in terms of the

highest weight Dynkin labels of the irreps of the symmetry group(s) that occur within the

theory, along with their multiplicities. This is a new technique [2], which permits the rich

and systematic description of a wide range of moduli spaces. An alternative new approach,

also developed herein, is to describe the representation content of a Hilbert series in terms of

Hall Littlewood polynomials and related functions; these can be chosen to encode quantum

numbers (such as R-charges) and so to provide a faithful description of a moduli space.

Both of these latter approaches, which involve the use of generating functions for characters

and Hall Littlewood polynomials, together with Weyl integration, to decompose a Hilbert

series, represent important developments within the Plethystics Program [1].

It was shown in [2] how simple encodings for the full sets of invariants for the basic

representations of any group can be found by determining the highest weight generating

functions (“HWG”) for the Hilbert series of the appropriate SQCD quiver gauge theories.

This has relevance, for example, for phenomenologists who are using Hilbert series in the

construction of Lagrangians [3], as a robust way of counting invariants in scenarios which

are intractable by traditional methods.

The aim of this paper is to examine a number of these approaches in the context

of instanton moduli spaces, to try to elucidate the manner in which they are related by

common group theoretic constructs, and to develop methods for extending the range of

possible constructions. Furthermore, while some of these constructions, such as Coulomb

branch quiver theories, are essentially reductive in nature, so that it is difficult to recover

the design of the construction from the resulting Hilbert series, other constructions, such

as those involving Hall-Littlewood polynomials, are reversible, so that the specification for

the construction can be recovered from any generating function for the (refined) Hilbert

series. We refer to this reversible process as deconstruction. We emphasise that we focus

on the analysis of character decompositions of Hilbert series of instanton moduli spaces; we

do not analyse the underlying instanton theories, such as the ADHM construction, which

are already well covered in the literature [4].

– 2 –
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As discussed in [5], the moduli space of single G-instantons over C2 decouples into the

SU(2) component associated with the C2 and a reduced moduli space associated with the

Yang-Mills group G. Our principal focus will be on the reduced moduli spaces of single

instantons (“RSIMS”). These possess the simplest group theoretic descriptions and are

therefore good candidates for study.

Many new results are contained in sections 4 and 5 of this paper. In tables 9 and

10 we give a systematic treatment of the generating functions that effectively yield the

Clebsch Gordan coefficients for the various possible decompositions of the RSIMS of G

into the irreps of the maximal semi-simple subgroups of G. These are relevant, not just for

the study of the structure of SUSY gauge theories, which is our main focus, but may be

applied in any context where a moduli space described by the symmetrisations of an adjoint

representation is subject to some form of symmetry breaking. As an example, the Hilbert

series of the moduli space that results from the RSIMS of G after gauging a subgroup can

be found directly from the character HWGs given in tables 9 and 10 (or from the more

general expression (4.3)), by eliminating terms containing Dynkin label fugacities for the

subgroup that has been gauged away.

From the perspective of SUSY gauge theories, the decompositions of RSIMS in sec-

tion 5 generalise, in a systematic manner, the findings of [6] on the description of the

RSIMS of E series groups by tri-punctured spheres wrapped by M5 branes (and dressed

by sub-group partition data). Thus, in tables 17 to 22, we show how the RSIMS of any

group can be decomposed into A series modified Hall Littlewood functions. These pro-

vide an alternative basis to characters for the faithful description of moduli spaces and, in

cases where the moduli space is of high dimension, these mHL descriptions can be more

tractable than those involving characters. Importantly, since the A series modified Hall

Littlewood functions match the Coulomb branches of T (SU(N)) quiver theories with ex-

ternal charges, these decompositions also highlight new dualities and other relationships

between the Higgs and Coulomb branch constructions of RSIMS and other quiver theories.

For example, we identify in table 26 how certain families of groups, whose RSIMS are

given by star shaped Coulomb branch quiver theories, bear similar relationships to their

T (SU(N)) building blocks.

We anticipate that the multiple methods of analysing the Hilbert series of RSIMS

developed herein can be applied to the moduli spaces of a wide range of SUSY quiver

theories. These include moduli spaces associated with nilpotent orbits of Lie Groups,1

which appear within SUGRA theories, star shaped quiver theories and, in due course,

multiple instanton theories, whose moduli spaces, while known in principle, so far lack a

suitable basis for their simple expansion.

A construction of the Hilbert series for any number of instantons with G taken as

SU(N) was given in [7, 8]. It was subsequently shown [5, 9] how such character expansions

of instanton moduli spaces can be constructed on the Higgs branches of particular N = 2

SUSY quiver gauge theories, not just for SU(N), but for any Classical symmetry group. In

all cases, the RSIMS correspond to fields transforming as highest weight symmetrisations

1The RSIMS series studied herein constitute minimal nilpotent orbits.
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of the adjoint representation of G. The details of the quiver theory constructions required

to yield these character expansions differ according to the symmetry group. We give a brief

review of these in section 6.

We follow the literature [5, 9, 10] in taking the property of transforming in a sym-

metrisation of the adjoint as the defining characteristic of the reduced moduli space of a

single instanton. Working with this definition, it is in principle a relatively straightforward

exercise to construct a refined Hilbert series (“HS”) for the RSIMS of any group using

plethystic character generating functions. We do this by following a group theoretic analy-

sis that starts from the Weyl Character Formula [10, 11]. In section 2, we set out the general

methodology and give the plethystic character generating functions for low rank Classical

groups and for G2 and F4. The results correspond to those obtained by following [12].

This approach is naturally agnostic with respect to any explicit field construction for the

instanton moduli spaces, but provides useful insight into their group-theoretic structure.

More recently, a completely different approach to the construction of instanton moduli

spaces has been developed. This draws upon early work on the GNO lattice [13], as well as

more recent developments in N = 4 quiver theory [14–17]. Specifically, the approach in [18]

uses the Dynkin diagram of the extended (or untwisted affine) Lie algebra corresponding

to the instanton symmetry group G to specify a Coulomb branch quiver theory. Initially

formulated for instanton moduli spaces of simply laced ADE symmetry groups [19], the

construction has been extended to non simply laced BCFG groups [20]. There are interest-

ing relationships between these Coulomb branch quiver theories and those for T (SU(N)),

as will be discussed.

In section 3, as a useful preliminary, we summarise the relationship between Lie al-

gebras and their affine counterparts. We also set out the Coulomb branch quiver theory

methodology for constructing RSIMS by mapping monopole charges from the GNO lattice

of the affine Dynkin diagram of G to the root lattice of G. For SU(2), SU(3), SO(5) and G2,

we demonstrate the analytic equivalence of this Coulomb branch monopole construction

to the RSIMS obtained from the character generating functions set out in section 2. It

follows that these Coulomb branch constructions are also equivalent to the Higgs branch

constructions set out in section 6. These are examples of 3d mirror symmetry between

the Coulomb branches of one class of SUSY gauge theories and the Higgs branches of a

different class of SUSY gauge theories [19].

While the Higgs branch constructions draw upon the basic irreducible representations

(“irreps”), such as fundamentals, vectors and spinors, of G, the Coulomb branch con-

structions draw directly upon the root system of G. Further types of RSIMS construction

draw upon the characters or modified Hall-Littlewood (“mHL”) polynomials of semi-simple

subgroups of G, which can be identified from extended Dynkin diagrams. We list in ta-

ble 1 these different approaches to RSIMS construction, indicating the groups for which

the various constructions are known. The notable gap is the absence of a Higgs branch

construction for Exceptional groups.

The mHL polynomials for SU(N) are equivalent (up to a normalisation factor) to the

Hilbert series generated by T (SU(N)) quiver theories. Constructions out of mHL poly-

nomials, guided by a string theoretic analysis of M5 branes wrapping spheres with three

– 4 –
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Type of RSIMS Construction Section Groups

Character Generating Function 2 ABCDEFG

Higgs Branch 6 ABCD

Coulomb Branch 3 ABCDEFG

Subgroup Representations 4 ABCDEFG

modified Hall-Littlewood Polynomials 5 ABCDEFG

Table 1. Types of RSIMS construction.

Generating Function gGroup (coordinates)

HWG gGroup (tA,mi)

Character gGroup
X (mi, xi)

Refined HS (CSA coordinates) gGroup (tA, xi)

Refined HS (roots) gGroup (tA, zi)

Unrefined HS (distinct counting) gGroup (tA)

Unrefined HS gGroup (t)

Table 2. Types of generating function.

punctures, are known for E6, E7 and E8 instantons [6]. We show in section 5 how to use the

orthogonality and completeness properties of these mHL polynomials to deconstruct the

RSIMS of any Classical or Exceptional group into a sum of mHL polynomials, or equiva-

lently, how to construct any RSIMS out of some combination of T (SU(N)) quiver theories.

We do not analyse the moduli spaces of multiple instanton theories herein. While

progress has been made on these moduli spaces [9, 10, 20], they do not have an equally

simple description in terms of the representation theory of their constituent groups due to

mixing effects between the instanton and global symmetry groups. We comment on the

dualities and other relationships between the various types of RSIMS construction in the

concluding section.

Notation and terminology. We freely use the terminology and concepts of the Plethys-

tics Program, including the Plethystic Exponential (“PE”), its inverse, the Plethystic

Logarithm (“PL”), the Fermionic Plethystic Exponential (“PEF”) and, its inverse, the

Fermionic Plethystic Logarithm(“PFL”). The reader is referred to [21] or [2] for a sum-

mary. Where no ambiguity arises, we may refer to RSIMS simply as instantons.

We present the characters of groups either in the generic form XGroup or, more specifi-

cally, using Dynkin labels such as [n1, . . . , nr]Group, where r is the rank of the group (drop-

ping subscripts if no ambiguities arise). We may refer to series, such as 1 + f +f2 + . . ., by

their generating functions 1/ (1− f). We rely on the use of distinct coordinates/variables

to help distinguish the different types of generating function, as indicated in table 2.

These different types of generating function are related and can be considered as a

hierarchy in which the highest weight generating functions, character and refined HS gen-

– 5 –
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erating functions fully encode the group theoretic information. We label unimodular Cartan

subalgebra (“CSA”) coordinates for weights within characters by x or y, using subscripts

when necessary. We label simple root coordinates by zi, where i ranges from 1 to rank r.

We generally label field counting variables with t. Depending on the constructions used

for RSIMS, they appear enumerated either by t or t2 - the moduli spaces are the same.

Finally, we often deploy highest weight notation [2], which uses fugacities to track highest

weight Dynkin labels, and describes the structure of a Hilbert series in terms of the highest

weights of its consituent irreps. We typically denote such Dynkin label counting variables

for representations based on characters with mi and those for Hall-Littlewood polynomials

with hi, although we may also use other letters, where this is helpful. We define these

counting variable to have a complex modulus of less than unity and follow established

practice in referring to them as “fugacities”, along with the monomials formed from the

products of CSA coordinates.

2 RSIMS from character generating functions

A reduced single instanton moduli space consists of highest weight symmetrisations of

the adjoint representation [5]. This comprises the subsequence of irreps generated by

symmetrisations of the adjoint, whose highest weights have the longest root length. They

are distinguished by having Dynkin labels that are a non-negative integer multiple of those

of the adjoint. We are therefore seeking to construct class functions, whether expressed as

infinite sums, or as rational quotients of polynomials, that generate the series, expanded

in terms of CSA coordinates:

gGinstanton (t, xi) ≡
∞∑
n=0

[nθ1, . . . , nθr]t
n, (2.1)

where [θ1, . . . , θr] are the Dynkin labels for the highest weight of the adjoint representation

θ. We can express such a series using HWG notation [2], which results from mapping the

characters in the series to fugacities for highest weight Dynkin labels. Using the Dynkin

label fugacities {m1, . . . ,mr} and taking the Dynkin labels of the highest weight of the

adjoint representation as [θ1, . . . , θr], the instanton series can equivalently be expressed in

terms of monomials as:

gGinstanton (t, xi)⇔ gGinstanton (t,m1, . . . ,mr) ≡
∞∑
n=0

mnθ1
1 . . .mnθr

r tn

= PE
[
mθ1

1 . . .mθr
r t
]
.

(2.2)

Obtaining a generating function for (2.1) is not straightforward, since a symmetrisations of

the adjoint just using the PE function invariably give rise to many representations besides

the required series:

PE [[θ1, . . . , θr] t] =

∞∑
n=0

Symn [θ1, . . . , θr] t
n

=
∞∑
n=0

[nθ1, . . . , nθr] t
n + . . . [other irreps].

(2.3)

– 6 –
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Group Adjoint PL[gGPE[adj t] (t,mi)]

A1
∼= B1

∼= C1 [2] t2 +m2t

A2 [1, 1]
t2 + t3 +m1

3t3 +m2
3t3

+m1m2t+m1m2t
2 −m1

3m2
3t6

B2 [0, 2]
t2 + t4 +m1t

2 +m1
2t2 +m2

2t

+m2
2t3 +m1m2

2t4 −m1
2m2

4t8

C2 [2, 0] As B2 with m1 ⇔ m2

D2 [2, 0]⊕ [0, 2] 2t2 +m2
1t+m2

2t

Table 3. HWGs for PE of adjoint for low rank classical groups.

Thus, for SU(2), character expansion yields the result:

PE [[2]t] = 1 + [2] t+ t2 + [4] t2 + [2] t3 + [6] t3 + . . .

=

∞∑
n1,n2=0

[2n1] tn1+2n2

=
1

(1− t2)

∞∑
n=0

[2n] tn

=
1

(1− t2)
g

SU(2)
instanton (t, xi) .

(2.4)

We can summarise this series most efficiently using HWG notation:

PE [[2]t]⇔ 1 +m2t+ t2 +m4t2 +m2t3 +m6t3 + . . .

= 1/(1− t2)/(1−m2t)

= PE[t2 +m2t].

(2.5)

Using HWG notation, we set out in table 3 the results of such a symmetrisation exercise

for a selection of low rank groups. Returning to our SU(2) example, we can read off the

relations:
PE [[2]t]⇔ PE

[
t2 +m2t

]
=

1

(1− t2)
PE
[
m2t

]
=

1

(1− t2)
g

SU(2)
instanton (t,m) .

(2.6)

In this case, a simple rearrangement of (2.4) or (2.6) gives us the generating function we

seek, so that:

g
SU(2)
instanton (t, xi) =

(
1− t2

)
PE [[2]t] . (2.7)

This ansatz generalises to RSIMS series associated with any group, with the important pro-

viso that the pre-factor to the PE term is generally a non-trivial class function transforming

in some combination of irreps, rather than just a polynomial in the fugacity t:

gGinstanton (t, xi) = PGinstanton[X (xi), t] PE [θt] . (2.8)

– 7 –
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The class function PGinstanton[X (xi), t] can be found by a variety of routes, including from

the quiver gauge theory constructions described in later sections. For groups where the

adjoint combines one or more basic irreps (i.e. has Dynkin labels equal to one or zero only),

the RSIMS generating function can also be obtained by simplifying a character generating

function; this is the route that has been taken here for G2,2 and for F4.

To elaborate on this method, we can, as shown in [2], obtain a generating function

for the characters X (xi) of any representation of a group G from the Weyl Character

Formula as:

gGX (mi, xi) =
1

x
∏
α∈Φ+ (1− x−α)

∑
w∈W

det [w]
∏
j

∏
i xi

wij

1−mj
∏
i xi

wij
, (2.9)

where the Weyl vector is x ≡
∏
i xi =

∏
α∈Φ+ x

α/2 and the mi are Dynkin label fugacities.

This generating function specialises to the RSIMS series as:

gGinstanton (t, xi) =
1

x
∏
α∈Φ+ (1− x−α)

∑
w∈W

det [w]

∏
i,j xi

wij

1− t
∏
i xi

wijθj
. (2.10)

The Weyl group matrices required for calculations can be obtained from Mathematica

add-on programs such as LieArt [22].

An equivalent formula for the generating functions of RSIMS is provided by [10, 12].

This method expresses (2.10) purely in terms of roots and their inner products, thereby

avoiding the need for explicit determination of the full Weyl group of matrices.

Since the highest weight θ of the adjoint representation is a longest root, and since

root length is invariant under Weyl group reflections, the action of elements w ∈ W of

the Weyl group, θ → wθ, can be used to decompose the Weyl group into a subgroup

W0 ≡ {w0} ≡ {w : wθ = θ}, which leaves θ invariant, and its cosets {wγ} ≡ {w : wγθ = γ},
where γ are the long roots. By choosing a representative wγ from each coset, we can write

any Weyl group element as w = wγw0, for some element of W0.

Under such a decomposition, the subgroup W0 is the Weyl group of the Lie algebra

G0 ⊂ G, that is determined by the maximal subset of the simple roots of G that are not

linked to the extended (or affine) node of the Dynkin diagram for G (see later). The simple

roots of G0 have the property of being orthogonal to the (highest weight of the) adjoint of

G. These Weyl group decompositions are described in table 4.3

Using such a decomposition, we can rewrite (2.10) as:

gGinstanton (t, xi) =
∑

γ∈Φlong

det [wγ ]

(1− xγt)x
∏
α∈Φ+ (1− x−α)

∑
w0∈W0

det [w0]
∏
i,j

xi
(wγw0)ij . (2.11)

By drawing on Weyl’s identity [23], which can be applied equally to W and to W0:∑
w∈W

det[w]
∏
i,j

x
wij
i =

∏
α∈Φ+

(
xα/2 − x−α/2

)
, (2.12)

2The G2 instanton generating function has also been calculated using dimensional analysis [5].
3based on [12], corrected for the C series.
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G |W | |Φlong| |W0| = |W | /|Φlong| G0

An (n+ 1)! n (n+ 1) (n− 1)! An−2

Bn≥2 2nn! 2n (n− 1) 2n−1 (n− 2)! A1 ×Bn−2

Cn 2nn! 2n 2n−1 (n− 1)! Cn−1

Dn≥4 2n−1n! 2n (n− 1) 2n−2 (n− 2)! A1 ×Dn−2

E6 72.6! 72 6! A5

E7 72.8! 126 25.6! D6

E8 192.10! 240 72.8! E7

F4 1152 24 23.3! C3

G2 12 6 2! A1

Table 4. Weyl group decomposition by action on adjoint.

and by following the group theoretic calculations in [10, 12], we can reduce (2.11) to a

general result for an RSIMS. This can be written most concisely as:

gGinstanton (t, xi) =
∑

γ∈Φlong

1

(1− xγt) (1− x−γ)
∏
α∈Φ:(α,γ)=1 (1− x−α)

. (2.13)

As previously, the terms xγ and xα in (2.13) represent monomials in CSA coordinates and

(α, γ) is the inner product that selects the required subsets of the roots. It follows from

the form of (2.13), in which t appears coupled to long roots only, that the dimension of

the refined RSIMS is given by the number of long roots.

The class functions PGinstanton can be separated out, once the various generating func-

tions have been calculated using either (2.10) or (2.13), and we tabulate these in tables 5

and 6 for low rank Classical and Exceptional groups.

The numerator class functions PGinstanton for A3, B3, C3, D3, D4 and F4 are some-

what lengthy and are given in appendix A. The isomorphisms B2
∼= C2 and A3

∼= D3 are

apparent under interchange of Dynkin labels and their fugacities. All the PGinstanton class

functions take a particular form when viewed as polynomials in t, being palindromic (or

anti-palindromic) with some maximum degree d and with the absolute values of the coef-

ficients of tk and td−k being equal. Also, for simple groups, the coefficient of t0 is always

equal to unity and that of t always vanishes.

The class functions PGinstanton for the E series groups have yet to be calculated explic-

itly,4 although it remains feasible to use (2.13) in unfactored form. It is a straightforward

matter to verify that the Taylor expansions of all these generating functions in powers of t

yield the characters of the reduced single instanton moduli spaces in accordance with (2.1).

4Owing to memory constraints in Mathematica.
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Series
RSIMS

HWG
PGinstanton PE

A1 m2t
(
1− t2

)
[0, 0] PE [[2] t]

A2 m1m2t

(
1− t2 − t4 + t6 [0, 0]

−t2 + 2t3 − t4 [1, 1]

)
PE [[1, 1] t]

A3 m1m3t PA3
instanton PE [[1, 0, 1] t]

B2 m2
2t


1− t2 − t6 + t8 [0, 0]

t3 − 2t4 + t5 [0, 2]

−t2 + t3 + t5 − t6 [1, 0]

t3 − 2t4 + t5 [1, 2]

−t2 + t3 + t5 − t6 [2, 0]

 PE [[0, 2] t]

B3 m2t PB3
instanton PE [[0, 1, 0] t]

C2 m1
2t


1− t2 − t6 + t8 [0, 0]

−t2 + t3 + t5 − t6 [0, 1]

−t2 + t3 + t5 − t6 [0, 2]

t3 − 2t4 + t5 [2, 0]

t3 − 2t4 + t5 [2, 1]

 PE [[2, 0] t]

C3 m2
1t PC3

instanton PE [[2, 0, 0] t]

D2 m2
1t+m2

2t

 2− 2t2 − 2t3 + 2t5 [0, 0]

−t+ t2 + t3 − t4 [0, 2]

−t+ t2 + t3 − t4 [2, 0]

 PE [[2, 0] t+ [0, 2] t]

D3 m2m3t PD3
instanton PE [[0, 1, 1] t]

D4 m2t PD4
instanton PE [[0, 1, 0, 0] t]

Table 5. RSIMS generating functions for low rank classical groups.

3 RSIMS from Coulomb branches of extended Dynkin diagrams

3.1 Introduction

The monopole construction of RSIMS in [18, 20], also referred to as a Coulomb branch

construction of RSIMS, draws upon a lattice determined by the simple roots and dual

Coxeter labels of G.5 It exploits an intriguing and highly non-trivial relationship between

G and a unitary product group defined by the dual Coxeter labels of G, and inherits further

structure from the extended Dynkin diagram of G.6

The monopole construction is built directly upon the root space of the Lie algebra and

assembles RSIMS out of sums of monomials in simple roots. For A series constructions,

the simple roots are each associated with a U(1) symmetry group. The algorithm used in

the general monopole construction works, however, with U(N) rather than U(1) symmetry

5This lattice is often referred to as a GNO lattice [13].
6For simply laced groups, the extended Dynkin diagram of G differs from the extended Dynkin diagram

of the GNO dual of G.
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Series
RSIMS

HWG
PGinstanton PE

E6 m6t to be calculated PE [[0, 0, 0, 0, 0, 1] t]

E7 m1t to be calculated PE [[1, 0, 0, 0, 0, 0, 0] t]

E8 m7t to be calculated PE [[0, 0, 0, 0, 0, 0, 1, 0] t]

F4 m1t PF4
instanton PE [[1, 0, 0, 0] t]

G2 m1t


1− t2 − t9 + t11 [0, 0]
−t4 + t5 + t6 − t7 [0, 1]
−t2 + t3 + t8 − t9 [0, 2]
−t4 + t5 + t6 − t7 [0, 3]
t3 − t4 − t7 + t8 [1, 0]
t3 − t4 − t7 + t8 [1, 1]

 PE [[1, 0] t]

Table 6. RSIMS generating functions for exceptional groups.

groups. A U(N) group is assigned to each simple root of an algebra, having its rank set by

the dual Coxeter label
^
ai of the simple root . Thus, any Lie group of rank r is associated

with a unitary product group
∏r
i=1⊗U(

^
ai). The monopole construction also counts root

monomials according to a precise definition of conformal dimension that depends upon

the linking pattern of the extended (or untwisted affine) Dynkin diagram [24] of the Lie

algebra, as well as upon root length information encoded in the Cartan matrix, as will be

elaborated.

3.2 Affine Lie algebras

It is useful to give a brief summary of the relationship between a simple Lie algebra and

its related untwisted affine Lie algebra. For further detail the reader is referred to [11]. An

affine Lie algebra is formed by generalising a Cartan matrix Aij through the addition of

an extra row and column, corresponding to an extra simple root and an extra eigenvalue

operator, or, equivalently, to adding an extra node to the Dynkin diagram. Specifically, a

Cartan matrix Aij , with entries 2 on the diagonal, is modified to form an untwisted affine

Cartan matrix according to the schema:

affine Aij =

(
Aij [col]

− [adjoint] 2

)
, (3.1)

where the column vector [col] is obtained by transposing the Dynkin labels of the adjoint

representation and replacing all non-zero entries with −1 or −2 (in the case of A1, for

example), such that the affine Cartan matrix acquires a zero determinant and becomes

degenerate.7 For reference, we tabulate in figures 1 and 2 the extended (or untwisted

affine) Dynkin diagrams for the simple Classical and Exceptional groups respectively [11].

7There is also a class of twisted affine Lie algebras [11], whose Cartan matrices are similarly degenerate,

but in which the extra node is connected to a representation other than the adjoint. The Dynkin diagrams

of these twisted affine Lie algebras do not correspond to canonical extended Dynkin diagrams [24] and are

not studied herein.
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Figure 1. Extended Dynkin diagrams for simple classical groups up to rank 5. Blue nodes denote

long roots with length 2. Red nodes denote short roots. A black node denotes the long root added

in the affine construction. The dual Coxeter labels giving the U(N) symmetry for each node are

also shown.

Figure 2. Extended Dynkin diagrams for exceptional groups. Blue nodes denote long roots with

length 2. Red nodes denote short roots. A black node denotes the long root added in the affine

construction. The dual Coxeter labels giving the U(N) symmetry for each node are also shown.

The defining feature of an affine Lie algebra is that the affine Cartan matrix is de-

generate positive semidefinite, having a zero determinant and one zero eigenvalue; this in

turn means that the additional root and eigenvalue operators are linear combinations of

the other operators. Naturally, the rank is unchanged. The linear relationship between

the operators is encapsulated in the Coxeter labels aj and dual Coxeter labels
^
ai of each

node. These labels are respectively the left and right eigenvectors with zero eigenvalue of
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the affine Cartan matrix:
r∑
i=0

aiA
ij = 0 =

r∑
j=0

Aij
^
aj . (3.2)

The two types of Coxeter label differ according to the length of the simple root to which

they refer: the ratio between the dual Coxeter label and the Coxeter label of a root is equal

to the ratio of its length to the length of the longest root [11].

The Cartan matrix for an affine Lie algebra can be reduced to that for a regular Lie

algebra by the elimination of a row and its corresponding column (not necessarily the row

and column that were added to form the affine Cartan matrix). An important feature

of the construction is that both the dual Coxeter and Coxeter labels of other nodes are

invariant under the addition or subtraction of untwisted affine nodes.

The eigenvector of the Cartan matrix with zero eigenvalue given by the dual Coxeter

labels has important properties: it defines a linear relationship between the eigenvalue

operators Hj and a central charge C, which is invariant under the action of the root (i.e.

raising/lowering) operators Ei [11]:

C =

r∑
j=0

Hj^aj , (3.3)

[
C,Ei

±
]

= 0. (3.4)

In the case where the central charge C is zero, the untwisted affine Lie algebra is equivalent

to the original Lie algebra, with some degeneracy/redundancy amongst operators and

Dynkin labels of irreps.8 For the purpose of the monopole construction of RSIMS, we

work with a central charge of zero and simply make use of the linking pattern of the

extended Dynkin diagram, as encoded in the untwisted affine Cartan matrix, and its dual

Coxeter labels.

3.3 Coulomb branch or monopole construction

Having covered some preliminaries, we can now give the general monopole construction of

RSIMS, which is valid for all simple Classical and Exceptional Lie groups. This follows the

schema, refined from [18]:

gGinstanton (t, z) ≡
∞∑
n=0

[adj n] tn =
∑
q

zqt∆(q)
∏
i,j

1(
1− tdi,j(q)

) . (3.5)

The formula makes use of simplifying notation, which requires explication to give an un-

ambiguous construction:

1. The variable t is a fugacity for the Dynkin labels of the adjoint representation.

2. The label z is a collective coordinate for a monomial z1 . . . zr in the simple roots of

the Lie algebra.

8Other constructions are also studied, such the addition of derivations to the affine Lie algebra [11] to

realise an algebra with a non-zero central charge.
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3. The rank of the U(Ni) symmetry group of a simple root is given by the dual Coxeter

label
^
ai of its node on the Dynkin diagram.

4. The label q is a collective coordinate for the monopole fluxes (or “GNO charges”)

{{q1,1, . . . , q1,N1} , . . . , {qr,1, . . . , qr,Nr}}, arranged into subsets for each U(Ni) symme-

try group.

5. The term zq combines the collective z and q coordinates into overall charges for each

monomial in the roots and is expanded as zq ≡
∏r
i=1 z

∑Ni
j=1 qi,j

i .

6. The limits of summation for the monopole charges are∞ ≥ qi,1 ≥ . . . qi,j ≥ . . . qi,Ni ≥
−∞ for i = 1, . . . r. (In the case of U(1) symmetry it is convenient to drop the

redundant second index on qi,j .)

7. The terms di,j give the degrees of the Casimirs of the residual U(Ni) symmetries that

remain for each root under each assignment of q charges (explained below).

8. The term ∆ (q) gives the conformal dimension (explained below) associated with each

assignment of q charges.

The determination of residual symmetries for each root under each assignment of monopole

charges follows [18]. We construct a partition of Ni for each root, which counts how many

of the charges qi,j are equal, such that λ(qi) = (λi,1, . . . , λi,Ni), where
∑Ni

j=1 λi,j = Ni and

λi,j ≥ λi,j+1. The terms λi,j in the partition give the ranks of the residual U(N) symmetries

associated with each root, so that it is a straightforward matter to compound the terms in

the degrees of Casimirs, recalling that a U(N) group has Casimirs of degrees 1 through N :

∏
i,j

1(
1− tdi,j(q)

) ≡
i=r
j=Ni∏
i=1
j=1

1∏λij(qi)
k=1 (1− tk)

. (3.6)

So, for example, if qi,j = qi,k for all j, k, then {di,1, . . . di,Ni} = {1, . . . Ni} and if qi,j 6= qi,k
for all j, k, then {di,1, . . . di,Ni} = {1, . . . 1}.

Thus far, all the group theoretic parameters involved in the monopole construction of

the reduced moduli spaces of single instantons have simply been those of the Classical or

Exceptional Lie group. The calculation of conformal dimension also draws upon the linking

pattern of the extended Dynkin diagram, or, equivalently, the extended Cartan matrix Aij .

The conformal dimension is given by the formula:

∆ (q) =
1

2

 r∑
j>i≥0

Affine Aij 6=0

∑
m,n

|qi,mAij − qj,nAji|

− r∑
i=1

∑
m>n

|qi,m − qi,n|. (3.7)

In the conformal dimension formula, the extra affine root, labelled by i = 0 is typically

assigned a U(1) monopole charge q0 of zero. Nonetheless, it still plays a role in the first
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term in (3.7) in accordance with the linking pattern in the extended Aij Cartan matrix.

There are other possible gauge choices, as will be discussed.

The above procedure gives an algorithm for the monopole construction of RSIMS for

any simple Classical or Exceptional group, including those of the non-simply laced BCFG

series, in addition to the ADE series. However, in order for the formulae to be valid for

non-simply laced groups, it is essential to use the dual Coxeter labels associated with the

nodes of the Dynkin diagram [20]; it is also essential that differences in root lengths are

treated using the extended Cartan matrix, as implemented in (3.7).

The character of the adjoint representation of any group is given by the sum of its

roots, which have as their basis a set of simple roots, plus the rank of the group. The root

space is in turn spanned by the monomials zq ≡ z1
q1 . . . zr

qr , used in (3.5). An RSIMS

construction using the root space therefore requires the collection of the root monomials

into representations, at the correct positive and negative integer powers and multiplicities.

As set out above, central roles are played by the fugacity t, in conjunction with its exponent,

the conformal dimension ∆(q), and the U(N) symmetry groups associated with the dual

Coxeter labels of the roots.

We can obtain further insight into the mechanisms behind the workings of the monopole

construction by studying the structure of the root space of the adjoint representation and

its symmetrisations, and we do this in the following sections.

The conformal dimension, as defined, has a number of important properties. Firstly,

as we illustrate below, conformal dimension is invariant under the Weyl group of reflections

of the root space and so effects a foliation of a root space into sets of dominant weights

and their associated orbits. Secondly, this foliation requires that the conformal dimension

is a non-negative integer.9 This requirement of integer shifts around the root space driven

by the q charges is satisfied as a result of the balanced property of all the extended Dynkin

diagrams, shown in figures 1 and 2. A quiver is defined as balanced [15], if the U(N) charge

on each node obeys the rule:

Ni =
1

2

∑
j∈

{
adjacent

nodes

} |Aij |Nj , (3.8)

where the weighting factors |Aij | are taken from the Cartan matrix as before. Under this

condition, the unit displacement of any one of the q charges, taking account of all the links

in (3.7), always leads to a unit (or zero) shift in conformal dimension.

We can obtain an expression for the unrefined moduli space or Hilbert series associated

with the monopole construction gGinstanton (1, t) by the simple expedient of setting the root

space coordinates to unity. Then, since the number of poles contributed by each U(Ni)

group depends only on rank Ni, and is invariant under the gauge group breaking by the

9We note in passing that [15] classifies theories as “good”, “ugly” or “bad”, depending on whether

conformal dimension is 1, 1/2 or 0. In the case of the RSIMS construction, conformal dimension ranges

over all non-negative integer values.
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monopole flux q, the dimension of this moduli space can be expanded as:

Dim
[
gGinstanton (1, t)

]
= Dim

[∑
q

t∆(q)

]
+ Dim

[∏
i,j

1

(1− t)

]
. (3.9)

The dimension of each of the r.h.s. terms is determined by the sum of the ranks of the

U(Ni) symmetry groups associated with the nodes of the Dynkin diagram, that is to say,

the sum of the dual Coxeter labels, in both cases. Hence, the dimension of the unrefined

moduli space generated by the monopole construction is equal to twice the sum of the dual

Coxter labels of the group. As noted in [2], the dimension of an RSIMS is equal to twice

the sum of the dual Coxeter labels of the group.10 This provides a non-trivial consistency

check on the monopole construction.

While we cannot, at this time, present a general analytic proof of the equivalence

between monopole constructions of RSIMS and those based on character generating func-

tions, we can, in principle, demonstrate the analytic equivalence on a case by case basis;

we do this below for A1, A2 and B2. We can also check that expansion of each monopole

construction generates the RSIMS series of characters (which we have done to as high an

order as is practicable for all the Classical and Exceptional groups).

3.4 Construction for simply laced groups

We now set out how the ADE series RSIMS constructions emerge from the general con-

struction given by (3.5), (3.6) and (3.7). The treatment largely follows [20]. We then

analyse the A series, showing the formal equivalence of monopole instanton constructions

for A1 and A2 to ones based on character generating functions, and using the root structure

of A2 to illustrate the group theoretic properties of the conformal dimension construct.

3.4.1 A series

The monopole construction for A series instantons of rank 2 and above is based on the

extended Cartan matrix, defined in accordance with the schema (3.1), and the dual Coxter

labels of the simple roots (shown as a column vector), where we have labelled the affine

root by z0:
z1 2 −1 . . . 0 0 −1 1

z2 −1 2 . . . 0 0 0 1

. . . . . . . . . . . . . . . . . . . . . 1

zr−1 0 0 . . . 2 −1 0 1

zr 0 0 . . . −1 2 −1 1

z0 −1 0 . . . 0 −1 2 1

. (3.10)

For A1, the extended Cartan matrix and dual Coxeter labels are:

z1 2 −2 1

z0 −2 2 1
. (3.11)

10This corresponds to the relationship between the dimension of a reduced single instanton moduli space

and the quaternionic dual Coxter number established in [5], recalling that the (dual) Coxeter number of a

Lie algebra is given by the sum of the (dual) Coxeter labels plus 1.
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Applying the prescription set out in (3.5), (3.6) and (3.7), we obtain the equation for an

A series RSIMS:

gArinstanton =
1

(1− t)r
∞∑

q1,...qr=−∞
z1
q1z2

q2 . . . zr
qr t∆(q), (3.12)

where

∆ (q) =
1

2

(
|q1|+

r−1∑
i=1

|qi − qi+1|+ |qr|

)
. (3.13)

The resulting monopole constructions for A1 and A2 can be rearranged into the equivalent

character generating functions. For A1, where we are working with root space vectors ex-

pressed as z1 in the basis of simple roots, rather than as x2 in the basis of CSA coordinates,

we have:

gA1
instanton =

1

(1− t)

∞∑
q1=−∞

zq11 t
|q1|

=
1

(1− t)

( ∞∑
q1=0

zq11 t
q1 +

∞∑
q1=0

z−q11 tq1 − 1

)

=
1− t2

(1− t) (1− z1t) (1− t/z1)

=
(
1− t2

)
PE [[2] t] .

(3.14)

This yields the instanton character generating function for A1 given in table 5.

For A2 the rearrangement of the series, which follows the boundaries of the Weyl

chambers of the group, is more intricate:

gA2
instanton =

1

(1− t)2

∞∑
q1,q2=−∞

zq11 z
q2
2 t

1
2

(|q1|+|q1−q2|+|q2|)

=
1

(1− t)2



∑∞
q2=0

∑q2
q1=0

(
zq11 z

q2
2 + z−q11 z−q22 + zq21 z

q1
2 + z−q21 z−q12

)
tq2

−
∑∞

q1=0

(
zq11 z

q1
2 + z−q11 z−q12

)
tq1

−
∑∞

q1=0

(
zq11 + z−q11 + zq12 + z−q12

)
tq1

+
∑∞

q1=0

∑∞
q2=0

(
z−q11 zq22 + zq11 z

−q2
2

)
t(q1+q2) + 1


=

(1−t2−t4+t6)−
(
t2−2t3+t4

) (
z1+z2+z1z2+z−1

1 +z−1
2 +z−1

1 z−1
2 + 2

)
(1− z1t) (1− z2t) (1− z1z2t)

(
1− z−1

1 t
) (

1− z−1
2 t
) (

1− z−1
1 z−1

2 t
)

(1− t)2

=
(
(1− t2 − t4 + t6) [0, 0]−

(
t2 − 2t3 + t4

)
[1, 1]

)
PE[[1, 1] t].

(3.15)

Once again, we obtain the instanton character generating function for A2 as given in table 5.

Some insight into the structure of the monopole formula can be obtained by reversing

the above procedure and seeking to derive the monopole constructions from the plethys-

tic generating functions for RSIMS identified in section 2. For A1, summing (2.13), the
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derivation proceeds as below:

gA1
instanton =

1

(1− z)
(
1− t

z

) +
1(

1− 1
z

)
(1− tz)

=
∞∑
a=0

∞∑
b=0

tazb−a +
∞∑
a=0

∞∑
b=0

taza−b

=
∞∑

q=−∞

∞∑
b=max(0,−q)

tb+qzq +
∞∑

q=−∞

∞∑
b=max(0,q)

tb−qzq

=
1

1− t

∞∑
q=−∞

(
tmax(0,−q)+q + tmax(0,q)−q

)
zq

=
1

1− t

( ∞∑
q=−∞

t|q|zq +

∞∑
q=−∞

zq

)
=

1

1− t

∞∑
q=−∞

t|q|zq.

(3.16)

The key steps in the derivation include (i) Taylor expansion of the summand associated

with each long root, (ii) rearrangement of the limits of summation, such that the summands

share the same simple root fugacities zq and the charges q range from −∞ to ∞, (iii)

implementation of sums with the respect to the charges that are not carried by the simple

roots and (iv) simplification of the resulting piecewise functions. When boiling down the

latter it is useful to draw on identities that follow from the complex unimodular nature of

the root space coordinates.

While we should in principle be able to find such derivations for higher rank groups,

the simplification of the piecewise functions becomes increasingly non-trivial. Thus, for

SU(3), we have:

gA2
instanton =

∑
Weyl

1(
1− 1

z1

)(
1− 1

z1z2

)
(1− z2) (1− tz1)

=
∑
Weyl

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

taza−b−c1 zd−c2

=
∑
Weyl

∞∑
q1=−∞

∞∑
q2=−∞

∞∑
c=max(0,−q2)

∞∑
b=max(0,−c−q1)

zq11 z
q2
2 t

b+c+q1

=
1

(1− t)
∑
Weyl

∞∑
q1=−∞

∞∑
q2=−∞

∞∑
c=max(0,−q2)

zq11 z
q2
2 t

max(0,c+q1)

=
1

(1− t)
∑
Weyl

∞∑
q1=−∞

∞∑
q2=−∞

∞∑
a=0

zq11 z
q2
2 t

max(0,a+q1,a+q1−q2)

=
1

(1− t)2

∑
Weyl

∞∑
q1=−∞

∞∑
q2=−∞

zq11 z
q2
2 ×

×
(
tmax(0,q1,q1−q2) − (1− t) min (0,max (q1, q1 − q2))

)
=

1

(1− t)2

∑
Weyl

∞∑
q1=−∞

∞∑
q2=−∞

zq11 z
q2
2 t

max(0,q1,q1−q2), (3.17)

– 18 –



J
H
E
P
1
2
(
2
0
1
5
)
1
1
8

where we have used an identity, which is valid for the root coordinates:
∞∑

q1=−∞

∞∑
q2=−∞

zq11 z
q2
2 min (0,max (q1, q1 − q2)) = 0. (3.18)

We continue by carrying out the Weyl reflections to obtain:

gA2
instanton =

1

(1− t)2

∞∑
q1=−∞

∞∑
q2=−∞

zq11 z
q2
2 (tmax(0,−q1,q2−q1)+tmax(0,q1,q1−q2)+tmax(0,−q2,−q1)

+ tmax(0,−q2,q1−q2) + tmax(0,q2,q2−q1) + tmax(0,q2,q1))

=
1

(1− t)2

∞∑
q1=−∞

∞∑
q2=−∞

zq11 z
q2
2

(
2 + t|q1| + t|q2| + t|q1−q2| + t

1
2
|q1−q2|+ 1

2
|q1|+ 1

2
|q2|
)

=
1

(1− t)2

∞∑
q1=−∞

∞∑
q2=−∞

zq11 z
q2
2

(
t
1
2
|q1−q2|+ 1

2
|q1|+ 1

2
|q2|
)
,

(3.19)

where we have rearranged the parts of the six piecewise functions and then used unimodular

coordinate identities to eliminate five of the resulting functions:
∞∑

q1=−∞
zq11 = 0 =

∞∑
q1=−∞

∞∑
q2=−∞

zq11 z
q2
2 t
|q1−q2|. (3.20)

A key feature of the monopole construction is the manner in which conformal dimension

foliates the root space into sets of Weyl group orbits that correspond to the adjoint and

its symmetrisations. This is shown in figure 3 for the first few orbits of A2, where we label

states in terms of their root space coordinates, rather than their weight space coordinates

(Dynkin labels).

3.4.2 D series

The monopole construction for D series RSIMS of rank 4 and above is based on the extended

Cartan matrix, defined in accordance with the schema (3.1), and the dual Coxter labels of

the simple roots (shown as a column vector), where we have labelled the affine simple root

by z0:
z1 2 −1 . . . 0 0 0 0 1

z2 −1 2 . . . 0 0 0 −1 2

. . . . . . . . . . . . . . . . . . . . . . . . 2

zr−2 0 0 . . . 2 −1 −1 0 2

zr−1 0 0 . . . −1 2 0 0 1

zr 0 0 . . . −1 0 2 0 1

z0 0 −1 . . . 0 0 0 2 1

. (3.21)

Applying the prescription set out in (3.5), (3.6) and (3.7), we obtain the equation for a D

series RSIMS of rank 4 or greater:

gDrinstanton =
∞∑

q1,qr−1,qr=−∞

∞∑
qj,1≥qj,2≥−∞
r−2≥j≥2

z1
q1z2

q2,1+q2,2 . . . zr−2
qr−2,1+qr−2,2zr−1

qr−1zr
qr

× PDrU(N) (q, t) t∆(q),

(3.22)
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Figure 3. Root space of A2 foliated by conformal dimension. The colour sequence corresponds to

conformal dimensions of 0 for (0,0), 1 for the Weyl orbit of (1,1), 2 for the Weyl orbits of (2,2),

(1,2) and (2,1), and 3 for the Weyl orbits of (3,3), (2,3) and (3,2). The adjoint representation is

given by the orbit of (1,1) with conformal dimension 1 plus 2 orbits with conformal dimension 0.

where

PDrU(N) (q, t) =
1

(1− t)r
r−2∏
j=2

{
qj,1 = qj,2 : 1/(1− t2)

qj,1 6= qj,2 : 1/(1− t)
(3.23)

and

∆(q) =
1

2

(
2∑
i=1

|q2,i|+
2∑
i=1

|q1 − q2,i|+
r−3∑
k=2

2∑
i,j=1

|qk,i − qk+1,j |

+
2∑
i=1

|qr−2,i − qr−1|+
2∑
i=1

|qr−2,i − qr|

)
−

r−2∑
k=2

|qk,1 − qk,2|

(3.24)

The construction can, in principle, be rearranged into the character generating functions

shown in table 5, similarly to the cases of the A series constructions shown above.

As in the case of the A series, the conformal dimension measure has the effect of foli-

ating the root system into orbits of dominant weights associated with successive multiples

of the adjoint representation.

Also, the gauge choice q0 = 0 has alternatives and, indeed, any one of the monopole

charges can be defined to zero, providing the summand is modified to include both z0

and q0 and care is taken over the PU(N) symmetry factors. For star shaped quivers, such

as D4, a particularly convenient choice of gauge is q2,2 = 0, and this leads directly to a

decomposition into a symmetric sum over all the representations of four T (SU(2)) quiver

theories, as discussed in section 5.
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3.4.3 E series

The monopole construction for E6 instantons is based on an extended Cartan matrix and

dual Coxter labels of the form:

z1 2 −1 0 0 0 0 0 1

z2 −1 2 −1 0 0 0 −1 2

z3 0 −1 2 −1 0 −1 0 3

z4 0 0 −1 2 −1 0 0 2

z5 0 0 0 −1 2 0 0 1

z6 0 0 −1 0 0 2 −1 2

z0 0 0 0 0 0 −1 2 1

. (3.25)

Applying the prescription set out in (3.5), (3.6) and (3.7), we obtain the monopole equation

for an E6 instanton:

gE6
instanton =

∞∑
q1,q5=−∞

∞∑
qj,1≥qj,2≥−∞

j=2,4,6

∞∑
q3,1≥q3,2≥q3,3≥−∞

z1
q1z2

q2,1+q2,2z3
q3,1+q3,2+q3,3z4

q4,1+q4,2z5
q5z6

q6,1+q6,2

× PE6

U(N) (q, t) t∆(q),

(3.26)

where

PE6

U(N) (q, t) =
1

(1− t)6(1− t2)4 (1− t3)

× If
[
q3,1 6= q3,2 ∨ q3,1 6= q3,3 ∨ q3,2 6= q3,3,

(
1 + t+ t2

)]
× If [q3,1 6= q3,2 ∧ q3,1 6= q3,3 ∧ q3,2 6= q3,3), (1 + t)]

×
∏

j=2,4,6

If [qj,1 6= qj,2, (1 + t)]

(3.27)

and

∆(q) =
1

2

(
2∑
i=1

|q1 − q2,i|+
∑

k=2,4,6

i=2,j=3∑
i,j=1

|q3,j − qk,i|+
2∑
i=1

|q4,i − q5|+
2∑
i=1

|q6,i|

)

−
∑

k=2,4,6

2∑
i>j≥1

|qk,i − qk,j | −
3∑

i>j≥1

|q3,i − q3,j |.

(3.28)

We do not give the explicit instanton constructions for E7 and E8 groups; however, these

follow a similar pattern to the E6 construction. The constructions for the ADE series given

above are equivalent to those in [18]. Again, the gauge choice q0 = 0 has alternatives. For

star shaped quivers, such as E6, a particularly convenient choice of gauge is q3,3 = 0, and

this leads directly to a decomposition into a symmetric sum over all the representations of

three T (SU(3)) quiver theories, as discussed in section 5.
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3.5 Construction for non-simply laced groups

3.5.1 B series

The monopole construction for B series instantons is based on the extended Cartan matrix,

defined in accordance with the schema (3.1), and its dual Coxeter labels, where we have

labelled the affine simple root z0:

z1 2 −1 . . . 0 0 0 1

z2 −1 2 . . . 0 0 −1 2

. . . . . . . . . . . . . . . . . . . . . 2

zr−1 0 0 . . . 2 −2 0 2

zr 0 0 . . . −1 2 0 1

z0 0 −1 . . . 0 0 2 1

. (3.29)

Applying the prescription set out in (3.5), (3.6) and (3.7), we obtain the monopole equation

for a B series instanton of rank 2 and above:

gBrinstanton =

∞∑
q1,qr=−∞

∞∑
qj,1≥qj,2≥−∞
r−1≥j≥2

z1
q1z2

q2,1+q2,2 . . . zr−1
qr−1,1+qr−1,2zr

qrPBrU(N) (q, t) t∆(q),

(3.30)

where

PBrU(N) (q, t) =

∏r−1
j=2 If [qj,1 6= qj,2, (1 + t)]

(1− t)r(1− t2)r−2
(3.31)

and

∆(q) =
1

2

(
2∑
i=1

(|q1 − q2,i|+ |q2,i|+ |2qr−1,i − qr|) +
r−2∑
k=2

2∑
i,j=1

|qk,i − qk+1,j |

)

−
r−1∑
k=2

∑
i>j

|qk,i − qk,j |.

(3.32)

We can extract the monopole construction for B2 from (3.30), (3.31) and (3.32) and rear-

range it into the character generating function for B2 in table 5:

gB2
instanton =

1

(1− t)2

∞∑
q1,q2=−∞

z1
q1z2

q2t
1
2

(|2q1−q2|+|q2|)

=
1

(1− t)2



∑∞
q1=0

∑2q1
q2=0 (z1

q1z2
q2 + z1

−q1z2
−q2) tq1

+
∑∞

q1=0

∑∞
q2=2q1

(z1
q1z2

q2 + z1
−q1z2

−q2) t(q2−q1)

−
∑∞

q1=0

(
z1
q1z2

2q1 + z1
−q1z2

−2q1
)
tq1

+
∑∞

q1=0

∑∞
q2=0 (z1

q1z2
−q2 + z1

−q1z2
q2) t(q1+q2)

−
∑∞

q1=0 (z1
q1 + z1

−q1) tq1

−
∑∞

q2=0 (z2
q2 + z2

−q2) tq2

+1


(3.33)

– 22 –



J
H
E
P
1
2
(
2
0
1
5
)
1
1
8

. . .

=


1− t2 − t6 + t8 [0, 0]

t3 − 2t4 + t5 [0, 2]

−t2 + t3 + t5 − t6 [1, 0]

t3 − 2t4 + t5 [1, 2]

−t2 + t3 + t5 − t6 [2, 0]

PE [[0, 2] t] . (3.34)

Similarly to the A series, we can also derive the monopole expression for B2 RSIMS

from the plethystic formula (2.13). The long roots are given by {z1, z1z2
2, z1

−1, z1
−1z2

−2}
and, selecting those Weyl reflections that transform between z1 and the other long roots,

we obtain:

gB2
instanton =

∑
Weyl:Φ∈long

1

(1− tz1) (1− 1/z1) (1− z2) (1− 1/z1z2)

=
∑

Weyl:Φ∈long

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

taza−b−d1 zc−d2

=
∑

Weyl:Φ∈long

∞∑
q1=−∞

∞∑
q2=−∞

∞∑
d=max(0,−q2)

∞∑
b=max(0,−d−q1)

z1
q1z2

q2tb+d+q1

=
1

(1− t)
∑

Weyl:Φ∈long

∞∑
q1=−∞

∞∑
q2=−∞

∞∑
d=0

z1
q1z2

q2tmax(0,d+q1,d+q1−q2)

=
1

(1− t)2

∑
Weyl:Φ∈long

∞∑
q1=−∞

∞∑
q2=−∞

zq11 z
q2
2 ×

× (tmax(0,q1,q1−q2) − (1− t) min(0,max(q1, q1 − q2)))

=
1

(1− t)2

∑
Weyl:Φ∈long

∞∑
q1=−∞

∞∑
q2=−∞

zq11 z
q2
2 t

max(0,q1,q1−q2),

(3.35)

where we have used an identity, that is valid for unimodular coordinates:
∞∑

q1=−∞

∞∑
q2=−∞

zq11 z
q2
2 min(0,max(q1, q1 − q2)) = 0. (3.36)

We continue by carrying out the relevant Weyl reflections and rearranging the piecewise

functions to obtain the RSIMS:

gB2
instanton =

1

(1− t)2

∞∑
q1=−∞

∞∑
q2=−∞

zq11 z
q2
2 (tmax(0,−q1,q2−q1) + tmax(0,−q1,q1−q2)

+ tmax(0,q1,q2−q1) + tmax(0,q1,q1−q2))

=
1

(1− t)2

∞∑
q1=−∞

∞∑
q2=−∞

zq11 z
q2
2 (t

1
2
|2q1−q2|+ 1

2
|q2| + t|q1−q2| + t|q1| + 1)

=
1

(1− t)2

∞∑
q1=−∞

∞∑
q2=−∞

zq11 z
q2
2 t

1
2
|2q1−q2|+ 1

2
|q2|,

(3.37)

where we have eliminated piecewise terms using root identities, as before.
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3.5.2 C series

The monopole construction for C series instantons is based on the extended Cartan matrix,

defined in accordance with the schema (3.1), and its dual Coxeter labels, where we have

labelled the affine simple root z0:

z1 2 −1 . . . 0 0 −1 1

z2 −1 2 . . . 0 0 0 1

. . . . . . . . . . . . . . . . . . . . . 1

zr−1 0 0 . . . 2 −1 0 1

zr 0 0 . . . −2 2 0 1

z0 −2 0 . . . 0 0 2 1

. (3.38)

Applying the prescription set out in (3.5), (3.6) and (3.7), we obtain the monopole equation

for a C series instanton:

gCrinstanton =
1

(1− t)r
∞∑

qi=−∞
z1
q1z2

q2 . . . zr
qr t∆(q), (3.39)

where

∆(q) =
1

2

(
|q1|+

r−2∑
i=1

|qi − qi+1|+ |qr−1 − 2qr|

)
. (3.40)

It follows from (3.33), (3.39) and (3.40) that the constructions for B2 and C2 are isomorphic

under interchange of root labels, as required by consistency.

3.5.3 F4 and G2

The monopole construction for the F4 instanton is based on the extended Cartan matrix,

defined in accordance with the schema (3.1), and its dual Coxeter labels, where we have

labelled the affine simple root z0:

z1 2 −1 0 0 −1 2

z2 −1 2 −2 0 0 3

z3 0 −1 2 −1 0 2

z4 0 0 −1 2 0 1

z0 −1 0 0 0 2 1

. (3.41)

Applying the prescription set out in (3.5), (3.6) and (3.7), we obtain the monopole equation

for a F4 instanton:

gF4
instanton =

∞∑
qj1≥qj,2≥−∞

j=1,3

∞∑
q2,1≥q2,2≥q2,3≥−∞

∞∑
q4=−∞

z1
q1,1+q1,2z2

q2,1+q2,2+q2,3z3
q3,1+q3,2z4

q4PF4

U(N)t
∆(q),

(3.42)
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where

PF4

U(N) (q, t) =

∏
j=1,3 If [qj,1 6= qj,2, 1 + t]

(1− t)4(1− t2)3 (1− t3)

× If
[
∃i, j : q2i 6= q2j , (1 + t+ t2)

]
× If [!∃i, j : q2,i = q2,j , (1 + t)]

(3.43)

and

∆(q) =
1

2

 2∑
i=1

|q1,i|+
2∑
i=1

3∑
j=1

(|q1,i − q2,j |+ |2q2,j − q3,i|) +

2∑
i=1

|q3,i − q4|


−
∑
k=1,3

|qk,1 − qk,2| −
∑
i>j

|q2,i − q2,j |.
(3.44)

The monopole construction for the G2 instanton is based on the extended Cartan matrix,

defined in accordance with the schema (3.1), and its dual Coxeter labels, where we have

labelled the affine simple root z0:

z1 2 −3 −1 2

z2 −1 2 0 1

z0 −1 0 2 1

. (3.45)

Applying the prescription set out in (3.5), (3.6) and (3.7), we obtain the monopole equation

for a G2 instanton:

gG2
instanton =

∞∑
q1,1≥q1,2≥−∞

∞∑
q2=−∞

z1
q1,1+q1,2z2

q2PG2

U(N)t
∆(q), (3.46)

where

PG2

U(N) (q, t) =
If [q1,1 6= q1,2, (1 + t)]

(1− t)2 (1− t2)
(3.47)

and

∆(q) =
1

2

2∑
i=1

(|q1,i|+ |3q1,i − q2|)− |q1,1 − q1,2| . (3.48)

We can use the root structures of B2, C2 andG2 to illustrate how the monopole construction

combines the Weyl group orbits of dominant weights into irreps that are symmetrisations

of the adjoint representation. Recall we are labelling states in terms of their root space

coordinates in figures 4, 5 and 6, rather than their weight space coordinates (Dynkin labels).

In all cases the RSIMS can be expressed as sums of orbits of dominant weights in the

root lattice (weights in the interior of the positive root space). The conformal dimension

remains constant around each orbit. More than one dominant weight can have the same

conformal dimension. The orbits are combined, at multiplicities determined by the PGU(N)

factors, to give the adjoint representation and its symmetrisations. For all rank 2 groups,

the adjoint is given by the orbits with conformal dimension 1 plus two orbits with conformal

dimension 0. The isomorphism between B2 and C2 is evident upon interchange of simple

roots (and Dynkin labels).
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Figure 4. Root space of B2 foliated by conformal dimension. The colour sequence corresponds to

conformal dimensions of 0 for (0,0), 1 for the Weyl orbits of (1,2) and (1,1), 2 for the Weyl orbits

of (2,4), (2,3) and (2,2), and 3 for the Weyl orbits of (3,6), (3,5), (3,4) and (3,3). The long root of

the adjoint representation is (1,2).

Figure 5. Root space of C2 foliated by conformal dimension. The colour sequence corresponds to

conformal dimensions of 0 for (0,0), 1 for the Weyl orbits of (2,1) and (1,1), 2 for the Weyl orbits

of (4,2), (3,2) and (2,2), and 3 for the Weyl orbits of (6,3), (5,3), (4,3) and (3,3). The long root of

the adjoint representation is (2,1).

3.6 Coulomb branch quiver theories

We have analysed these monopole constructions largely from a group theoretic perspective,

however, in the case of the ADE series RSIMS, they correspond to the Coulomb branches of

particular SUSY quiver gauge theories, being N = 4 superconformal gauge theories in 2+1

dimensions [18]. The Coulomb branches of these theories are HyperKähler manifolds. The

related brane configurations involve D2 branes against a background of D6 branes [20].
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Figure 6. Root space of G2 foliated by conformal dimension. The colour sequence corresponds to

conformal dimensions of 0 for (0,0), 1 for the Weyl orbits of (2,3) and (1,2), and 2 for the Weyl

orbits of (4,6), (3,6), (3,5) and (2,4). The long root of the adjoint representation is (2,3).

As shown in [20], the BC series RSIMS correspond to quiver gauge theories for brane

configurations which include orientifold planes. (The orientifold planes are required to

ensure that the constructions can reproduce the root systems of the Lie algebras.)

In these theories, the quiver gauge theory is specified by the extended Dynkin diagram,

with the dual Coxeter numbers
^
ai associated to each node, determining the U(Ni) gauge

fields carried by the nodes. The zero central charge of the affine Lie algebra corresponds

to an overall gauge invariance condition on the field combinations on the Coulomb branch.

Since the affine root and its Dynkin label are redundant, by virtue of the degeneracy of

the affine Cartan matrix, they can be gauged away, that is to say, we can describe the field

combinations on the Coulomb branch purely by reference to the non-affine roots, combined

into root monomials at some integer powers.

The delicate aspect of the monopole construction lies in the collection of root mono-

mials into characters of representations of the Lie group that are precisely enumerated

by the fugacity t, the exponents of which give the spin of the SU(2)-R global symme-

try. This collection process depends crucially on the R-charges assigned to the BPS bare

monopole operators carrying the GNO charges q. In schematic terms, these R-charges or

conformal dimensions are given by application of the following general formula [18] to the

quiver diagram:

∆ (q) =
1

2

r∑
i=1

∑
ρi∈R
|ρi(q)|︸ ︷︷ ︸

contribution of N=4
hyper multiplets

−
∑
α∈Φ+

|α(q)|

︸ ︷︷ ︸
contribution of N=4

vector multiplets

. (3.49)

The first part of (3.49) is the R-charge of the N = 4 hyper multiplets. The second part is

the R-charge of the N = 4 vector multiplets. It is instructive to compare (3.49) with (3.7).

We can see that the first term in (3.7) shows precisely how the affine root is connected

to other roots in the summation over matter fields. The contributions to the R-charge are
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from fields linking adjacent nodes in the quiver diagram and so correspond to bifundamental

chiral operators within the N = 4 hypermultiplets.

The second term on the r.h.s. of (3.49), which is described as a sum over the positive

root space, has been restated in (3.7) in terms of the q charges. The charges q, which can

be positive or negative, are assigned to the simple roots corresponding to the nodes of the

Dynkin or quiver diagram. Each node in the diagram carries a U(N) gauge field associated

with the N = 4 vector multiplets. The symmetry breaking that arises internally to each

U(N) representation whenever its monopole flux q contains a number of different charges

serves to reduce the overall R-charge.

Importantly, the formula (3.7) clarifies the dimensional measures |ρi(q)| and |α(q)| that

are necessary for the RSIMS constructions to be faithful; these have to be implemented

as the sum of absolute differences between the various U(Ni) charges, described by their

quantum numbers qi,j , modulated by any differences in the root lengths encoded in the

Cartan matrix.

Having observed that the R-charge collects sets of roots and their orbits, these still need

to be assigned correctly to representations enumerated by t. This assignment is moderated

or “dressed” by the term (3.6), which enumerates the degrees of the Casimirs of the U(N)

gauge groups that remain unbroken under each set of GNO charges q. (When a U(N)

symmetry is completely broken, a node has a U(1)N symmetry). The Casimirs in turn

correspond to the set of symmetric invariant tensors of the adjoint representations of the

surviving subgroup of the U(N) symmetries.

4 RSIMS from regular semi-simple subgroup representations

We saw in section 3 how the RSIMS of a group can be constructed as Coulomb branch

quiver theories on extended Dynkin diagrams. These extended Dynkin diagrams are by

definition degenerate and this property can be used to establish mappings between the

weight space of the Lie algebra of a parent (or ambient) group and the weight spaces of

its subalgebras. As pointed out in [24], this mapping between algebras and subalgebras is

equivalent to a mapping between the parent group and its subgroups. Rank is preserved

through this procedure, which represents a form of symmetry breaking.

Such mappings are obtained by one or more elementary transformations [24]. These

are effected by removing a node from the extended Dynkin diagram of the parent group

G, which corresponds to the elimination of a row and column from the extended Cartan

matrix. The resulting matrix can be decomposed in block diagonal form as a direct sum

of regular Cartan matrices of subgroups {G1, . . . , Gm} where m ≥ 1. It then follows [11]

that the character of any representation of G maps to the character of some representa-

tion of the simple or semi-simple product group G1 ⊗ . . . Gm. Since only one row and

column are removed from the extended Cartan matrix, rank is preserved by an elementary

transformation.11 A simple or semi-simple subgroup obtained by this method is described

11These relationships differ from isomorphisms. While the map from the parent group to a subgroup

is injective, it is generally not surjective, so that not all irreps of the subgroup can be mapped from

representations of the parent.
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Group Subgroups Type

Br≥2 Br−2 ⊗D2, . . . , B1 ⊗Dr−1, Dr Maximal

Cr≥2 Cr−1 ⊗ C1, . . . , Cdr/2e ⊗ Cbr/2c Maximal

Dr≥4 Dr−2 ⊗D2, . . . , Ddr/2e ⊗Dbr/2c Maximal

E6 A5 ⊗A1, A2 ⊗A2 ⊗A2 Maximal

E7 D6 ⊗A1, A5 ⊗A2, A7 Maximal

E7 A3 ⊗A3 ⊗A1 Non-maximal

E8 E7 ⊗A1, E6 ⊗A2, A4 ⊗A4, A8, D8 Maximal

E8 A7 ⊗A1, A5 ⊗A2 ⊗A1, D5 ⊗A3 Non-maximal

F4 C3 ⊗A1, A2 ⊗A2, B4 Maximal

F4 A3 ⊗A1 Non-maximal

G2 A1 ⊗A1, A2 Maximal

Table 7. Regular semi-simple subgroups from single elementary transformation.

as regular.12 A subgroup is further described as maximal if it is not possible to interpose

another subgroup between it and the parent. Multiple elementary transformations can be

chained to yield further regular, but non-maximal, semi-simple subgroups.

In the case of the A series, the resulting mappings are trivial, since the removal of a node

from the extended Dynkin diagram invariably returns the original diagram (modulo some

cyclic permutation of simple roots). In the case of other Classical and Exceptional group

series, several non-trivial mappings may be possible, depending on the choice of the node

removed. We list in table 7 all the regular semi-simple proper subgroups of the Classical

and Exceptional series arising from a single elementary transformation. While all the

regular simple or semi-simple subgroups of Classical groups arising from a single elementary

transformation are maximal, F4, E7 and E8 have non-maximal regular subgroups that can

also be reached via a maximal subgroup in a two step mapping.

Our focus here is on two particular types of mapping into regular subgroups. In this

section 4 we focus on mappings associated with maximal regular semi-simple subgroups.

These include the decompositions of the Weyl group set out in table 4 (for series other

than type A). In section 5 we shall focus on mappings to regular subgroups consisting of A

series groups only, which are not generally maximal. In both cases we shall use HWGs to

show how the irrep branching relationships resulting from these subgroup mappings permit

elegant decompositions of the RSIMS of a group into the moduli spaces of its subgroups.

4.1 RSIMS from maximal regular semi-simple subgroups

Regular subgroup mappings are determined by the choice of node for elimination from the

extended Dynkin diagram. Elimination from the extended Dynkin diagram of a (non-A

series) Classical or Exceptional group of the node corresponding to the Dynkin label of

the adjoint representation gives a mapping into a subgroup that contains the group G0

12This method does not yield special subalgebras, which all involve rank reduction.
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Figure 7. Dynkin diagrams for mapping of non-A series groups into maximal subgroups by adjoint

node elimination. Blue nodes denote long roots with length 2. Red nodes denote short roots.

A black node denotes the long root added in the affine construction, which is always linked to

the adjoint node. The eliminated root is uniquely determined by the subgroups (up to graph

automorphisms). Rank is preserved.

shown in table 4. These subgroups are all maximal and semi-simple. The Dynkin diagram

manipulations are set out in figure 7 and the resulting adjoint irrep branchings into irreps

of the subgroups are set out in table 8.

These mappings based on elimination of the adjoint node do not exhaust the regular

subgroups in table 7 and mappings can be found to the other subgroups by eliminating

other nodes.
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Under all these subgroup mappings, the adjoint representation of the parent group

splits into the direct sum of the adjoint representations of the subgroups, plus a product

group representation.

Importantly, each such mapping allows us to establish a bijection between the CSA

coordinates of the weight space of the parent group and the CSA coordinates of the weight

space of a maximal sub group.13 However, while the mapping from irreps of the parent

group to the representations of the product group is injective, it is not surjective, and

one cannot generally map any representation of the product group back to a parent group

representation; this is only possible for specific representations (such as those identified by

the RSIMS deconstruction).

4.2 RSIMS deconstruction to subgroup HWG

Given such a coordinate mapping from a parent group G of rank r to a subgroup G1 . . .⊗Gm
of equal rank, we can take gGinstanton(t, xi), express it in terms of the CSA coordinates

{y1, . . . , yr} of its subgroup, and use a character generating function gG1⊗...Gm
X (mi, yj) for

the irreps of the subgroup to project gGinstanton(t, yi) onto the irreps of the subgroup. The

subgroup irreps are tracked using the Dynkin label fugacities {m1, . . . ,mr} and the pro-

jection coefficients obtained are polynomials in the fugacity t.

The analysis depends on the completeness of the characters [n1, . . . , nr] of the subgroup,

which permits the decomposition of the instanton moduli space in terms of the coefficients

Cn1,...,nr defined from:

gGinstanton(t, xi) ≡
∞∑
k=0

[k adj](xi) t
k,

gGinstanton(t, yi) ≡
∑
ni

Cn1,...,nr(t)[n1, . . . , nr](yi),

(4.1)

and upon Weyl integration, which allows us to use character generating functions to project

out an HWG function in terms of {t,mi}:

gGinstanton (t,mj) ≡
∑
ni

Cn1,...,nr(t) m
n1
1 . . .mnr

r

=

∮
G1⊗...Gm

dµ(yi) g
G1⊗...Gm
X (mj , y

∗
i ) g

G
instanton(t, yi).

(4.2)

For further detail on the use of character generating functions to project out HWGs the

reader is referred to [2].

The HWGs for all the maximal regular simple and semi-simple subgroup mappings of

Classical group RSIMS are set out in table 9 and those for a number of Exceptional group

RSIMS are set out in table 10. These include all the maximal regular subgroup mappings

identified in table 7 (of which those in table 8 are a subset). For convenience, the HWGs

are presented using their PLs. There are many observations that can be made about the

structure of these highest weight moduli spaces.

13An example of CSA coordinate map calculation is contained in section 5.5.1.
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Firstly, these moduli spaces are all generated by a small number of representations of

the product group. They include, in all cases, the adjoint representations of each of the

constituents of the product group at order t.

Next, taking a geometric perspective, all the moduli spaces of Classical RSIMS de-

constructions are either freely generated, being products of geometric series, or complete

intersections, being quotients of products of geometric series. In all cases there is a further

generator in addition to the adjoints at order t involving the vector representation(s). In

the case of symplectic groups, there is a relation at order t2. For orthogonal groups, there

may also be additional generators at order t2 and a relation at order t4 at most.

The dimensions of the HWG moduli spaces, which are given by the number of gen-

erators less relations, vary from two in the case of the symplectic groups up to at most

six for orthogonal groups. The apparent complexity of many of the decompositions can be

simplified further. Assuming minimum ranks of 2 and 3 respectively for any B and D series

subgroups, we can write the HWG for a Classical RSIMS deconstruction into a maximal

pair of subgroups in the form:

gB or D
instanton → PE

[(
θ + θ′ + v ⊗ v′

)
t+

(
1 + g + g′ + v ⊗ v′

)
t2 − g ⊗ g′t4

]
,

gCinstanton → PE
[(
θ + θ′ + v ⊗ v′

)
t− g ⊗ g′t2

]
,

(4.3)

where the adjoint, vector and graviton (symmetrised vector) representations of the two

(primed and unprimed) subgroups are represented by {θ, v, g} respectively. Importantly,

since the form of the HWG does not change for higher rank BCD series groups, we con-

jecture that these expressions give us complete descriptions of RSIMS decompositions into

regular semi-simple subgroups for all Classical Lie algebras.

Some of the HWGs for deconstructions of Exceptional RSIMS follow the same pat-

tern as the HWGs for Classical RSIMS, being freely generated or complete intersections,

and having dimensions between two and six. Notably, these simple HWGs include those

obtained by adjoint node elimination, as in table 8. They also include the HWGs of branch-

ings into a simple regular subgroup (other than for E8 to A8). However, for the E and F

series, some maximal regular subgroups lead to complicated HWGs; these are not complete

intersections, have generators at higher orders of t and have dimensions that vary up to at

least 38 (as explained below). The HWGs for the non-maximal regular subgroups are also

complicated. So far, we have not been able to calculate all these HWGs.

4.3 Dimensions of HWGs and Hilbert series for RSIMS

It is interesting to relate the dimensions of an HWG to the dimensions of the Hilbert

series for the same RSIMS. Recall that the dimension of an (unrefined) Hilbert series for

an RSIMS is always equal to twice the sum of the dual Coxeter labels for the group [2].

The difference in dimension of the two moduli spaces is accounted for by the degree of

the dimensional polynomial for the weight space spanned by the subgroup irreps. As an

example, for irreps of A2, with Dynkin labels [n1, n2], we have the dimensional formula:

Dim[n1, n2] = (1 + n1)(1 + n2)(2 + n1 + n2)/2, (4.4)
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and so the degrees of the dimensional polynomial are 2 for irreps of the type [n1 > 0, 0]

or [0, n2 > 0] and 3 for irreps of the type [n1 > 0, n2 > 0], which include the adjoint

representation. This degree of 3 equals the difference between the dimension of the Hilbert

series for the A2 RSIMS (1 + 4t + t2)/(1 − t)4, which is 4, and the unit dimension of the

corresponding HWG 1/(1−m1m2t).

Assuming that a weight lattice is saturated (i.e. that all Dynkin labels are non-zero),

the degree of the dimensional polynomial is always equal to the number of positive roots.

By using the standard dimensional polynomials we can reconcile the dimensions of the

various moduli spaces as set out in table 11. It is important to note that if the HWG

irreps do not saturate the subgroup weight lattice, this reduces the degree of the relevant

dimensional polynomial.

Thus, we can explicate the relationship between a given mapping, the weight lattice of

the subgroup and the difference in dimensions between the Hilbert series for the RSIMS and

the subgroup HWG. When a subgroup has a weight lattice with a dimensional polynomial

of low degree, this is balanced by an increase in the dimension of the HWG. Given some

mapping, the degree of the dimensional polynomial of the saturated weight lattices of the

subgroup places a lower bound on the dimension of the HWG, as indicated in table 10 for

the unknown HWGs.

For A series groups, the number of positive roots is only (r2 + r)/2, compared with r2

or r2 − r/2 for B/C or D series groups, and so A series dimensional polynomials tend to

be of lower degree. Thus, many Exceptional group mappings to A series subgroups lead

to HWGs with a high dimension. While these are all calculable in principle, using (4.1)

and (4.2) , this can be difficult in practice due to computing constraints. This raises the

question as to whether it is possible to deconstruct RSIMS using moduli spaces that have

a higher dimensional degree than Lie group representations and so lead to low dimensional

HWGs. We find that such moduli spaces can be provided by modified Hall-Littlewood

polynomials.

5 RSIMS from A series Hall-Littlewood polynomials

Constructions for the RSIMS of E6, E7 and E8 instantons based on Hall-Littlewood poly-

nomials have been given in [6]. These draw upon branching relationships between the

characters of irreps of these groups and those of A series subgroups. The constructions

in [6] are guided by a conjectured characterisation of punctures on spheres, which helps

to identify combinations of A series modified Hall-Littlewood polynomials that yield the

desired moduli spaces. We take a different approach and carry out the direct decomposi-

tions of RSIMS, all of which have known group theoretic constructions, as discussed earlier,

in terms of the modified Hall-Littlewood polynomials of A series groups. Hall-Littlewood

polynomials can also be constructed for other Classical or Exceptional groups, but the

analysis herein is limited to those of unitary groups. Our strategy exploits the fact that

Hall-Littlewood polynomials provide a basis for single parameter class functions [23], such

as RSIMS. In order to find the coefficients defining these decompositions, we construct a

set of generating functions for Hall-Littlewood polynomials and exploit their orthogonal-
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U(1)N U (N) Hall-Littlewood

Measure
∏
i

∮
dxi
xi

× 1
N !

∏
j 6=k (1− xj/xk) ×

∏
i 6=j

1
1−txi/xj

(Plethystic) 1
N !PE [− (adjoint− rank)] PE [(adjoint− rank) t]

Basis mλ = HLλ (1) sλ = HLλ (0) HLλ (t)

Table 12. Components of Hall-Littlewood measure for U(N).

ity properties under Weyl integration, using an appropriate measure. Our decompositions

then follow group mappings into regular semi-simple subgroups, in a similar manner to the

previous section.

5.1 Hall-Littlewood polynomials and their generating functions

Hall-Littlewood polynomials are symmetric polynomials in a set of coordinates that are pa-

rameterised by an additional variable [23], and so correspond in a natural way to plethystic

class functions built from the CSA coordinates for characters of unitary groups combined

with a counting fugacity t. Hall-Littlewood polynomials can be labelled by the Dynkin

labels of irreps of U(N), or, equivalently, by partitions of N objects, or by Young tableaux.

They are most helpfully defined in terms of their orthogonality properties under Weyl inte-

gration using an explicit measure, as presented in [6], for example. There are various choices

of normalisation possible: [6] chooses a normalisation under which the Hall-Littlewood poly-

nomials are strictly orthonormal; [23] chooses a normalisation under which they become

symmetric monomial functions for t = 1. We shall use a third normalisation scheme, also

used in [25], that follows naturally from their generating functions. Under all these nor-

malisation schemes, the Hall-Littlewood polynomials revert to Schur polynomials, i.e. the

characters of irreps of U(N), for t = 0.

Hall-Littlewood polynomials incorporating the characters of irreps of SU(N) are closely

related to those for U(N), however, care needs to be taken over the choice of coordinates, la-

belling of partitions and normalisation. We shall ultimately work with the Hall-Littlewood

polynomials and related functions for SU(N), however, we derive their properties from

those of the polynomials for U(N).

We set out in table 12 the structure of the Hall-Littlewood measure. This is the product

of the usual Haar measure for U(N) (given by the first two factors) with an additional

plethystic function parameterised by t. Clearly the parameter t is key in determining the

basis functions on a space with the Hall-Littlewood measure. Thus, it can be seen that the

measure reverts to the U(N) Haar measure for t = 0, or to the U(1)N Haar measure for

t = 1. The corresponding basis functions HLλ(t) become either Schur polynomials sλ, or

monomials mλ, respectively, in these limits [23].

Hall-Littlewood polynomials which are orthogonal with respect to this defined measure

are given by [6]:

HLλ (xi, t) =
∑
w∈SN

w

(
xλ11 . . . xλNN

∏
i<j

xi − txj
xi − xj

)
, (5.1)
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where the xi are CSA coordinates for U(N) and λ = (λ1, . . . , λN ) is the partition corre-

sponding to Dynkin labels [n1, . . . , nN ] for U(N) through the relationship

(λ1, . . . , λj , . . . , λN ) =

(
N∑
i=1

ni, . . . ,

N∑
i=j

ni, . . . , nN

)
. (5.2)

(This bijection allows us to refer to a Hall-Littlewood polynomial by either HLλ or HL[n].)

The sum in (5.1) is taken over the Weyl group of U(N), which is the symmetric group

SN . The orthogonality of the HLλ and their complex conjugates, under an inner product

incorporating the Hall-Littlewood measure, is given by:∮
U(N)

dµHL HLλ (xi, t) HLµ (x∗i, t) = δλµvλ (t) , (5.3)

where we are using abbreviated notation dµHL for the Hall-Littlewood measure,∮
U(N)

dµHL ≡
∏
i

∮
dxi
xi

1

N !

( ∏
j 6=k

(1− xj/xk)

)( ∏
j 6=k

1

1− txj/xk

)
(5.4)

and we have introduced the normalisation function vλ(t):

vλ (t) =
∏
i≥0

mi(λ)∏
j=1

1− tj

1− t
. (5.5)

In the vλ(t) function, the product is taken over each distinct integer i, including zero,

appearing in the partition λ according to its multiplicity mi [23].14 In effect, vλ(t) is

determined by the number and location of zeros amongst the Dynkin labels corresponding

to a given partition. It is important to distinguish Dynkin labels for Hall-Littlewood

polynomials from those for U(N) characters; we shall ultimately wish to work with both

types of label to describe the relationships between the two types of class function.

The Hall-Littlewood polynomials (5.1) provide a complete basis for class functions

that combine the characters of a unitary group with coefficients given by polynomials in

the parameter t [23].

We now follow the HWG methodology introduced in [2] and define the fugacities

{h1, . . . , hN} for the Dynkin labels [n1, . . . , nN ]HL. Note that we prefer to use Dynkin label

fugacities hi for Hall-Littlewood polynomials and mi for characters. We then convert (5.1)

from partition to Dynkin label notation and rearrange to obtain a highest weight generating

function for the HLλ or HL[n]:

gHL (xi, t, hi) ≡
∑
n

HL[n1,...,nN ] (xi, t)h
n1
1 . . . hnNN

=
∑
w∈SN

w

(∑
n

hn1
1 . . . hnNN xn1+...nN

1 . . . xnNN

∏
i<j

1− txj/xi
1− xj/xi

)

=
∑
w∈SN

w

(
N∏
k=1

1

1− hk
∏k
l=1 xl

∏
i<j

1− txj/xi
1− xj/xi

)
.

(5.6)

14In [23] the HLλ are normalised by dividing by vλ(t) and in [6] they are normalised by dividing by
√

vλ(t).
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From (5.3), it follows that the complex conjugates of the generating functions gHL(xi, t, hi)

have the orthogonality property:∮
U(N)

dµHL gHL (x∗i, t, hi) HLλ (xi, t) = vλ (t)hλ, (5.7)

where we have defined hλ ≡
∏
i h

ni(λ)
i . We can obtain more a useful contragredient gener-

ating function, which generates polynomials that are orthonormal (rather than just orthog-

onal) to the HLλ(xi, t), by gluing together the gHL(x∗i, t, hi) with a generating function for

the inverse of the vλ.

Let us briefly describe this gluing procedure. Suppose we have two power series in t

given by A(t) =
∑∞

n=0 ant
n and B(t) =

∑∞
n=0 bnt

n. We can glue the coefficients together

into a single series by introducing conjugate U(1) fugacities into the counting variables for

the two series and then using Weyl integration to project out the U(1) singlets of their

product. Thus:∑
n

an (x) bn (x) tn =

∮
U(1)

dµ(q)
∑
n

an (x)
(
qt1/2

)n∑
m

bm (x)
(
q−1t1/2

)m
. (5.8)

Applying such a transformation to the problem at hand, we define:

gHL (x∗i , t, hi) ≡
∑
λ

HLλ (x∗i , t)h
λ/vλ(t), (5.9)

and
v−1 (t, hi) ≡

∑
λ

hλ/vλ (t) . (5.10)

It then follows that we have the desired orthonormality relations:∮
U(N)

dµHL gHL (x∗i , t, hi) HLλ (xi, t) = hλ, (5.11)

where the gHL(x∗i , t, hi) can be calculated by the gluing procedure (5.8):

gHL (x∗i , t, hi) =

∮
U(1)N

dµ(qi) v
−1
(
t, hi

1/2q−1
i

)
gHL

(
x∗i , t, hi

1/2qi

)
. (5.12)

In this procedure, we introduce a dummy set of U(1)N coordinates {q1, . . . , qN} and map

these to the Dynkin label fugacities {h1, . . . , hN} →
{
q1h1

1/2, . . . , qNhN
1/2
}

. We map a

conjugate set of U(1)N coordinates to the fugacities in the v−1(t, hi) generating function.

Weyl integration using the U(1)N measure then selects singlets, for which the vλ factors

exactly cancel.

The final input required for calculations is provided by the generating functions

v−1 (t, hi). These are shown in table 13 for some low rank unitary groups. Generating

functions for higher rank U(N) groups can be obtained as required from the formula:

v−1 (t, hi) =

N∏
i=1

1

1− hi
+

[1,...,1]∑
[n]=[0,...,0]

1

v[n] (t)

N∏
i=1

hnii
(1− nihi)

, (5.13)
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Group v−1 (t, hi)

U (1) 1

U (2) 1+h1t
(1−h1)(1−h2)(1+t)

U (3) 1+h1t+h2t+h1t2+h2t2+h1h2t3

(1−h1)(1−h2)(1−h3)(1+t)(1+t+t2)

U (4)


1 + h1t+ h2t+ h3t+ h1t

2 + 2h2t
2 + h3t

2 + h1h3t
2

+h1t
3 + h2t

3 + h1h2t
3 + h3t

3 + h1h3t
3 + h2h3t

3

+h2t
4 + h1h2t

4 + 2h1h3t
4 + h2h3t

4

+h1h2t
5 + h1h3t

5 + h2h3t
5 + h1h2h3t

6


(1−h1)(1−h2)(1−h3)(1−h4)(1+t)2(1+t2)(1+t+t2)

Table 13. Generating functions for 1/vλ(t).

where the summation is carried out over all possible combinations of zero and unit Dynkin

labels: [n] = {[n1, . . . , nN ] : ni = 0 or 1} and the v[n](t) follow from (5.5).

The orthonormal generating functions gHL(x∗i , t, hi) allow us to decompose any class

function F (xi, t) into a weighted sum of Hall-Littlewood polynomials. We first define the

decomposition coefficients Cλ(t) from:

F (xi, t) ≡
∑
λ

Cλ (t) HLλ (xi, t). (5.14)

We can then obtain a highest weight generating function C(t, hi) for the Cλ(t) using the

gHL(x∗i , t, hi) generating functions and the property (5.11):

C(t, hi) ≡
∑
λ

Cλ (t)hλ =

∮
U(N)

dµHL gHL (x∗i, t, hi)F (xi, t) . (5.15)

Individual Cλ(t) can be extracted from C(t, hi) by Taylor expansion, followed by matching

the coefficients of the monomials hλ. Furthermore, to establish consistency, we can also

implement a second gluing procedure to recover the initial generating function F (xi, t)

from the generating functions C(t, hi) and gHL(xi, t, hi):

F (xi, t) =

∮
U(1)N

dµ C (t, h/qi) gHL (xi, t, hqi)

∣∣∣∣∣
h=1

. (5.16)

Having introduced the Hall-Littlewood polynomials, and shown how to construct their

generating functions so that we can work with them, it is convenient, for the purpose of

the construction of RSIMS, to follow the approach in [6] and to define a modified set of

symmetric functions that are closely related to the HLλ, but which incorporate the fugacity

t in their denominators and are orthonormal under a different measure. Specifically, we

rearrange the orthonormality relations:∮
U(N)

dµHL HLλ (xi, t) HLµ(x∗i, t) = δλµ, (5.17)
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as: ∮
U(N)

dµmHL mHLλ (xi, t) mHLµ(x∗i, t) = δλµ, (5.18)

where ∮
U(N)

dµmHL ≡
∏
i

∮
dxi
xi

1

N !

∏
j 6=k

(1− xj/xk)

∏
j 6=k

(1− txj/xk)

 , (5.19)

and

mHLλ (xi, t) ≡

∏
j 6=k

1

1− txj/xk

 HLλ (xi, t) , etc.. (5.20)

The mHLλ functions have the same dependence on the partition λ as the HLλ polynomials,

but incorporate the plethystic function PE[(adjoint − rank) t] as a pre-factor. This has

the effect of multiplying all the HLλ by symmetrisations of the adjoint. This feature can

make the mHLλ functions extremely useful in the subgroup deconstruction of RSIMS,

since the necessary symmetrisations of the adjoint irreps of the subgroup are automatically

incorporated in the mHLλ. This can, in certain cases, permit a dramatic reduction in the

dimensions of the HWG describing an RSIMS deconstruction, as will be shown.

The generating functions gmHL(xi, t, hi) follow in a straightforward manner:

gmHL (xi, t, hi) ≡

( ∏
j 6=k

1

1− txj/xk

)
gHL (xi, t, hi) . (5.21)

In order to obtain the Hall-Littlewood polynomials of SU(N), rather than U(N), we need

to make certain changes to the expressions (5.1) to (5.21). First, we replace the coordinates

xi of U(N) by the monomials of the character of the SU(N) fundamental. This substitution

forces the last Dynkin label nN to zero; this label is conventionally dropped when describing

irreps of SU(N), although it needs to be reinstated when calculating the normalisation

factors vλ(t). Finally, we replace the Haar measure of U(N) by that of SU(N).

5.2 Modified Hall-Littlewood polynomials and characters of SU(N)

All the three types of symmetric function studied herein (characters, HL and mHL) provide

complete bases for the class functions of a group. It is useful to be able to express these

functions in terms of each other. If we have knowledge of the coefficients (which are

generally quotients of polynomials in t) for such decompositions, we can describe a moduli

space in the most convenient basis, while retaining the ability to translate to the other

bases. HWGs provide an efficient method both for encoding these relationships and for

working with them.

The general prescription for the decomposition of an mHL polynomial into characters

follows similar principles to (5.14) and (5.15). Thus, suppose we wish to find the coefficients

C[n],[n′](t) for the decomposition of mHL[n](x, t) in terms of characters:

mHL[n] (x, t) =
∑
[n′]

C[n],[n′] (t)X[n′] (x) . (5.22)
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Group gAmHL(h)→X (m)

SU (2) 1
(1−hm)(1−m2t)

SU (3)



1 +m1m2t
2 − h1m1m

3
2t

3 − h2m
3
1m2t

3 − h1h2m
2
1m

2
2t

2

+m2
1m

2
2t

4 − h1m
3
1m

2
2t

4 − h2m
2
1m

3
2t

4 + h1h2m
3
1m

3
2t

4

−h1m
2
1m

4
2t

5 − h2m
4
1m

2
2t

5 + h1h2m
2
1m

5
2t

5 + h1h2m
5
1m

2
2t

5

+h1h2m
4
1m

4
2t

6


(1−m1m2t)(1−m3

1t
3)(1−m3

2t
3)(1−h1m1)(1−h2m2)(1−h1m2

2t)(1−h2m2
1t)

Table 14. HWGs for decomposition of mHL into characters.

We have already constructed generating functions, both for mHL polynomials and for

characters:

gAmHL (x, t, h) ≡
∑
[n]

mHL[n] (x, t)hn,

gAX (x,m) ≡
∑
[n′]

X[n′] (x)mn′ .

(5.23)

So, we can use Weyl integration to combine these to yield a generating function for the

C[n],[n′](t) coefficients:

gAmHL→X (t, h,m) ≡
∑
[n]

∑
[n′]

C[n],[n′] (t)hnmn′

=

∮
A
dµ gAmHL (x, t, h) gAX (x∗,m) .

(5.24)

To illustrate, we set out in table 14 the HWGs gAmHL→X for the decomposition of

mHL polynomials for SU(2) and SU(3) into characters. Thus the HWG for the mHL of

SU(2) is the product of two factors 1/(1 − m2t) and 1/(1 − hm), where h is a fugacity

for the Dynkin labels of SU(2) mHL and m is a fugacity for the Dynkin labels of SU(2)

characters. The first factor matches the HWG for the SU(2) RSIMS. The second factor

gives the dependence of the SU(2) mHL on the characters of SU(2). So, for example,

mHL[1] = ([1] + [3]t+ [5]t2 + [7]t3 + . . .).

It is important to note that the HWGs which provide the inverse maps from characters

to mHL polynomials are different, since the orthonormal mHL polynomials are not simply

given by complex conjugation and the measure also differs. For example, the inverse

HWG from characters of SU(2) to mHL polynomials of SU(2) is given by gAX (m)→mHL(h) =

(1− h2t)/(1− hm), as can be verified.

These HWGs show that the mHL polynomials include the RSIMS factor

1/(1−m1mrt). This can help to reduce the dimension of the HWG for the decomposition

of an RSIMS into mHL polynomials, as discussed earlier. We can find other decomposi-

tions, as desired, by working in a similar manner with different combinations of HL, mHL

and characters.
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Figure 8. The T (SU(N)) quiver consists of a SU(N) flavour node connected to gauge nodes

U(N − 1) through U(1).

5.3 Modified Hall-Littlewood polynomials and T (SU(N))

One of the remarkable aspects of modified Hall-Littlewood polynomials is that they corre-

spond to the Coulomb branches of SUSY N = 4 quiver gauge theories in 2+1 dimensions

known as T (SU(N)) [25]. These Coulomb branch constructions have similarities with the

RSIMS constructions described in section 3. However, the leading node carries SU(N)

flavour charges and connects to a linear chain of gauge nodes carrying monopole charges

from U(N−1) down to U(1) as in figure 8. These quivers are balanced (as described earlier).

Following [25], we obtain the T (SU(N)) series of functions from such a quiver by adapt-

ing the Coulomb branch prescription, as set out in (3.5) to (3.7), to include external charges

described by a partition λ ≡ (λ1, . . . , λN ). With a little further work, the construction can

be rearranged into a recursive set of relations for T (SU(N)):

T (SU (N)) (λ, z, t)

= x
∑N
j=1 λj

∞∑
q1≥...≥qN−1≥−∞

PU(N−1) (q1, . . . , qN−1)x−
N
N−1

∑N−1
i=1 qit

∑N
i=1

∑N−1
j=1 |λi−qj |/2−

∑N−1
i=1

∑i−1
j=1 |qi−qj |

× T (SU (N − 1)) (q1, . . . , qN−1, z2, . . . , zN−1, t)

.
(5.25)

In this formula, z ≡ (z1, . . . , zN−1) is a system of SU(N) simple roots, the CSA coordinate

for the highest weight of the SU(N) fundamental is:

x =

(
N−1∏
i=1

zN−ii

) 1
N

, (5.26)

and the symmetry factors, which depend on each partition of gauge field charges

(q1, . . . , qN ), are given by:

PU(N) (q1, . . . , qN ) =

N∏
i=1

1

1− tdi(q1,...,qN )
. (5.27)

The recursion relations assume the (q1, . . . , qN ) form an ordered partition, but range over

both positive and negative integers. In each case the summation corresponds to one of the

gauge nodes. We set T (SU(1)) = 1 and it then follows that the first non-trivial member of

the series is:

T (SU (2)) (λ1, λ2, z1, t) = x(λ1+λ2) 1

(1− t)

∞∑
q=−∞

x−2qt|λ1−q|/2+|λ2−q|/2, (5.28)

where z1 = x2.
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As shown in [25], the T (SU(N)) quivers correspond to modified Hall-Littlewood poly-

nomials of SU(N) if the flavour partition (λ1, . . . , λN ) is chosen such that λN = 0, where-

upon all the other partition labels are non-negative and (λ1, . . . , λr=N−1) map to highest

weight Dynkin labels [n1, . . . , nr] for SU(N), through the relationship (λ1, . . . , λj , . . . , λr) =(∑r
i=1 ni, . . . ,

∑r
i=j ni, . . . , nr

)
. The correspondence is modulated by a pre-factor, so that

the precise relationship is:

mHL[n1,...,nr] (z, t) = t−ρ.Gij .[n1,...,nr]T (SU (r + 1)) (λ (n1, . . . , nr) , z, t) . (5.29)

The exponent of the pre-factor is given by the contraction of the Weyl vector ρ, which

is (1, . . . , 1) in a canonical basis of CSA coordinates, with the Dynkin labels of the mHL

polynomial, using the group metric tensor Gij .
15 We return to the subject of T (SU(N))

in the concluding section.

5.4 Extended Dynkin diagrams and A series subgroups

We have seen in section 4 how the RSIMS of a Classical or Exceptional group can be

decomposed in terms of the irreps of a subgroup. In order to explore RSIMS decompositions

in terms of the mHL of SU(N) we must work with regular A series subgroups. These

are not generally maximal. Proceding as before, we describe a selection of the relevant

elementary transformations in figures 9 and 10, which give the Dynkin diagrams, and in

table 15, which shows the resulting branching of the adjoint representation of the parent into

subgroup irreps. In the case of C series groups of rank greater than two, each elementary

transformation splits off a single A1 subgroup, and therefore multiple such elementary

transformations are in general required to map a C series group to its A series subgroups.

We have not included in table 15 the elementary transformation of A series groups into

themselves. We have however included non-maximal subgroups that can only be reached

via an intermediary subgroup, such as C3 → C2 ⊗ A1 → A1 ⊗ A1 ⊗ A1. It follows that,

by using multiple elementary transformations, any group can be mapped into one or more

regular A series simple or semi-simple subgroups.

Importantly, each such mapping establishes a diffeomorphism between the CSA coor-

dinates of the parent group and those of its subgroups. However, while the coordinate map

is bijective, the mapping of irreps from the parent group into the irreps of the A series

product group is only injective; one cannot generally map all the representations of the

subgroup back to those of the parent; this is possible only for specific representations (such

as those arising in the RSIMS construction).

5.5 RSIMS decomposition to modified Hall-Littlewood polynomials

We are now ready to show how modified Hall-Littlewood polynomials can be deployed,

together with the branching relations described above, to construct the RSIMS for any

15While mHL polynomials with similar properties can be defined for other groups, the T (G) quiver

theories that have been proposed for these polynomials, other than for isomorphisms with the A series, face

some critical issues.
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Figure 9. Mappings of selected BCD groups via their extended or affine Dynkin diagrams into A

series subgroups by single elementary transformations. Blue nodes denote long roots with length

2. Red nodes denote short roots. A black node denotes the long root added in the extended

Dynkin diagram. The eliminated root is uniquely determined (up to graph automorphisms) by the

subgroups. Rank is preserved. (Multiple elementary transformations can be used to map C series

groups fully.)

Figure 10. Mappings of exceptional groups via their extended or affine Dynkin diagrams into A

series subgroups by single elementary transformations. Blue nodes denote long roots with length

2. Red nodes denote short roots. A black node denotes the long root added in the extended

Dynkin diagram. The eliminated root is uniquely determined (up to graph automorphisms) by the

subgroups. Rank is preserved.
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group out of mHL polynomials. We start by generalising the three way schema given in [6]

and define the decomposition:

gGinstanton (t, xi) ≡
∞∑
k=0

[k adj] tk,

gG→A⊗B⊗···Dinstanton (t, yi) =
∑

[nλ][nµ]...[nσ ]

Cλ,µ,...,σ(t)mHLA[nλ] (yi, t)×

× mHLB[nµ] (yj , t) · · ·mHLD[nσ ] (yk, t) .

(5.30)

The characters of representations of the parent group G, of rank r, correspond to charac-

ters of the semi-simple group A⊗B ⊗ · · ·D, and so gGinstanton can be expressed using the

subgroup CSA coordinates {yi : i = 1, . . . , r}. The Cλ,µ,...,σ(t) coefficients range over all

irreps {[nλ] , [nµ] , . . . , [nσ]} of the respective subgroups, identified by their Dynkin labels

or partitions.

We derive the Cλ,µ,...,σ(t) coefficients using a general procedure that gives the decompo-

sition of the RSIMS of any group into modified Hall-Littlewood polynomials of subgroups.

To do this, we exploit the fact that gGinstanton(t, xi) has a known generating function, and so

we can use the generating functions gmHL and their orthonormal conjugates gmHL, described

earlier, to obtain a generating function for the Cλ,µ,...,σ(t). This follows from (5.30) as:

C (hA, hB, . . . , hD, t) ≡
∑

[nλ][nµ]···[nσ ]

Cλ,µ,...,σ (t)hA
nλhB

nµ · · ·hDnσ

=

∮
A⊗B⊗···D

dµmHL gAmHL (yi
∗, t, hA) gBmHL (yj

∗, t, hB) · · ·

× gDmHL (yk
∗, t, hD) gG→A⊗B⊗···Dinstanton (t, yi) .

(5.31)

The expression (5.31) can be evaluated to obtain a rational function in terms of the fugac-

ities {hA, hB, . . . , hD, t}. Individual Cλ,µ,...,σ(t) coefficients can be extracted by equating

powers in {hA, hB, . . . , hD} following Taylor expansion. A key advantage of this approach

is that the generating function gives the Cλ,µ,...,σ(t) to all orders in t. We focus on con-

structions that map RSIMS to semi-simple A series subgroups and their gmHL functions.

5.5.1 D4 example

We outline below the construction of the RSIMS of D4 from the mHLλ functions of four

A1 subgroups. Specifically, we wish to calculate the coefficients Cλ,µ,ν,ρ(t) such that:

gD4
instanton (a, b, c, d, t) =

∑
λ,µ,ν,ρ

Cλ,µ,ν,ρ (t)mHLλ
A1 (a, t)×

× mHLµ
A1(b, t) mHLν

A1(c, t) mHLρ
A1(d, t).

(5.32)

We start with the expansion for gD4
instanton (w, x, y, z, t) obtained by the methods in section 2,

where {w, x, y, z, t} are CSA coordinates for D4 (we do not show this here since it is rather

lengthy). By eliminating the second node, we obtain the root and CSA coordinate mappings

in table 16 from the extended Cartan matrix for D4 and the Cartan matrices for the four

A1 subgroups.
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D4

roots
D4

coords
A1 ⊗A1 ⊗A1 ⊗A1

roots
A1 ⊗A1 ⊗A1 ⊗A1

coords

z1 w2x za a2

z2 x2/wyz − −
z3 y2/x zb b2

z4 z2/x zc c2

z0 1/x zd d2

Table 16. D4 to A1
⊗4 root and CSA coordinate mappings.

We solve the root mapping to obtain the coordinate mapping
{
w → a

d , x →
1
d2
,

y → b
d , z →

c
d

}
and use this to transform gD4

instanton (w, x, y, z, t) to gD4
instanton (a, b, c, d, t).

We then introduce generating functions for the gmHL using the Dynkin label fugacities

hA, hB, hC , hD and specialise (5.31) as:

C(hA, hB, hC , hD, t) ≡
∞∑

λ,µ,ν,ρ=0

Cλ,µ,ν,ρ (t) hA
λhB

µhC
νhD

ρ

=

∮
A1⊗A1⊗A1⊗A1

dµmHL g
A1
mHL (a∗, t, hA) gA1

mHL (b∗, t, hB)×

× gA1
mHL (c∗, t, hC) gA1

mHL (d∗, t, hD)× gD4
instanton (a, b, c, d, t) .

(5.33)

For A1, the Hall-Littlewood polynomials follow from (5.1) and can be expressed in terms

of characters [n] as:

HLA1

[n] (X , t) =


n = 0 : 1 + t

n = 1 : [1]

n ≥ 2 : [n]− t [n− 2]

. (5.34)

Their generating function follows from (5.6) and can be encoded as a highest weight gen-

erating function, using h as the HL Dynkin label fugacity:

gA1
HL (X , t, h) = PE [[1]h] (1 + t− ht [1]) . (5.35)

The conjugate orthonormal Hall-Littlewood polynomials HLA1

[n] follow from (5.12) as:

HLA1

[n] (X , t) =


n = 0 : 1

n = 1 : [1]

n ≥ 2 : [n]− t [n− 2]

. (5.36)

The generating function for the gA1
HL differs from (5.35) for the gA1

HL in its numerator:

gA1
HL (X , t, h) = PE [[1]h]

(
1− h2t

)
. (5.37)
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The modified Hall-Littlewood polynomials mHLA1

[n] , mHLA1

[n] and their generating functions

all differ from the above by the pre-factor, PE[[2]t− t]:

gA1
mHL (X , t, h) = PE[[2]t− t] gA1

HL (X , t, h) ,

gA1
mHL (X , t, h) = PE[[2]t− t] gA1

HL (X , t, h) .
(5.38)

We can evaluate (5.33) by taking the conjugate generating functions from (5.38), expanding

the characters, and applying Weyl integration to obtain:

C (hA, hB, hC , hD, t) =
1− h2

Ah
2
Bh

2
Ch

2
Dt

4

(1− t2)(1− hAhBhChDt)(1− hAhBhChDt2)
. (5.39)

This simple HWG is of a diagonal form, in which the Dynkin label fugacities of different

subgroups always appear with matching exponents. Taylor series expansion yields the

explicit non-zero Cλ(t) coefficients:

C[n][n][n][n] (t) =

{
n = 0 :

(
1− t2

)−1

n ≥ 1 : tn(1− t)−1.
(5.40)

These can be checked by substitution back into (5.32) followed by Taylor expansion or

gluing to recover the RSIMS for D4. The coefficients follow a pattern related to the U(N)

symmetry dressing factors discussed in section 3.

5.5.2 Branching coefficients for RSIMS

We can repeat the procedure described for D4 for a selection of lower rank Classical and

Exceptional groups. We summarise the results in tables 17 to 22, giving both the generating

functions from which the Cλ coefficients can be extracted, and the values for a selection of

the Cλ coefficients themselves. The denominators of the generating functions for the Cλ
express the generators of the series in terms of highest weight fugacities. The numerators

of the generating functions encode a finite set of relations.

Naturally, the structures of the series of branching coefficients Cλ differ between the

various groups, modulo isomorphisms. Nonetheless there are a number of interesting pat-

terns and similarities that can be observed.

1. A Series. The Cλ coefficients all constitute finite series that are symmetric under

complex conjugation (reversal of Dynkin label fugacities). Since the mHL already

contain symmetrisations of the adjoint by construction, the role of the Cλ coefficients

for Ar is largely to recode in terms of Hall-Littlewood polynomials the class functions

of characters within the PArinstanton numerators set out in table 5. Thus, although the

coefficients for decompositions in terms of Hall-Littlewood polynomials differ from

those in terms of characters, the same irreps are typically involved. Indeed a compar-

ison of tables 5 and 17 shows that (up to A3) the Hall-Littlewood polynomial irreps

match those involved in a character expansion, but that their polynomial coefficients

in t are considerably simpler.16

16For A4, the Hall-Littlewood irreps are a subset of those in PA4
instanton (not presented herein).
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2. B Series. With the exception of B3 → A3, the Cλ coefficients constitute infinite series

for all mappings of rank above two. For B3 → A1 ⊗ A1 ⊗ A1 the generator of this

infinite series is given by the hAhB
2hC monomial corresponding to the [1][2][1] irrep,

and for B4 the generator is given by the h2h2 monomial corresponding to the [2][0,1,0]

irrep, both as identified in the branchings of the adjoint shown in table 15. As to be

expected from the graph automorphisms in figure 9, the Cλ exhibit symmetry under

interchange of Dynkin fugacities hA ⇔ hB for B2, hA ⇔ hC for B3 → A1 ⊗ A1 ⊗ A1

and h1 ⇔ h3 for B3 → A3 and B4 → A3 ⊗A1.

3. C Series. In all cases, the Cλ coefficients constitute finite series and the branching

relations are completely symmetric under interchange of the A1 subgroups.

4. D Series. For rank 4 and above, the Cλ coefficients constitute an infinite series. For D4

the generator of this infinite series is given by the hAhBhChD monomial corresponding

to the [1][1][1][1] irrep and for D5 the generator is given by the h2hAhB monomial

corresponding to the [0,1,0][1][1] irrep, both as identified in the branchings of the

adjoint shown in table 15. As to be expected from the Dynkin diagrams in figure 9, the

Cλ exhibit symmetry under interchange of Dynkin fugacities hA ⇔ hB ⇔ hC ⇔ hD
for D4, and hA ⇔ hB for D5.

The Cλ coefficients for Exceptional groups do not fall into any simple pattern, but

some categories can be identified in tables 21 and 22:

1. Finite series. For G2 → A2, the series of coefficients is finite.

2. G2, B3, D4 → nA1 family. The Cλ for G2 → A1 ⊗ A1 form a complete intersection,

which has a generator given by the hA
3hB monomial corresponding to the [3][1]

irrep. Interestingly, the generating functions for G2, B3, D4 → nA1 differ only in

the composition of their respective monomials hA
3hB, hAhB

2hC and hAhBhChD.

The reasons can be traced to the folding relationships between the extended Dynkin

diagrams of these groups.

3. F4, E6 → nA2 family. For F4 to A2⊗A2, the generators are given by the hA1hB1
2 and

hA2hB2
2 monomials corresponding, respectively, to the [0,1][0,2] and [1,0][2,0] irreps.

For E6 to A2 ⊗A2 ⊗A2, the generators are given by the hA1hB1hC1 and hA2hB2hC2

monomials corresponding, respectively, to the [1,0][1,0][1,0] and [0,1][0,1][0,1] irreps

and the Cλ coefficients are invariant under complex conjugation and under exchange

of subgroups hA ⇔ hB ⇔ hC . Interestingly, the structure of the generating functions

for F4 and E6 is the same, differing only by their respective monomials hAihBi
2 and

hAihBihCi. The source can be traced to the folding relationship between the extended

Dynkin diagrams of these two groups. Even though the generating function for the

Cλ is not a complete intersection, the Cλ coefficients form a simple pattern.

In the case of the other Exceptional group decompositions, the HWGs typically have com-

plicated numerators.
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Interestingly, the denominators of the Cλ coefficients for all groups appear to take a

simple form determined by the zeros of the Dynkin labels in a similar manner to the PGU(N)

factors encountered in the Coulomb branch monopole construction for RSIMS.

In [6], it is conjectured that, whenever three modified Hall-Littlewood polynomials of

the A series are combined by a three punctured sphere, the Cλ,µ,σ(t) branching coefficients

should follow a symmetric diagonal pattern, such that they are only non-zero when the par-

titions {λ, µ, σ} are the same for each subgroup. This is exemplified by the Cλ monomials

for E6 which take the form hAihBihCi. For the highly symmetric root system of D4, where

the branching occurs symmetrically into four A1 subgroups, an extension of this symmet-

ric diagonal pattern to four punctures applies. However, the structures of the monomials

for non-simply laced groups such as B3 are more subtle, involving different weights, and

therefore lie outside a symmetric diagonal ansatz. This is also the case for many of the

other mappings we have studied.

The Cλ coefficients for E6 match those in [6], when adjusted for normalisation of the

modified Hall-Littlewood polynomials. However, the patterns of the Cλ coefficients for

E7 → A3 ⊗ A3 ⊗ A1 and, presumably, E8 → A5 ⊗ A2 ⊗ A1, differ markedly from [6], even

though the resulting RSIMS are the same. This is because our approach in this section has

been to decompose RSIMS in terms of modified Hall-Littlewood polynomials as defined

by (5.20). On the other hand, [6] applies a non-maximal puncture methodology when

the subgroups are of different rank. This further modifies the mHL into a set of non-

orthogonal functions that cannot be deployed as a basis. The non-maximally punctured

mHL constructions for E7 and E8 in [6] do, however, follow from the monopole construction

adapted to star shaped quivers, as discussed in section 3, by the gauge choices of q3,4 = 0

and q3,6 = 0 for E7 and E8 respectively.

Generally, the decomposition of RSIMS using mHL polynomials leads to HWGs with

a small number of generators, as can be seen from table 23. This arises because the mHL

polynomials contain embedded generators equal in number to the roots of the product

group.17 The difference between the Hilbert series dimension and the number of HWG

generators plus the mHL dimension is balanced by the constraints or relations, if any, that

follow from the HWG numerators. We can analyse these in terms of (a) the simple number

of relations, calculated by setting all the HWG fugacities h to unity, and (b) the effect

of constraints due to the precise structures of the HWG numerators, taking into account

differences between the h fugacities. We calculate the impact of these latter constraints

by difference in table 23 and observe that they only arise for some HWG numerators that

have relations involving subgroups containing A2 or higher rank groups.

6 RSIMS from Higgs branches via product/factor groups

6.1 Weyl integration/Molien series construction for classical groups

A quite different set of constructions for the Hilbert series of the moduli spaces of instantons

has been studied using the Higgs branch of SUSY quiver gauge theories [5]. These Hilbert

17Recall that in the case of HWGs built on characters of representations, the number of embedded

generators is limited by the degree of the dimensional polynomial of the group, which equals the number

of positive roots.
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Group
HS

Dimension∑
a, b, c, d

Subgroup
HWG

Generators
(a)

HWG
Relations

(b)
Constraints

(c)

mHL
Dimension

(d)

A1 2 A1 0 0 0 2

A2 4 A2 0 −1 −1 6

A3 6 A3 0 −1 −5 12

A4 8 A4 0 −2 −10 20

B3 8 A3 0 −1 −3 12

A⊗3
1 2 0 0 6

B4 12 A3 ⊗A1 2 −2 −2 14

A⊗4
1 5 −1 0 8

C2 4 A⊗2
1 0 0 0 4

C3 6 A⊗3
1 0 0 0 6

C4 8 A⊗4
1 0 0 0 8

D4 10 A⊗4
1 2 0 0 8

D5 14 A3 ⊗A⊗2
1 2 −2 −2 16

E6 22 A⊗3
2 4 0 0 18

A5 ⊗A1 2 −2 −8 30

E7 34 A⊗2
3 ⊗A1 12 −4 0 26

E8 58 A5 ⊗A2 ⊗A1 ≥ 20 ? ? 38

F4 16 A3 ⊗A1 2 0 0 14

A⊗2
2 4 0 0 12

A⊗4
1 15 −7 0 8

G2 6 A2 0 0 0 6

A⊗2
1 2 0 0 4

(a) Number of poles in denominator of HWG determined by setting h fugacities to 1.

(b) Number of poles in numerator of HWG determined by setting h fugacities to 1.

(c) Hidden constraints on HWG/mHL lattice calculated by difference.

(d) Dimension of mHL polynomial equals number of roots of sub-group.

Table 23. Dimensions of RSIMS Hilbert series and HWGs from A series mHLs.

series enumerate the gauge invariant objects (“GIOs”) of fields transforming in particular

representations of Classical product groups, described by their characters. Before proceed-

ing to discuss their field theoretic interpretations, it is useful to summarise the generating

functions and the product group structures. These are set out in table 24, where we focus

once again on RSIMS.

In all cases, the RSIMS are constructed from one or more basic representations of the

Yang-Mills symmetry group G through symmetrisation or anti-symmetrisation, followed by

projection of the GIOs (or singlets) of the quiver gauge group through Weyl integration or a

Molien average. Different quiver gauge groups are required to yield the RSIMS, depending

on the Yang-Mills group. Some balancing HyperKähler quotient terms may also be required

to remove unwanted irreps. It is straightforward to verify that evaluation of the contour

integrals gives precisely the constructions for RSIMS shown in table 5.

In the case of G equals SU(N), an RSIMS is built by taking the PE of (i) a quark trans-

forming in a product group comprising the SU(N) fundamental and a U(1) representation

with (ii) an antiquark transforming in the SU(N) anti fundamental and a conjugate U(1)

representation. The Weyl integral projects out singlets of the U(1) quiver gauge group and
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thus eliminates all tensor products other than those containing equal numbers of quarks

and antiquarks. These tensor products all transform in some symmetrisation of the adjoint

representation of G, or as singlets. The balancing factor of (1− t2) takes a quotient which

eliminates the singlets resulting from the quark-antiquark tensor products, leaving only the

adjoint representation and its symmetrisations.

In the case of G equals SO(n), the adjoint is formed from the vector representation by

anti-symmetrisation. The chosen product group representation is built from the vector of

the SO(n) series and a quiver gauge field transforming in the C1 fundamental. The series

generated by the PE contains representations which have the same symmetry properties

with respect to both parts of the product group. Thus, anti-symmetrisations of the SO(n)

vector representation are coupled to the antisymmetric rank two invariant tensor of the

symplectic C1 group. Projecting out these antisymmetric C1 invariants by Weyl integration

therefore selects objects transforming in the adjoint representation of the SO(n) instanton

symmetry group. The quotient term PE[−[2], t2] is necessary since the generating function

otherwise also generates singlets of the quiver gauge group that are not part of the RSIMS.

In the case of USp(2n) Yang-Mills groups, the adjoint is formed from the fundamental

of the group by symmetrisation. In this case the chosen quiver gauge group is the discrete

O(1) group, which is isomorphic to Z2. The singlets of the quiver gauge group are obtained

from a Molien sum [21], which replaces Weyl integration over a continuous group by an

average over a discrete group.

It is interesting to note that the various isomorphisms between Classical groups give rise

to alternative possible product group and quiver gauge group choices for the construction

of instantons for A1, B1, C1, B2, C2, A3 and D3 Yang-Mills symmetry groups. Specifically,

we can use the isomorphisms to construct instanton moduli spaces from the spinor as well

as vector representations of B2 and D3 instanton symmetry groups.

Constructions of this type are not known for cases where the Yang-Mills group is an

Exceptional group; while the adjoint of an Exceptional group is formed by antisymmetri-

sation of the fundamental representation, many other irreps are generated in addition and

no simple quotient has yet been identified for their exact cancellation.

6.2 Higgs branch quiver theories

We now turn briefly to the field theoretic interpretation of these product group construc-

tions of RSIMS. These theories arise on the Higgs branches of various SUSY quiver theories

that involve fields transforming in both quiver gauge and instanton Yang-Mills Classical

group representations. The RSIMS are created from the product groups shown in table 24

arise when the fields in table 25 are symmetrised using the PE in the background of a su-

perpotential. The F-term vacuum constraints that result from the superpotentials shown

give rise to relations that correspond exactly to the balancing terms in table 24. Only the

quiver theories with SU(N) or SO(n) instanton symmetry groups have such non-trivial bal-

ancing terms. In the case of the USp(2n) instanton symmetry groups, the F-term vacuum

constraints simply cause the fields to vanish and do not give rise to such relations.

As elaborated in [4, 5] these quiver theories arise on systems of Dp branes against a

background of Dp+4 branes in type II string theories. Specifically taking p=3, we obtain

a 3+1 dimensional space-time with N = 2 SUSY, spanned by the D3 branes.
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Quiver Theory Fields Quiver Gauge
Charges

Yang Mills
Irreps

Superpotential

SU (N)×U (1)× Ū(1)gauge

Φ

X12

X21

1

1/q

q

[0, . . . 0]

[1, . . . 0]

[0, . . . 1]

Tr (X12ΦX21)

SO (n)×USp(2)gauge

S

Q

[2]

[1]

[0, . . . 0]

[1, . . . 0]
Tr
(
Qaε

abSbcε
cdQd

)
USp (2n)×O(1)gauge

A

Q

1

±1

[0, . . . 0]

[1, . . . 0]
Tr (QAQ)

Table 25. Field content of Higgs branch quiver theories for RSIMS.

Figure 11. Quiver diagrams for Higgs and Coulomb branch A series RSIMS. Blue nodes denote

U(1) gauge groups. Red nodes denote flavours. The quiver for SU(2) is self-dual under mirror

symmetry. The Coulomb branch quivers correspond to extended Dynkin diagrams when the flavour

nodes, which have zero monopole charges, are identified.

The instantons can be assigned positions on the transverse directions on the D7 branes

parameterised using C2. When there is only one instanton, the fields specifying the global

position of the instanton decouple from the quiver gauge and instanton Yang-Mills fields

and this gives rise to an RSIMS that is determined solely by the quiver gauge and Yang-

Mills field representations. The brane construction corresponding to the unitary theories

is straightforward, however the orthogonal and symplectic theories require the use of ori-

entifold planes [5].

The Higgs and Coulomb branch quiver theories for A series RSIMS are related by mir-

ror symmetry [15, 26]. Without digressing further on this important topic, we summarise

in figure 11 the Higgs branch and Coulomb branch quiver theories corresponding to the A

series RSIMS, which are mirror to each other.
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7 Discussion and conclusions

The construction of RSIMS using group theoretic methods based on the Weyl Character

Formula is, in principle, straightforward for both Classical and Exceptional groups.18 As

discussed in section 2, the single instanton moduli space constructions for both Classical

and Exceptional groups given in [12] can be counted within this category, being derivable

from the Weyl Character Formula. What is remarkable is that these instanton moduli

spaces can also be obtained by four further quite different methods, three of which have

precise interpretations within SUSY quiver gauge theories.

1. Coulomb branch RSIMS constructions under N = 4 SUSY in 2+1 dimensions were

given in [18] for simply laced groups and in [20] it was shown how these constructions

can be extended to non-simply laced groups. These quiver gauge theory constructions

discussed in section 3 describe a product group of U(N) monopole operators labelling

points in the root lattice of the Classical or Exceptional group.

2. Higgs branch RSIMS constructions under N = 2 SUSY in 3+1 dimensions are given

in table 25 [5]. These quiver gauge theory constructions discussed in section 6 build

instanton moduli spaces as the GIOs of symmetrisations of (the characters of) chiral

scalar fields transforming under various product group representations. They are

only known for Classical instanton symmetry groups.

3. We have shown in section 4 how it is possible to use mappings the weight space of

any Classical or Exceptional group and its semi-simple subgroups to deconstruct an

RSIMS in terms of the moduli spaces of its subgroup irreps. In section 4 we focused

on maximal semi-simple subgroups reached via a single elementary transformation.

In the case of all Classical and some Exceptional groups, such mappings lead to simple

HWGs in terms of subgroup irreps, whose moduli spaces are complete intersections

of dimension six or less.

4. In section 5 we have shown how it is possible to extend the subgroup decomposi-

tion approach to utilise A series modified Hall-Littlewood polynomials, in place of

the characters of representations. These correspond to T (SU(N)) Coulomb branch

quiver theories in the presence of background charges. This method leads to an in-

teresting simplification of the HWGs for certain families of RSIMS deconstructions,

as discussed further below.

Analysis confirms, on a case by case basis, the identity of the refined Hilbert series (or

character expansions) resulting from the different constructions. The methods all lead to

identical moduli spaces.

The relationship between the RSIMS of a group and its subgroup moduli spaces is of

particular interest. As shown in section 4, in the case of a pair of maximal semi-simple

18Subject only to computational challenges for higher rank groups.
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subgroups of BCD Classical groups19 reached via a single elementary transformation, we

have the simple schema for an RSIMS deconstruction into a subgroup HWG:

gB or D
instanton → PE

[(
θ + θ′ + v ⊗ v′

)
t+

(
1 + g + g′ + v ⊗ v′

)
t2 − g ⊗ g′t4

]
,

gCinstanton → PE
[(
θ + θ′ + v ⊗ v′

)
t− g ⊗ g′t2

]
,

(7.1)

where θ, v and g refer to adjoint, vector and graviton (symmetrised vector) representations,

respectively.

These Classical group RSIMS split into subgroup moduli spaces with their HWGs

defined, at order t, by the adjoint representations of subgroups together with the vector

representation of the product group formed by the sub-groups. The HWGs have the same

form for all the orthogonal and symplectic groups studied (providing the component sub-

groups have sufficient rank) and we conjecture that this remains so for higher rank parent

groups. These HWGs are all of dimension six or less.

In the case of Exceptional groups, not all mappings to maximal semi-simple subgroups

lead to HWGs of low dimension, and the dimensional analysis in section 4 shows that this

results from the low degrees of the dimensional polynomials of the subgroups, relative to

the dimensions of the Hilbert series for the parent group RSIMS.

A sequence of elementary transformations to a regular semi-simple subgroup always

leads to a decomposition of the adjoint representation of the parent that includes the adjoint

representations of its subgroups [11]. This makes it possible to find HWGs of low dimension

utilising modified Hall-Littlewood polynomials. These incorporate the plethystic function

PE[(adjoint − rank)t] in their construction and, as shown in section 5, have dimensional

polynomials with a higher degree than those of corresponding representations. Specifically,

the degree of the dimensional polynomial of an mHL polynomial is bounded by the number

of roots of the subgroup, rather than the number of positive roots, as in the case of a

representation based on characters, leading to a factor of two difference.

The resulting low dimensions of the the HWGs built on mHL polynomials leads, in

some cases, to particularly simple decompositions of RSIMS into A series subgroups. In

particular, the HWGs for A and C series groups (and their isomorphisms) and those for

mappings to a single A series subgroup (such as G2 → A2, B3 → A3, [E7 → A7, E8 → A8])

are given by finite series of mHL polynomials. There are also two families, G2, B3, D4 → A1
r

and F4, E6 → A2
r/2 that have simple HWGs of dimension 2 and 4 respectively, as shown

in table 26.

These decompositions of RSIMS in terms of mHL polynomials reflect structural re-

lationships between Coulomb branch quiver theories for extended Dynkin diagrams and

those for T (SU(N)). We indicate in figure 12 the quiver diagrams involved in these family

relationships. The extended Dynkin diagrams can be constructed by identifying the flavour

nodes of the T (SU(N)) quivers; this construction is provided algebraically by the Cλ co-

efficients, obtained from the HWGs. As noted in sections 3 and 5, the Coulomb branch

constructions map directly to the mHL constructions under a gauge choice that sets the

lowest U(1) monopole charge of the central node of the D4 or E6 extended Dynkin diagram

to zero.

19Assuming minimum ranks of 2 and 3 respectively for any B and D series subgroups.
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Family HWG for Cλ

G2, B3, D4 → A1
⊗r 1−h2t4

(1−t2)(1−ht)(1−ht2)


G2 : h ≡ h3

AhB

B3 : h ≡ hAh2
BhC

D4 : h ≡ hAhBhChD

F4, E6 → A2
⊗r/2 1+h1t2+h2t2+h1t3+h2t3+h1h2t5

(1−t2)(1−t3)(1−h1t)(1−h2t)

{
F4 : hi ≡ hAih2

Bi

E6 : hi ≡ hAihBihCi

Table 26. RSIMS HWGs from T (SU(N)) families.

It is clear that quiver diagrams play a profound role in encoding precise relationships

between the root spaces of Classical and Exceptional groups and the Coulomb branches of

SUSY gauge theories with unitary symmetry groups. Although much work remains to be

done to provide a complete account, we can identify some key relationships.

Firstly, the quiver diagrams for all the affine Dynkin diagrams and T (SU(N)) theories

are balanced, as defined in section 3. This ensures that any integer assignment of charges

to nodes under the Coulomb branch construction leads to integer conformal dimension, as

is necessary for conformal dimension to map to shifts around the root lattice of a group.

When the extended Dynkin diagram is taken as the quiver, conformal dimension turns out

to be 1 for those field configurations corresponding to the roots of a group; interestingly,

this applies equally for non-simply laced groups, notwithstanding the presence of roots of

different lengths.20 Thus, in the RSIMS construction, conformal dimension increases by

1 for each new set of dominant weights and orbits introduced by each symmetrisation of

the adjoint. In SUSY field theory, conformal dimension corresponds to the R-charge of

fields within multiplets. Since conformal dimension defines a foliation of the root space of

a Classical or Exceptional group, the R-charges can be viewed as corresponding to sets of

adjacent orbits or shells in root space.

Secondly, each Coulomb branch monopole construction also depends crucially on its

U(N) symmetries, which correspond to key group theoretic parameters. In the case of the

RSIMS construction, these U(N) symmetries match the dual Coxeter numbers of the nodes

in the extended Dynkin diagram. We have shown how the matching of extended Dynkin

diagram U(N) symmetries to those of T (SU(N)), leads to simple HWGs for RSIMS in

terms of mHL polynomials. In cases where the fit between T (SU(N)) structures and the

extended Dynkin diagram is not so good, we can still deconstruct an RSIMS in terms of

mHL polynomials, but at an increase in the complexity of the relations encoded in the

HWG numerators.

Conclusion. A wide variety of methods can be deployed to construct and deconstruct the

single instanton moduli spaces of any Classical or Exceptional group. We have shown how

20Providing the prescription for conformal dimension in section 3 based on the off-diagonal entries in the

Cartan matrix is adhered to.
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diagrams are labelled as follows: blue nodes denote long roots, red nodes denote short roots, black

nodes denote the long roots added in the affine construction and the dual Coxeter numbers of each

node are shown. T (SU(N)) square quiver nodes are labelled by the number N of flavours and

round nodes by U(N) gauge symmetries. The RSIMS deconstruction maps the central node of the

Extended Dynkin diagram to the T (SU(N)) flavour nodes.

generating functions for characters and Hall-Littlewood polynomials, and the related mod-

ified Hall-Littlewood polynomials, can be used to give efficient decompositions of RSIMS

in terms of HWGs that draw on their semi-simple subgroups. These decompositions are

faithful and the original series can be recovered by recombining characters, or mHL poly-

nomials as appropriate, with the Cλ series of coefficients generated by the HWGs. In many

cases, the Cλ coefficients depend in a simple way on the Dynkin labels of the subgroup

representations or mHL polynomials. While these calculations can be implemented in a

purely algebraic manner, relationships between SUSY quiver theories play a valuable role

in guiding the identification of constructions that lead to simple HWGs; conversely the re-

lationships between moduli spaces that we have identified translate to precise relationships

between different SUSY quiver theories.
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Further work. It could be interesting to extend our use of generating functions for Hall-

Littlewood polynomials to the moduli spaces of non-unitary groups and to explore the

circumstances under which these provide simple deconstructions of such spaces.

We have identified two classes of star shaped T (SU(N)) quiver theories involving E6 to

A⊗3
2 and D4 to A⊗4

1 , such that each class is defined by a common HWG when deconstructed

into mHL polynomials. If such families are generalised to include theories with more

and/or higher rank limbs, can we formulate the principles and find the HWGs for their

deconstruction into simpler components?

It may also be interesting to explore whether these approaches can be used to obtain

simple descriptions of other moduli spaces of physical interest, including multiple instanton

moduli spaces.
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A PG
instanton for low rank classical groups

PA3instantonHtL Character

1 - t4 - t8 + t16 + t20 - t24 80, 0, 0<

t6 - 2 t8 + t10 - t14 + 2 t16 - t18 80, 1, 2<

-t4 + 2 t6 - t8 + t16 - 2 t18 + t20 80, 2, 0<

-t4 + 2 t6 - 2 t8 + 2 t10 - 2 t14 + 2 t16 - 2 t18 + t20 81, 0, 1<

-t8 + 2 t10 - 2 t14 + t16 82, 0, 2<

t6 - 2 t8 + t10 - t14 + 2 t16 - t18 82, 1, 0<

PB3instantonHtL Character

1 - t4 - t12 + t16 - t18 + t22 + t30 - t34 80, 0, 0<

-t4 + t6 + t10 - t12 - t14 + 3 t16 - 3 t18 + t20 + t22 - t24 - t28 + t30 80, 0, 2<

t10 - t12 - t14 + t16 - t18 + t20 + t22 - t24 80, 0, 4<

t6 - 2 t8 + t10 + t12 - 2 t14 + t16 - t18 + 2 t20 - t22 - t24 + 2 t26 - t28 80, 1, 0<

-t8 + t10 + t12 - 2 t14 + 3 t16 - 3 t18 + 2 t20 - t22 - t24 + t26 80, 1, 2<

-t14 + 3 t16 - 3 t18 + t20 80, 2, 0<

-t8 + t10 + t12 - t14 + t20 - t22 - t24 + t26 81, 0, 0<

t6 - 2 t8 + t10 + t12 - 3 t14 + 4 t16 - 4 t18 + 3 t20 - t22 - t24 + 2 t26 - t28 81, 0, 2<

t6 - t8 - 2 t14 + 4 t16 - 4 t18 + 2 t20 + t26 - t28 81, 1, 0<

-t14 + 3 t16 - 3 t18 + t20 81, 1, 2<

t12 - 2 t14 + t16 - t18 + 2 t20 - t22 81, 2, 0<

-t4 + t6 + 2 t16 - 2 t18 - t28 + t30 82, 0, 0<

-t14 + 3 t16 - 3 t18 + t20 82, 0, 2<

t12 - 2 t14 + t16 - t18 + 2 t20 - t22 82, 1, 0<

-t8 + t10 + t12 - t14 + t20 - t22 - t24 + t26 83, 0, 0<
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PC3instantonHtL Character

1 - t4 - t12 + t16 - t20 + t24 + t32 - t36 80, 0, 0<

-t8 + t10 + t14 - t16 + t20 - t22 - t26 + t28 80, 0, 2<

-t4 + t6 + t10 - 2 t12 + t14 + t16 - t20 - t22 + 2 t24 - t26 - t30 + t32 80, 1, 0<

-t8 + t10 + t14 - t16 + t20 - t22 - t26 + t28 80, 1, 2<

-t4 + t6 + 2 t10 - 4 t12 + 2 t14 + t16 - t20 - 2 t22 + 4 t24 - 2 t26 - t30 + t32 80, 2, 0<

t10 - 3 t12 + 2 t14 + t16 - t20 - 2 t22 + 3 t24 - t26 80, 3, 0<

-t12 + t14 + t16 - t20 - t22 + t24 80, 4, 0<

t6 - 2 t8 + 2 t10 - 2 t12 + 2 t14 - 2 t16 + 2 t20 - 2 t22 + 2 t24 - 2 t26 + 2 t28 - t30 81, 0, 1<

t6 - 2 t8 + 3 t10 - 4 t12 + 3 t14 - 2 t16 + 2 t20 - 3 t22 + 4 t24 - 3 t26 + 2 t28 - t30 81, 1, 1<

t10 - 2 t12 + 2 t14 - 2 t16 + 2 t20 - 2 t22 + 2 t24 - t26 81, 2, 1<

t6 - 2 t8 + t10 + t14 - 2 t16 + 2 t20 - t22 - t26 + 2 t28 - t30 82, 0, 0<

t10 - 2 t12 + t14 - t22 + 2 t24 - t26 82, 0, 2<

t6 - 3 t8 + 3 t10 - 2 t12 + 3 t14 - 3 t16 + 3 t20 - 3 t22 + 2 t24 - 3 t26 + 3 t28 - t30 82, 1, 0<

-t8 + 2 t10 - 2 t12 + 3 t14 - 3 t16 + 3 t20 - 3 t22 + 2 t24 - 2 t26 + t28 82, 2, 0<

t14 - 2 t16 + 2 t20 - t22 82, 3, 0<

-t8 + 2 t10 - 2 t12 + 2 t14 - t16 + t20 - 2 t22 + 2 t24 - 2 t26 + t28 83, 0, 1<

-t12 + 2 t14 - t16 + t20 - 2 t22 + t24 83, 1, 1<

t10 - 2 t12 + t14 - t22 + 2 t24 - t26 84, 0, 0<

t10 - 2 t12 + t14 - t22 + 2 t24 - t26 84, 1, 0<

PD3instantonHtL Character

1 - t4 - t8 + t16 + t20 - t24 80, 0, 0<

-t4 + 2 t6 - 2 t8 + 2 t10 - 2 t14 + 2 t16 - 2 t18 + t20 80, 1, 1<

-t8 + 2 t10 - 2 t14 + t16 80, 2, 2<

t6 - 2 t8 + t10 - t14 + 2 t16 - t18 81, 0, 2<

t6 - 2 t8 + t10 - t14 + 2 t16 - t18 81, 2, 0<

-t4 + 2 t6 - t8 + t16 - 2 t18 + t20 82, 0, 0<

PD4instantonHtL Character

1 - t4 - 2 t12 + 2 t16 - t18 + t22 + t24 - t28 + 2 t30 - 2 t34 - t42 + t46 80, 0, 0, 0<

-t4 + t6 + t10 - t12 - t14 + 4 t16 - 4 t18 + t20 + t26 - 4 t28 + 4 t30 - t32 - t34 + t36 + t40 - t42 80, 0, 0, 2<

t10 - t12 - t14 + t16 - t18 + t20 + t26 - t28 + t30 - t32 - t34 + t36 80, 0, 0, 4<

-t4 + t6 + t10 - t12 - t14 + 4 t16 - 4 t18 + t20 + t26 - 4 t28 + 4 t30 - t32 - t34 + t36 + t40 - t42 80, 0, 2, 0<

-2 t14 + 6 t16 - 7 t18 + 5 t20 - 2 t22 - 2 t24 + 5 t26 - 7 t28 + 6 t30 - 2 t32 80, 0, 2, 2<

t10 - t12 - t14 + t16 - t18 + t20 + t26 - t28 + t30 - t32 - t34 + t36 80, 0, 4, 0<

t6 - 3 t8 + 2 t10 + 2 t12 - 3 t14 + t16 - 2 t18 + 6 t20 -

4 t22 - 4 t24 + 6 t26 - 2 t28 + t30 - 3 t32 + 2 t34 + 2 t36 - 3 t38 + t40
80, 1, 0, 0<

-t8 + t10 + 2 t12 - 4 t14 + 5 t16 - 7 t18 + 8 t20 -

4 t22 - 4 t24 + 8 t26 - 7 t28 + 5 t30 - 4 t32 + 2 t34 + t36 - t38
80, 1, 0, 2<

-t8 + t10 + 2 t12 - 4 t14 + 5 t16 - 7 t18 + 8 t20 -

4 t22 - 4 t24 + 8 t26 - 7 t28 + 5 t30 - 4 t32 + 2 t34 + t36 - t38
80, 1, 2, 0<

t16 - 3 t18 + 3 t20 - t22 - t24 + 3 t26 - 3 t28 + t30 80, 1, 2, 2<

-3 t14 + 9 t16 - 9 t18 + 3 t20 + 3 t26 - 9 t28 + 9 t30 - 3 t32 80, 2, 0, 0<

-t14 + 3 t16 - 3 t18 + t20 + t26 - 3 t28 + 3 t30 - t32 80, 2, 0, 2<

-t14 + 3 t16 - 3 t18 + t20 + t26 - 3 t28 + 3 t30 - t32 80, 2, 2, 0<

t12 - 3 t14 + 2 t16 + 3 t20 - 3 t22 - 3 t24 + 3 t26 + 2 t30 - 3 t32 + t34 80, 3, 0, 0<

2 t6 - 3 t8 + t10 + t12 - 6 t14 + 11 t16 - 14 t18 + 12 t20 -

4 t22 - 4 t24 + 12 t26 - 14 t28 + 11 t30 - 6 t32 + t34 + t36 - 3 t38 + 2 t40
81, 0, 1, 1<

-t14 + 3 t16 - 4 t18 + 4 t20 - 2 t22 - 2 t24 + 4 t26 - 4 t28 + 3 t30 - t32 81, 0, 1, 3<

-t14 + 3 t16 - 4 t18 + 4 t20 - 2 t22 - 2 t24 + 4 t26 - 4 t28 + 3 t30 - t32 81, 0, 3, 1<

2 t12 - 6 t14 + 10 t16 - 14 t18 + 12 t20 - 4 t22 - 4 t24 + 12 t26 - 14 t28 + 10 t30 - 6 t32 + 2 t34 81, 1, 1, 1<

-t4 + t6 + t10 - t12 - t14 + 4 t16 - 4 t18 + t20 + t26 - 4 t28 + 4 t30 - t32 - t34 + t36 + t40 - t42 82, 0, 0, 0<

-2 t14 + 6 t16 - 7 t18 + 5 t20 - 2 t22 - 2 t24 + 5 t26 - 7 t28 + 6 t30 - 2 t32 82, 0, 0, 2<

-2 t14 + 6 t16 - 7 t18 + 5 t20 - 2 t22 - 2 t24 + 5 t26 - 7 t28 + 6 t30 - 2 t32 82, 0, 2, 0<

-t18 + 3 t20 - 2 t22 - 2 t24 + 3 t26 - t28 82, 0, 2, 2<

-t8 + t10 + 2 t12 - 4 t14 + 5 t16 - 7 t18 + 8 t20 -

4 t22 - 4 t24 + 8 t26 - 7 t28 + 5 t30 - 4 t32 + 2 t34 + t36 - t38
82, 1, 0, 0<

t16 - 3 t18 + 3 t20 - t22 - t24 + 3 t26 - 3 t28 + t30 82, 1, 0, 2<

t16 - 3 t18 + 3 t20 - t22 - t24 + 3 t26 - 3 t28 + t30 82, 1, 2, 0<

-t14 + 3 t16 - 3 t18 + t20 + t26 - 3 t28 + 3 t30 - t32 82, 2, 0, 0<

-t14 + 3 t16 - 4 t18 + 4 t20 - 2 t22 - 2 t24 + 4 t26 - 4 t28 + 3 t30 - t32 83, 0, 1, 1<

t10 - t12 - t14 + t16 - t18 + t20 + t26 - t28 + t30 - t32 - t34 + t36 84, 0, 0, 0<
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PF4instantonHtL Character

1 - t2 - t9 + t11 - t13 + t15 - t20 + 2 t22 - t24 + t29 - t31 + t33 - t35 - t42 + t44 80, 0, 0, 0<

-t6 + t7 + t8 - t9 - t13 + t14 + 2 t15 - 2 t16 - t17 + t18 + t19 - t20 - t21 +

2 t22 - t23 - t24 + t25 + t26 - t27 - 2 t28 + 2 t29 + t30 - t31 - t35 + t36 + t37 - t38
80, 0, 0, 1<

-t2 + t3 + 2 t8 - 4 t9 + 2 t10 + t11 - 2 t13 - t14 + 7 t15 - 7 t16 +

t17 + t18 + 2 t19 - t20 - 6 t21 + 10 t22 - 6 t23 - t24 + 2 t25 + t26 +

t27 - 7 t28 + 7 t29 - t30 - 2 t31 + t33 + 2 t34 - 4 t35 + 2 t36 + t41 - t42

80, 0, 0, 2<

2 t8 - 6 t9 + 5 t10 - t13 - 6 t14 + 15 t15 - 15 t16 + 8 t17 - t18 - t19 + 3 t20 - 15 t21 + 24 t22 -

15 t23 + 3 t24 - t25 - t26 + 8 t27 - 15 t28 + 15 t29 - 6 t30 - t31 + 5 t34 - 6 t35 + 2 t36
80, 0, 0, 3<

-t5 + t6 + 2 t8 - 4 t9 + 3 t10 - 2 t12 + t13 - 6 t14 + 20 t15 - 23 t16 +

10 t17 - 2 t18 + t19 + 9 t20 - 27 t21 + 36 t22 - 27 t23 + 9 t24 + t25 - 2 t26 +

10 t27 - 23 t28 + 20 t29 - 6 t30 + t31 - 2 t32 + 3 t34 - 4 t35 + 2 t36 + t38 - t39

80, 0, 0, 4<

t8 - 3 t9 + 3 t10 - 2 t12 + t13 - 6 t14 + 19 t15 - 22 t16 +

11 t17 - 2 t18 - t19 + 9 t20 - 27 t21 + 38 t22 - 27 t23 + 9 t24 - t25 -

2 t26 + 11 t27 - 22 t28 + 19 t29 - 6 t30 + t31 - 2 t32 + 3 t34 - 3 t35 + t36

80, 0, 0, 5<

-t9 + t10 + t11 - 2 t13 - 2 t14 + 10 t15 - 13 t16 + 8 t17 - 2 t18 + t19 + 3 t20 - 17 t21 + 26 t22 -

17 t23 + 3 t24 + t25 - 2 t26 + 8 t27 - 13 t28 + 10 t29 - 2 t30 - 2 t31 + t33 + t34 - t35
80, 0, 0, 6<

-t13 + t14 + 3 t15 - 5 t16 + t17 + t18 + 2 t19 - t20 - 5 t21 +

8 t22 - 5 t23 - t24 + 2 t25 + t26 + t27 - 5 t28 + 3 t29 + t30 - t31
80, 0, 0, 7<

-t13 + t14 + t15 - t16 + t19 - t20 - t21 + 2 t22 - t23 - t24 + t25 - t28 + t29 + t30 - t31 80, 0, 0, 8<

-t4 + t5 + t6 - t7 - t9 + 3 t10 - 3 t11 + t12 + 2 t13 - 4 t14 + 2 t15 - 2 t16 +

6 t17 - 4 t18 - 3 t19 + 4 t20 - 3 t21 + 4 t22 - 3 t23 + 4 t24 - 3 t25 - 4 t26 + 6 t27 -

2 t28 + 2 t29 - 4 t30 + 2 t31 + t32 - 3 t33 + 3 t34 - t35 - t37 + t38 + t39 - t40

80, 0, 1, 0<

t3 - t4 - 2 t7 + 5 t8 - 6 t9 + 7 t10 - 7 t11 + t12 + 7 t13 - 13 t14 + 20 t15 - 24 t16 + 18 t17 -

9 t18 - 2 t19 + 19 t20 - 29 t21 + 30 t22 - 29 t23 + 19 t24 - 2 t25 - 9 t26 + 18 t27 -

24 t28 + 20 t29 - 13 t30 + 7 t31 + t32 - 7 t33 + 7 t34 - 6 t35 + 5 t36 - 2 t37 - t40 + t41

80, 0, 1, 1<

t6 - 3 t7 + 5 t8 - 8 t9 + 11 t10 - 9 t11 - t12 + 17 t13 - 33 t14 + 45 t15 - 52 t16 + 46 t17 -

22 t18 - 14 t19 + 50 t20 - 74 t21 + 82 t22 - 74 t23 + 50 t24 - 14 t25 - 22 t26 + 46 t27 -

52 t28 + 45 t29 - 33 t30 + 17 t31 - t32 - 9 t33 + 11 t34 - 8 t35 + 5 t36 - 3 t37 + t38

80, 0, 1, 2<

t6 - 2 t7 + 3 t8 - 6 t9 + 8 t10 - 5 t11 - 3 t12 + 18 t13 - 41 t14 + 59 t15 - 66 t16 + 60 t17 -

28 t18 - 22 t19 + 70 t20 - 110 t21 + 128 t22 - 110 t23 + 70 t24 - 22 t25 - 28 t26 + 60 t27 -

66 t28 + 59 t29 - 41 t30 + 18 t31 - 3 t32 - 5 t33 + 8 t34 - 6 t35 + 3 t36 - 2 t37 + t38

80, 0, 1, 3<

t8 - 2 t9 + 3 t10 - 4 t11 - t12 + 12 t13 - 25 t14 + 41 t15 - 53 t16 + 47 t17 -

23 t18 - 15 t19 + 61 t20 - 95 t21 + 106 t22 - 95 t23 + 61 t24 - 15 t25 - 23 t26 +

47 t27 - 53 t28 + 41 t29 - 25 t30 + 12 t31 - t32 - 4 t33 + 3 t34 - 2 t35 + t36

80, 0, 1, 4<

t10 - 2 t11 + t12 + 2 t13 - 8 t14 + 16 t15 - 22 t16 + 22 t17 -

14 t18 - 3 t19 + 25 t20 - 43 t21 + 50 t22 - 43 t23 + 25 t24 - 3 t25 -

14 t26 + 22 t27 - 22 t28 + 16 t29 - 8 t30 + 2 t31 + t32 - 2 t33 + t34

80, 0, 1, 5<
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PF4instantonHtL Character

t12 - t13 - t14 + 2 t15 - 4 t16 + 6 t17 - 4 t18 + 3 t20 - 7 t21 +

10 t22 - 7 t23 + 3 t24 - 4 t26 + 6 t27 - 4 t28 + 2 t29 - t30 - t31 + t32
80, 0, 1, 6<

-t7 + 4 t8 - 8 t9 + 7 t10 - 2 t12 + 4 t13 - 20 t14 + 37 t15 - 37 t16 + 24 t17 -

8 t18 - 6 t19 + 23 t20 - 50 t21 + 66 t22 - 50 t23 + 23 t24 - 6 t25 - 8 t26 +

24 t27 - 37 t28 + 37 t29 - 20 t30 + 4 t31 - 2 t32 + 7 t34 - 8 t35 + 4 t36 - t37

80, 0, 2, 0<

-t7 + 4 t8 - 8 t9 + 9 t10 - 4 t11 - 7 t12 + 24 t13 - 48 t14 + 77 t15 - 89 t16 + 65 t17 -

23 t18 - 25 t19 + 88 t20 - 144 t21 + 164 t22 - 144 t23 + 88 t24 - 25 t25 - 23 t26 +

65 t27 - 89 t28 + 77 t29 - 48 t30 + 24 t31 - 7 t32 - 4 t33 + 9 t34 - 8 t35 + 4 t36 - t37

80, 0, 2, 1<

t8 - 4 t9 + 5 t10 - 8 t12 + 21 t13 - 49 t14 + 85 t15 - 99 t16 + 75 t17 -

27 t18 - 35 t19 + 114 t20 - 190 t21 + 222 t22 - 190 t23 + 114 t24 - 35 t25 -

27 t26 + 75 t27 - 99 t28 + 85 t29 - 49 t30 + 21 t31 - 8 t32 + 5 t34 - 4 t35 + t36

80, 0, 2, 2<

-t9 + 2 t10 - 3 t12 + 8 t13 - 24 t14 + 47 t15 - 59 t16 + 50 t17 -

20 t18 - 23 t19 + 74 t20 - 129 t21 + 156 t22 - 129 t23 + 74 t24 - 23 t25 -

20 t26 + 50 t27 - 59 t28 + 47 t29 - 24 t30 + 8 t31 - 3 t32 + 2 t34 - t35

80, 0, 2, 3<

-3 t14 + 12 t15 - 19 t16 + 16 t17 - 9 t18 - t19 + 21 t20 - 43 t21 +

52 t22 - 43 t23 + 21 t24 - t25 - 9 t26 + 16 t27 - 19 t28 + 12 t29 - 3 t30
80, 0, 2, 4<

t15 - 2 t16 + t17 - t18 + 2 t19 - 4 t21 + 6 t22 - 4 t23 + 2 t25 - t26 + t27 - 2 t28 + t29 80, 0, 2, 5<

-t9 + 3 t10 - 2 t11 - 5 t12 + 18 t13 - 33 t14 + 42 t15 - 48 t16 + 49 t17 -

20 t18 - 33 t19 + 75 t20 - 105 t21 + 120 t22 - 105 t23 + 75 t24 - 33 t25 -

20 t26 + 49 t27 - 48 t28 + 42 t29 - 33 t30 + 18 t31 - 5 t32 - 2 t33 + 3 t34 - t35

80, 0, 3, 0<

-4 t12 + 15 t13 - 29 t14 + 46 t15 - 58 t16 + 48 t17 -

17 t18 - 33 t19 + 98 t20 - 148 t21 + 164 t22 - 148 t23 + 98 t24 -

33 t25 - 17 t26 + 48 t27 - 58 t28 + 46 t29 - 29 t30 + 15 t31 - 4 t32

80, 0, 3, 1<

-t12 + 4 t13 - 9 t14 + 17 t15 - 26 t16 + 27 t17 - 12 t18 - 17 t19 + 51 t20 - 79 t21 + 90 t22 -

79 t23 + 51 t24 - 17 t25 - 12 t26 + 27 t27 - 26 t28 + 17 t29 - 9 t30 + 4 t31 - t32
80, 0, 3, 2<

-t14 + 2 t15 - 3 t16 + 6 t17 - 5 t18 - t19 + 7 t20 - 15 t21 +

20 t22 - 15 t23 + 7 t24 - t25 - 5 t26 + 6 t27 - 3 t28 + 2 t29 - t30
80, 0, 3, 3<

t11 - t12 - 5 t14 + 12 t15 - 13 t16 + 11 t17 - 4 t18 - 10 t19 + 26 t20 - 46 t21 +

58 t22 - 46 t23 + 26 t24 - 10 t25 - 4 t26 + 11 t27 - 13 t28 + 12 t29 - 5 t30 - t32 + t33
80, 0, 4, 0<

2 t15 - 5 t16 + 4 t17 - 2 t18 - t19 + 11 t20 - 21 t21 +

24 t22 - 21 t23 + 11 t24 - t25 - 2 t26 + 4 t27 - 5 t28 + 2 t29
80, 0, 4, 1<

-t18 + 2 t19 - 2 t21 + 2 t22 - 2 t23 + 2 t25 - t26 80, 0, 4, 2<

t17 - t18 - t19 + 2 t22 - t25 - t26 + t27 80, 0, 5, 0<
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-t4 + t5 + t6 - 2 t7 + 2 t8 - 2 t9 + 3 t10 - 4 t11 + t12 + 5 t13 - 7 t14 + 5 t15 - 6 t16 + 11 t17 -

8 t18 - 4 t19 + 10 t20 - 10 t21 + 10 t22 - 10 t23 + 10 t24 - 4 t25 - 8 t26 + 11 t27 -

6 t28 + 5 t29 - 7 t30 + 5 t31 + t32 - 4 t33 + 3 t34 - 2 t35 + 2 t36 - 2 t37 + t38 + t39 - t40

80, 1, 0, 0<

-t4 + t5 + t6 - 3 t7 + 5 t8 - 6 t9 + 8 t10 - 9 t11 + 16 t13 - 27 t14 + 32 t15 - 36 t16 + 37 t17 -

21 t18 - 13 t19 + 42 t20 - 55 t21 + 58 t22 - 55 t23 + 42 t24 - 13 t25 - 21 t26 + 37 t27 -

36 t28 + 32 t29 - 27 t30 + 16 t31 - 9 t33 + 8 t34 - 6 t35 + 5 t36 - 3 t37 + t38 + t39 - t40

80, 1, 0, 1<

t6 - 3 t7 + 4 t8 - 5 t9 + 8 t10 - 9 t11 - 3 t12 + 29 t13 - 51 t14 + 62 t15 - 71 t16 + 70 t17 -

36 t18 - 30 t19 + 93 t20 - 126 t21 + 134 t22 - 126 t23 + 93 t24 - 30 t25 - 36 t26 + 70 t27 -

71 t28 + 62 t29 - 51 t30 + 29 t31 - 3 t32 - 9 t33 + 8 t34 - 5 t35 + 4 t36 - 3 t37 + t38

80, 1, 0, 2<

-t7 + 2 t8 - 2 t9 + 4 t10 - 6 t11 - 3 t12 + 26 t13 - 49 t14 + 64 t15 - 75 t16 + 74 t17 -

37 t18 - 37 t19 + 111 t20 - 154 t21 + 166 t22 - 154 t23 + 111 t24 - 37 t25 - 37 t26 +

74 t27 - 75 t28 + 64 t29 - 49 t30 + 26 t31 - 3 t32 - 6 t33 + 4 t34 - 2 t35 + 2 t36 - t37

80, 1, 0, 3<

t10 - 3 t11 + 11 t13 - 23 t14 + 32 t15 - 42 t16 + 48 t17 -

28 t18 - 22 t19 + 73 t20 - 102 t21 + 110 t22 - 102 t23 + 73 t24 -

22 t25 - 28 t26 + 48 t27 - 42 t28 + 32 t29 - 23 t30 + 11 t31 - 3 t33 + t34

80, 1, 0, 4<

-t11 + t12 + 2 t13 - 5 t14 + 7 t15 - 11 t16 + 17 t17 - 13 t18 - 5 t19 + 23 t20 - 32 t21 + 34 t22 -

32 t23 + 23 t24 - 5 t25 - 13 t26 + 17 t27 - 11 t28 + 7 t29 - 5 t30 + 2 t31 + t32 - t33
80, 1, 0, 5<

-t16 + 3 t17 - 3 t18 + 3 t20 - 3 t21 + 2 t22 - 3 t23 + 3 t24 - 3 t26 + 3 t27 - t28 80, 1, 0, 6<

-t7 + 4 t8 - 7 t9 + 7 t10 - 3 t11 - 5 t12 + 18 t13 - 38 t14 + 58 t15 - 62 t16 + 46 t17 -

17 t18 - 21 t19 + 64 t20 - 102 t21 + 118 t22 - 102 t23 + 64 t24 - 21 t25 - 17 t26 +

46 t27 - 62 t28 + 58 t29 - 38 t30 + 18 t31 - 5 t32 - 3 t33 + 7 t34 - 7 t35 + 4 t36 - t37

80, 1, 1, 0<

-t7 + 3 t8 - 5 t9 + 6 t10 - 2 t11 - 12 t12 + 38 t13 - 73 t14 + 107 t15 - 121 t16 + 98 t17 -

35 t18 - 60 t19 + 166 t20 - 247 t21 + 276 t22 - 247 t23 + 166 t24 - 60 t25 - 35 t26 +

98 t27 - 121 t28 + 107 t29 - 73 t30 + 38 t31 - 12 t32 - 2 t33 + 6 t34 - 5 t35 + 3 t36 - t37

80, 1, 1, 1<

-t9 + 2 t10 - 7 t12 + 25 t13 - 56 t14 + 88 t15 - 104 t16 + 88 t17 -

30 t18 - 64 t19 + 172 t20 - 260 t21 + 294 t22 - 260 t23 + 172 t24 - 64 t25 -

30 t26 + 88 t27 - 104 t28 + 88 t29 - 56 t30 + 25 t31 - 7 t32 + 2 t34 - t35

80, 1, 1, 2<

-t12 + 6 t13 - 17 t14 + 32 t15 - 44 t16 + 42 t17 - 18 t18 - 28 t19 + 85 t20 - 132 t21 + 150 t22 -

132 t23 + 85 t24 - 28 t25 - 18 t26 + 42 t27 - 44 t28 + 32 t29 - 17 t30 + 6 t31 - t32
80, 1, 1, 3<

-t14 + 4 t15 - 7 t16 + 8 t17 - 6 t18 - 2 t19 + 15 t20 - 26 t21 +

30 t22 - 26 t23 + 15 t24 - 2 t25 - 6 t26 + 8 t27 - 7 t28 + 4 t29 - t30
80, 1, 1, 4<

t10 - t11 - 6 t12 + 20 t13 - 35 t14 + 48 t15 - 58 t16 + 54 t17 -

18 t18 - 48 t19 + 116 t20 - 161 t21 + 176 t22 - 161 t23 + 116 t24 - 48 t25 -

18 t26 + 54 t27 - 58 t28 + 48 t29 - 35 t30 + 20 t31 - 6 t32 - t33 + t34

80, 1, 2, 0<

-2 t12 + 10 t13 - 23 t14 + 36 t15 - 46 t16 + 43 t17 -

12 t18 - 47 t19 + 115 t20 - 166 t21 + 184 t22 - 166 t23 + 115 t24 -

47 t25 - 12 t26 + 43 t27 - 46 t28 + 36 t29 - 23 t30 + 10 t31 - 2 t32

80, 1, 2, 1<

t13 - 3 t14 + 6 t15 - 12 t16 + 16 t17 - 8 t18 - 14 t19 + 41 t20 - 61 t21 +

68 t22 - 61 t23 + 41 t24 - 14 t25 - 8 t26 + 16 t27 - 12 t28 + 6 t29 - 3 t30 + t31
80, 1, 2, 2<
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t17 - 2 t18 + 3 t20 - 5 t21 + 6 t22 - 5 t23 + 3 t24 - 2 t26 + t27 80, 1, 2, 3<

-2 t14 + 6 t15 - 7 t16 + 5 t17 - t18 - 9 t19 + 24 t20 - 38 t21 +

44 t22 - 38 t23 + 24 t24 - 9 t25 - t26 + 5 t27 - 7 t28 + 6 t29 - 2 t30
80, 1, 3, 0<

-t16 + 2 t17 - t18 - t19 + 5 t20 - 9 t21 + 10 t22 - 9 t23 + 5 t24 - t25 - t26 + 2 t27 - t28 80, 1, 3, 1<

t8 - 3 t9 + 2 t10 + 2 t11 - 4 t12 + 7 t13 - 19 t14 + 34 t15 - 35 t16 + 21 t17 -

3 t18 - 15 t19 + 37 t20 - 66 t21 + 82 t22 - 66 t23 + 37 t24 - 15 t25 - 3 t26 +

21 t27 - 35 t28 + 34 t29 - 19 t30 + 7 t31 - 4 t32 + 2 t33 + 2 t34 - 3 t35 + t36

80, 2, 0, 0<

-t9 + t10 + 2 t11 - 6 t12 + 13 t13 - 28 t14 + 48 t15 - 55 t16 + 38 t17 -

5 t18 - 37 t19 + 88 t20 - 139 t21 + 162 t22 - 139 t23 + 88 t24 - 37 t25 -

5 t26 + 38 t27 - 55 t28 + 48 t29 - 28 t30 + 13 t31 - 6 t32 + 2 t33 + t34 - t35

80, 2, 0, 1<

t11 - 3 t12 + 5 t13 - 13 t14 + 29 t15 - 36 t16 + 23 t17 - 30 t19 + 73 t20 - 116 t21 + 134 t22 -

116 t23 + 73 t24 - 30 t25 + 23 t27 - 36 t28 + 29 t29 - 13 t30 + 5 t31 - 3 t32 + t33
80, 2, 0, 2<

-2 t14 + 7 t15 - 10 t16 + 7 t17 - 9 t19 + 23 t20 - 41 t21 +

50 t22 - 41 t23 + 23 t24 - 9 t25 + 7 t27 - 10 t28 + 7 t29 - 2 t30
80, 2, 0, 3<

t20 - 4 t21 + 6 t22 - 4 t23 + t24 80, 2, 0, 4<

-2 t12 + 7 t13 - 12 t14 + 17 t15 - 22 t16 + 20 t17 - 2 t18 - 31 t19 + 65 t20 - 89 t21 + 98 t22 -

89 t23 + 65 t24 - 31 t25 - 2 t26 + 20 t27 - 22 t28 + 17 t29 - 12 t30 + 7 t31 - 2 t32
80, 2, 1, 0<

t13 - 4 t14 + 8 t15 - 11 t16 + 9 t17 + 2 t18 - 22 t19 + 47 t20 - 68 t21 +

76 t22 - 68 t23 + 47 t24 - 22 t25 + 2 t26 + 9 t27 - 11 t28 + 8 t29 - 4 t30 + t31
80, 2, 1, 1<

-t16 + 2 t17 - 4 t19 + 9 t20 - 14 t21 + 16 t22 - 14 t23 + 9 t24 - 4 t25 + 2 t27 - t28 80, 2, 1, 2<

t15 - t16 - t17 + t18 - 2 t19 + 6 t20 - 10 t21 +

12 t22 - 10 t23 + 6 t24 - 2 t25 + t26 - t27 - t28 + t29
80, 2, 2, 0<

t13 - 2 t14 + t15 - t16 + 3 t17 - 9 t19 + 14 t20 - 16 t21 +

18 t22 - 16 t23 + 14 t24 - 9 t25 + 3 t27 - t28 + t29 - 2 t30 + t31
80, 3, 0, 0<

t18 - 4 t19 + 7 t20 - 8 t21 + 8 t22 - 8 t23 + 7 t24 - 4 t25 + t26 80, 3, 0, 1<

t3 - t4 - t7 + t8 + t10 - 2 t11 + 2 t13 - t14 - t16 + 2 t17 - 2 t18 + 3 t20 - 2 t21 -

2 t23 + 3 t24 - 2 t26 + 2 t27 - t28 - t30 + 2 t31 - 2 t33 + t34 + t36 - t37 - t40 + t41
81, 0, 0, 0<
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t5 - t6 - t7 + 2 t8 - 3 t9 + 4 t10 - 4 t11 + 2 t12 + 3 t13 - 7 t14 + 8 t15 - 9 t16 + 9 t17 -

5 t18 - 2 t19 + 9 t20 - 11 t21 + 10 t22 - 11 t23 + 9 t24 - 2 t25 - 5 t26 + 9 t27 -

9 t28 + 8 t29 - 7 t30 + 3 t31 + 2 t32 - 4 t33 + 4 t34 - 3 t35 + 2 t36 - t37 - t38 + t39

81, 0, 0, 1<

t6 - 3 t7 + 4 t8 - 5 t9 + 7 t10 - 7 t11 + t12 + 11 t13 - 21 t14 + 24 t15 - 27 t16 + 29 t17 -

16 t18 - 9 t19 + 30 t20 - 40 t21 + 42 t22 - 40 t23 + 30 t24 - 9 t25 - 16 t26 + 29 t27 -

27 t28 + 24 t29 - 21 t30 + 11 t31 + t32 - 7 t33 + 7 t34 - 5 t35 + 4 t36 - 3 t37 + t38

81, 0, 0, 2<

-2 t7 + 5 t8 - 6 t9 + 7 t10 - 7 t11 - t12 + 18 t13 - 34 t14 + 44 t15 - 49 t16 + 45 t17 -

24 t18 - 16 t19 + 58 t20 - 80 t21 + 84 t22 - 80 t23 + 58 t24 - 16 t25 - 24 t26 +

45 t27 - 49 t28 + 44 t29 - 34 t30 + 18 t31 - t32 - 7 t33 + 7 t34 - 6 t35 + 5 t36 - 2 t37

81, 0, 0, 3<

-t7 + 2 t8 - 2 t9 + 3 t10 - 4 t11 - t12 + 15 t13 - 30 t14 + 40 t15 - 47 t16 + 47 t17 -

26 t18 - 18 t19 + 63 t20 - 89 t21 + 96 t22 - 89 t23 + 63 t24 - 18 t25 - 26 t26 +

47 t27 - 47 t28 + 40 t29 - 30 t30 + 15 t31 - t32 - 4 t33 + 3 t34 - 2 t35 + 2 t36 - t37

81, 0, 0, 4<

-t9 + 2 t10 - 2 t11 + t12 + 6 t13 - 16 t14 + 21 t15 - 26 t16 + 30 t17 -

18 t18 - 11 t19 + 40 t20 - 55 t21 + 58 t22 - 55 t23 + 40 t24 - 11 t25 -

18 t26 + 30 t27 - 26 t28 + 21 t29 - 16 t30 + 6 t31 + t32 - 2 t33 + 2 t34 - t35

81, 0, 0, 5<

-t11 + 2 t12 - 3 t14 + 5 t15 - 8 t16 + 11 t17 - 9 t18 - t19 + 13 t20 - 18 t21 +

18 t22 - 18 t23 + 13 t24 - t25 - 9 t26 + 11 t27 - 8 t28 + 5 t29 - 3 t30 + 2 t32 - t33
81, 0, 0, 6<

t17 - 2 t18 + 2 t20 - t21 - t23 + 2 t24 - 2 t26 + t27 81, 0, 0, 7<

-t7 + 4 t8 - 7 t9 + 7 t10 - 4 t11 + 6 t13 - 17 t14 + 28 t15 - 29 t16 + 20 t17 -

8 t18 - 5 t19 + 21 t20 - 37 t21 + 44 t22 - 37 t23 + 21 t24 - 5 t25 - 8 t26 +

20 t27 - 29 t28 + 28 t29 - 17 t30 + 6 t31 - 4 t33 + 7 t34 - 7 t35 + 4 t36 - t37

81, 0, 1, 0<

t6 - 3 t7 + 7 t8 - 12 t9 + 13 t10 - 8 t11 - 6 t12 + 30 t13 - 59 t14 + 83 t15 - 91 t16 + 75 t17 -

32 t18 - 30 t19 + 94 t20 - 143 t21 + 162 t22 - 143 t23 + 94 t24 - 30 t25 - 32 t26 + 75 t27 -

91 t28 + 83 t29 - 59 t30 + 30 t31 - 6 t32 - 8 t33 + 13 t34 - 12 t35 + 7 t36 - 3 t37 + t38

81, 0, 1, 1<

-t7 + 4 t8 - 8 t9 + 10 t10 - 5 t11 - 11 t12 + 41 t13 - 83 t14 + 122 t15 - 136 t16 + 110 t17 -

43 t18 - 56 t19 + 165 t20 - 251 t21 + 284 t22 - 251 t23 + 165 t24 - 56 t25 - 43 t26 +

110 t27 - 136 t28 + 122 t29 - 83 t30 + 41 t31 - 11 t32 - 5 t33 + 10 t34 - 8 t35 + 4 t36 - t37

81, 0, 1, 2<

t8 - 3 t9 + 4 t10 - 2 t11 - 7 t12 + 27 t13 - 57 t14 + 89 t15 - 107 t16 + 93 t17 -

38 t18 - 52 t19 + 153 t20 - 232 t21 + 262 t22 - 232 t23 + 153 t24 - 52 t25 - 38 t26 +

93 t27 - 107 t28 + 89 t29 - 57 t30 + 27 t31 - 7 t32 - 2 t33 + 4 t34 - 3 t35 + t36

81, 0, 1, 3<

t10 - 2 t11 + 6 t13 - 18 t14 + 34 t15 - 45 t16 + 43 t17 -

22 t18 - 19 t19 + 69 t20 - 110 t21 + 126 t22 - 110 t23 + 69 t24 -

19 t25 - 22 t26 + 43 t27 - 45 t28 + 34 t29 - 18 t30 + 6 t31 - 2 t33 + t34

81, 0, 1, 4<

-t14 + 4 t15 - 8 t16 + 10 t17 - 7 t18 - t19 + 12 t20 - 21 t21 +

24 t22 - 21 t23 + 12 t24 - t25 - 7 t26 + 10 t27 - 8 t28 + 4 t29 - t30
81, 0, 1, 5<

-t7 + 3 t8 - 4 t9 + 5 t10 - 4 t11 - 8 t12 + 32 t13 - 56 t14 + 72 t15 - 81 t16 + 73 t17 -

30 t18 - 43 t19 + 115 t20 - 161 t21 + 176 t22 - 161 t23 + 115 t24 - 43 t25 - 30 t26 +

73 t27 - 81 t28 + 72 t29 - 56 t30 + 32 t31 - 8 t32 - 4 t33 + 5 t34 - 4 t35 + 3 t36 - t37

81, 0, 2, 0<

t8 - 2 t9 + 2 t10 - 12 t12 + 39 t13 - 75 t14 + 107 t15 - 122 t16 + 105 t17 -

37 t18 - 79 t19 + 204 t20 - 294 t21 + 326 t22 - 294 t23 + 204 t24 - 79 t25 -

37 t26 + 105 t27 - 122 t28 + 107 t29 - 75 t30 + 39 t31 - 12 t32 + 2 t34 - 2 t35 + t36

81, 0, 2, 1<
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-4 t12 + 18 t13 - 39 t14 + 60 t15 - 76 t16 + 72 t17 -

27 t18 - 59 t19 + 156 t20 - 227 t21 + 252 t22 - 227 t23 + 156 t24 -

59 t25 - 27 t26 + 72 t27 - 76 t28 + 60 t29 - 39 t30 + 18 t31 - 4 t32

81, 0, 2, 2<

2 t13 - 7 t14 + 13 t15 - 20 t16 + 24 t17 - 14 t18 - 15 t19 + 51 t20 - 76 t21 +

84 t22 - 76 t23 + 51 t24 - 15 t25 - 14 t26 + 24 t27 - 20 t28 + 13 t29 - 7 t30 + 2 t31
81, 0, 2, 3<

-t16 + 3 t17 - 3 t18 + 4 t20 - 7 t21 + 8 t22 - 7 t23 + 4 t24 - 3 t26 + 3 t27 - t28 81, 0, 2, 4<

t11 - 4 t12 + 10 t13 - 22 t14 + 37 t15 - 43 t16 + 32 t17 -

5 t18 - 37 t19 + 90 t20 - 135 t21 + 152 t22 - 135 t23 + 90 t24 -

37 t25 - 5 t26 + 32 t27 - 43 t28 + 37 t29 - 22 t30 + 10 t31 - 4 t32 + t33

81, 0, 3, 0<

-t12 + 3 t13 - 7 t14 + 15 t15 - 22 t16 + 21 t17 - 6 t18 - 25 t19 + 63 t20 - 94 t21 + 106 t22 -

94 t23 + 63 t24 - 25 t25 - 6 t26 + 21 t27 - 22 t28 + 15 t29 - 7 t30 + 3 t31 - t32
81, 0, 3, 1<

t15 - 3 t16 + 4 t17 - 3 t18 - 2 t19 + 11 t20 - 19 t21 +

22 t22 - 19 t23 + 11 t24 - 2 t25 - 3 t26 + 4 t27 - 3 t28 + t29
81, 0, 3, 2<

-t16 + 3 t17 - 2 t18 - 3 t19 + 8 t20 - 12 t21 + 14 t22 - 12 t23 + 8 t24 - 3 t25 - 2 t26 + 3 t27 - t28 81, 0, 4, 0<

-t7 + 3 t8 - 4 t9 + 5 t10 - 4 t11 - 3 t12 + 11 t13 - 19 t14 + 30 t15 - 34 t16 + 24 t17 -

9 t18 - 9 t19 + 33 t20 - 51 t21 + 56 t22 - 51 t23 + 33 t24 - 9 t25 - 9 t26 + 24 t27 -

34 t28 + 30 t29 - 19 t30 + 11 t31 - 3 t32 - 4 t33 + 5 t34 - 4 t35 + 3 t36 - t37

81, 1, 0, 0<

t6 - 2 t7 + 3 t8 - 6 t9 + 7 t10 - t11 - 11 t12 + 30 t13 - 58 t14 + 83 t15 - 91 t16 + 73 t17 -

25 t18 - 42 t19 + 112 t20 - 171 t21 + 196 t22 - 171 t23 + 112 t24 - 42 t25 - 25 t26 +

73 t27 - 91 t28 + 83 t29 - 58 t30 + 30 t31 - 11 t32 - t33 + 7 t34 - 6 t35 + 3 t36 - 2 t37 + t38

81, 1, 0, 1<

t8 - 3 t9 + 4 t10 - 12 t12 + 33 t13 - 64 t14 + 96 t15 - 110 t16 + 87 t17 -

24 t18 - 65 t19 + 164 t20 - 248 t21 + 282 t22 - 248 t23 + 164 t24 - 65 t25 -

24 t26 + 87 t27 - 110 t28 + 96 t29 - 64 t30 + 33 t31 - 12 t32 + 4 t34 - 3 t35 + t36

81, 1, 0, 2<

t10 - t11 - 4 t12 + 14 t13 - 30 t14 + 52 t15 - 66 t16 + 54 t17 -

16 t18 - 44 t19 + 118 t20 - 179 t21 + 202 t22 - 179 t23 + 118 t24 - 44 t25 -

16 t26 + 54 t27 - 66 t28 + 52 t29 - 30 t30 + 14 t31 - 4 t32 - t33 + t34

81, 1, 0, 3<

t13 - 5 t14 + 12 t15 - 18 t16 + 17 t17 - 6 t18 - 12 t19 + 34 t20 - 58 t21 +

70 t22 - 58 t23 + 34 t24 - 12 t25 - 6 t26 + 17 t27 - 18 t28 + 12 t29 - 5 t30 + t31
81, 1, 0, 4<

-t16 + 2 t17 - t18 + 2 t20 - 6 t21 + 8 t22 - 6 t23 + 2 t24 - t26 + 2 t27 - t28 81, 1, 0, 5<

t8 - 2 t9 + 2 t10 - 10 t12 + 29 t13 - 52 t14 + 74 t15 - 83 t16 + 64 t17 -

16 t18 - 56 t19 + 138 t20 - 197 t21 + 216 t22 - 197 t23 + 138 t24 - 56 t25 -

16 t26 + 64 t27 - 83 t28 + 74 t29 - 52 t30 + 29 t31 - 10 t32 + 2 t34 - 2 t35 + t36

81, 1, 1, 0<

2 t11 - 9 t12 + 25 t13 - 52 t14 + 79 t15 - 91 t16 + 74 t17 -

12 t18 - 88 t19 + 196 t20 - 284 t21 + 320 t22 - 284 t23 + 196 t24 -

88 t25 - 12 t26 + 74 t27 - 91 t28 + 79 t29 - 52 t30 + 25 t31 - 9 t32 + 2 t33

81, 1, 1, 1<
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-t12 + 6 t13 - 16 t14 + 28 t15 - 37 t16 + 33 t17 - 5 t18 - 47 t19 + 109 t20 - 160 t21 + 180 t22 -

160 t23 + 109 t24 - 47 t25 - 5 t26 + 33 t27 - 37 t28 + 28 t29 - 16 t30 + 6 t31 - t32
81, 1, 1, 2<

2 t15 - 5 t16 + 5 t17 - 2 t18 - 7 t19 + 21 t20 - 32 t21 +

36 t22 - 32 t23 + 21 t24 - 7 t25 - 2 t26 + 5 t27 - 5 t28 + 2 t29
81, 1, 1, 3<

-t12 + 4 t13 - 9 t14 + 17 t15 - 23 t16 + 16 t17 + 4 t18 - 33 t19 + 71 t20 - 104 t21 + 116 t22 -

104 t23 + 71 t24 - 33 t25 + 4 t26 + 16 t27 - 23 t28 + 17 t29 - 9 t30 + 4 t31 - t32
81, 1, 2, 0<

-t14 + 3 t15 - 5 t16 + 5 t17 + 2 t18 - 15 t19 + 30 t20 - 45 t21 +

52 t22 - 45 t23 + 30 t24 - 15 t25 + 2 t26 + 5 t27 - 5 t28 + 3 t29 - t30
81, 1, 2, 1<

t20 - 4 t21 + 6 t22 - 4 t23 + t24 81, 1, 2, 2<

-t19 + 3 t20 - 3 t21 + 2 t22 - 3 t23 + 3 t24 - t25 81, 1, 3, 0<

-2 t12 + 8 t13 - 15 t14 + 20 t15 - 22 t16 + 17 t17 - t18 - 26 t19 + 56 t20 - 75 t21 + 80 t22 -

75 t23 + 56 t24 - 26 t25 - t26 + 17 t27 - 22 t28 + 20 t29 - 15 t30 + 8 t31 - 2 t32
81, 2, 0, 0<

-t12 + 4 t13 - 9 t14 + 14 t15 - 16 t16 + 13 t17 + 2 t18 - 32 t19 + 65 t20 - 87 t21 + 94 t22 -

87 t23 + 65 t24 - 32 t25 + 2 t26 + 13 t27 - 16 t28 + 14 t29 - 9 t30 + 4 t31 - t32
81, 2, 0, 1<

-t14 + 2 t15 - 2 t16 + 2 t17 + 2 t18 - 12 t19 + 24 t20 - 32 t21 +

34 t22 - 32 t23 + 24 t24 - 12 t25 + 2 t26 + 2 t27 - 2 t28 + 2 t29 - t30
81, 2, 0, 2<

-t19 + 3 t20 - 3 t21 + 2 t22 - 3 t23 + 3 t24 - t25 81, 2, 0, 3<

t15 - 2 t16 + 4 t18 - 10 t19 + 19 t20 - 27 t21 +

30 t22 - 27 t23 + 19 t24 - 10 t25 + 4 t26 - 2 t28 + t29
81, 2, 1, 0<

t18 - 3 t19 + 4 t20 - 5 t21 + 6 t22 - 5 t23 + 4 t24 - 3 t25 + t26 81, 2, 1, 1<

-t17 + 2 t18 - t19 + t20 - 2 t21 + 2 t22 - 2 t23 + t24 - t25 + 2 t26 - t27 81, 3, 0, 0<

t8 - 3 t9 + 2 t10 + t11 - t13 - 3 t14 + 8 t15 - 8 t16 + 2 t17 + t18 + t19 + t20 - 8 t21 + 12 t22 -

8 t23 + t24 + t25 + t26 + 2 t27 - 8 t28 + 8 t29 - 3 t30 - t31 + t33 + 2 t34 - 3 t35 + t36
82, 0, 0, 0<

-t7 + 3 t8 - 5 t9 + 5 t10 - t11 - 3 t12 + 7 t13 - 16 t14 + 27 t15 - 30 t16 +

20 t17 - 6 t18 - 6 t19 + 22 t20 - 41 t21 + 50 t22 - 41 t23 + 22 t24 - 6 t25 - 6 t26 +

20 t27 - 30 t28 + 27 t29 - 16 t30 + 7 t31 - 3 t32 - t33 + 5 t34 - 5 t35 + 3 t36 - t37

82, 0, 0, 1<
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2 t8 - 6 t9 + 6 t10 - 7 t12 + 15 t13 - 33 t14 + 56 t15 - 60 t16 + 39 t17 -

10 t18 - 19 t19 + 56 t20 - 97 t21 + 116 t22 - 97 t23 + 56 t24 - 19 t25 - 10 t26 +

39 t27 - 60 t28 + 56 t29 - 33 t30 + 15 t31 - 7 t32 + 6 t34 - 6 t35 + 2 t36

82, 0, 0, 2<

t8 - 3 t9 + 3 t10 + t11 - 7 t12 + 15 t13 - 32 t14 + 55 t15 - 63 t16 + 44 t17 -

10 t18 - 27 t19 + 72 t20 - 121 t21 + 144 t22 - 121 t23 + 72 t24 - 27 t25 - 10 t26 +

44 t27 - 63 t28 + 55 t29 - 32 t30 + 15 t31 - 7 t32 + t33 + 3 t34 - 3 t35 + t36

82, 0, 0, 3<

-t9 + 2 t10 - 3 t12 + 6 t13 - 15 t14 + 30 t15 - 37 t16 + 26 t17 -

6 t18 - 16 t19 + 47 t20 - 81 t21 + 96 t22 - 81 t23 + 47 t24 - 16 t25 -

6 t26 + 26 t27 - 37 t28 + 30 t29 - 15 t30 + 6 t31 - 3 t32 + 2 t34 - t35

82, 0, 0, 4<

-2 t14 + 8 t15 - 12 t16 + 8 t17 - 2 t18 - 2 t19 + 11 t20 - 26 t21 +

34 t22 - 26 t23 + 11 t24 - 2 t25 - 2 t26 + 8 t27 - 12 t28 + 8 t29 - 2 t30
82, 0, 0, 5<

t15 - 2 t16 + t17 - 2 t21 + 4 t22 - 2 t23 + t27 - 2 t28 + t29 82, 0, 0, 6<

-t7 + 2 t8 - 3 t9 + 5 t10 - 4 t11 - 5 t12 + 21 t13 - 34 t14 + 41 t15 - 46 t16 + 42 t17 -

17 t18 - 24 t19 + 62 t20 - 84 t21 + 90 t22 - 84 t23 + 62 t24 - 24 t25 - 17 t26 +

42 t27 - 46 t28 + 41 t29 - 34 t30 + 21 t31 - 5 t32 - 4 t33 + 5 t34 - 3 t35 + 2 t36 - t37

82, 0, 1, 0<

-t7 + 2 t8 - 3 t9 + 4 t10 - 13 t12 + 36 t13 - 65 t14 + 91 t15 - 99 t16 + 77 t17 -

22 t18 - 59 t19 + 146 t20 - 213 t21 + 238 t22 - 213 t23 + 146 t24 - 59 t25 - 22 t26 +

77 t27 - 99 t28 + 91 t29 - 65 t30 + 36 t31 - 13 t32 + 4 t34 - 3 t35 + 2 t36 - t37

82, 0, 1, 1<

-t9 + 2 t10 - 9 t12 + 27 t13 - 50 t14 + 73 t15 - 85 t16 + 70 t17 -

17 t18 - 67 t19 + 157 t20 - 226 t21 + 252 t22 - 226 t23 + 157 t24 - 67 t25 -

17 t26 + 70 t27 - 85 t28 + 73 t29 - 50 t30 + 27 t31 - 9 t32 + 2 t34 - t35

82, 0, 1, 2<

-t12 + 6 t13 - 16 t14 + 27 t15 - 34 t16 + 30 t17 - 8 t18 - 30 t19 + 75 t20 - 113 t21 + 128 t22 -

113 t23 + 75 t24 - 30 t25 - 8 t26 + 30 t27 - 34 t28 + 27 t29 - 16 t30 + 6 t31 - t32
82, 0, 1, 3<

-t14 + 3 t15 - 5 t16 + 6 t17 - 3 t18 - 4 t19 + 13 t20 - 21 t21 +

24 t22 - 21 t23 + 13 t24 - 4 t25 - 3 t26 + 6 t27 - 5 t28 + 3 t29 - t30
82, 0, 1, 4<

-t9 + t10 + 3 t11 - 8 t12 + 15 t13 - 31 t14 + 51 t15 - 55 t16 + 35 t17 -

t18 - 43 t19 + 97 t20 - 148 t21 + 170 t22 - 148 t23 + 97 t24 - 43 t25 -

t26 + 35 t27 - 55 t28 + 51 t29 - 31 t30 + 15 t31 - 8 t32 + 3 t33 + t34 - t35

82, 0, 2, 0<

t11 - 4 t12 + 9 t13 - 19 t14 + 34 t15 - 41 t16 + 28 t17 +

3 t18 - 47 t19 + 100 t20 - 149 t21 + 170 t22 - 149 t23 + 100 t24 -

47 t25 + 3 t26 + 28 t27 - 41 t28 + 34 t29 - 19 t30 + 9 t31 - 4 t32 + t33

82, 0, 2, 1<

-2 t14 + 7 t15 - 10 t16 + 7 t17 + t18 - 14 t19 + 33 t20 - 52 t21 +

60 t22 - 52 t23 + 33 t24 - 14 t25 + t26 + 7 t27 - 10 t28 + 7 t29 - 2 t30
82, 0, 2, 2<

t20 - 4 t21 + 6 t22 - 4 t23 + t24 82, 0, 2, 3<

t13 - 2 t14 + 2 t15 - 4 t16 + 5 t17 + t18 - 12 t19 + 23 t20 - 32 t21 +

36 t22 - 32 t23 + 23 t24 - 12 t25 + t26 + 5 t27 - 4 t28 + 2 t29 - 2 t30 + t31
82, 0, 3, 0<
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-t19 + 4 t20 - 7 t21 + 8 t22 - 7 t23 + 4 t24 - t25 82, 0, 3, 1<

-t9 + 2 t10 - t11 - 4 t12 + 15 t13 - 25 t14 + 29 t15 - 31 t16 + 27 t17 -

8 t18 - 23 t19 + 53 t20 - 70 t21 + 74 t22 - 70 t23 + 53 t24 - 23 t25 -

8 t26 + 27 t27 - 31 t28 + 29 t29 - 25 t30 + 15 t31 - 4 t32 - t33 + 2 t34 - t35

82, 1, 0, 0<

t11 - 7 t12 + 21 t13 - 37 t14 + 48 t15 - 53 t16 + 43 t17 -

7 t18 - 50 t19 + 110 t20 - 151 t21 + 164 t22 - 151 t23 + 110 t24 -

50 t25 - 7 t26 + 43 t27 - 53 t28 + 48 t29 - 37 t30 + 21 t31 - 7 t32 + t33

82, 1, 0, 1<

-3 t12 + 11 t13 - 20 t14 + 27 t15 - 31 t16 + 27 t17 - 3 t18 - 43 t19 + 91 t20 - 122 t21 +

132 t22 - 122 t23 + 91 t24 - 43 t25 - 3 t26 + 27 t27 - 31 t28 + 27 t29 - 20 t30 + 11 t31 - 3 t32
82, 1, 0, 2<

t13 - 3 t14 + 5 t15 - 7 t16 + 7 t17 - t18 - 13 t19 + 29 t20 - 40 t21 +

44 t22 - 40 t23 + 29 t24 - 13 t25 - t26 + 7 t27 - 7 t28 + 5 t29 - 3 t30 + t31
82, 1, 0, 3<

-t19 + 3 t20 - 3 t21 + 2 t22 - 3 t23 + 3 t24 - t25 82, 1, 0, 4<

t11 - 3 t12 + 7 t13 - 15 t14 + 23 t15 - 25 t16 + 16 t17 +

5 t18 - 35 t19 + 70 t20 - 100 t21 + 112 t22 - 100 t23 + 70 t24 -

35 t25 + 5 t26 + 16 t27 - 25 t28 + 23 t29 - 15 t30 + 7 t31 - 3 t32 + t33

82, 1, 1, 0<

t13 - 4 t14 + 8 t15 - 10 t16 + 6 t17 + 6 t18 - 26 t19 + 50 t20 - 69 t21 +

76 t22 - 69 t23 + 50 t24 - 26 t25 + 6 t26 + 6 t27 - 10 t28 + 8 t29 - 4 t30 + t31
82, 1, 1, 1<

t18 - 4 t19 + 8 t20 - 12 t21 + 14 t22 - 12 t23 + 8 t24 - 4 t25 + t26 82, 1, 1, 2<

t18 - 4 t19 + 7 t20 - 8 t21 + 8 t22 - 8 t23 + 7 t24 - 4 t25 + t26 82, 1, 2, 0<

-t14 + 3 t15 - 3 t16 + 4 t18 - 8 t19 + 13 t20 - 19 t21 +

22 t22 - 19 t23 + 13 t24 - 8 t25 + 4 t26 - 3 t28 + 3 t29 - t30
82, 2, 0, 0<

-t17 + 3 t18 - 4 t19 + 5 t20 - 7 t21 + 8 t22 - 7 t23 + 5 t24 - 4 t25 + 3 t26 - t27 82, 2, 0, 1<

t10 - 2 t11 + 5 t13 - 8 t14 + 6 t15 - 6 t16 + 9 t17 - 5 t18 - 6 t19 + 12 t20 - 12 t21 + 12 t22 -

12 t23 + 12 t24 - 6 t25 - 5 t26 + 9 t27 - 6 t28 + 6 t29 - 8 t30 + 5 t31 - 2 t33 + t34
83, 0, 0, 0<

t8 - t9 - 4 t12 + 12 t13 - 19 t14 + 23 t15 - 24 t16 + 21 t17 -

9 t18 - 15 t19 + 40 t20 - 52 t21 + 54 t22 - 52 t23 + 40 t24 - 15 t25 -

9 t26 + 21 t27 - 24 t28 + 23 t29 - 19 t30 + 12 t31 - 4 t32 - t35 + t36

83, 0, 0, 1<

t8 - t9 - 4 t12 + 14 t13 - 24 t14 + 28 t15 - 29 t16 + 26 t17 -

8 t18 - 26 t19 + 59 t20 - 77 t21 + 82 t22 - 77 t23 + 59 t24 - 26 t25 -

8 t26 + 26 t27 - 29 t28 + 28 t29 - 24 t30 + 14 t31 - 4 t32 - t35 + t36

83, 0, 0, 2<
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-t12 + 6 t13 - 13 t14 + 15 t15 - 15 t16 + 16 t17 - 6 t18 - 19 t19 + 43 t20 - 54 t21 + 56 t22 -

54 t23 + 43 t24 - 19 t25 - 6 t26 + 16 t27 - 15 t28 + 15 t29 - 13 t30 + 6 t31 - t32
83, 0, 0, 3<

t13 - 3 t14 + 4 t15 - 4 t16 + 4 t17 - 2 t18 - 5 t19 + 13 t20 - 16 t21 +

16 t22 - 16 t23 + 13 t24 - 5 t25 - 2 t26 + 4 t27 - 4 t28 + 4 t29 - 3 t30 + t31
83, 0, 0, 4<

t17 - 2 t18 + 2 t20 - t21 - t23 + 2 t24 - 2 t26 + t27 83, 0, 0, 5<

-t9 + t10 + 2 t11 - 5 t12 + 10 t13 - 20 t14 + 29 t15 - 29 t16 +

19 t17 - t18 - 22 t19 + 46 t20 - 69 t21 + 80 t22 - 69 t23 + 46 t24 - 22 t25 -

t26 + 19 t27 - 29 t28 + 29 t29 - 20 t30 + 10 t31 - 5 t32 + 2 t33 + t34 - t35

83, 0, 1, 0<

t11 - 5 t12 + 12 t13 - 20 t14 + 28 t15 - 31 t16 + 21 t17 +

2 t18 - 35 t19 + 72 t20 - 99 t21 + 108 t22 - 99 t23 + 72 t24 - 35 t25 +

2 t26 + 21 t27 - 31 t28 + 28 t29 - 20 t30 + 12 t31 - 5 t32 + t33

83, 0, 1, 1<

-t12 + 3 t13 - 6 t14 + 10 t15 - 11 t16 + 7 t17 + 2 t18 - 17 t19 + 36 t20 - 51 t21 +

56 t22 - 51 t23 + 36 t24 - 17 t25 + 2 t26 + 7 t27 - 11 t28 + 10 t29 - 6 t30 + 3 t31 - t32
83, 0, 1, 2<

-t16 + 2 t17 - 3 t19 + 5 t20 - 7 t21 + 8 t22 - 7 t23 + 5 t24 - 3 t25 + 2 t27 - t28 83, 0, 1, 3<

2 t13 - 5 t14 + 5 t15 - 5 t16 + 5 t17 + 2 t18 - 15 t19 + 26 t20 - 33 t21 +

36 t22 - 33 t23 + 26 t24 - 15 t25 + 2 t26 + 5 t27 - 5 t28 + 5 t29 - 5 t30 + 2 t31
83, 0, 2, 0<

t18 - 5 t19 + 10 t20 - 11 t21 + 10 t22 - 11 t23 + 10 t24 - 5 t25 + t26 83, 0, 2, 1<

t11 - 3 t12 + 4 t13 - 6 t14 + 10 t15 - 11 t16 + 6 t17 + 3 t18 - 12 t19 + 22 t20 - 33 t21 + 38 t22 -

33 t23 + 22 t24 - 12 t25 + 3 t26 + 6 t27 - 11 t28 + 10 t29 - 6 t30 + 4 t31 - 3 t32 + t33
83, 1, 0, 0<

-t12 + 3 t13 - 5 t14 + 7 t15 - 7 t16 + 3 t17 + 5 t18 - 15 t19 + 25 t20 - 34 t21 +

38 t22 - 34 t23 + 25 t24 - 15 t25 + 5 t26 + 3 t27 - 7 t28 + 7 t29 - 5 t30 + 3 t31 - t32
83, 1, 0, 1<

t15 - 2 t16 + 3 t18 - 4 t19 + 5 t20 - 9 t21 + 12 t22 - 9 t23 + 5 t24 - 4 t25 + 3 t26 - 2 t28 + t29 83, 1, 0, 2<

t18 - 4 t19 + 7 t20 - 8 t21 + 8 t22 - 8 t23 + 7 t24 - 4 t25 + t26 83, 1, 1, 0<

t11 - 2 t12 + t13 - 2 t14 + 6 t15 - 6 t16 + t17 + 2 t18 - 2 t19 + 5 t20 - 11 t21 +

14 t22 - 11 t23 + 5 t24 - 2 t25 + 2 t26 + t27 - 6 t28 + 6 t29 - 2 t30 + t31 - 2 t32 + t33
84, 0, 0, 0<

t11 - 3 t12 + 4 t13 - 6 t14 + 10 t15 - 10 t16 + 4 t17 + 3 t18 - 8 t19 + 14 t20 - 23 t21 + 28 t22 -

23 t23 + 14 t24 - 8 t25 + 3 t26 + 4 t27 - 10 t28 + 10 t29 - 6 t30 + 4 t31 - 3 t32 + t33
84, 0, 0, 1<

t11 - 2 t12 + 2 t13 - 3 t14 + 5 t15 - 6 t16 + 3 t17 + 2 t18 - 6 t19 + 11 t20 - 17 t21 + 20 t22 -

17 t23 + 11 t24 - 6 t25 + 2 t26 + 3 t27 - 6 t28 + 5 t29 - 3 t30 + 2 t31 - 2 t32 + t33
84, 0, 0, 2<

t15 - 2 t16 + 2 t18 - t19 + t20 - 4 t21 + 6 t22 - 4 t23 + t24 - t25 + 2 t26 - 2 t28 + t29 84, 0, 0, 3<

-t12 + 3 t13 - 4 t14 + 4 t15 - 4 t16 + 3 t17 + t18 - 7 t19 + 12 t20 - 15 t21 +

16 t22 - 15 t23 + 12 t24 - 7 t25 + t26 + 3 t27 - 4 t28 + 4 t29 - 4 t30 + 3 t31 - t32
84, 0, 1, 0<

-t14 + 2 t15 - t16 + t18 - 3 t19 + 5 t20 -

7 t21 + 8 t22 - 7 t23 + 5 t24 - 3 t25 + t26 - t28 + 2 t29 - t30
84, 0, 1, 1<

-t19 + 3 t20 - 3 t21 + 2 t22 - 3 t23 + 3 t24 - t25 84, 1, 0, 0<

-t10 + t11 + t13 - t14 + t17 - t18 - t19 + 2 t20 -

2 t21 + 2 t22 - 2 t23 + 2 t24 - t25 - t26 + t27 - t30 + t31 + t33 - t34
85, 0, 0, 0<

t13 - 2 t14 + t15 - t19 + 2 t20 - t21 - t23 + 2 t24 - t25 + t29 - 2 t30 + t31 85, 0, 0, 1<
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