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1 Introduction

The thermodynamics of black holes in Anti-de Sitter (AdS) space has a long history, start-

ing with the pioneering work of Hawking and Page [1]. This subject has found a solid

theoretical foundation in terms of the holographic duality, where the thermal properties of

AdS black holes can be reinterpreted as those of a conformal field theory at finite temper-

ature [2]. The result is that the grand canonical free energy Ω is expressible in terms of

the on-shell action Sos of the Euclidean bulk solution as

TSos = Ω(µ, T ) = U − TS − µQ (1.1)

where U , T , S, µ and Q denote the energy, temperature, entropy, chemical potential and

charge of the black hole. For black branes with a homogeneous planar horizon the extensive

quantities Ω, U , S and Q are spatially independent. So their entire dependence on the

volume V can be expressed in terms of densities:

Ω = V ω, U = V u, S = V s, Q = V q. (1.2)

As a consequence the pressure, p = −dΩ/dV |T,µ = −ω, is simply minus the grand canonical

free energy density. For spherical horizons, the spatial volume of the dual field is finite and

completely determined by the radius R of the sphere on which the field theory lives. In this

case, the free energy depends on R explicitly via dimensionless ratios like TR and µR in

addition to the overall prefactor of V = snR
n, where n is the number of spatial dimensions
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of the field theory and sn is the volume of the unit n-sphere. The most reasonable definition

of pressure in this case seems to be1

p = −dR

dV

dΩ

dR
= −RdRΩ

nV
= −ω − RdRω

n
≡ −ω + pR/n. (1.3)

In either case, the field theory pressure is completely determined once the full function form

of Ω is known. For the case of hyperbolic horizons, even though the spatial volume for the

dual field theory is non-compact, the finite length scale associated with the background

geometry gives rise to an effective pressure by the same analysis.

A different notion of pressure for black hole thermodynamics has recently been dis-

cussed [3]. It was noted that the standard first law of black hole thermodynamics relating

changes in the mass M and the area A as

dM =
κ

8π
dA (1.4)

seems to miss the pressure-volume term when compared to the standard first law, dU =

TdS − pbdVb. One can recover a pbVb term [4–9] by identifying the cosmological constant

as a pressure term pb ≡ −Λ/(8π) and the ‘thermodynamic volume’ as the corresponding

conjugate variable, Vb ≡ ∂M/∂pb|A. We use the subscript b for “bulk” in order to remind

the reader that these quantities are not pressure and volume of the holographically dual

quantum field theory. Studying the generalized black hole thermodynamics including this

new term has been dubbed “black hole chemistry” in [10] and we will continue to use this

term despite the slight abuse of language.

As we reviewed above, the pressure of the dual quantum fluid is completely determined

by standard thermodynamic relations once the on-shell action has been identified as the

grand canonical free energy. Thus, it is not a quantity that should nor can be defined

separately. However, from the bulk point of view the metric’s non-trivial dependence on

the radial coordinate means that space is not homogeneous. It then, from the higher

dimensional perspective, indeed makes sense to identify the cosmological constant as a

pressure and Vb as an effective bulk (thermodynamic) volume of the black hole. Note that

the notion of thermodynamic volume can differ from the geometric volume that would be

calculated from simply integrating the volume form from the origin to the outer horizon of

the black hole [9].

In black hole chemistry, one finds a remarkable identify obeyed by the thermodynamic

quantities:

(d− 3)M = (d− 2)TS − 2PbVb + (d− 3)µQ, (1.5)

where d = n + 2 is the number of spacetime dimensions of the gravitational theory. This

Smarr relation generalizes a similar identity that had first been derived for flat space black

1That is, we vary the volume of the system by changing the curvature radius of the sphere the field theory

lives on. One could try to divorce the volume of the system from the curvature radius of the background

geometry by putting the fluid into a box of size much less than R whose volume V can be independently

varied. But as long as the microscopic scales in the system, like T and µ, are of the same order of R,

we would get a strong sensitivity on the shape and details of the box, which seems undesirable. If the

microscopic scales are much smaller than the size of the sphere, this is of course not an issue. But in this

case the second term in (1.3) is also negligible to begin with; one is back to an approximately flat space.
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holes in d = 4 [11] and can easily be extended to encompass higher dimensional spinning

black holes as well [12]. In this note we’d like to give a holographic identification of pb and

Vb as well as an holographic derivation of the generalized Smarr formula (1.5).

2 Holographic Smarr relations

2.1 A universal relation in large N field theories

Since the pressure of the holographic fluid is already fixed by the on-shell action, the bulk

cosmological constant, which yields pb, can clearly not play the role of pressure on the field

theory side. As has already been emphasized in earlier work on holographic black hole

chemistry [13–17], varying the cosmological constant Λ in the bulk essentially amounts to

changing the number of colors in the field theory. Unlike changes in physical properties

like the temperature and the chemical potential, the number of colors, N , is not a standard

thermodynamical variable. But one can ask the same questions also on the field theory

side: how does the free energy of the system change as we vary the number of colors? We

can define a color susceptibility χN2 as

χN2 =
∂Ω

∂N2

∣

∣

∣

∣

λ,µ,T,R

, (2.1)

where as usual in holography, we are working at fixed ‘t Hooft couling, λ. Unless the

following discussion warrants clarification, we will omit explicit reference to λ. Generically

Ω will be a highly non-trivial function of N . That is, the dynamics of the field theory

crucially depends on the number of colors. But in the limit of a large number of colors, N

only shows up as an overall prefactor in the grand canonical free energy:

Ω(N,µ, T,R) = N2Ω0(µ, T,R). (2.2)

Correspondingly χN2 obeys the trivial relation

N2χN2 = Ω. (2.3)

As we will soon see, this simple relation will turn out to be the holographic origin of

the Smarr relation (1.5). Note that this holographic Smarr relation (2.3) is completely

universal: it is true in any large N gauge theory irrespective of the details of the equation

of state. It applies equally well to conformal theories, confining theories, or those with

unusual scalings such as hyperscaling violating theories. To be clear, the interpretation

here is that N2 is holographically standing in for the AdS length scale, L, in Planck units,

i.e. Ld−2/GN where GN is Newton’s constant. This quantity determines up to numerical

factors the central charge of the dual field theory. In the examples we are considering

here based on the worldvolume theory of Dd branes this central charge is proportional to

N2 as appropriate for gauge theories. However, there exist holographic theories in which

Ld−2/GN corresponds to a different power of N in the dual theory. For example, M2 brane

theories famously have N3/2 scaling, and M5 branes have N3 scaling. In all of these cases,
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a similarly trivial analog of (2.3) can be formulated by directly varying with respect to the

central charge instead of first reexpressing it in terms of N .

Given the universal Smarr relation (2.3), many derived identities can be formulated

for a particular system using the equation of state relating pR = −R∂Rω, s = −∂Tω,

and q = −∂µω, which implicitly appear on the right hand side via Ω = U − TS − µQ.

Of particular interest are conformal field theories, whose equation of state is fixed by

considering the behavior of the thermodynamic quantities under an infinitesimal scale

transformation (under which all energies are rescaled by λ = 1 + dλ and all length by

λ−1 = 1− dλ):

dU = U dλ, dS = 0, dQ = 0, dV = −nV dλ. (2.4)

The fact that a scale transformation takes one physical configuration into another, and so

has to represent a set of variations consistent with the first law of thermodynamics

dU = TdS − pdV + µdQ, (2.5)

immediately yields the equation of state

U = npV. (2.6)

Using the definition of the pressure from (1.3), (2.6) can be equivalently written as

(n+ 1)u = nTs+ nµQ−R∂Rω. (2.7)

What we will show in the next subsection is that the universal Smarr relation (2.3) to-

gether with the conformal equation of state (2.6) implies the bulk Smarr relation (1.5). For

holographic spacetimes dual to non-coformal, large N gauge theories the bulk Smarr rela-

tion hence will have to be modified together with the equation of state, but the universal

relation (2.3) will remain valid.

2.2 Holographic dictionary

In order to recover the bulk Smarr relation, we need to carefully relate bulk and field

theory quantities. Employing the standard lore that bulk thermodynamic quantities are

simply equated with their boundary analogs is a little too careless. Using the standard

thermodynamic definitions on both sides, one has to account for the factors of the curvature

radius, L, appearing between the two sets of variables. These factors of L become crucial

when one is studying the response of the theory to variations in Λ = (d− 1)(d− 2)/(2L2).

From the perspective of the dual field theory, the most important effect of varying L

is, as advertised, a change in N . The basic holographic dictionary identifies

α
Ld−2

16πGN
= N2. (2.8)

The purely numerical factor, α, depends on the details of the particular holographic system

being studied, but it drops out from the product pbVb. Thus for our purposes in considering

the Smarr relation, α is irrelevant. We defined previously

pb ≡ −Λ/(8π), Vb ≡ ∂M/∂pb|A,Qb
(2.9)
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where again the subscript b refers to a bulk quantity. For functions that only depend on L

through N2, we would have

− 2Λ∂Λ = L∂L = (d− 2)N2∂N2 , (2.10)

which shows that α does not enter into pbVb. In the last equality in (2.10), it is important to

take the partial derivatives at fixed GN . This is how the calculation proceeds in standard

black hole chemistry [10], but it is a requirement that we will soon relax.

The relation between Λ and N2 however is not the only place L appears in the dic-

tionary. In addition to changing N , variations in L will also vary the curvature radius R

of the manifold on which our field theory is formulated. Note that in standard black hole

thermodynamics, we write the metric of a generic homogeneous black hole as

ds2b = −h(r)dt2 + dr2/h(r) + r2dΣ2
k, (2.11)

where dΣ2
k is the dimensionless metric on a unit sphere, plane or hyperboloid corresponding

to k = 1, 0, −1 respectively. For an asymptotically AdSd space, the blackening function at

large r approaches

h(r) =
r2

L2
+ . . . . (2.12)

To read off the field theory metric, we need to multiply (2.11) with an overall factor of a

defining function with a double zero at r = ∞ and then evaluate the metric at r = ∞ [18].

Choosing the defining function2 to be L2/r2, we see that the boundary metric is

ds2 = −dt2 + L2dΣ2
k. (2.13)

That is, the bulk curvature radius L in the field theory double features as playing the role

of N , the number of colors, as well as the curvature radius R = L of the spatial metric.

This is even true in the planar, k = 0, case. Note that, even for planar geometry, we

chose to use dimensionless coordinates in dΣ2
k, and so L sets the overall length scale in

the field theory. In particular, the field theory volume V scales as Rn = Ln. That is,

the relation (2.10) between partial derivatives, when relating bulk to boundary quantities,

really has to be taken to be

− 2Λ∂Λ = L∂L = (d− 2)N2∂N2 +R∂R. (2.14)

The notion of bulk volume and pressure as defined in the black hole chemistry literature

mixes up the notion of boundary pressure and volume (with their roles reversed) with

variations of N .

2Alternatively, we could use r−2 or R̃2/r2 as a defining function with R̃ being an arbitrary length scale.

For the former choice, the metric would read as ds2 = −L2dt2 + d~x2. In the latter case, R̃2 would appear

in front of the spatial metric and dt2 would come with a factor of R̃2/L2. Of course any choice would

give physically equivalent results. We find it easier to work with the dimensionless defining function L2/r2,

so that all coordinates retain their bulk dimensionalities and we do not need to introduce yet another

separate scale R̃.
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There is one more power of L hiding in the standard gravitational definitions of the

thermodynamic quantities. In the study of black holes and black hole chemistry one usually

works with an action

S =
1

16πGN

∫

ddx
√−g

(

R− 2Λ− F 2
b

)

. (2.15)

Note that the standard convention is to pull out an overall factor of GN , and so Einstein-

Maxwell theory is commonly written in terms of a bulk field strength of dimension 1.

To identify the leading (constant) term in the corresponding gauge potential, we need to

convert to a canonically normalized field strength of dimension 2 via

Ab = LA, µb = Lµ, Qb = L−1Q. (2.16)

This has interesting consequences. The variation defining the bulk “volume” in black hole

chemistry via (2.9) is entirely defined in terms of bulk quantities. Thus, the variation

is done at fixed Qb. To compare to the field theory thermodynamics, we have to do all

variations at fixed Q. This can be accomplished by carefully tracking the L dependences,

∂Lf(L,Q(Qb, L))|Qb
= ∂Lf |Q + ∂Qf |L ∂LQ|Qb

= ∂Lf |Q +
Q

L
∂Qf |L , (2.17)

for any function f . This is simply stating that a variation dL of L that leaves Q/L fixed

needs to be accompanied with a variation in Q with dQ = dL.

The dictionary is now completely fixed. In terms of blackening function and bulk

gauge field

h(r) =
r2

L2
+ k − m

rd−3
+

q2

r2d−6
, Ab =

(

−1

c

q

rd−3
+ µb

)

dt, c =

√

2(d− 3)

d− 2
, (2.18)

we can read off the field theory thermodynamic quantities [19]. The intensive variables are

T =
(d− 1)r2+ + (d− 3)L2(k − c2µ2

b)

4πL2r+
, µ =

µb

L
=

q

cLrd−3
+

, R = L (2.19)

whereas the extensive quantities are

Q = LQb =
√

2(d− 2)(d− 3)
Lsd−2q

8πGN
,

U = M =
(d− 2)sd−2m

16πGN
,

S =
A

4GN
=

sd−2r
d−2
+

4GN
. (2.20)

The horizon radius, r+, is the largest real positive root of h(r). Note that all extensive

quantities come with a prefactor of (16πGN )−1. This is natural as they derive from vari-

ations of the on-shell action with respect to an intensive variable. GN does not enter the

solution itself but rather the action evaluated on the solution.
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2.3 Holographic derivation of the Smarr relation

What we would like to show is that the somewhat mysterious Smarr relation (1.5), which

can be derived in the bulk from scaling considerations, can naturally be understood as a

consequence of processing the universal holographic Smarr relation (2.3) that expresses the

simple large N scaling of the free energy density with the conformal equation of state (2.6).

In the following section, we will confirm that more general Smarr-like relations can be de-

rived from the universal form for different asymptotic geometries by modifying the equation

of state. But for now, let us work with the conformal case to reproduce the known form of

the Smarr formula. From the definition of pb and Vb we have

− 2pbVb = − 2Λ∂ΛM |S,Qb
= (d− 2)N2∂N2U

∣

∣

S,Q
+ R∂RU |S,Q + Q∂QU, |S,L , (2.21)

where we used the expression of L derivatives in terms of boundary quantities from (2.14)

as well as the relation between derivatives at fixed Q versus fixed Qb, (2.17). Evaluating

each of the three terms individually, we note that since U is the Legendre transform of Ω,

see (1.1), we have for the first term in (2.21)

N2∂N2U
∣

∣

S,Q
= N2∂N2Ω

∣

∣

µ,T
= Ω. (2.22)

In the last step, we used the universal Smarr relation (2.3). The derivative in the third term

in (2.21) is the defining relation for the chemical potential µ, and so it simply evaluates to

µQ. For the second term in (2.21), we use the definition of pressure from (1.3) and again

use the fact that U and Ω are related by Legendre transforms3 to arrive at,

R∂RU |S,Q = R∂RΩ|µ,T = −npV = −U. (2.24)

In the last step we used the conformal equation of state (2.6). Putting the three terms

back together we finally arrive at

− 2pbVb = (d− 2)Ω + µQ− U = (d− 3)U − (d− 2)TS − (d− 3)µQ, (2.25)

which is, in fact, exactly the standard Smarr relation (1.5). Note that, as expected,

we needed to use both the universal formula (2.3) as well as the conformal equation of

state (2.6) to derive this result.

2.4 Extracting the boundary pressure from the bulk

As we have seen, one must be careful in extracting boundary thermodynamic quantities

from the bulk, and this is doubly true for pressure. The notion of a bulk volume one

obtains from varying the bulk curvature radius L from the field theory point of view mixes

up two completely separate notions. Varying L induces a variation of R, the length scale

3Explicitly, take

∂RU |S,Q = ∂R (Ω(µ(S,Q,R), T (S,Q,R), R) + µQ+ ST )|S,Q (2.23)

= ∂µΩ|T,R ∂Rµ|S,Q + ∂TΩ|µ,R ∂RT |S,Q + ∂RΩ|µ,T +Q ∂Rµ|S,Q + S ∂RT |SQ = ∂RΩ|µ,T

where we used ∂µΩ|T,R = −Q and ∂TΩ|µ,R = −S.
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governing the field theory volume and curvature. This variation gives a contribution to the

bulk volume which actually corresponds to the pressure of the holographically dual field

theory. In addition, varying L also varies the number of colors, N . This is a very different

notion in the holographic dual as it takes us from one theory to another. As we have shown

above, the corresponding response in a large N field theory is essentially trivial, a fact that

allowed us to derive the bulk Smarr formula from general field theory considerations.

From the point of view of holography, it would be desirable to already in the bulk

disentangle the notion of changing the volume from the notion of changing the number of

colors. This will be crucial below when we consider explicit examples. In order to compare

the equation of state (2.7) to an expression derived from bulk quantities, we also need to

be able to calculate R∂R at fixed N in the bulk. The easiest way to do this is to vary both

the AdS length, L, and GN (and hence the Planck length) simultaneously such that N2 is

unchanged. In the bulk, this plays out by noting the standard holographic relation

Ld−2

GN
∼ N2. (2.26)

In all of the gravitational formulae for thermodynamic quantities, we can make this replace-

ment and then carry out the variations with respect to L at fixed N2 straightforwardly. On

the other hand, if we wish to only vary N without varying R, and hence the field theory

volume, we can vary just GN at fixed L. To summarize, for any function f we have the

following dictionary

Changing N : ∂N2f |R = ∂G−1

N
f |L, Changing R : ∂Rf |N2 = ∂Lf |L3/GN

. (2.27)

In contrast throughout the black hole chemistry literature, the relevant variation that

appears, ∂Lf |GN
, corresponds to changing both N and R.

2.5 Applications

In order to demonstrate the utility of this approach and explicitly check its validity, we

will take a tour of prototypical examples. Beginning with a d dimensional AdS Reissner-

Nordstrom black hole

ds2 = −h(r)dt2 +
dr2

h(r)
+ r2dΩ2

d−2, (2.28)

where the blackening function h and gauge field are given in (2.18). It is well documented

in the black hole chemistry literature, that the standard bulk Smarr relation (1.5) holds

for this black hole. What we would like to confirm is that this black hole also satisfies the

equation of state (2.7) that we derived above. Using the form of the extensive quantities

in (2.20) and the relation

m = krd−3
+ +

rd−1
+

L2
+

q2

rd−3
+

, (2.29)

we can easily read off the equation of state by comparing TS+µbQb to the ADM mass M ,

which reads

(d− 1)M = (d− 2)(TS + µbQb) + 2k
sd−2

16πG
rd−3
+ . (2.30)

– 8 –
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How does this map onto (2.7)? The left hand side and the first two terms on the right hand

side match (2.7) with n = d− 2 but identifying the last term as pR = −R∂Rω takes more

work. From the discussion in the previous subsection, we can find pR by first calculating

the thermodynamic potential

Ω = E − TS − µQ = − sd−2

16πGN

(

rd−1
+

L2
+

q2

rd−3
+

− krd−3
+

)

, (2.31)

and then taking derivatives with respect to L at fixed Ld−2/GN , µ and T . In order to do

so, we need to convert all of the variables (r+, q) in (2.30) to quantities that are held fixed.

That is we use GN ∼ Ld−2N−2, r+ ∼ L2T and q ∼ µLrd−3
+ . With these replacements the

first and second term in the density ω = Ω/(sd−2R
d−2) scale as L0, whereas the last term

proportional to k scales as L−2. Consequently

R∂Rω|N,µ,T = L∂Lω|Ld−2/GN ,µ,T = −2
krd−3

+

16πGNLd−2
. (2.32)

This is exactly what is needed to confirm that (2.7) indeed holds for these black holes.

As a non-trivial check of our construction, we can turn our focus to holographic systems

with a different equation of state. A simple class of examples are geometries dual to large

N gauge theories with hyperscaling violation. Top-down examples of such theories are

maximally supersymmetric gauge theories in n + 1 dimensions dual to black Dn branes,

which are described by [20]

ds2 = H−

1

2

(

−h(r)dt2 + dx2n
)

+H
1

2

(

dr2

h(r)
+ r2dΩ2

8−n

)

, (2.33)

eΦ = H
3−n
4 , C01...n = H−1,

where H = 1 +
(

L
r

)7−n
and h(r) = 1 −

( r+
r

)7−n
. The temperature can be found by

calculating the surface gravity κ = 2πT or demanding that the analytic continuation of

the time direction be free of conical singularities such that

T =
7− n

4πL

(r+
L

)
5−n
2

, (2.34)

which demonstrates the scaling behavior of the horizon radius r+ ∼ T
2

5−nL
7−n
5−n as seen

above for the n = 3 case. In n+2 dimensional Einstein frame with L = 1, the metric takes

the form

ds2n+2 = r2(8−n)H
1

n

(

−h(r)dt2 + dx2n +
dr2

h(r)

)

. (2.35)

From this, we can read off the scaling for the field theory entropy, energy, and charge (if

present) densities [21]

[s] = n− θ, [u] = n+ 1− θ, [q] = n− θ, θ = −(n− 3)2

5− n
. (2.36)
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Again using these scaling relations in a first law calculation, we find that the equation of

state is given by

(n+ 1− θ)u = (n− θ)(Ts+ µq) = (n+ 1− θ)np. (2.37)

These identities are indeed obeyed by the thermodynamic quantities derived in [20] as

can e.g. be seen from the detailed expressions presented in [22]. For the non-hyperscaling

violating case, i.e. n = 3 or θ = 0, we recover the equation of state found previously. ω still

scales as N2 as appropriate for a large N gauge theory and so the ‘universal’ holographic

Smarr relation, (2.3) still holds for any n. So direct analogs of both of the relations we

used in the conformal case, the equation of state (2.7) as well as the universal Smarr

formula (2.3) still hold for the general Dn brane. As expected, only the equation of state

is modified due to the presence of the non-trivial hyperscaling violating exponent.

3 Finite N corrections

Much of our analysis was based on the fact that, in the large N limit, all extensive thermo-

dynamics quantities in a gauge theory simply scale with an overall prefactor of N2. This

allowed us to derive the universal Smarr relation (2.3) from which all other Smarr formu-

lae followed using the equations of state. Note that this simple fact also has far-reaching

consequences when thinking about the phase diagram of the theory. For the free energy

Ω(N,µ, T ) = N2Ω0(µ, T ) (3.1)

to have any non-trivial phase transitions, these discontinuities must all arise from the

behavior of Ω0. No non-trivial phase transitions can possibly occur as a function of N .

That is, adding the cosmological constant Λ as a new thermodynamical parameter may

give the phase diagram an extra dimension. But when properly organized into N , µ and

T , we see that the phase diagram is just a trivial extension of the phase diagram living in

the µ-T plane.

As an example let us consider the transition in [10] with Qb = 0, which describes a line

of first order Hawking-Page phase transitions in the p-T plane. Since the dual field theory

is formulated on a sphere of radius R, the transition temperature could be functionally

thought of as THP(N
2, R). However from the discussion of the free energy above we have

that Ω(N, R, T ) = N2Ω0(R, T ), and so any phase singularities in Ω signaling a phase

transition have to come from Ω0. As a consequence the transition temperature, THP(R),

has to be a function of the length scale, R, alone and is independent of N . As we change

the curvature radius L in the bulk, in the field theory both N and R change, but THP

can only depend on L via the identification R = L, since the associated change in N does

not affect the transition temperature by the argument just given. Indeed, the transition

temperature can be expressed simply in terms of L as THP = (n−1)
2πL [1]. Recalling the

definition of pb =
(n−1)n
16πL2 one finds exactly the coexistence curve given by p2b = nπT

4(n−1) and

plotted in figure 2 of [10] for n = 3. Thus, the entirety of the behavior of the system around

the Hawking-Page transition in the black hole chemistry framework is capture solely by

– 10 –
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the standard analysis ignoring variations in Λ. The fact that the phase diagrams in [23]

look slightly non-trivial is simply due to the fact that, as we showed in here, varying with

respect to Λ mixes up the trivial variation of N with a variation of the volume the field

theory lives on.

It may be concerning then that there appear to be discrepancies between the study

of criticality of the n = 3 AdS-Reisner-Nordstrom black hole in [23] where the critical

exponent, α, of CVb
is zero like for a traditional Van der Waals fluid and behavior that

was already found in the traditional holographic analysis of the same system in [19] where

α = 2/3. The resolution is of this tension is rooted in the fact that the two calculations are

holding different notions of volume constant. Thus, they are calculating different CV ’s and,

hence, different exponents in the same system. Proceeding with the standard definition of

field theory volume, V = snR
n, we would naturally recover α = 2/3. To find the situation

in which α = 0, we note that as in [23], with n = 3, Vb =
4π
3 r3+ and so the variation with

fixed Vb is equivalent to a variation with fixed r+, which from the field theory perspective

is an odd parameter to fix. To begin with, r+ is just a function of the control parameters,

r+(T, µ,N
2). To determine the variation at fixed r+, it is most convenient to identify it

with a thermodynamic variable in the field theory. Since both computations of the heat

capacity proceeded at fixed Qb and GN , we can use S ∝ rn−1
+ /GN to swap a variation

at fixed r+, GN for one at fixed S, which more than recasting the calculation in terms of

variables with natural description in the field theory yields

CVb
= T

(

∂S

∂T

)

|Vb, Qb, GN
= T

(

∂S

∂T

)

|S,Qb
= 0. (3.2)

Not only does this recover trivially α = 0, but also that CVb
itself vanishes [23]. As we

have seen in the previous sections, varying with respect to the bulk quantities in black hole

chemistry has a tendency in the field theory to appear as a linear combination of variations

with respect to N2, R, Q, and so the difference between CV and CVb
is simply another

manifestation of that feature.

The situation changes dramatically when we go beyond the leading large N limit. On

the bulk side, this corresponds to including higher curvature terms. In fact, studies of

black hole chemistry involving higher curvature couplings [7, 24, 25] find an array of exotic

behaviors such as reentrant phase transitions and isolated critical points with unusual

exponents. For general values of N , we expect N to be a genuinely new variable and Ω

to have a non-trivial dependence on N . In this case, our universal Smarr formula (2.3) no

longer holds. Despite this fact [7, 24, 25] still find generalized Smarr relations to be valid

even when higher curvature couplings are included as long as one treats the coefficients

of the extra curvature terms as independent couplings which can be varied as well. This

appears to be an artefact of including only a finite number of curvature terms. If we have

a generic function of N , which has an expansion at large N out of which we only take the

leading two (or a finite number of) terms, such that

Ω = N2Ω0 + aN0Ω1, (3.3)

– 11 –
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we still have a relation of the form:

N2∂2
NΩ+ a∂aΩ = Ω. (3.4)

Continuing the expansion on in this manner, (3.4) will be spoiled by further 1/N corrections

unless one includes a new thermodynamic variable for every new term in the series. In any

consistent theory of quantum gravity, such as string theory, it is believed that one has an

infinite tower of higher curvature corrections, and so no useful relation of this sort will hold

in general.

Maybe the simplest example where one has an interesting approximation with only

two terms is the case of flavor branes [26]. In this case the expansion reads

Ω = N2Ω0 + aN1Ω1. (3.5)

These two terms are singled out by being large in the large N limit and so are dominated

by a semi-classical saddle. Here we have denoted a ∼ Nf as the number of flavors. So we

can derive a generalized holographic Smarr relation in the field theory by independently

varying the number of colors and flavors in the field theory. In the bulk, this corresponds

to varying GN as well as the tension of the brane.

4 Discussion

In the preceding work, we have found that from simple field theoretic considerations alone

a universal Smarr formula, (2.3), emerges in holographic descriptions of black holes with

large N duals. In addition, from simple scaling we were able to derive the equation of

state governing the thermal system and giving necessary data to carry out our analysis.

This new universal formula, when processed with the equation of state and holographic

dictionary, gives bulk Smarr formulae that one would derive in the context of black hole

chemistry for a wide range of distinct systems. It would be interesting to work out the

consequences of our proposal in more non-trivial large N field theories, such as those with

Lifshitz scaling or broken global symmetries. In all these cases, our universal large N Smarr

formula together with the equation of state should allow one to derive a Smarr-like formula

from which one can easily read of the bulk pressure as well as the thermodynamic volume.

Acknowledgments

Thanks to Robert Mann for his stimulating talk at the Strings, Black Holes and Quan-

tum Information Workshop at the Tohoku Forum for Creativity in Sendai, Japan, which

prompted us to seek an holographic interpretation of black hole chemistry. Special thanks

also to Robert Myers for helpful discussions and comments. This work is partially sup-

ported by the US Department of Energy under grant number DE-SC0011637.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 12 –

http://creativecommons.org/licenses/by/4.0/


J
H
E
P
1
2
(
2
0
1
5
)
0
7
3

References

[1] S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space,

Commun. Math. Phys. 87 (1983) 577 [INSPIRE].

[2] E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories,

Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

[3] D. Kastor, S. Ray and J. Traschen, Enthalpy and the Mechanics of AdS Black Holes,

Class. Quant. Grav. 26 (2009) 195011 [arXiv:0904.2765] [INSPIRE].

[4] M.M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS black

holes and conformal field theories, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022]

[INSPIRE].

[5] J.D.E. Creighton and R.B. Mann, Quasilocal thermodynamics of dilaton gravity coupled to

gauge fields, Phys. Rev. D 52 (1995) 4569 [gr-qc/9505007] [INSPIRE].

[6] G.W. Gibbons, M.J. Perry and C.N. Pope, The First law of thermodynamics for

Kerr-anti-de Sitter black holes, Class. Quant. Grav. 22 (2005) 1503 [hep-th/0408217]

[INSPIRE].

[7] D. Kastor, S. Ray and J. Traschen, Smarr Formula and an Extended First Law for Lovelock

Gravity, Class. Quant. Grav. 27 (2010) 235014 [arXiv:1005.5053] [INSPIRE].

[8] B.P. Dolan, Where is the PdV term in the fist law of black hole thermodynamics?,

arXiv:1209.1272 [INSPIRE].
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