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1 Introduction

Entanglement entropy is a measure of the quantum correlations of a system. It has a very
wide range of applications from condensed matter physics to quantum field theory [1-33]
and AdS/CFT [35-62]. The EE in QFT is generally hard to calculate, and most computa-
tions have been done in simple setups, such as: free fields, CFTs, and symmetric entangling
surfaces (e.g. spheres and planes). Thus there is a need to obtain analytical results for in-
teracting theories, non-CFTs, and less symmetrical entangling surfaces. This work aims to
make a step in this direction by studying the shape dependence of EE. Previous works on
the shape dependence of EE include [63-81].
The divergent structure of entanglement entropy for a CF'T in d-dimensions is:

Ri-2 Ri-4 al ()5 s g —odd
S:Cd—2m+cd—4(ylj+...+ e (=1) (1.1)

02?—2 + (—1)%5(‘1“1") log(£), d = even

where R is the scale of the entangling region, and § is the UV cutoff. The leading divergence
is the area law, and all of the power law divergences are non-universal. We will be interested
in the universal term S("™V) which in d = even is the coefficient of the log divergence and
in d = odd it is the finite term.



Figure 1. Illustration of a perturbed circle 7(¢) = 1+ €Y a,cos(ng). Left: a perturbation
without a zero mode ay = 0. Right: a perturbation with a zero mode ag = 0.3.

Consider a QFT parametrized by coordinates (t,y;,r), where i = 1...,d — 2. For
instance take r to be the radial coordinate in spherical coordinates, and y; to be angles
parameterizing the entangling surface. We will always work in a constant time slice ¢t = 0.
Consider a codimension-2 entangling surface defined by:

r(yi) = ro(yi) (1.2)

where ro(y;) is some given function of y;. Thus we choose r to be the dependent coordinate,
and y; as the independent coordinates. We denote the entanglement entropy corresponding
to the entangling surface ro(y;) as Sy. Now we slightly perturb the entangling surface:

m(yi) = ro(yi) + ef (vi) (1.3)

where € is a small parameter, and f(y;) is some arbitrary perturbation function.!
The entanglement entropy will change as a result of the perturbation of the entangling

surface, and it can generally be written as an expansion in e:
S =Sy + Sie+ Soe® + ... (1.4)

The above procedure was carried out in [63, 64] for the case of a perturbed sphere for
a CFT in d dimensions. They start with a sphere entangling surface in a flat space-time
background, and perturb the sphere as follows:

T(Qd72) =R |[l+e¢ Z al,ml,...md,g,Yz,ml,...md,g (Qd72) (15)

l;my,..mq_3

where R is the sphere radius, the a’s are constants, and the Y’s are (real) hyper-spherical
harmonics. Then they calculate the resulting change in the universal term of the EE. They
find that the the change in the universal EE vanishes at 15 order, namely

S — g (1.6)

!As an example, a perturbed circle in d = 3 is shown in figure 1. In this case, (1.3) is given by:
r(¢) = R[1+€), ancos(ngd)], where we Fourier expanded the perturbation f. R is the radius of the circle,
¢ is the angle in polar coordinates, and a,, are the Fourier coefficients.



Thus, for a CFT the sphere is a local® extremum with respect to perturbations of
the entangling surface. Additionally, for holographic CFTs [64] uses the Ryu-Takayanagi
formula [35, 36] (more specifically, its generalization to higher derivative gravity [83-86])

to calculate the 2™ order correction Séuniv):

d+2 d

i 2 (d—1) ., d=odd

st _ o T > 2 [Ja+k-2)x{2 1.7
2 T2d_2r(d + 2)1—‘(%) lml.“mdil al,ml...md,l k:1< ) 1 d ( )

where C7p is the (positive) central charge appearing in the 2-point function: (T7T) ~ %;l.
A priori, Sguniv) could have depended on the three parameters CY,ts, and ¢4 of the 3-point
function (T'T'T), but it turns out that it depends just on Cr.

Séuniv) is clearly positive, implying that the sphere is a local minimum for holographic
CFTs. (1.7) was compared to Sguniv) obtained from Solodukhin’s formula in 4d CFTs, and

precise agreement was found.

In this work we will generalize the above results of [64] to less symmetric entangling
surfaces, and (in some cases) to non-CFTs. We will show that entangling surfaces with a ro-
tational or translational symmetry in some direction (see figure 2), extremize the universal
EE with respect to shape deformations that break some of the symmetry,? i.e.:

S — g (1.8)

The proof of this result will be purely geometrical, and hence will apply to any QFT (and
also to Renyi entropy). A simple corollary is that for d = even, (1.8) is true also for

multiply connected entangling surfaces.

(univ)

274 order correction S (whose sign determines

Additionally, we will calculate the
if the local extremum is a minimum or a maximum) for some simple entangling surfaces.
We perform this calculation using holography (the Ryu-Takayanagi formula), and also by
using Solodukhin’s formula (for 4d CFTs). For several examples of symmetric entangling
surfaces, we find that the 2°d order correction is positive, and this corresponds to a local
minimum. We conjecture this to hold more generally to symmetric entangling surfaces.
We also comment on results for free massive fields, and 4d Renyi entropy.

2If the topology of the entangling surface is allowed to change, then the EE can become unbounded from
below, as shown in 4d in [82].

3Tt should be emphasized that the family of shape perturbations that extremize the EE, are only those
which break some of the symmetry of the original entangling surface. For example, for a 3d circle the
perturbation in figure 1-left is allowed, whereas the perturbation in figure 1-right is not allowed because it
has a component in the radial direction (a zero mode of the Fourier expansion). Such perturbations cannot
deform a sphere into a larger/smaller sphere. More generally, such perturbations cannot deform a surface
of revolution into a different surface of revolution (containing the same number of symmetries).

“For d = even the universal term of the EE is a log divergence which is determined locally by the shape
of the entangling surface. Thus for a multiply connected entangling surface the log term is a superposition
of the contribution from each separate piece of the entangling surface.



Figure 2. Left: an example of a d = 4 surface of revolution entangling surface with rotational sym-
metry. Right: a d = 4 waveguide entangling surface with translational symmetry. Such symmetric
entangling surfaces can obviously be generalized to higher dimensions.

2 The first order correction: stationarity

Consider a QFT parametrized by coordinates (¢, y;, ), where i = 1...,d — 3. Assume ¢
to be a symmetry direction of the entangling surface. Now perturb the entangling surface
(see (1.3)) with a single Fourier mode:®

7“(¢>7 yi) = TO(@/i) + €Anan(yi) COS(n¢) ’ n#0 (2'4)

where ro(y;) doesn’t depend on the symmetry direction ¢, the a,(y;) are functions of y;,
and A, are constants. The resulting EE can be expanded as:

S:SQ+651+62SQ+... (2.5)

Now lets consider the same perturbation but with negative sign, i.e. € — —e:

(0, y:) = ro(yi) — €Anan(y;) cos(ng), n #0 (2.6)

The resulting EE will be (just flipping the sign of € in (2.5):

S=2S8)— €S +€2Sy + ... (2.7)
®A general perturbation (without a zero mode) can be written as:
r(6,95) = 10(y) + € 3 (Anan(y:) cos(ne) + Bubn(ys) sin(ng) ) (2.1)
n#0
Then the EE can be expanded:
S=So+651+6252+... (2.2)
At linear order in € the modes don’t mix, and their contributions to S; add up linearly:
Si=Y (AnUl(n) 1 BoUs (n)) (2.3)
n#0

where Ui (n) and Usz(n) are some functions of n. Because the modes don’t mix at linear order, we can
compute the contribution of a single mode and then sum over all modes.



But the two perturbations (2.6) and (2.4) describe precisely the same entangling sur-
face, only rotated. This can be seen by performing ¢ — ¢ + 7 on (2.6), which gives (2.4).
Since the two entangling surfaces are the same, they have same EE and therefore from (2.5)
and (2.7) we have:

S=5 — 5=0 (2.8)
and we proved what we wanted.

An important point to make is that the proof above used only the rotation symmetry,
and did not use any specific property of entanglement entropy or of the QFT. Therefore
stationarity will hold for any quantity which is a function of the surface (e.g. Renyi entropy),
and for any QFT.

3 The second order correction in holography

Consider a boundary QFT parametrized by coordinates (t,y;,7), i =1...,d — 2. z is the
holographic coordinate, and we set ¢ = 0. The holographic EE according to the Ryu-
Takayanagi formula is:

S = /ddeidz L(z,r,y;) (3.1)
where £ = %é?g. The corresponding equation of motion for the bulk surface is:
N
oL d 0L d 0L
= e — | 3.2
or  dz0(0.r) dy; 0(0y,r) (32)
where there is a summation convention on y;.
Consider an entangling surface defined by:
r(yi) = ro(yi) (3.3)
Now perturb the entangling surface:
r(yi) = ro(yi) + ef (i) (3.4)

where ¢ is a small parameter. Then the bulk surface will also get perturbed:©
r(2,9:) = r0(2,9) + er1(z,4i) + €122, 41) + ... (3.5)

For the rest of this section we assume d = even dimensions, and we will want to
compute the universal log term. We can then write the resulting perturbed £ and S as:

S =Sy + Sie+ 5262 +...= /ddZyidzﬁ = /ddeidZ |:£0 + Lie+ 5262 + .. ] (3.6)

5We use the same letter r for the entangling surface and the bulk surface. They can simply be distin-
guished by the fact that for the bulk surface there is a z dependence.



We can derive a formula for the 2°4 order correction Sy. Assuming that the entangling
surface has a symmetry in all directions (e.g. the cylinder surface in the next section),
terms containing ro will fall and we get:

g dd oe i o
52 = 2{ /d yidz [Tl de dy; 0(0y,T) +0ym de 0(0y,T) | o

d oLr } 57
z2=0

+ / d2yir —
OM ! de@(@zr)
Now let us assume that the entangling surface is a cylinder SP x R427P in flat space-

e=0

3.1 Cylinder entangling surface

time. We denote y; as cartesian directions along RY=27P (where —L < y; < L) and €, as
directions along the sphere SP (of radius R). The metric in cylindrical coordinates is:

ds? = Y 130002 a4 a? + ar? + r2d0?) (3.8)

22

where «(z) and f(z) are some functions of z. The holographic EE written in these cylin-
drical coordinates is (see also (A.20)):

S = /dzddzpydep L(z,7,y5,p) (3.9)
where:
oy 1
L(z,7,v;,Qp) = 7"Zd1_(12’)\/1 + Fo(2)(0.7)? + (0y,7)% + 72(391,1")2 (3.10)

d—1 _
with Fi(z) = %a%ﬁlﬂ and Fy(z) = 871, For an AdS metric we have: Fy(z) = 1, and
d
A

| N
R
FH(Z):Z 4G§$'

We Fourier expand the perturbation f in (3.4):

d—2—p
Fly Q) = > [a{n]-,z,,}Ylp(Qp) 11 COS(nz'yi)] (3.11)
=1

{njvlp}

where Y; (€2,) are (real) hyperspherical harmonics, the n; are integers, the A(n,1,} are the
coefficients of the Fourier expansion, and for conciseness we defined {n;} =nq,...,ng_2_,
and {lp} =1,my...,mp_1.

The bulk surface perturbation 71 of (3.5) can also be Fourier expanded (see (A.25)):

d—2—p
1
P, Q) = Y [a{n,zp}r&ny,p}<zmp<ﬂp> II cos<m-yz~>] (3.12)

{n.lp} i=1
(1)

. . e (1) B
W)here 7; {nj,lp}(z) are functions of z, which must obey the boundary condition: r {nj,lp}(z =
0)=1.

"The boundary QFT resides at z = 0.



Now we can derive an expression for the boundary term (the last term on the r.h.s.
of (3.7)):

L4=27P Ry (2) 071({1) 1} f{l) Ip} m )2
Njstp Tjstp
9, d— 1[1+F2 1/2 Z U n; lp} 1+ Fy(0.10)2 +p0d:To (T{”jﬁlp}> ’

{n;.lp}

Sbound

z=0

(3.13)

where L is the length of the R%~2~P directions, and we take the limit L — co. This formula

is a boundary term which is evaluated at the boundary z = . We will want to extract the
universal log divergence from this formula in d = even dimensions.

In principle, r¢(z) and 7“% ) 1 }( z) can be obtained by solving the EOM’s for the bulk

minimal surface (A.23) and (A. 26) These solutions will generally have Fefferman-Graham

type expansions of the form ([19, 43, 87, 88]):

ro(2) = qo + @22 + ... + qaz? + Gaz¥log(z) + ... (3.14)
r&)j,lp}(z) = ug 4 ugz® + ... 4 ugz® + gzt log(2) + ... (3.15)

The terms in (3.13) can then be written as:

NPT
107 (s 1,392 (ny 1)

[ +F2(3Z7“0) ]Zd 1 lo

(1) 2
pOzro(ry, ;1)
= dqouotglog z , % g~ dpuddqlogz  (3.16)

where we extracted the log terms. Using (3.13), and also the fact that the background is

d—1 a2 d
asymptotically AdS: F1(0) = fgcj\fs =2 QF((5+21))F(2)CT and F»(0) = 1, we get®

2

ghound.| _ (= e (%)C Ld-2-ppr—1 Z a? (Rud+pqd) log <R> (3.17)
2 llee™ (d41)r ( -1 {ny.ln} . ’

where we used ug = 1 and gy = R, and multiplied by (—1)%, see (1.1).

It can be shown that for the two special cases p = 0,1, the boundary term above is

(univ)

the only contribution to Sy . Thus the p = 1 case gives:

s _ CVETETG) s |
(d+1)r ( —1 T Z a{nj,l}(Rud+Qd) (3.18)
{nj7l}

We see from (3.18) that the sign of Sguniv) depends solely on the coefficients 44 and ¢4 of the
log term in the FG expansions. These coefficients can be obtained (in principle) by solving
the bulk EOMs (A.23) and (A.26). It might be interesting to understand if generally these
coefficients are constrained to have a definite sign. The p = 0 case (the plane) is examined
in the following subsection.

8Note that for a CFT, dimensional analysis (and (A.23), (A.26)) dictate the functional dependence of §q
and @iq such that: §o = fi(d)R™"" and i@a = f2(I,7, R, d), where f1, f2 are some functions and #* = Y, n?.
Note that there is no dependence on my, ..., mp_1, since the bulk EOM’s (A.23), (A.26) do not depend on
them. Likewise it can be seen that the sphere result (1.7) doesn’t depend on the m’s.



3.2 Plane entangling surface

The plane entangling surface R?~2 is a special case of the cylinder with p = 0. There-
fore (3.17) becomes:”
72 d+2
S(univ) _ (_ ) (
2 (d+1)r ( -1

INE
§)CTLd_2 > aj, i (3.19)
{n;}

(univ)

So the sign of S,
For a plane entangling surface and Einstein gravity in the bulk, we will find an explicit
solution'? (A.19):

depends solely on the coefficient 44, which we shall now determine.

d
2

o)) = /iv Ky (320)

2

where A is a normalization constant and = > ,n;. The small z expansion of this

function gives (see (A.16)) uq = (1"

= g e Therefore we have:

L

(umv) ™ (d - 1) d—2
S CrL 3.21
T 2420 (d + 2)(4 — 1)! {Z}" “n) (3:21)
5

Since the above expression is positive, we have proved that a plane is a local minimum
for Einstein gravity in the bulk. It is now natural to conjecture that (3.21) holds for any
CFT. (3.21) was derived for d = even, but it would be simple task to obtain the analogous
d = odd result. The d = odd result will differ from (3.21) only by its d dependence, and
for d = 3 it was obtained in [77].

For the case d = 4, (3.21) gives:

3L2 o

T 60 > Z n3 +n3)%a2, .. (3.22)

ng=1n3z=1

Séunlv .

This precisely matches (4.13) which we will obtain in the next section for 4d CFTs via
Solodukhin’s formula.

4 The second order correction in field theory

4.1 4d CFT: Solodukhin’s formula

For a d = even CFT there is a universal log term (1.1):

2=2 ~(univ R
Sl = (1) S0 1og (5) (4.1)

and as in (1.4), we can expand in small e:

(univ) Z S(UHIV (42)

“Note that (3.17), (3.18), and (3.19) apply to any asymptotically AdS background.
9This result was also derived in [52] in the context of “entanglement density”.



Solodukhin’s formula [65] (which applies to a CFT in 4d) is:!'!

Slmniv) — 1% /E Ao /7E; + 24% Ed%ﬁlg (4.3)
where Fs is the Euler density, and the integrals are over the entangling surface 3, and
I = Tr(k?) — Lpage = <k“,, - 1%,#)2 >0 (4.4)
2 me2
The second fundamental form and extrinsic curvature are defined as:
Ko = Vaith, kO =Tr(kp,) ="k,  Tr(k?) ="k ks, (4.5)

where 7, is the induced metric on the entangling surface.

We consider shape perturbations that leave the topology of the entangling surface
fixed, therefore the change in the Euler term above is zero, and Séumv) of (4.2) will be
given by the integral of Is:

(univ) €4 2
sgm = o2 /E d JWIQ(EZ (4.6)

In (4.4) I is always positive [78, 82] and is zero for the sphere. Therefore the sphere

(univ) )

locally minimizes I and S This argument also works for flat entangling surfaces

(plane, strips) since these have I = 0.
S(univ)
2

In the following, we calculate for several examples. See also [63, 64].

Example 1: plane entangling surface. The metric in cartesian coordinates is:
ds® = dz* + dy3 + dy3 (4.7)

Consider a plane at x = 0, where y2, y3 are coordinates along the surface. Now perturb
it as follows:

=0+ €ef(y2,y3) (4.8)
The vector normal to the surface is:
(1 ) —€fy27 —Efy3) ) where fyi = 8yif (4'9)

R 1

n, =

K 1+ 2(2+ 2)
g T Jys

The second fundamental form at order O(€?) is:

0 _62(fy3fy2y3+fy2fy2y2) _62(fy3fy3y3+fy2fy2y3)
kZu: _Ez(fy3fy2y3+fy2fy2y2) —€fyays —€fyays (4.10)
_52(fy3fy3y3 + fyo fyaus) —€fyays —€fysys

ky,, starts at order € since the unperturbed plane is flat. Plugging this in (4.4) gives:

62

V12 =1+ O(e®) = 5 [(fyzyz - fysys)Q +4 y22y3 ( y22 + 53) +0(%) (4.11)

a4 and ¢4 are the a and ¢ anomalies in 4d. Both are normalized such that for a real scalar field their

value is 1. We will sometimes use Ct = 3%4 instead of c4.



Note that I, starts at order €2, therefore the order e correction vanishes even before inte-
gration over the surface. Now Fourier expand the perturbation:

oo
Fy2,03) = Y ngng cos(nays) cos(ngys) (4.12)
na,n3=1
and plug (4.11), (4.12) in (4.6):
(univ) L2 &
S T Z (n3 +n3)%a2, ., (4.13)

no=1n3=1

where we used ¢4 = 37%C7, and the integral f_LL dy cos?(ny) = L, where the width of the
plane is very large L — oco. So we got a positive result, and therefore the universal term
of a plane in 4d is a local minimum. We see that (4.13) precisely matches the result (3.22)
obtained in holography.

We can compute higher orders of € in (4.2), and we note that for the plane all odd

terms vanish: Sg,iiq) = 0. At 4" order we get:

ni 7T3L2 Nt
§m e > Z at . (15n2 + 1508 + 13ndn2 + 13n3n2> (4.14)

ne=1nz=1

Example 2: sphere entangling surface. This case was calculated in [63, 64], and we
write their result.
The perturbed sphere entangling surface is:

r(0,6) = R[L+€f(0,0)] = R |1+ €Y amYim(0, ) (4.15)

lym

where R is the radius of the sphere. Plugging in (4.6) gives:
(univ) _
S5 16020% ~ DI+ 1) +2) (4.16)

This matches the holographic result (1.7) [64].

Example 3: cylinder entangling surface. The metric in cylindrical coordinates is:
ds? = dr® + dy* + r*d¢? (4.17)
Consider a perturbed cylinder entangling surface with radius R:

r(y,¢) = R+ef(y,9) (4.18)

We get:

VL] = 4R3[2f2+3f¢+2f¢¢+8ff¢¢ R*f24+8R*fr, —AR? [y fop+ 2R f7,]€* (4.19)

~10 -



Plugging f(y,®) = >, ,, an,m cos(me) cos(ny),

univ c
Sy = S /dydd)\fIQ‘Q:

Cr 320R3 Z Ay {2 —5m? +2m* + (nR)?(4m?* — 1) + 2(nR)* (4.20)

Thus Séuniv) > 0 for m > 2 and for all n, and the cylinder is a local minimum.

Example 4: 4d surface of revolution. Consider a surface of revolution entangling
surface (e.g. figure 2-left) given by:

r(6,¢) = r0(0) (4.21)

where we use spherical coordinates (r, 6, ¢). This surface has rotational symmetry in the
¢ direction. Now perturb the surface as follows:

r(0,¢) = ro(0)[1 + €f2(0) - f3(¢)] (4.22)

with f3(¢) = >, .0 am cos(mg). (4.3) and (4.4) give at most 4 derivatives of ¢, thus the
result can be written as a polynomial in m (after integrating over ¢):

(univ) _ C4
s¢ T / dﬁdgb\flg‘
T CT

/d9 Z [01 ro, f2,0)m" + Ga(ro, f2,0)m* + Gs(ro, f2,0)|  (4.23)

where the G;(rg, fo, ) are some functions of rg, fo and their derivatives. Explicit calculation
gives the m? coefficient:

T f3 <4+4 esc?(0)r3rf +16 csc?(0)rgre +24 csc?(0)rSrit+16r§r

Gi(ro, f2,0) = ) (4.24)

8rg sin O(rg+rf? )%
Since ro > 0, we see that G1(rg, f2,60) > 0. Therefore for perturbations with large enough

m (short wave-length perturbations) (4.23) is positive, and thus all 4d surfaces of revolution

are local minima. We are not able to show that the functions Ga(rg, f2,0), Gs(ro, f2,0) are
(univ)

positive (though the final integrated result S, may still turn out to be positive).

Example 5: 4d waveguide surface. Consider a general waveguide entangling surface
(e.g. figure 2-right) given by:
r(y, ¢) = ro(®) (4.25)

where we use cylindrical coordinates (r,y, ¢). This surface has translational symmetry in
the y direction. Now we perturb the surface as follows:

r=ro(@)[1 + efa(0) f3(y)] (4.26)

- 11 -



with f3(y) = >_,, .0 @m cos(my). The result can be written as a polynomial in m (after
integrating over y):

(univ) _ C4
%2 = 0n / dqbdy\f]?‘
T CT

/d¢ Z [G1 ro, fa)m* + Ga(ro, f2)m? + G3(ro, f2) (4.27)

where the G;(rg, f2) are some functions of rg, fo and their derivatives. Explicit calculation
gives the m? coefficient:

f3 (27“60 + 67“(8]7“62 + 67"87‘64 + 27“37"66) .

Gi(ro, f2) = (4.28)

4(r2 +f2)3
Therefore for perturbations with large enough m (short wave-length perturbations) (4.27)
is positive, and thus all 4d waveguide surfaces are local minima. We are not able to show
that the functions Ga(rg, f2), Gs(ro, f2) are positive (though the final integrated result

Séuniv) may still turn out to be positive).

4.2 Renyi entropy

There is a generalization of (4.3) to Renyi entropy in a 4d a CFT [70, 79]:
un1v 2 2
- Qg [ BB+ Qg [ Eovin (4.29)

where Stguniv) is the universal log term for the ¢-th Renyi entropy. Q12(q) are functions of
g such that Q1(1) = Q2(1) = 1, so it matches (4.3) in the EE limit ¢ — 1. Up to these
functions, (4.29) and (4.3) are the same, hence the results in the previous sections can be
used. In particular, if Q2(q) is positive then for any entangling surface the Renyi entropy
will have the same sign as the EE. Note that Q2(q) is positive for free fields, and there is
strong evidence that it is positive for holographic CFTs [70, 82, 89]. If this turns out to be
correct, then the Renyi entropy will be a local minimum whenever the EE is.

4.3 Free massive fields

Certain universal EE terms for free massive field theories have been found [16-19]. The so
called “universal area law” for free scalars or fermions with mass m has the following form:

(—1)#FygAsmd=2, d = odd
S = 4.30
{(—1)#:}/511427)16[2 log(md), d=even (4.:30)

where 74 is a positive constant that depends only on the dimension d. All of the shape
dependence is contained in Ay, the area of the entangling surface. Table 1 lists the sign
factors (—1)# in (4.30) for a Dirac fermion, a conformally coupled scalar, and a minimally
coupled scalar.
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Dirac Fermion | Conformal scalar | Minimal scalar
d = odd (-1 (-1 (—-1)F
d = even (—1)% (-1 (~1)%

Table 1. The sign factor in the “universal area law” (4.30).

As an example, let us now compute the “universal area law” term for a deformed
sphere entangling surface:

T(Qd,2> =R |1+e¢ Z a{lm}Y{lm}(Qd,z) (431)
{lm}
The area of the deformed sphere is:
d—1
_ a2 _ [d=Dm 2 55 o(d=2)(d=3) 45 2 3
AZ} = /de_Q’f' = T%I)R +e€ fR Z a{lm} + O(E ) (432)

{im}

where we plugged (4.31) and performed the integrals.

The first term on the r.h.s. is the area of the undeformed sphere, the O(e) correction
vanishes as expected, and the O(e?) correction is positive. Therefore the O(e?) correction
in S has the same sign as the zeroth order, which can be read from table 1. Generalizing to
non-spheres, it is easy to see that the area of a perturbed surface of revolution is larger than
that of the unperturbed surface of revolution. It would be interesting to perform a similar
analysis to higher curvature terms for free massive fields (i.e to curvature corrections to
the “universal area law”).

A similar analysis applies to “universal area law” terms in interacting theories [19,
21, 69], with a shape dependence that comes only from the area Ay. The EE for a CFT

perturbed by a relevent operator of dimension A = %, contains the following term:
-2 =% R
NS T Aslog (S 4,
5 =M Ao () (4:33)

where A is the coupling constant. Such log terms occur both in odd and even dimensions.

5 Discussion

In this work we studied the shape dependence of entanglement entropy by deforming sym-
metric entangling surfaces. We showed that entangling surfaces with a rotational or trans-
lational symmetry locally extremize the EE with respect to shape deformations that break
some of the symmetry. This result applies to EE and Renyi entropy for any QFT in any
dimension. Using Solodukhin’s formula and holography, we calculated the 2nd order cor-
rection to the EE for CFTs and simple symmetric entangling surfaces. In several cases
we found that the 2nd order correction is positive, and thus the corresponding symmetric
entangling surface is a local minimum. Perhaps this result can be shown to hold more
generally for other symmetric entangling surfaces.
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Let us mention some possible future directions.

e The calculation in section 3 considered only Einstein gravity in the bulk, and it would
be interesting to consider also higher derivative gravity. For spheres, [64] found that
Séuniv) depends just on C7 and not on t9 or t4 (these are the three parameters in the
3-point function of stress tensors). It would be nice to check if this continues to hold

for other entangling surfaces.

e Computing the FG coefficients @4 and ¢g in (3.17) by solving the bulk EOMs for
the cylinder (A.23) and (A.26). Maybe it is also possible to show, using a more
general principle, that ¢; and 44 in (3.18) must have a definite sign. It would also
be interesting to consider (in holography) more general entangling surfaces with a
symimetry.

e The work of [69] attempted to compute S¥™ for a plane entangling surface in a d = 4
CFT using the perturbative formalism of EE [66]. They were not able to obtain the I
term of Solodukhin’s formula (4.3), and the current situation is somewhat puzzling.
Our result (3.21) as well as (1.7) (obtained in [64]) might help in resolving this puzzle.

e It would be interesting to repeat the analysis of section 4.1 for 6d CFTs using the
results of [80, 81].

e Other possible extensions are to compute higher orders S](-univ) for 7 > 2, and also to
perform computations in a curved space-time background.
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A Equations of Motion for the minimal bulk surface

In this section, we obtain EOMs for the bulk minimal surfaces of cylinder, strip, and plane.
We solve the 15 EOM for the plane, and obtain g4 in (3.19).

A.1 Strip entangling surface

Consider a strip entangling surface and a bulk metric in Poincare coordinates:

R? 1
ds? = 284S | = 122 4?4 da® + dy? Al
> 1B(2) '
z z
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Where f(z) is some function of the holographic coordinate z, which for AdS: f(z) = 1.

z
is the direction perpendicular to the strip entangling surface, y; are directions along the
strip entangling surface, and ¢ = 1,...,d — 2. The holographic EE is (see (3.1), (3.2)):

féf /dd 2 /Zmax \/B(lz) [1 + (8111-95)2} + (8.2)2 (A.2)

. R s >
In th tz of (3.10) th dstop=0, F; = —=24E— and Fh = . Th
n the ansatz of (3.10) this corresponds to p v/ and Fy = f(z) e

corresponding EOM is:

d 1 0,x 1 d Oy, ©
dz | 271 T a1 dy; ; =0
1 2 2 v _ 2 2
\/ o (140202 +(0.) \/ 7 [14 0,22 + (0:0)
(A.3)
The bulk surface can be expanded in e:
(A.4)

2(z,yi) = o(2) + ex1(z,4i) + €x2(2,yi) + - ..

where because of the translational symmetry of the strip, z(z) does not depend on y;

The EOM (A.3) at 0" order in e is:

d% Hd—1 ~8 = + (020)? Y (45)
B(z)
The solution to this is:
52d—2
e = By — ) o
where zmax is the turning point of the bulk surface. The EOM at 15! order in € is
_ 2
diz e Bk o5 |+ il - =0 (A7)
( ) + (8 l’o) ) B(Z) + (8z$0)
Plugging (A.6) in (A.7):
~1 ~1
jz <z§21 iy Z£;22)3/28Z$1> €§ (2o — 22d72)1/2851331 =0 (A.8)
Simplifying, we get:
3 2d—2
o) _@-y 1+2(=) bt — W o )

83%1 + = —
2d—2 2d—2
w0 )T &)
Zmax Zmax
This equation seems hard to solve analytically. In the next section we consider the

simpler case of a plane entangling surface.
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A.2 Plane entangling surface

For a plane entangling surface situated at x = 0, the bulk minimal surface goes straight
down in the bulk: z¢(z) = 0. We have (see (A.4)):

z(z,y) = ex1(z,y;) + Exa(z,y:) + . .. (A.10)
The turning point of the bulk surface is at zpyax — 00, therefore (A.9) becomes:

B'(z)
26(2)

02x1 + { (d; 1)] 0.x1 + 851.901 =0 (A.11)

We Fourier expand x1:

x1(z,y) = Z a{nl}:p{n H cos(n;y;) (A.12)

{n:}
where the n; are integers, and we defined the shorthand notation: {n;} = ny,...,ng_s.
Plugging this in (A.11) gives:
3 d—1
922V Flz) =)y 0 52,0 (A.13)
z {”z} B(z) z {ni} {ni}
where we defined 72 = Y, n?. Now we consider the ansatz B(z) = 14 az* for the bulk
metric, then:
~ 1 k—1
2 (1) akz A1y ) e ()
osx Ty T [2(1—&—&2”“) " 0. Tt nx{nl}—O (A.14)

The CFT case 3 (2) = 1 can be recovered by plugging & = 0:

ooy _d=1_ 1y 5 ) _
Ozt =~ Oy — W ay =0 (A.15)
This equation is solved by modified Bessel functions: 2
xgji}(z) - Clng% (7z) + Ozt Ly (i2) (A.18)

2The modified Bessel function:

K.(z) = i(g)yz()(—l)”'(ylfﬂ_mz” + (~1)" " log(2/2) 1 (2)

”l(z)yiwjﬂ +w(n+a+1)22j (A.16)

2\2 = 49 51(v + j)!

where 1 is the digamma function, and

2\ ¥ 1 25
L(z) = (5) ;Wz (A.17)

~16 —



(1)

Choosing a boundary condition such that x {n_}(z) does not explode at z — oo, leaves
only K4. Therefore the final solution is:
2

Ty (2) = jivz%K% (7iz) (A.19)

where the normalization constant is N' = 2’_1(7 — 1)'n_2 We will use the above solution
in (3.20). This result was also derived in [52] in the context of “entanglement density”.
A.3 Cylinder entangling surface

Consider a cylinder entangling surface SP x R%27? in flat space-time R?. The holographic
EE in cylindrical coordinates is (see (3.9), (3.10)):

Rd*l L P 1

where we assumed the AdS;1; metric. The corresponding EOM is:

i P a,r + 1 i POy
B\ 102+ 0,724 B 00,2 ) 2T W1 0)2 49,02+ (00,12

P=20,
1_ d T Q" B 1_ d< \/1+(6 )2+ (9 T)eri(aQ r)2>0
z4=1 dQ) 1 zd-1d Yi P2

p \\/ 1 (02r)2+ (), 7)2+ (90, 7)?

(A.21)
The bulk surface expanded around the 0% order cylinder is:
r=ro(z) +eri(z,y;, Q) + e2r2(z,yj, Q) + ... (A.22)
The 0" order EOM is:
d T‘g 0,70 1 p—1
- - 1 .10)2 = A2
dz (zdl 1+ (8ZT0)2> Zd—1P70 +(9:r0)* =0 (A.23)

The 1% order EOM is:

4 (b )
dz \ 29-1 (14(8,19)2)3/2
821+ " (14(8er0)) .11+ [14(0270)?] (pQ

1
r 1 r+ 7832177"1 + aZjT1> =0 (A.24)
<2d91 (1+(azm)2)3/2) L )

We Fourier expand r; (see (3.12)):

d—2—p
(2,95, Qp) = Z [a{nj7lp}r§;l’lp} (2)Y, (22 H cos(n;yi) ] (A.25)
{ng.lp} =1
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where the n; are integers, and we defined the shorthand notation: {n;} =ni,...,ng_2—,
and {lp} =1,m1...,mp_1. We plug (A.25) in (A.24):

4 )
827“(1) dz \ 2471 (14(8:710)?)3/2 o ’I”(l)
z {”jvlp} ( rg 1 z {njvlp}
2d—1 (1+(82T0)2)3/2)
1 (p—ll+p—1) 5\ a _
+ |1+ (@ero)?] < 2 —a?)rl) =0 (A.26)

where we defined 72 = Y y n?, and used 85221) Y;, = —l(l+p—1)Y;, [64]. Since the parameters
mi,...,mp—1 do not appear in (A.26), the solution r&)_ L) will not depend on them (and
7
neither will Sgound"l in (3.17)).
og
For a plane entangling surface we have p = 0 and » = z, and 0,29 = 0, and in this

case (A.26) reduces to (A.15). On the other hand, for a sphere entangling surface we have
p=d—2and r§ = R? — 22, Thus for a sphere the EOM is:

o@ 1 (d— 1)R2 + 222
o’ - z R2 — 22

204 _ 9 _ _
Rld (]2%2 _l(i;;2d 3)]r§1):0 (A.27)

8zrl(1) +
We find a solution to this equation in terms of hypergeometric functions. For d = 3

!
(1) 1 (z—R\? R+ 1z
"l (Z)—N<z+R> < 22— R? (429

which agrees with eq. 43 of [63].

the solution is:

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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