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1 Introduction

The superconformal index of a three-dimensional superconformal field theory is the parti-

tion function of the theory on S1 × S2 with supersymmetric boundary conditions. Equiv-

alently, the index can be expressed as the trace over all operators in the theory weighted

by their fermion number

I(t, zi) = Tr[(−1)F tε+j3zhii ]. (1.1)

Here ε is the operator dimension, j3 is the spin of the operator, F is its fermion number,

and hi label the charges of the operator under global symmetries. The superconformal

index is invariant under exactly marginal deformations and can be computed from an

ultraviolet Lagrangian description, provided that the infrared R-symmetry can be identified

in the ultraviolet [1]. The superconformal index was originally defined for four dimensional

superconformal field theories [2, 3] and was generalized to three dimensional theories in [4].

A large class of three dimensional superconformal field theories is realized as the

low energy effective theory of multiple M2-branes probing a Calabi-Yau fourfold singu-

larity. These theories have N = 2 supersymmetry and have a holographic dual description

as M-theory on the product of four-dimensional anti-de Sitter space AdS4 and a seven-

dimensional Sasaki-Einstein manifold. The simplest Calabi-Yau fourfold singularity is

C4/Zk. The theory of M2-branes at this singularity is realized as the low energy limit

of a quiver Chern-Simons theory with N = 8 supersymmetry when k = 1, 2 [5]. The

holographic dual theory is M-theory on AdS4 × S7/Zk and the supergravity index was

computed by summing all contributions from short multiplets [4]. The field theory and

supergravity superconformal indices were shown to match in the large k limit [6]. At finite

k, monopole operators contribute to the index and their contribution can be computed

using localization [7, 8].

In this paper we will derive the gravity superconformal index for any theory of the

form AdS4 × SE7. Previously the supergravity index was computed for the homogenous

Sasaki-Einstein seven-manifolds using known Kaluza-Klein spectra [9]. However, to match

the field theory index and the supergravity index, several of the Kaluza-Klein modes in [10]

had to be dropped. Since the spectrum has not been well tested, the authors suggested

that the Kaluza-Klein spectrum should be revisited. We find that a careful analysis of the

Kaluza-Klein modes agrees with the field theory index [9, 11, 12]. Our general form of the

supergravity index succinctly reproduces previous computations of the gravity index [9].

We find complete agreement with previous large-N computations of the index [9, 11, 12].

We construct the Kaluza-Klein multiplets on AdS4 from various tensors defined on

the Sasaki-Einstein manifold following the methodology of [13]. Our analysis focuses on

generic Sasaki-Einstein manifolds. Much of our analysis builds upon previous work on

Kaluza-Klein spectroscopy for coset manifolds [10, 14–16]. The structure of the Kaluza-

Klein multiplets is intimately related to the spectrum of various differential operators on

the internal manifold. For manifolds with coset structure the spectral problems were solved

using harmonic analysis, which is not applicable to generic Sasaki-Einstein manifolds. How-

ever, supersymmetry implies relations between the masses of Kaluza-Klein modes and thus

also between the eigenmodes of the differential operators on the internal manifold [15]. The
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approach of [13] exploits these relations to reconstruct the general form of the Kaluza-Klein

multiplets in terms of the Sasakian structure.1 Recall that any Sasaki-Einstein manifold

admits a conformal Killing spinor Θ satisfying ∇V Θ = 1
2V ·Θ for any vector field V . Given

an eigenfunction of the Laplace, Dirac or Lichnerowicz operator, one can obtain further

eigenmodes by repeatedly tensoring with Θ and acting with ∇. If one wants to consider

only bosonic modes, one considers ∇ in conjunction with the tensors that arise as bilinears

of the spinor instead of Θ itself. This is the approach that we will follow in this paper.

It allows us to obtain the complete structure of the Kaluza-Klein multiplets, identify the

short multiplets, and calculate the index.

Multiplet shortening and the short multiplets contributing to the index can be de-

scribed using the tangential Cauchy-Riemann operator ∂̄B on the Sasaki-Einstein manifold

Y and the associated Kohn-Rossi cohomology groups Hp,q

∂̄B
. In general, the cotangent bun-

dle over Y can be decomposed as

ΩY = Cη ⊕ Ω1,0
Y ⊕ Ω0,1

Y . (1.2)

The operator ∂̄B is the projection of the exterior derivative on Ω0,1
Y , the cohomology of

this complex is Hp,q

∂̄B
[18, 19]. The Kohn-Rossi cohomology groups are isomorphic to

Hq(X,∧pΩ′X) defined on the cone X over Y , where Ω′X is the part of the holomorphic

cotangent bundle ΩX perpendicular to the dilatation vector field. Our main result is a

formula for the gravity superconformal index as a trace over linear combinations of the

groups Hq(X,∧pΩ′X).

Organization. The organization of this paper is as follows: in section 2 we calculate

the single trace index drawing on the results from the remaining sections of this paper.

Section 3 shows how the trace over cohomology groups can be evaluated for toric and Fano

manifolds. The Kaluza-Klein analysis of Sasaki-Einstein seven-manifolds used in section 2 is

performed in section 4, with technical details refered to the appendices A and B. Section 4.3

describes relations between this paper and previous work on Kaluza-Klein spectroscopy.

2 Calculation of the index

In this section we list the multiplicity of each short multiplet appearing in supergravity

solutions of the form AdS4×SE7 and their contribution to the superconformal index. The

single trace superconformal index is defined by the following modification of (1.1)

Is.t.(t, zi) = Trs.t.[(−1)F tε+j3zhii ]. (2.1)

Only states with

{Q,S} = ε− j3 − y = 0 (2.2)

contribute, where y is the R-charge.

The general method to calculate the index from holography is quickly summarized.

Using the AdS/CFT dictionary one has to identify all states contributing to (2.1). Single

1For a similar analysis in the context of Kähler geometry see [17].
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trace operators in field theory are dual to supergravity modes in AdS4. These modes on the

other hand arise from linearized fluctuations around the full eleven-dimensional AdS4×SE7

solution. The quantum numbers of the fluctuations are determined by the eigenvalues

of various differential operators on the internal Sasaki-Einstein manifold. Consider for

example an operator O with conformal dimension ∆. The AdS/CFT dictionary relates

the conformal dimension ∆ to the mass of a fluctuation in AdS4; see table 20. For k-form

fields with mass m, the relation is m2 = ∆(∆ − 3 + k). Standard Kaluza-Klein analysis

determines these masses in terms of the eigenvalues of the Laplace, Dirac, or Lichnerowicz

operators on the internal SE7 manifold [20]. The R-charge and spin, which also enter

in (2.1), follow from the charge of the mode under translation along the Reeb vector or

directly from the AdS/CFT dictionary respectively. Since the Kaluza-Klein analysis for

space-times of the form AdS4 × Y with Y Sasaki-Einstein has been previously performed

in a general setting [20, 21], the problem of evaluating (2.1) from supergravity reduces to

that of obtaining the full spectrum of the Laplace (Dirac, Lichnerowicz) operators on the

SE7 manifold. We do so in section 4 and appendix B.

The results of this analysis can be found in tables 8 to 11 that list the eigenmodes of the

Laplace operator on p-forms on SE7. Using tables 20 and 21 one then obtains the general

form of the Kaluza-Klein spectrum of the linearized fluctuations as well as the scaling

dimension of the dual operators. This determines the multiplets, which are listed in the

tables tables 12 to 19. The explicit calculations done in this paper deal only with bosonic

modes, yet as the structure of the multiplets is fully determined by the superconformal

algebra, fermionic modes are fully determined by this. In order to keep the tables short,

we have only included those relevant for the calculation of the index. The names appearing

in these tables denote the origin of a mode in regard to the Kaluza-Klein analysis. We

use the same notation as in [16]. It can happen that various wavefunctions in the tables 8

to 11 vanish. This leads to a vanishing of the corresponding modes in 12 to 19 – i.e. to

short multiplets.

Short multiplets contributing to the index and their multiplicities are listed in table 1.

An element f of cohomology has R-charge LDf = 2iDf . Here LD denotes the Lie derivative

along the dilation vector field and 2D is its corresponding eigenvalue. We normalize each

multiplet so that its primary has R-charge y. The R-charge y differs from the R-charge 2D

of the corresponding cohomology element by a constant shift.

A short multiplet whose primary has quantum numbers (y + j3 + 1, j3, y) contributes

(−1)2j3+1ty+2j3+2 to the index. The hypermultiplets with quantum numbers (y, 0, y) con-

tribute ty to the index. Summing the contributions of the short multiplets, we find that

the single particle supergravity index is

1 + Is.t.(t) =
∑

Tr t2D
∣∣ H0(X,OX)	H0(X,∧2Ω′X)⊕H1(X,∧2Ω′X)

⊕ t2H0(X,Ω′X)	 t2H1(X,Ω′X)⊕ t2H2(X,Ω′X)	 t2H0(X,∧3Ω′X).

(2.3)

Here, TrA|V denotes the trace of an operator A acting on a vector space V . The single

particle index is similar to the single-trace index, but it also includes the derivatives of the
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Multiplet Primary (ε, j3, y) Multiplicity Index Index

short graviton (y + 2, 1, y) H0(X,∧3Ω′X) −ty+4 −t2D+2

short gravitino (y + 3
2 ,

1
2 , y) H0(X,Ω′X) ty+3 t2D+2

short vector Z/betti (y + 1, 0, y) H1(X,Ω′X) −ty+2 −t2D+2

short vector A (y + 1, 0, y) H0(X,∧2Ω′X) −ty+2 −t2D

hyper (y, 0, y) H1(X,∧2Ω′X) ty t2D

hyper (y, 0, y) H2(X,Ω′X) ty t2D+2

hyper (y, 0, y) H0(X,OX) ty t2D

Table 1. Short multiplets and their contribution to the index.

single-trace operators. These two indices are related by2

Is.t.(t) = (1− t2)Is.p.(t). (2.4)

We consider only Sasaki-Einstein manifolds. For Sasaki-Einstein spaces with singularities,

there can be additional contributions [22, 23]. We next explain how the multiplet shortening

conditions arise from the supergravity spectrum after reviewing the structure of short and

long multiplets.

2.1 Unitary representations of the N = 2 superconformal algebra

Supergravity on AdS4 × SE7 has N = 2 superconformal symmetry. We begin by recalling

the properties of the three dimensional N = 2 superconformal group Osp(2|4). Its bosonic

subgroup is Sp(4,R) ⊕ SO(2)R. The first factor Sp(4,R) ∼= SO(2, 3) is the isometry group

of AdS4 and the second factor, SO(2)R, is the R-symmetry group.

Unitary representations are labeled by their eigenvalues ε, j3, y under the dilation,

angular momentum, and R-symmetry operators. Unitary representations with spin j3 > 0

satisfy ε − j3 − y ≥ 0. Representations saturating this bound have null states and the

representation shortens. Hence such representations are called short. Representations not

saturating this bound are called long. When j3 = 0 representations satisfying ε = y are

called isolated. All other representations with j3 = 0 satisfy ε ≥ y + 1; those saturating

this bound are called short.

2.2 The short graviton multiplet

The graviton multiplet, shown in table 12, can be constructed starting from a scalar eigen-

function of the Laplacian on the Sasaki-Einstein manifold. The scalar eigenfunction is

the wave function of the spin 2 graviton in the multiplet. An eigenvalue ∆0 of the scalar

Laplacian is bounded by its charge3 q along the Reeb vector ξ via ∆0 ≥ q(q + 6), with

2Here we omit the contribution from the identity operator.
3q is the eigenvalue of the Lie derivative along ξ, £ξ. It is related to the R-charge y via q = 2y + c for

some constant c that is different for each multiplet. See the various tables in section 4.
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equality if and only if the eigenfunction lifts to a holomorphic function on the Calabi-

Yau cone. Equivalently, the eigenfunction is holomorphic with respect to the tangential

Cauchy-Riemann operator ∂̄B. The Lichnerowicz obstruction imposes q ≥ 1, with equality

if and only if the manifold is isometric to S7 [24].

If the scalar eigenfunction is holomorphic, a number of wave-functions vanish and the

graviton multiplet shortens. Thus, each element f ∈ H0(X,OX) defines a short graviton

multiplet. In each multiplet, the scalar eigenfunction f is the wave-function of the graviton

with energy y + 3, spin 2, and R-charge y. However, the primary has energy y + 2, spin 1,

and R-charge y. Within the superconformal multiplet only the mode χ+ contributes to the

index. It has energy y+ 5/2 and spin 3/2, so the net contribution to the index is (−1)ty+4.

Since H0(X,OX) ∼= H0(X,∧3Ω′X), we can express the contribution of the short graviton

multiplets in terms of either cohomology group. Note however that the map between the

two cohomology groups involves the holomorphic volume form, which carries R-charge 2.

2.3 The short gravitino multiplet

The two gravitino multiplets χ+ and χ− can be constructed from one-form eigenmodes on

the Sasaki-Einstein manifold. These one-forms are the wave-functions of the vector fields

A and W respectively. The multiplets are listed in tables 16 and 17. By comparing the

action of ∂B ∂̄B and J∧ on one-forms, we conjecture that there is a holomorphy bound

∆1 ≥ q(q + 4), where y + 1 = 2q. This is equivalent to the standard unitarity condition

E0 ≥ y + 3
2 . Its saturation implies that χ+ shortens. Thus every element of H0(X,Ω′X)

defines a short gravitino multiplet. The contribution to the index, ty+3, comes from the

mode A with R-charge y + 1, spin 1, and energy y + 2.

2.4 The short vector and Betti multiplets

The short vector multiplet A arises from holomorphic (2, 0) forms. Since the wave-function

of the primary mode is a scalar, it is convenient to construct all wave-functions in terms

of a scalar, as we did in the case of the graviton. The primary has energy and R-charge

E0 and y. The holomorphic volume form Ω maps scalars f to (2, 0) forms by ∂̄BfyΩ.

Since Ω carries R-charge 2, the R-charge of the two-form is y + 2. The holomorphy bound

on two-forms can then be expressed in terms of the ∆0 eigenvalue of f . Accommodating

for the shifted charge, one finds ∆0 = 4E0(E0 + 3) ≥ 4(y + 1)(y + 4). The inequality is

saturated if the two-form is holomorphic. Then E0 = y+1 and the multiplet shortens since

a number of wave-functions disappear. Hence, the elements of H0(X,∧2Ω′X) correspond to

short vector multiplets A. For further details see table 13 and the discussion in section 4.2.

Finally we turn to the vector multiplet Z, shown in table 15. It is constructed from

primitive4 (1, 1) forms and shortens when these forms are holomorphic and the bound

∆1 ≥ q(q + 2) is saturated. The primary is a scalar with energy E0, R-charge y, and

a three-form wave-function. As argued in appendix C, the primitive forms fill out the

cohomology group H1,1

∂̄B
. Therefore the elements of H1(X,Ω′X) correspond to the short

4Recall that a form ω is primitive if it is annihilated by the adjoint of the Lefschetz operator — Jyω = 0.
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vector multiplets Z. In section 4.2 we will show that H2
dR(Y ) ⊆ H1(X,Ω′X). Therefore we

find b2(Y ) Betti multiplets [10, 15, 25–27] and possibly additional charged modes.5

2.5 Hypermultiplets

There are two different sources for hypermultiplets coming from Kaluza-Klein reduction.

The first arises from holomorphic scalar eigenfunctions. When the scalar eigenfunctions are

holomorphic, the long vector multiplets A shorten into hypermultiplets. Thus, each element

of H0(X,OX) defines a hypermultiplet. The scalar eigenfunction is the wave-function of

the scalar primary, which has energy and charge y. The hypermultiplets contribute ty to

the index.

A second source for hypermultiplets are primitive, holomorphic (2, 1) and (1, 2) forms

on the Sasaki-Einstein manifold (table 19). Here, the holomorphy bound is ∆ ≥ q2. Their

contribution to the index is also ty. It follows from our arguments in appendix C that all

elements of H2,1

∂̄B
and H1,2

∂̄B
are primitive.

The multiplets corresponding to the groups H2,1

∂̄B
and H1,2

∂̄B
contribute differently to the

index. Multiplets corresponding to H1,2

∂̄B
have a (1, 2) form as their primary and an accom-

panying Lichnerowicz mode. However the situation is reversed for multiplets corresponding

to H2,1

∂̄B
; their primary is a Lichnerowicz mode and they have an accompanying (2, 1) form.

Thus, the two modes contribute differently to the index. Hypermultiplets appear in com-

plex conjugate pairs. For each hypermultiplet containing a (1, 2) form, there is another

hypermultiplet with a (2, 1) form of opposite charge. If a hypermultipet contributes to the

index, its conjugate does not necessarily have to contribute as well. One has to be careful

to avoid overcounting of modes with charge zero. We propose that the zero-charge sector

should not contribute to either hypermultiplet, since the relevant three-forms carry zero

U(1)-charge and are thus closed. It is likely that they are gauge modes.

3 Cohomology calculations

In this section, we explain how to evaluate the trace over the cohomology groups contribut-

ing to the index. We consider both toric and Fano manifolds. We find several remarkable

cancellations that simplify the index.

3.1 Toric Calabi-Yau varieties

Let us consider a toric Calabi-Yau cone X. In this case, there are one superconformal

R-symmetry and three mesonic flavor symmetries. We will take a new basis of these

symmetries such that the exponentiated chemical potentials are given by x1, x2, x3, x4 with

t2 = x1x2x3x4. Then each holomorphic function f has integer charges q = (q1, q2, q3, q4)

under the four isometries, and contributes xq = x1
q1x2

q2x3
q3x4

q4 to the index. The charges

form a cone M ⊂ Z4 and

Tr xq
∣∣ H0(X,OX) =

∑
q∈M

xq. (3.1)

5It would be interesting to find or exclude the possibility of additional charged modes.
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Since ∧3Ω′X carries R-charge two,

Tr xq
∣∣ H0(X,∧3Ω′X) =

∑
q∈M

xq+(1,1,1,1). (3.2)

The groups H≥1(X,∧kΩ′X) vanish. The characters of the ordinary and reduced differential

forms are

Tr xq
∣∣ H0(X,∧kΩX) =

∑
q∈M

ñkqxq (3.3)

Tr xq
∣∣ H0(X,∧kΩ′X) =

∑
q∈M

nkqxq. (3.4)

(3.5)

These characters are [28, 29]

ñkq =

{
0 if q is on a vertex of M,(
m
k

)
if q is on a m-dimensional facet of M,

(3.6)

nkq =

{
0 if q is on a vertex of M,(
m−1
k

)
if q is on a m-dimensional facet of M.

(3.7)

Let M (m) be the set of points of M that are contained in a m-dimensional facet and let

M◦(m) be the set of points of M that are contained in the interior of a m-dimensional facet.

Since all of the points of M are in the interior of some facet, we have

dimX∑
k=1

∑
q∈M◦(m)

xq =
∑

q∈M(dimX)

xq =
∑

q∈M◦(m)

xq+(1,1,1,1). (3.8)

Using these identities, we can write the index as

1 + Is.t. = −b2(Y )x(1,1,1,1) +
∑

q∈M(2)

(
xq − xq+(1,1,1,1)

)
−

∑
q∈M(1)

xq+(1,1,1,1). (3.9)

Since we computed the cohomology of the singular toric variety, we missed the contribution

of the of b2(Y ) Betti multiplets which only appear on the resolved geometry, so we must

add their contribution to the index.

3.2 Toric examples

We now illustrate our general formula for toric cohomologies in two simple examples.

Our first example is the cone over Q1,1,1. The R-symmetry group is SU(2)3 × U(1)R. The

holomorphic functions of R-charge tl for integer l are in one-to-one correspondence with the

lattice points of the cube [0, l]3. The flavor fugacity transforms in the [l, l, l] representation

of SU(2)3 of dimension (l + 1)3. The lattice points are shown in figure 1 for l = 3. In

table 3 we list the contributions to M◦(m) for small l. Using this data, we the find the

– 8 –
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Contribution Fugacity 1 t t2 t3 t4 . . .∑
q∈M(2) xq 1 8 20 32 44 . . .∑
q∈M(2) −xq+(1,1,1,1) 0 0 1 8 20 . . .∑
q∈M(1) −xq+(1,1,1,1) 0 0 1 8 8 . . .

b2(Y ) −x(1,1,1,1) 0 0 2 0 0 . . .

1 + Is.t. (−1)Fxε+j3 1 8 16 16 16 . . .

Table 2. Contributions to the index of Q1,1,1.

Figure 1. Contributions to M◦(1) and M◦(2) for Q1,1,1 with l = 3 are colored green and blue

respectively.

l M◦(1) M◦(2) M◦(3) M◦(4)

0 1 0 0 0

1 8 0 0 0

2 8 12 6 1

3 8 24 24 8

4 8 36 54 27

5 8 48 96 64

Table 3. Toric data for Q1,1,1.

– 9 –
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Contribution Fugacity 1 t1/2 t t3/2 t2 t5/2 t3 . . .∑
q∈M(2) xq 1 4 10 16 22 28 34 . . .∑
q∈M(2) −xq+(1,1,1,1) 0 0 0 0 1 4 10 . . .∑
q∈M(1) −xq+(1,1,1,1) 0 0 0 0 1 4 4 . . .

b2(Y ) −x(1,1,1,1) 0 0 0 0 0 0 0 . . .

1 + Is.t. (−1)Fxε+j3 1 4 10 16 20 20 20 . . .

Table 4. Contributions to the index of S7.

contributions to the index listed in table 2. Summing all the contributions to the index,

we find

Is.t.(Q1,1,1; t) = 8t+
16t2

1− t
. (3.10)

Our second example is the seven-sphere S7. The cone over S7 is the four-dimensional

complex space C4. The ring of holomorphic functions is C[x1, x2, x3, x4]. Monomials with

fixed degree l have R-charge l/2 and correspond to the lattice points of a tetrahedron

with (l + 1) lattice points on each side. We list the contributions to the index in table 4.

Summing the contributions to the index, we find

Is.t.(S7; t) = 4t1/2 + 10t+ 16t3/2
20t2

1− t1/2
. (3.11)

3.3 Cones over Fano varieties

Our results take an especially nice form for cones over Fano threefolds. A smooth projective

variety is called Fano if its anti-canonical divisor −KV
∼= detTV is ample. We now introduce

several invariants of Fano threefolds V and express them in terms of the Chern classes

ci(V ). The degree of V is d = −K3
V =

∫
V c

3
1 and the Euler characteristic χ(V ) =

∫
V c3 =

2(1 + b2 − b3). We will simplify many expressions using
∫
V c

2
1c2 = 24.6

The index ind(V ) is the largest integer r such that there exists a divisor H such that

rH ∼= −KV . We call H the fundamental divisor. Let L be the line bundle corresponding

to the fundamental divisor. If V has a Kähler-Einstein metric then the total space of the

fibration L → V is a Calabi-Yau cone. The unit circle bundle in L is a Sasaki-Einstein

manifold [24, 30]. For simplicity we will restrict our attention to this case.

Fano threefolds are classified by the work of Fano, Iskovskikh, Shokurov, Mori, and

Mukai. The index of an n-dimensional Fano variety satisfies ind(V ) ≤ n+ 1. The complex

projective space CP3 is the unique Fano threefold with index 4. Similarly the quadric

hypersurface Q in CP4 is the unique Fano threefold with index 3. There are 105 deformation

families of Fano threefolds and they are described in [31]. We list a few of the simplest

Fano threefolds in table 5.

6This relation can be derived using the Hirzebruch-Riemann-Roch theorem to calculate χ(OV ) = 1.
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SE7 Fano b2(Y ) χ(V ) ind(V ) −K3
V

S7 CP3 0 4 4 64

M1,1,1 CP2 × CP1 1 6 1 54

Q1,1,1 CP1 × CP1 × CP1 2 8 2 48

V5,2 Q 0 4 3 54

Table 5. Some Fano threefolds and their Sasaki-Einstein cones.

3.4 Twisted cohomology of Fano varities

In this section we compute the cohomology groups contributing to the superconformal

index for cones over Fano threefolds. Since V is Fano, its anti-canonical divisor −KV is

ample and the cohomology groups H i≥1(V,Lj) vanish by the Kodaira vanishing theorem.

The first contribution to the index is the Hilbert series. The Hilbert series of the cone can

be computed using the Hirzebruch-Riemann-Roch theorem since all higher cohomology

groups vanish. We compute the Hilbert series using

C(t, V ) =
∑
j≥0

t2j/rχ(V,Lj) (3.12)

=
∑
j≥0

t2j/r
∫
e−jc1(L) · Todd(V ), (3.13)

where r is the Fano-index. The Todd class can be expressed in terms of the Chern classes

of the tangent bundle TV as

Td(V ) = 1 +
c1(TV )

2
+
c1(TV )2 + c2(TV )

12
+
c1(TV )c2(TV )

24
. (3.14)

For Fano threefolds of index 1, L = −KV and

e−c1(L) = 1 + c1(KV ) + c1(KV )2/2 + . . . (3.15)

Combining these ingredients, we find that the Hilbert series is

C(t, V ) =
1 + (d/2− 1)t2 + (d/2− 1)t4 + t6

(1− t2)4
(3.16)

where d is the degree. We can similarly compute the other contributions to the super-

conformal index using the Hirzebruch-Riemann-Roch theorem. Starting with our general

formula for the index in equation (2.3), we can organize the contributions to the index in

terms of the characters

Cj(t, V ) =
∑
n

tnχ(V,∧jΩV ⊗ Ln). (3.17)

Using Kodaira-Nakano vanishing theorem, Hp(V,∧qΩV ⊗ Ln) = 0 for p+ q > dim(V ), we

find that the superconformal index is

1 + Is.t.(t) = C0 − C2 + t2(C1 − C3). (3.18)
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Multiplet j3 Primary y Multiplicity SU(4)U(1)R Index

short graviton 1 `/2− 2 H0(X,∧3Ω′X) [`− 4, 0, 0]`/2 −t`/2+2

short gravitino 1/2 `/2− 1 H0(X,Ω′X) [`− 2, 1, 0]`/2 t`/2+2

short vector A 0 `/2− 2 H0(X,∧2Ω′X) [`− 3, 0, 1]`/2 −t`/2

hyper 0 `/2 H0(X,OX) [`, 0, 0]`/2 t`/2

Table 6. Short multiplets for AdS4×S7 and their contribution to the index. Some short multiplets

can become massless for small `.

For Fano threefolds of index ind(V ) = 1, L = −KV , and we find that the superconformal

index is

Is.t.(t) =
(24− χ(V ))t2

1− t2
. (3.19)

For Fano threefolds of index ind(V ) = 2:

Is.t.(t) = (12− χ(V )/2)t+
(24− χ(V ))t2

1− t
. (3.20)

We can also compute the index for CP3 and the quadric Q with all flavor fugacities set to

one. We find that the superconformal indices are

Is.t.(CP3; t) = 4t1/2 + 10t+ 16t3/2 +
20t2

1− t1/2
, and (3.21)

Is.t.(Q; t) = 6t2/3 + 14t4/3 +
20t2

1− t2/3
. (3.22)

In the next section we will derive the superconformal indices for the cones over CP3 and

the quadric, Q, refined by their flavor fugacities.

3.5 The seven-sphere S7

The seven-sphere S7 is the unit circle bundle over CP3. Its isometry group is SU(4)×U(1)R.

Using the twisted cohomology groups of complex projective space listed in appendix D, we

find the short multiplets in supergravity and list them in table 6. Summing all contributions

to the index, we find

1 + Is.t.(S7; t) =
∑
n≥0

(1− t4)tn/2χ
SU(4)
[n,0,0] − t

n/2+3/2χ
SU(4)
[n,0,1] + tn/2+3χ

SU(4)
[n,1,0]. (3.23)

This is in complete agreement with the original derivation of the supergravity index [4]

and the field theory index [6, 7].

3.6 The Stiefel manifold V5,2

The Stiefel manifold V5,2 = SO(5)/SO(3) is the unit circle bundle over the quadric Q ∈ CP4.

Its isometry group is SO(5)×U(1)R. Using the twisted cohomology groups of the quadric
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Multiplet j3 Primary y Multiplicity SO(5)U(1)R Index

short graviton 1 2`/3− 2 H0(X,∧3Ω′X) [`− 3]2`/3 −t2`/3+2

short gravitino 1/2 2`/3− 1 H0(X,Ω′X) [`− 2, 2]2`/3 t2`/3+2

short vector A 0 2`/3− 2 H0(X,∧2Ω′X) [`− 3, 2]2`/3 −t2`/3

hyper 0 2`/3 H0(X,OX) [`, 0]2`/3 t2`/3

hyper 0 2`/3 H1(X,∧2Ω′X) [0, 0]2/3 t2/3

Table 7. Short multiplets for V5,2. Here the U(1)R charge is y.

1 2

A1, A2

B1, B2

Φ2Φ1

Figure 2. Quiver for V5,2.

listed in appendix D, we find the short multiplets in supergravity and list them in table 7.

We write SO(5) representations in terms of the Dynkin labels [λ1, λ2] of their highest

weight state.7 The Kaluza-Klein spectrum for V5,2 was first derived in [14].8 We find

that one of the short gravitino multiplets listed in [14] is extraneous. The non-trivial

cohomology group H1(Q,Ω2(1)) ∼= C implies the existence of a short hypermultiplet also

missing from [14]. This hypermultiplet and its anti-holomorphic partner were previously

found in [33]. Summing all contributions, the gravity superconformal index is

1 + Is.t.(V5,2; t) = t2/3 +
∑
n≥0

(1− t4)t2/3nχ
SO(5)
[n,0] − (1− t4/3)χ

SO(5)
[n,2] t

2+2/3n, (3.24)

which refines the index in equation (3.22) by the SO(5) flavor fugacities.

The field theory dual to M2-branes at the cone over V5,2 was recently proposed to be a

U(N)×U(N) gauge theory with Chern-Simons interactions [34]. The bi-fundamental and

adjoint matter content is shown as a quiver in figure 2. The manifest global symmetry is

SU(2)×U(1)B ×U(1)R. The pairs of bifundamental fields (A1, A2) and (B1, B2) transform

as doublets under the global SU(2) symmetry. The field theory index was computed in [12]

up to terms of order t2. The gravity index we compute in equation (3.24) exactly matches

the known field theory terms. However, a few more terms are desirable, since the leading

contribution of the short gravitino multiplet in [14] is at order t10/3. While it is possible to

directly extend the field theory computation to arbitrary fixed order, we instead compute

the index to all orders in t in the zero-monopole sector for simplicity. Since the each pair of

bi-fundamental fields transforms as a doublet under the SU(2) global symmetry, we assign

7If λ2 is odd, the representation [λ1, λ2] is spinor. If λ2 is even, the representation is tensor and the

corresponding Young tableaux has λ1 height one columns and λ2/2 height two columns.
8Additional long multiplets were found in [32].
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the flavor fugacity χ
SU(2)
1/2 (z) = z1/2 + z−1/2 to each pair. Let MQ(t, z) be the adjacency

matrix of the V5,2 quiver weighted by the R-charges and flavor fugacities,

MQ(t, z) =

(
t2/3 t2/3χ

SU(2)
1/2 (z)

t2/3χ
SU(2)
1/2 (z) t2/3

)
, (3.25)

and let χQ(t, z) be the matrix constructed from the single-letter indices. In terms of the

adjacency matrix, χQ(t, z) has the following simple form,

χQ(t, z) =
1

(1− t2)

(
1−MQ(t, z) + t2MT

Q(t−1, z−1)− t2
)
. (3.26)

The multi-trace contribution to the index from the letters is

I(0) =
∏
n≥1

1

det(χQ(tn, zn))
. (3.27)

Using the plethystic logarithm we can extract the single-trace index in the zero-monopole

sector

I(0)
s.t. = (1− t2)PE−1[I(0)]. (3.28)

We find that the single-trace index in the zero-monopole sector is

I(0)
s.t. = 2t2/3 + (2 + z + z−1)t4/3 +

∑
n≥2

(
zn + z−n

)
(1− t2/3)t4/3n. (3.29)

In supergravity, the zero-monopole sector corresponds to the states that remain in the

orbifold V5,2/Zk in the large k limit. Equivalently, these are the states that are singlets

under SU(2)L in the decomposition SO(5)→ SU(2)L × SU(2)R. Using the branching rules

for SO(5), we verify that the supergravity index (3.24) exactly matches the field theory

index in the zero-monopole sector.

4 The supergravity analysis

In this section we turn to the analysis of eleven-dimensional supergravity on AdS4 × SE7

manifolds. Standard results in gauge/string duality relate the operator spectrum of the

dual gauge theory to the spectrum of various differential operators on the Sasaki-Einstein

manifold. For reference, we give this dictionary in tables 20 and 21.

In section 4.1 we determine the spectrum of ∆ and Q = ?d. We leave the analysis

of fermionic and Lichnerowicz eigenmodes to a future work. Section 4.2 explains how to

arrange the various modes into multiplets.

4.1 The Kaluza-Klein spectrum

The Kaluza-Klein spectra of various coset manifolds have been successfully studied using

harmonic analysis. For more general manifolds however, the problem becomes considerably

more difficult. Hence as in [13] our strategy is to use less information; i.e. we start with an

eigenform of one of the differential operators and then use the Sasaki-Einstein structure to

– 14 –



J
H
E
P
1
2
(
2
0
1
5
)
0
6
2

Name Degree ∆, Q Charge

f [0;q] 0 δ q c, ?, ?̄

df [0;q] 1 δ q

f [1;q;−] 1 δ + 6− 2
√
δ + 9 q ?̄

f [1;q;+] 1 δ + 6 + 2
√
δ + 9 q c, ?

f [2;q;a] 2 δ + 8 q ?, ?̄

f [2;q;b] 2 δ + 8 q

df [1;q;−] 2 δ + 6− 2
√
δ + 9 q

df [1;q;+] 2 δ + 6 + 2
√
δ + 9 q

f [2;q+4] 2 δ + 8 q + 4 ?̄

f [2;q−4] 2 δ + 8 q − 4 ?

f [3;q;−] 3 1−
√
δ + 9 q ?̄

f [3;q;+] 3 1 +
√
δ + 9 q c, ?

f [3;q+4;−] 3 1−
√
δ + 9 q + 4 ?̄

f [3;q+4;+] 3 1 +
√
δ + 9 q + 4 c, ?, ?̄

f [3;q−4;−] 3 1−
√
δ + 9 q − 4 ?, ?̄

f [3;q−4;+] 3 1 +
√
δ + 9 q − 4 c, ?

Table 8. Wave functions f [p;q;X] derived from a scalar f . p refers to the form degree, q to its charge,

X denotes any additional labels. Non-gauge modes that remain for holomorphic f — i.e. ∂̄Bf = 0

— are labeled with “?”. “?̄” marks the anti-holomorphic case. The modes with constant f are

labeled “c”. Neither of f [2;q;a,b] vanishes when f is (anti-) holomorphic, yet they coincide. We label

this mode f [2;q;a].

construct additional eigenforms. In other words, given an eigenfunction f with ∆f = δf ,

we use interior and exterior products with the forms and operators η, J,Ω, ∂B, ∂̄B,£ξ. We

then identify the short multiplets with the Kohn-Rossi cohomology groups Hp,q

∂̄B
and the

related groups Hq(X,∧pΩ′X) on the cone. Our conventions concerning Sasaki-Einstein

manifolds, Kohn-Rossi cohomology, and the various differential operators are listed in

appendix A. For details of the analysis the reader should refer to appendix B. An analysis

of the compatibility of Lefschetz decomposition with Kohn-Rossi cohomology is performed

in appendix C.

Eigenmodes constructed from scalars f , (1, 0) forms σ, primitive (1, 1) forms χ, and

primitive (2, 1) forms ζ are listed in tables 8, 9, 10, and 11. Various conditions — most

noteably primitivity — simply stem from the fact that we impose orthogonality between

the various modes in order to avoid overcounting. Since the basis we use for the scalars
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Name Degree ∆, Q Charge

σ[1;q] 1 δ q ?

σ[1;q−4] 1 δ q − 4 ?

σ[2;q;−] 2 δ + 4− 2
√
δ + 4 q

σ[2;q;+] 2 δ + 4 + 2
√
δ + 4 q ?

σ[2;q−4;−] 2 δ + 4− 2
√
δ + 4 q − 4 ?

σ[2;q−4;+] 2 δ + 4 + 2
√
δ + 4 q − 4 ?

σ[3;q;−] 3 −
√
δ + 4 q

σ[3;q;+] 3
√
δ + 4 q ?

σ[3;q−4;−] 3 −
√
δ + 4 q − 4 ?

σ[3;q−4;+] 3
√
δ + 4 q − 4 ?

Table 9. Wave functions σ[p;q;X] derived from a (1, 0)-form σ. Again, holomorphic modes are

marked “?”.

Name Degree ∆, Q Charge

χ[2;q] 2 δ q ?,�

χ[3;q;−] 3 −1−
√
δ + 1 q ?,�

χ[3;q;+] 3 −1 +
√
δ + 1 q

Table 10. Wave functions χ[p;q;X] derived from a primitive (1, 1)-form χ. “?” marks the modes

remaining when χ is holomorphic and δ = q(q + 2), “�” those with dχ = 0 and δ = q = 0.

Name Degree Q Charge

ζ [3;q] 3 −q q ?

ϑ[3;q] 3 q q ?

Table 11. Wave functions based on three-forms.

includes fη, fJ, fη ∧ J , the higher forms have to be orthogonal to both the Reeb vector

and the Kähler form. Further conditions are discussed in the appendix.

A crucial role is played by Kohn-Rossi holomorphic forms. Whenever forms or scalars

are holomorphic (i.e. annihilated by ∂̄B), a number of derived modes vanish. This will

lead to multiplet shortening. The surviving modes are marked in the tables. Moreover,

given a function f and £ξf = ıqf , one can show that the Laplace operator is bounded
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(see eq. (B.15))

∆f ≥ q(q + 6)f. (4.1)

Equality holds if and only if f is holomorphic. Our calculations in appendix B suggest

that the suitable generalization for primitive k-forms orthogonal to the Reeb vector is

(k = 0, 1, 2, 3)

∆k ≥ q[q + (6− 2k)] = 4y∂̄B [y∂̄B + (3− k)]. (4.2)

Here y∂̄B = 2q. Again, equality holds if and only if the form is holomorphic. This inequality

prompts us to define E∂̄B via

∆k = 4E∂̄B [E∂̄B + (3− k)]. (4.3)

In these variables, the bound becomes

E∂̄B ≥ y∂̄B . (4.4)

It would be very interesting to find a further generalization of (4.2) that holds for all

k-forms. The minimal modification that satisfies ∆J = 12J and ∆η = 12η is

∆ = 2∆∂̄B
−£2

ξ − 2ı(3− k)£ξ + 2J ∧ Jy+ 6η ∧ ηy. (4.5)

∆∂̄B
is the Kohn-Rossi Laplacian, ∆∂̄B

= ∂̄†B ∂̄B + ∂̄B ∂̄
†
B. In this form (4.5) begins to

resemble the well-known identity for the de Rham and the Dolbeault Laplacians on Kähler

manifolds, ∆ = 2∆∂ = 2∆∂̄ .

4.2 The multiplets

In this section, we will arrange the Kaluza-Klein modes into superconformal multiplets.

Substituting the Kaluza-Klein modes derived in section 4.1 into tables 20 and 21 yields the

states of the dual SCFT. The superconformal primary has energy, spin, and hypercharge

(E0, j3, y). These variables differ from E∂̄B and y∂̄B by constant shifts. The superconformal

primaries are labeled “p”. Our analysis here has drawn on previous results obtained in the

special case of coset manifolds. See e.g. [15, 35], and especially [16]. These references also

include the fermionic modes. Wave-functions for which we have not derived an explicit

expression are labeled with a subscript “∗”.

Long multiplets. The modes derived from a scalar f in table 8 yield the graviton and

vector multiplets A and W in tables 12, 13, and 14. The third family of vector multiplets,

the vector multiplet Z (table 15) is based on the primitive (1, 1) forms of table 10. Modes

based on one-forms (see table 9) fill out the χ+ and χ− gravitino multiplets (tables 16

and 17). The appearance of f in the short graviton multiplet and long vector W is known

as the “shadow-mechanism” [36].
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Spin Energy Charge Mass2 Name Wave-f.

2 E0 + 1 y 4(E0 − 2)(E0 + 1) h f [0;q] c, ?
3
2 E0 + 1

2 y + 1 E0 − 2 χ+ f
[3/2]
∗ c, ?

1 E0 + 2 y 4E0(E0 + 1) W f [1;q;−]

1 E0 + 1 y − 2 4E0(E0 − 1) Z f [2;q−4] ?

1 E0 + 1 y + 2 4E0(E0 − 1) Z f [2;q+4]

1 E0 + 1 y 4E0(E0 − 1) Z f [2;q;a,b] ?

1 E0 + 1 y 4E0(E0 − 1) Z f [2;q;a,b]

1 E0 y 4(E0 − 2)(E0 − 1) A f [1;q;+] c, ?, p

0 E0 + 1 y 4E0(E0 − 1) φ f
[2s;q]
∗

Table 12. The graviton multiplet. Modes surviving in the case that f is holomorphic are labeled

“?”. Then E0 = y + 2. Moreover, modes remaining if f is constant are labeled with “c” and satisfy

y = 0. They fill out the massless graviton multiplet. The normalization is such that E∂̄B
+ 2 = E0

and y∂̄B
= y.

Spin Energy Charge Mass2 Name Wave-f.

1 E0 + 1 y 4E0(E0 − 1) A f [1;q;−] m, �
1
2 E0 + 1

2 y + 1 E0 − 1 λL f
[1/2]
∗ �

0 E0 + 2 y 4E0(E0 + 1) φ f
[2s;q]
∗

0 E0 + 1 y − 2 4E0(E0 − 1) π f [3;q−4;−] �
0 E0 + 1 y + 2 4E0(E0 − 1) π f [3;q+4;−]

0 E0 + 1 y 4E0(E0 − 1) π f [3;q;−] m, �
0 E0 y 4(E0 − 2)(E0 − 1) S f [0;q] m, �, p

Table 13. The vector multiplet A. “�” marks the modes remaining when ∂̄BfyΩ defines a holo-

morphic (2, 0) form and the multiplet shortens. In this case E0 = y + 1. The normalization is

simple: E∂̄B
= E0, y∂̄B

= y. “m” marks the massless multiplet. We include the fermion mode

contributing to the index.

Spin Energy Charge Mass2 Name Wave-f.

1 E0 + 1 y 4E0(E0 − 1) W f [1;q;+]

0 E0 + 2 y 4E0(E0 + 1) Σ f [0;q]

0 E0 + 1 y − 2 4E0(E0 − 1) π f [3;q−4;+]

0 E0 + 1 y + 2 4E0(E0 − 1) π f [3;q+4;+]

0 E0 + 1 y 4E0(E0 − 1) π f [3;q;+]

0 E0 y 4(E0 − 1)(E0 − 2) φ f
[2s;q]
∗ p

Table 14. The vector multiplet W . The normalization is E∂̄B
+ 4 = E0, y∂̄B

= y.
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Spin Energy Charge Mass2 Name Wave-f.

1 E0 + 1 y 4E0(E0 − 1) Z χ[2;q] ?,�
1
2 E0 + 1

2 y + 1 −E0 + 1 λT χ
[1/2]
∗ ?,�

0 E0 + 2 y 4E0(E0 + 1) π χ[3;q;+]

0 E0 + 1 y − 2 4E0(E0 − 1) φ Ω̄.χ
[3;q;−]
∗ ?

0 E0 + 1 y + 2 4E0(E0 − 1) φ Ω.χ
[3;q;+]
∗

0 E0 + 1 y 4E0(E0 − 1) φ J.χ
[2;q]
∗ ?,�

0 E0 y 4(E0 − 1)(E0 − 2) π χ[3;q;−] ?,�, p

Table 15. The vector multiplet Z. “?” marks modes remaining when χ is holomorphic. In this

case E0 = y+ 1. The Betti multiplet is marked “�”. It corresponds to dχ = 0 and thus y = 0. The

Lichnerowicz mode vanishes since there is no (2, 1) form to contract Ω̄ with. The normalization is

E∂̄B
+ 1 = E0, y∂̄B

= y.

Spin Energy Charge Mass2 Name Wave-f.

1 E0 + 3
2 y − 1 4(E0 − 1

2)(E0 + 1
2) Z σ[2;q−4;−] ?

1 E0 + 3
2 y + 1 4(E0 − 1

2)(E0 + 1
2) Z σ[2;q;−]

1 E0 + 1
2 y − 1 4(E0 − 3

2)(E0 − 1
2) A σ[1;q−4] ?

1 E0 + 1
2 y + 1 4(E0 − 3

2)(E0 − 1
2) A σ[1;q] ?

1
2 E0 y E0 − 3

2 λL σ
[1/2]
∗ ?, p

0 E0 + 3
2 y − 1 4(E0 − 1

2)(E0 + 1
2) φ σ

[2s;q−4]
∗ ?a

0 E0 + 3
2 y + 1 4(E0 − 1

2)(E0 + 1
2) φ σ

[2s;q]
∗ ?a

0 E0 + 1
2 y − 1 4(E0 − 3

2)(E0 − 1
2) π σ[3;q−4;−]

0 E0 + 1
2 y + 1 4(E0 − 3

2)(E0 − 1
2) π σ[3;q;−]

Table 16. The gravitino multiplet χ+ is constructed from (1, 0) forms. Holomorphy yields the

short gravitino multiplet, the relevant modes are marked “?”. Once again, E∂̄B
= y∂̄B

. Out of the

modes marked with “?a”, one vanishes when σ is holomorphic. y∂̄B
= y + 1, E∂̄B

+ 1
2 = E0. We

included one of the fermionic modes, since it is the primary.

Short graviton, vector, and gravitino multiplets. When f is holomorphic, the

inequality E∂̄B ≥ y∂̄B is saturated. At the same time, several wave-functions vanish.

Those remaining are marked with a “?” in table 8. Comparing the table with tables 12, 13,

and 14, we see that the vector multiplet W remains unchanged, while the graviton multiplet

shortens, becoming the short graviton multiplet. Out of the modes forming the long vector

multiplet A, only

S[f [0;q]] and π[f [3;q−4;−]] (4.6)

remain. Again, E∂̄B = y∂̄B and one sees that these modes form a hypermultiplet as outlined

in table 18.
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Spin Energy Charge Mass2 Name Wave-f.

1 E0 + 3
2 y − 1 4(E0 + 3)(E0 + 2) W σ[1;q−4]

1 E0 + 3
2 y + 1 4(E0 + 3)(E0 + 2) W σ[1;q]

1 E0 + 1
2 y − 1 4(E0 + 2)(E0 + 1) Z σ[2;q−4;+]

1 E0 + 1
2 y + 1 4(E0 + 2)(E0 + 1) Z σ[2;q;+]

1
2 E0 y −E0 + 3

2 λT σ
[1/2]
∗ p

0 E0 + 3
2 y − 1 4(E0 + 3)(E0 + 2) π σ[3;q−4;+]

0 E0 + 3
2 y + 1 4(E0 + 3)(E0 + 2) π σ[3;q;+]

0 E0 + 1
2 y − 1 4(E0 + 2)(E0 + 1) φ σ

[2s;q−4]
∗

0 E0 + 1
2 y + 1 4(E0 + 2)(E0 + 1) φ σ

[2s;q]
∗

Table 17. The gravitino multiplet χ−. y∂̄B
= y+1, E∂̄B

+ 5
2 = E0. Again we include the fermionic

primary.

The vector multiplet Z shortens when χ is holomorphic. As shown in appendix C, all

elements of H1,1

∂̄B
are primitive.

As mentioned in section 2.4, the holomorphic volume form Ω provides a map between

scalars and (2, 0) forms, which allows us to understand the shortening of the vector multiplet

A. Moreover, Ω allows us to map any (0, 1) form α to a (2, 0) form αyΩ. The two-form

is holomorphic if α is. However, H0,1

∂̄B
= 0 and thus any holomorphic (2, 0) form can be

written as ∂̄BfyΩ. From our considerations in section B.3 we know that holomorphic (1, 1)

forms saturate the inequality

∆2 ≥ q2(q2 + 2), (4.7)

where we denote the charge of a two-from as q2, to avoid confusion with that of f , which

we still refer to as q. Furthermore, we know that the form ∂̄BfyΩ satisfies

∆2(∂̄BfyΩ) = (δ + 8)∂̄BfyΩ, £ξ(∂̄BfyΩ) = ı(q + 4)∂̄BfyΩ = ıq2∂̄BfyΩ. (4.8)

Assuming that the bound holds for generic two-forms, we find

δ + 8 ≥ (q + 4)(q + 6). (4.9)

Solving for δ gives the shortening conditions for the vector multiplet A:

∂̄B(∂̄BfyΩ) = 0 and δ = (q + 2)(q + 8) = 4(y∂̄B + 1)
[
(y∂̄B + 1) + 3

]
. (4.10)

Hence, even though none of the modes in the long vector multiplet A is directly based on

a two-form, the short vector multiplet A corresponds to the cohomology group H2,0

∂̄B
. As

an aside, note that the relation between the ∆0 and £ξ eigenvalues in (4.10) is that of a

holomorphic function with charge q + 2.

The χ+ and χ− gravitino multiplets are shown in tables 16 and 17. When the (1, 0)

form σ is holomorphic, various modes disappear as discussed in B.2 and one obtains the
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short gravitino multiplet as well as a long gravitino multiplet χ−. We were not able to

demonstrate the vanishing of the three-form σ[3;q−4;−] by direct manipulation of the dif-

ferential forms. According to the superconformal algebra this mode should vanish. An

analysis of the complete multiplet including fermions and Lichnerowicz modes should im-

prove our understanding of the situation. One can also construct the gravitino multiplets

in terms of (0, 1)-forms τ . As discussed in section B.2, these cannot be holomorphic, yet

anti-holomorphic. When this happens, the χ− multiplet shortens while the length of the

χ+ multiplet remains unaffected. Once again the mode τ [3;q+4;+] remains.

The massless graviton multiplet. When f is constant, it is necessarily also holomor-

phic and antiholomorphic, so we can base the discussion on the holomorphic case. Addi-

tional wave-functions vanish and the short graviton multiplet shortens further to become

the massless graviton multiplet.

Betti multiplets. Betti multiplets arise from a non-trivial second de Rham cohomology

group H2
dR(Y ). Given α ∈ H2

dR(Y ), we know that

∂̄Bα = ∂Bα = £ξα = ∆α = 0. (4.11)

Assuming α ∈ Ω2,0, the arguments of the previous paragraphs imply that there is a scalar

function f such that α = ∂̄BfyΩ and that ∆α = (δ + 8)α with ∆f = δf . However, δ ≥ 0

which is in contradiction with α being harmonic. Hence, there are no harmonic (2, 0) forms.

An analogue argument excludes (0, 2) forms. Similarly, we can exclude forms in Ω1 ∧ η
since d(σ ∧ η) = dσ ∧ η − 2σ ∧ J and σ ∧ J = 0 has no solution. Turning to (1, 1) forms,

we can ignore non-primitive forms since

0 = d(fJ) = df ∧ J (4.12)

implies that f has to be a constant. In the end, the only candidates for Betti multiplets

are the (1, 1) forms χ that are included in the vector multiplet Z. In other words,

H2
dR(Y ) ⊆ H1,1

∂̄B
. (4.13)

For details on H1,1

∂̄B
see appendix C.

Finally, we can hazard a comment on Lichnerowicz modes in this case. The construc-

tion of table 15 assumes that one way to obtain such modes is via symmetric contraction

of (2, 1) forms with Ω̄. When ∂Bχ = ∂̄Bχ = 0 the Lichnerowicz modes ∂Bχ.Ω̄ and ∂̄Bχ.Ω

vanish. Thus the multiplet has further shortening.

Hypermultiplets. As we discussed in the previous paragraphs, most modes of the long

vector multiplet A vanish when f is holomorphic. The remaining modes form a hypermul-

tiplet as shown in table 18.

Since the hypermultiplet consists of two scalars, a spinor and their complex conjugates,

the primitive (2, 1) and (1, 2) forms of section B.4 also form hypermultiplets. Here, the

assumption that these forms can be mapped to eigenmodes of the Lichnerowicz operator via

ζ [3;q] 7→ ζ [2s;q−4] = ζκλ(µΩ̄
κλ

ν) and ϑ[3;q] 7→ ϑ[2s;q+4] = ϑκλ(µΩ
κλ

ν) (4.14)
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Spin Energy Charge Mass2 Name Wave-f.

0 y + 1 y − 2 4y(y − 1) π f [3;q−4;−]

0 y y 4(y − 2)(y − 1) S f [0;q] p

0 y + 1 −y + 2 4y(y − 1) π f̄ [3;q+4;+]

0 y −y 4(y − 2)(y − 1) S f̄ [0;q]

Table 18. The hypermultiplet. f [0;q] and f [3;q−4;−] are the “survivors” from the long vector

multiplet A when f is holomorphic. The other two modes are their complex conjugates. As to the

normalization, E0 = E∂̄B
= y∂̄B

= y.

Spin Energy Charge Mass2 Name Wave-f. Name Wave-f.

0 y + 1 y − 2 4y(y − 1) φ ζ
[2s;q−4]
∗ π ϑ[3;q]

0 y y 4(y − 2)(y − 1) π ζ [3;q] φ ϑ
[2s;q+4]
∗ p

0 y + 1 −y + 2 4y(y − 1) φ ζ̄
[2s;q−4]
∗ π ϑ̄

[3;q]
∗

0 y −y 4(y − 2)(y − 1) π ζ̄ [3;q] φ ϑ̄[2s;q+4]

Table 19. Hypermultiplets constructed from (2, 1) forms ζ and (1, 2) forms ϑ.

is implied. The difference between the hypermultiplets in table 19 is the role reversal

between the Lichnerowicz and three-form modes. As a result the charge of the (1, 2)

multiplet is shifted when expressed in terms of the cohomology group H1,2

∂̄B
.

4.3 Previous work on Kaluza-Klein compactification

The spectrum of Kaluza-Klein compactifications of eleven dimensional supergravity to

anti-de Sitter spaces is best understood for coset spaces where harmonic analysis can be

used. The multiplet tables in this paper are based on those in [16], thus our results agree

with theirs.

Going beyond harmonic analysis, [33] and [37] consider consistent truncations of the

eleven-dimensional theory. It is instructive to compare our findings with those of [33].

Considering the reduction of eleven-dimensional supergravity on seven-dimensional SU(3)-

structure manifolds, the authors of [33] assume the existence of the following real differen-

tiable forms on M7: a one-form θ, nV two-forms ωi, 2nH three-forms αA, βA, nV four-forms

ω̃i, and a six-form ω̃0. They find that nV and nH correspond to the number of vector and

hyper multiplets in the four-dimensional theory. The SU(3) structure is expressed in terms

of the above forms as

η = eV θ, J = e−V viωi, Ω = e−
3
2
V (ZAαA − GAβA). (4.15)

Crucially, they impose a number of algebraic conditions on these forms. First of all, the

forms are all annihilated by the vector k defined by ıkθ = 1 from which it follows that —
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in the Sasaki-Einstein case — they are all elements of Ωp,q. Furthermore, they require

ωi ∧ ω̃j = −δji ω̃
0, αA ∧ βB = −δBA ω̃0. (4.16)

Hence, one can think of ω̃j ∧ η as the Hodge dual of ωi. The same goes for βA ∧ η and αA.

Finally, the conditions

ωi ∧ αA = ωi ∧ βA = ω̃i ∧ αA = ω̃i ∧ βA = αA ∧ αB = βA ∧ βB = 0, (4.17)

are equivalent to our orthogonality conditions discussed in appendix B, since

0 = αA ∧ ω̃i ∧ η ∼ αA ∧ ?ωi (4.18)

it follows that all three-forms αA and βA are primitive. The same holds for nV − 1 two

forms ωi, with the only exception given by the linear combination that defines J . In the

Sasaki-Einstein case, the 2nH three-forms can be split into nH − 1 (2, 1) forms, one (3, 0)

form and their complex conjugates. Note that the forms ωi cannot be (2, 0) or (0, 2) since

they vanish under the action of Ω∧ and Ω̄∧ and thus have to be of degree (1, 1).

Now, in our discussion we found one vector multiplet Z for every primitive (1, 1) form,

which corresponds to nV − 1 of the vector multiplets. We also find a vector multiplet W

for a constant scalar f , which corresponds to the non-primitive (1, 1) form J . This gives a

total of nV vector multiplets. Of course, we find additional vector multiplets that do not

appear in [33] since we also consider scalar fluctuations.

In section 4.2, we found two sources of hyper multiplets. First there are holomorphic

scalars, which are equivalent to holomorphic (3, 0) forms. Second there are holomorphic

primitive (2, 1) forms. We find more modes since our discussion includes scalar fluctuations.

The field content of [37] is that of a massless graviton multiplet together with a long

vector multiplet. In the context of our paper, this corresponds to modes associated to

constant scalars f .

5 Conclusions

The main result of this paper is the computation of the gravity superconformal index —

equation (2.3). The supergravity calculation of the index is based on Kaluza-Klein analysis

of Sasaki-Einstein manifolds in section 4.

A slight question remains regarding our analysis of the short gravitino multiplet, where

we were not able to show that the three-form σ[3;q−4;−] vanishes when σ is holomorphic

and the multiplet shortens. This is a shortcoming of our brute-force approach to con-

structing wave-functions, since one has to argue their vanishing one-by-one. An analysis

of the supergravity variations relating the modes [15] is a starting point towards a more

satisfactory derivation.

There is a number of further problems in the supergravity sector that we leave for future

work. First, it is important to prove equation (4.5). Furthermore, there could possibly be

additional shortening conditions. Finally, it would be very interesting to determine the

spectrum of short multiplets and the superconformal index of more general supergravity
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backgrounds than compactifications on Sasaki-Einstein manifolds. This would give insight

into theories whose holographic duals are even less well understood.

The superconformal index and the central charge a of four-dimensional superconformal

field theories are invariants of their associated Calabi-Yau 3-algebra [13, 38]. It would be

very interesting to find a similar mathematical structure governing three-dimensional quiver

Chern-Simons theories.

The superconformal index has proven to be a powerful tool in checking proposed

dualities. While we have shown the equality of the field theory and gravity indices in

several examples, much work remains to be done to show the equality with the field theory

index for arbitrary geometries. All proposed field theory duals to Sasaki-Einstein seven

manifolds can be tested by computing the field theory index [8, 9, 12] and comparing it

with the gravity index in equation (2.3).

Currently, there is no general procedure for constructing the field theory dual to a

general Sasaki-Einstein seven manifold. For progress in this direction see [39–42]. It would

be interesting to match the results of this paper with a direct field theory computation of

the index for the theories proposed in [39–42].9 We hope that the superconformal index

will help to explore new holographic dualities.
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A Conventions and useful expressions

We list our conventions for the calculations in sections 4.2 and appendix B.

The Hodge star satisfies

?αµ1...µd−p =

√
g

p!
ε

ν1...νp
µ1...µd−p αν1...νp ,

?? = (−1)p(d−p),

(A.1)

the generalization of the interior product y

αpyβq =
1

p!
αµ1...µpβµ1...µpνq−p...νqdx

νq−p ⊗ · · · ⊗ dxνq ,

?(α ∧ β) = αy ? β,

γ1y(αp ∧ βq) = (γ1yαp) ∧ βq + (−1)pα ∧ (γ1yβq),

(A.2)

9See also [43].
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Scalars

π C3 Y[abc] Q2 + 6mQ+ 8m2

φ hab Y(ab) ∆L − 4m2

S haa, C3 Y ∆0 + 44m2 − 12m
√

∆0 + 9m2

Σ haa, C3 Y ∆0 + 44m2 + 12m
√

∆0 + 9m2

1-forms

A hma Cmna ∆1 + 12m2 − 6
√

∆1 + 4m2

W hma Cmna ∆1 + 12m2 + 6
√

∆1 + 4m2

Z C3 Y[ab] ∆2

Spin-2

h hTTµν Y ∆0

Table 20. The anti-de Sitter mass relations [20, 21]. The table lists the AdS4 field, its 11-

dimensional origin, the resulting 7-dimensional wave-function, and finally the mass operator. Here,

m refers to the mass scale of the Freund-Rubin compactification, see (A.4), and is not to be confused

with the mass of the bulk fields. In our conventions, m = 1.

Scalars ∆± = 1
2(3±

√
9 + 4R2(m2 − 8))

p-Forms ∆± = 1
2(3±

√
(3− 2p)2 + 4R2m2)

Table 21. Scaling dimension and anti-de Sitter mass. Here, m is the mass of the relevant bulk

field. For the origin of the slightly awkward −8 term in the scalar expression, see footnote 5 in [24].

Similarly, R = 1/2.

and the various kinetic operators are given by

∆0α = −∇κ∇κα,

∆1αµ = (−∇κ∇κ + 6)αµ,

∆2αµν = −∇κ∇καµν − 2Rκµλνα
κλ + 12αµν ,

Qαµ1µ2µ3 = (?dα)µ1µ2µ3 =

√
g

4!
ε ν1...ν4
µ1µ2µ3

dαν1...ν4 .

(A.3)

The operator Q as defined here and �[1,1,1]
y = M(1)3 of [15] are related as Q = 4�[1,1,1]

y since

�[1,1,1]
y Y abc = 1

4!ε
abcd

efgDdY
efg.

Turning to the properties of the Sasaki-Einstein links, we start with the Einstein

condition

Rµν = 6m2gµν . (A.4)
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Here, we chose m = 1. Moreover, the spaces inherit from the Calabi-Yau cone the forms

η, J , Ω. The Reeb vector ξ is given by

ξµ = gµνην . (A.5)

The forms satisfy

∇µην = Jµν , ∇κJµν = −ηµgκν + ηνgκµ, ∇κΩλµν = 4ıη[κΩλµν], (A.6)

as well as

ηyη = 1, ηyJ = ηyΩ = 0. (A.7)

It follows that η, J , Ω carry the charges 0, 0, 4 under the Lie derivative along the Reeb

vector £ξ. Using the above relations, one can derive a number of useful contractions

involving the Riemann tensor, such as

Rκλµνη
ν = gκµηλ − gλµηκ,

J o
µ Rκλνo − J o

ν Rκλµo = gλνJκµ + gκµJλν − gλµJκν − gκνJλµ,
2RµκνλΩµντ = RµνκλΩµντ ,

RµνκλΩκλτ = 2Ω τ
µν .

(A.8)

Finally,

?1 =
1

3!
J3 ∧ η, ?η =

1

3!
J3, ?J =

1

2
η ∧ J2, ?Ω = −ıΩ ∧ η. (A.9)

As discussed in [13], the cotangent space can be decomposed as

TY ∗ = T 1,0Y ∗ ⊕ T 0,1Y ∗ ⊕ Cη (A.10)

where T 1,0Y ∗ is the eigenspace of Π+:

Π± =
1

2
(g ∓ ıJ − η ⊗ η). (A.11)

Thus, generic k-forms can decomposed as (k = p+ q)

Ωk(Y ) = Ωp,q ⊕ (Ωp,q−1 ⊕ Ωp−1,q) ∧ η. (A.12)

Furthermore, the exterior derivative can be decomposed as

d = ∂B + ∂̄B + η ∧£ξ. (A.13)

The tangential Cauchy-Riemann operators satisfy

∂B ∂̄B + ∂̄B∂B = −2J ∧£ξ. (A.14)
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B Details of the supergravity analysis

In what follows, we will generally start with a eigenform α of the Hodge-de Rham operator,

and use it to construct further eigenforms of ∆ or Q. The procedure is quite straightfor-

ward;10 one chooses a basis v
[α;p;q]
i and diagonalizes the matrix

∆v
[α;p;q]
i = M

[α;p;q]
ij v

[α;p;q]
j . (B.1)

Here, α labels the mode we started with, p the form degree and q the R-charge of the new

modes.

B.1 Wave functions constructed from scalars

Consider a scalar eigenmode of the Hodge-de Rham operator with definite R-charge,

∆f = δf, £ξf = ıqf = 2ıŷ0f. (B.2)

At the level of one-forms, we consider the basis

v
[f ;1;q]
i =

{
ηf ; ı(∂B − ∂̄B)f ; df

}
(B.3)

and find

M [f ;1;q] =

δ + 12 2 0

2δ δ 2ıq

0 0 δ

 . (B.4)

Diagonalization yields a gauge mode df as well as the forms f [1;q;+] and f [1;q;−].

Note that it is not possible to construct one-forms from f with charge q ± 4 — essen-

tially, one would have to construct (2, 0) or (0, 2) forms out of f and contract them with

Ω or its conjugate. No such two-forms exist that are linear in f .

Proceeding to two-forms, we consider

v
[f ;2;q]
i =

{
d∂̄Bf, η ∧ df, fJ, η ∧ (∂B − ∂̄B)f

}
, (B.5)

and find

M [f ;2;q] =


δ − 2q ı[q(q + 6)− δ] −2ı[q(q + 6)− δ] 0

4ı δ + 2q + 8 −4q 0

0 −2 δ + 12 0

0 2q −4q δ + 8.

 (B.6)

Diagonalization gives two gauge modes — df [1;q;±] — as well as f [2;q;a] and f [2;q;b].

At the level of two-forms we find the first modes with shifted charge. There is only

one basis element in each case, so one can read off M [f ;2;q±4] from

∆(∂̄BfyΩ) = (δ + 8)∂̄BfyΩ, £ξ(∂̄BfyΩ) = ı(q + 4)(∂̄BfyΩ),

∆(∂BfyΩ̄) = (δ + 8)∂BfyΩ̄, £ξ(∂BfyΩ̄) = ı(q − 4)(∂BfyΩ̄).
(B.7)

10Some of the calculations get fairly involved. We found the Mathematica package xAct extremely

helpful. [44, 45]
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Turning to three-forms, we study Q = ?d instead of ∆ with basis

v
[f ;3;q]
i = {df ∧ J, fη ∧ J, (dfyJ) ∧ J, η ∧ d(dfyJ)} , (B.8)

and

M [f,3,q] =


0 0 0 0

0 4 −1 0

−ıq −δ 0 −1

−2ıq −2δ 0 −2

 . (B.9)

Again, there are two gauge modes and f [3;q;±]

Now, there are two different ways to construct a charged (3, 0) form: ∂B(∂̄BfyΩ) and

fΩ. It is reasonable to assume that they are linearly related as long as f is not holomorphic.

Contracting both with Ω̄, one finds that

∂B(∂̄BfyΩ) = −δ − q(q + 6)

2
fΩ. (B.10)

We still include both modes in the basis,

v
[f ;3;q+4]
i =

{
fΩ, η ∧ (∂̄BfyΩ), (∂B − ∂̄B)(∂̄BfyΩ), d(∂̄BfyΩ)

}
, (B.11)

and find

M [f ;3;q+4] =


q + 4 ı 0 0

0 2 ı 0

0 −ı(δ + 8) 0 q + 4

0 0 0 0

 . (B.12)

There is one gauge mode and one additional mode with eigenvalue q+ 4 that is a remnant

of the fact that our basis is not a basis. One also finds two eigenmodes f [3;q+4;±].

An identical calculation gives

v
[f ;3;q−4]
i =

{
fΩ̄, η ∧ (∂BfyΩ̄), (∂B − ∂̄B)(∂BfyΩ̄), d(∂BfyΩ̄)

}
, (B.13)

and

M [f ;3;q−4] =


−(q − 4) −ı 0 0

0 2 ı 0

0 −ı(δ + 8) 0 q − 4

0 0 0 0

 . (B.14)

One can also derive an equivalent relation for (B.10) with the anti-holomorphicity

bound (B.17) appearing on the right hand side.

Shortening conditions. The spectrum for f is actually bounded from below. Since∫
vol f̄∆f =

∫
vol
[
2|∂̄Bf |2 + q(q + 6)f̄f

]
, (B.15)

it follows that

δ ≥ q(q + 6) (B.16)
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with equality if and only if f is holomorphic. Similarly, one finds that antiholomorphic f

corresponds to the bound

δ ≥ q(q − 6). (B.17)

The latter is to be expected, since complex conjugation acts on the charge as q 7→ −q. Due

to the Lichnerowicz obstruction [24], holomorphic, non-constant f satisfy q ≥ 1.

We introduce E∂̄B via

δ = 4E∂̄B (E∂̄B + 3), (B.18)

so (B.16) amounts to E∂̄B ≥
q
2 .

If f is holomorphic the bound (B.15) is satisfied and many of the basis elements v
[f ;p]
i

vanish. So do a number of wave functions:

f [1;q;−], f [2;q;b], f [2;q+4], f [3;q;−], f [3;q+4;−] or f [3;q+4;+]. (B.19)

A number of remarks are in order here. First of all, neither of f [2;q;a,b] vanishes, yet they

coincide. We simply label the remaining mode a. Furthermore, out of the four forms in

v[f ;3;q+4], all except fΩ vanish. The latter is now an eigenform with eigenvalue q+4. Since

δ = q(q + 6), this agrees with the eigenvalues of f [3;q+4;+] for q ≥ 0. For q < −6 however,

it agrees with f [3;q+4;−].

Anti-holomorphy of f leads to the vanishing of

f [1;q;+], f [2;q;b], f [2;q−4], f [3;q;+], f [3;q−4;+] or f [3;q−4;−]. (B.20)

Again, f [2;q;a,b] conincide while now all elements of f [f ;3;q−4] except fΩ̄ vanish. Since this

has eigenvalue q− 4, it corresponds to the − mode for q ≥ 6 and to the + mode for q ≤ 0.

The spectrum simplifies further when f is constant. Now, we have δ = 0 = q while all

modes except

f [0;0], f [1;0;+], f [3;0;+], f [3;+4;+], f [3;−4;+] (B.21)

vanish. We ignore fJ = f [2;0;a] which is also an eigenmode, yet pure gauge.

Independent shortening conditions are given by

∂̄B(∂̄BfyΩ) = 0, (B.22)

as well as ∂B(∂BfyΩ̄) = 0. See the discussion following equation (4.10) for details.

B.2 Wave functions derived from one-forms

We next consider one forms that were not covered in the discussion in section B.1. They

need to be orthogonal to ηf , ∂Bf , ∂̄Bf . Moreover, such modes cannot be mapped to

scalars. In total one needs to impose11

ηyσ = d†σ = ∂B
†σ = ∂̄†Bσ = Jydσ = 0. (B.23)

11Note that the primitivity condition on the exterior derivative — Jydσ = 0 — is equivalent to the

vanishing of ∂B
†σ or ∂̄†Bσ.
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Finally, σ must not be exact in terms of d, ∂B, ∂̄B. In what follows, we’ll assume that

σ[1;q] = σ ∈ Ω1,0, ∆1σ = δσ, £ξσ = ıqσ = 2ıŷ0σ. (B.24)

There is actually a second one form with identical Hodge-de Rham eigenvalue δ:

σ[1;q−4] = ∂BσyΩ̄. (B.25)

At the level of two-forms with charge q, we consider

v
[σ;2;q]
i =

{
σ ∧ η, ı(∂B − ∂̄B)σ − η ∧ σ, dσ

}
(B.26)

and find

M [σ;2;q] =

 δ + 10 −2 0

−2(δ − 5) (δ − 2) 2ıq

0 0 δ

 . (B.27)

The two non-gauge eigenmodes are listed in table 9.

Two-forms with shifted charge q − 4 are constructed from the (0, 1) form ∂BσyΩ̄:

v
[σ;2;q−4]
i =

{
η ∧ (∂BσyΩ̄), (∂B − ∂̄B)(∂BσyΩ̄), d(∂BσyΩ̄)

}
. (B.28)

Then

M [σ;2;q−4] =

δ + 8 2ı 0

−2ıδ δ 2q − 8

0 0 δ

 . (B.29)

Once again, there are two modes with eigenvalues δ + 4± 2
√
δ + 4.

Three-forms of charge q can be constructed from

v
[σ;3;q]
i =

{
J ∧ σ, η ∧ (∂B − ∂̄B)σ, d(∂B − ∂̄B − 2ıη∧)σ

}
. (B.30)

Diagonalizing

M [σ;3;q] =

 q 1 0

δ − q2 + 4 −q −ı
0 0 0

 , (B.31)

one finds the modes σ[3;q;±] with eigenvalues ±
√
δ + 4 in table 9.

For three-forms with charge q − 4, one uses the same construction replacing σ with

∂BσyΩ̄. Then

v
[σ;3;q−4]
i =

{
J ∧ (∂BσyΩ̄), η ∧ (∂B − ∂̄B)(∂BσyΩ̄), d(∂B − ∂̄B − 2ıη∧)(∂BσyΩ̄)

}
(B.32)

and

M [σ;3;q−4] =

 −q + 4 −1 0

−δ + q(q − 8) + 12 q − 4 ı

0 0 0

 . (B.33)

The eigenvalues are again ±
√
δ + 4.
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Shortening conditions. In principle, the Hodge-de Rham operator ∆1 should satisfy a

bound similar to (B.16). By contracting with J , one can verify the equation

∂B ∂̄Bσ =
ı

4
[δ − q(q + 4)]J ∧ σ, (B.34)

which suggests

δ ≥ q(q + 4). (B.35)

In light of (B.35), we define E∂̄B via

δ = 4E∂̄B (E∂̄B + 2). (B.36)

The holomorphy bound is again given by E∂̄B ≥
q
2 . Using similar methods one can show

that antiholomorhpic (0, 1) forms τ satisfy

∂̄B∂Bτ = − ı
4

[δ − q(q − 4)]J ∧ τ, (B.37)

suggesting the bound

δ ≥ q(q − 4). (B.38)

If σ is holomorphic, the basis elements in v[σ;2,3;q] become linearly dependent and

the modes σ[2,3;q;−] vanish. Since H1,0
∂B

= 0, none of the shortening conditions affects the

(0, 1)-form ∂BσyΩ̄. If σ is holomorphic, the associated (0, 1) form ∂BσyΩ̄ is not anti-

holomorphic.12 Since the fact that σ is holomorphic implies

∆(∂BσyΩ̄) = q(q + 4)∂BσyΩ̄, £ξ∂BσyΩ̄ = ı(q − 4)∂BσyΩ̄, (B.39)

yet (B.38) demands that

∆(∂BσyΩ̄) = (q − 4)(q − 8)∂BσyΩ̄, (B.40)

which is clearly impossible.

B.3 Wave functions derived from two-forms

Proceeding to higher from degree, we consider two-forms that were not captured in the

previous sections. See [32] for a similar, recent construction. Again we have to impose

orthogonality to previously constructed forms while also demanding that these forms are

not exact. Finally, it should not be possible to map them to forms of lower degree. Hence

we consider forms χ satisfying

χyΩ = χyΩ̄ = χyJ = ηyχ = d†χ = ∂B
†χ = ∂̄†Bχ = 0. (B.41)

Note that χ is primitive.

χ[2;q] = χ ∈ Ω1,1
p , ∆2χ = δχ, £ξχ = ıχ. (B.42)

12It cannot be holomorphic since H0,1

∂̄B
= 0.
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In order to construct three-forms, we use the basis

v
[χ;3;q]
i =

{
η ∧ χ, (∂B − ∂̄B)χ, dχ

}
. (B.43)

Then the matrix

M [χ;3;q] =

−2 −ı 0

ıδ 0 −q
0 0 0

 (B.44)

yields two eigenmodes, listed in table 9.

Shortening conditions. Contracting four-forms with J , one finds

Jy(J ∧ χ) = χ, Jy(d∂̄Bχ) = ı
δ − q(q + 2)

2
χ. (B.45)

Thus

∂̄Bχ = 0 ⇒ δ = q(q + 2). (B.46)

Again we define E∂̄B accordingly,

δ = 4E∂̄B (E∂̄B + 1) ⇒ E∂̄B ≥
q

2
. (B.47)

Moreover, when χ is holomorphic, the basis elements in v
[χ;3;q]
i become linearly depen-

dent. It turns out that the mode χ[3;q;+] vanishes.

When dχ = 0, χ is both holo- and anti-holomorphic with vanishing charge q. Again

χ[3;q;+] vanishes and q = δ = 0. As we argue in section 4.2, such forms are relevant for

Betti multiplets.

B.4 Additional three-form modes

Finally, we consider the possibility of three-forms that have eluded us. The same consid-

erations as in sections B.2 and B.3 yield that such forms are primitive, lie in Ω2,1 ⊕ Ω1,2.

They are closed13 under ∂B and ∂̄B, co-closed under d, ∂B, ∂̄B and satisfy14 ζκλ[µΩ̄
κλ

ν] = 0.

Now, primitive, co-closed (2, 1) and (1, 2) forms are holomorphic if and only if they are

antiholomorphic. Since ∂B ∂̄B + ∂̄B∂B = −2J ∧ £ξ, consistency requires that they either

carry no charge or are annihilated by the action of the Lefschetz operator J∧. If they carry

no charge, they are closed under the exterior d. Assuming that

ζ [3;q] = ζ ∈ Ω2,1, ϑ[3;q] = ϑ ∈ Ω1,2, £ξζ = ıqζ,£ξϑ = ıqϑ, (B.48)

one finds that

Qζ = ?dζ = −qζ and Qϑ = qϑ. (B.49)

13Otherwise ζ ∈ Ω2,1 for example could be mapped to Ω1,1 ∧ η via ?∂̄Bζ.
14Equation (B.48) holds without imposing this. However, it appears necessary to impose this rule in

order to avoid overlap with the modes constructed in section B.2 since

(ζκλµΩ̄ κλ
ν )Ωµνρdx

ρ ∈ Ω1,0.
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C Comments on Lefschetz decomposition and Kohn-Rossi cohomology

We remind the reader that on Kähler manifolds, Lefschetz decomposition is the unique

decomposition of k-forms in terms of primitive forms k − 2h forms a(h):

α =
∑
h=0

a(h) ∧ Jh. (C.1)

On Kähler manifolds, the decomposition is compatible with cohomology.

Studying the standard proofs for the decomposition of forms [46, 47], it becomes clear

that the proof of decomposition also holds in the Sasaki-Einstein case. I.e. given a generic

k-form α, there are unique forms a⊥(h), a
‖
(h) (h = 0, 1, 2, . . . ) of degree k− 2h and k− 2h− 1

respectively and orthogonal to the Reeb vector ξ such that

α = a⊥(h) ∧ J
h + η ∧ a‖(h) ∧ J

h. (C.2)

This decomposition is not compatible with de Rham cohomology as follows from the ap-

plication of the exterior d:

dα = (da⊥(h) + 2a
‖
(h−1)) ∧ J

h − η ∧ da‖(h) ∧ J
h. (C.3)

dα = 0 requires that the α
‖
(h) are closed, yet the same cannot be said for the α⊥(h).

Let us turn to Kohn-Rossi cohomology. Here, we only consider elements of Ωp,q
Y and

thus all forms are annihilated by the action of ηy. Hence we can drop the η∧ terms in the

decomposition (and thus also the ⊥ subscripts). Acting with ∂̄B,

∂̄Bα =

bk/2c∑
h=0

∂̄Ba(h) ∧ Jh, (C.4)

and we find that α is ∂̄B-closed if and only if the a(h) are. In what follows we will assume

that this is the case (i.e. that α is ∂̄B-closed). Noting that α is a £ξ eigenmode if and only

if the a(h) are, we assume also that £ξa(h) = ıqa(h) with q 6= 0. Finally, we will assume

that a(0) = 0. Then, using (A.14), we find that α is ∂̄B-exact.

∂̄B

 ı

2
q−1

bk/2c∑
h=1

∂Ba(h) ∧ Jh−1

 =

bk/2c∑
h=1

a(h) ∧ Jh = α. (C.5)

Thus we find the following result: All Kohn-Rossi cohomology classes [α] are either prim-

itive or carry zero charge under £ξ. This is a somewhat typical result for Sasaki-Einstein

geometry. The U(1)-charge is an obstruction for the Lefschetz decomposition to behave

as on Kähler manifolds. It seems reasonable to expect that for forms with zero charge

Lefschetz decomposition extends to cohomology. With this we conjecture that Kohn-Rossi

cohomology groups allow for the following decomposition, which makes use of the fact that

the £ξ operator commutes with ∂̄B, J∧ and their adjoints:

Hp,q

∂̄B
= ⊕q̂ 6=0

[
Hp,q

∂̄B

]£ξ=iq̂
primitive

⊕k
[
Hp−k,q−k
∂̄B

]£ξ=0
. (C.6)
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In the case of (1, 1) forms, it follows immediately that all forms are primitive, since

the restriction of H0,0

∂̄B
to elements with zero charge is trivial:

H1,1

∂̄B
=
[
H1,1

∂̄B

]
primitive

⊕
[
H0,0

∂̄B

]£ξ=0
=
[
H1,1

∂̄B

]
primitive

. (C.7)

A similar result holds for (2, 1) forms. Here, the question is whether holmorphic (1, 0)

modes σ with charge 0 contribute to H2,1

∂̄B
via σ ∧ J . Since σ is holomorphic, the bound on

the Laplace operator is satisfied. Since the charge is zero, σ is harmonic and thus closed.

Hence, ∂Bσ = 0. Since H1,0
∂B

= 0, there is a scalar f such that σ = ∂Bf . Thus, all elements

of H2,1

∂̄B
are primitive.

Interestingly, we can use the above construction to locally construct (1, 0) forms jf
that satisfy ∂̄Bjf = J . Pick any scalar function f that is holomorphic with respect to ∂̄B
and carries charge q. Then define

jf =
ı

2
∂B log f q

−1
. (C.8)

Again, application of (A.14) gives the desired result ∂̄Bjf = J locally.

D Cohomology using Borel-Weil-Bott

The twisted cohomology groups of homogenous spaces can be computed by an extension

of the Borel-Weil-Bott theorem [48, 49]. We summarize the results for complex projective

space and the quadric Q ∈ CP4. For CPn with ample line bundle L = O(1), the ordinary

cohomology groups are

Hp(CPn,Ωq) =

{
C if p = 0

0 otherwise.

For ` > 0, the twisted cohomology groups are

Hp(CP3,Ωq(`)) =



χA3

[`,0,0] if (p,q) = (0,0)

χA3

[`−2,1,0] if (p,q) = (0,1)

χA3

[`−4,0,1] if (p,q) = (0,2)

χA3

[`−4,0,0] if (p,q) = (0,3)

0 otherwise.

The quadric Q ∈ CP4 is equipped with the line bundle L = OQ(1), which is the pullback

of OCP4(1) from the ambient projective space. Its cohomology groups are

Hp(Q,Ωq) =

{
C if p = 0

0 otherwise.
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For ` > 0, the twisted cohomology groups are

Hp(Q,Ωq(`)) =



χ
SO(5)
[`,0] if (p,q) = (0,0)

χ
SO(5)
[`−2,2] if (p,q) = (0,1)

χ
SO(5)
[`−3,2] if (p,q) = (0,2)

χ
SO(5)
[`−3,0] if (p,q) = (0,3)

C if (p, q) = (1, 2) and ` = 1.

0 otherwise.
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