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1 Introduction

The sky contains a variety of objects, for example pulsars [1] and quasars [2], that pro-

duce extravagantly energetic signals such as collimated jets of electromagnetic radiation. In

many cases, the energy source which powers these signals is suspected to be a rotating black

hole surrounded by a magnetosphere with a plasma. Energy extraction from such a black

hole is widely believed to be described by the highly nonlinear equations of force-free elec-

tromagnetism [3]. As our ability to observe these systems improves, a better quantitative

and qualitative understanding of these interesting nonlinear equations is required.
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Figure 1. Electric field strength E2 (left) and magnetic field strength B2 (right) evaluated at

Poincaré time t = 0 for the non-null solution F = <F(2,0). The black hole is the point at the center

of the box. See subsection 5.4 for further details, and [18] for full animations.

Most of the analyses of force-free electrodynamics have been numerical. A notable

exception is the beautiful recent work of Brennan, Gralla and Jacobson [4], who found

solutions by imposing the null condition E2 = B2 (or, equivalently, F 2 = 0). Other

analytic work may be found in [3, 5–9] and a review is [10].

In this paper we continue the analytic approach in a different direction. Energy extrac-

tion is possible only for rotating Kerr black holes, and the greater the rotation, the easier

it becomes. Moreover it is a process that occurs near the black hole horizon, and is largely

insensitive to the physics at spatial infinity. This suggests that much of the physics of

force-free electrodynamic energy extraction can be captured by studying the near horizon

region of maximally-rotating extreme Kerr black holes, such as the one in Cygnus X-1 [11].

Fortuitously, the dynamics of this region — known as NHEK for Near Horizon Ex-

treme Kerr — is governed by an enhanced conformal symmetry which does not extend to

the full Kerr geometry [12, 13]. This symmetry motivated the Kerr/CFT conjecture per-

taining to the quantum structure of black holes [14] and also has potential consequences for

observational astronomy [15, 16]. In this paper, it enables us to find large families of exact

axisymmetric non-null (F 2 6= 0) solutions of the equations of force-free electrodynamics,

exhibiting a variety of complex behaviors. These axisymmetric solutions do not extract

angular momentum, which precludes energy extraction. The more general case will be

analyzed in a forthcoming paper [17]. One hopes that this analytic approach will enable

a better understanding of astrophysical black hole magnetospheres and energy extraction.

We illustrate some of the physical properties of these solutions in figures 1 and 4.

The paper is organized as follows. We begin with a review of the force-free equations in

section 2, where we explain how they naturally arise in the context of electromagnetically-

dominated systems. After a quick review of the NHEK geometry in subsections 3.2–3.4,

we express the force-free equations in the background of NHEK in a language propitious

to the exploitation of spacetime symmetries. We conclude section 3 with a prescription for

computing, given a solution to these equations, the rate of energy and angular momentum

extraction from both the event horizon of the black hole and the boundary of the throat.
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Then in sections 4 through 6, we present new solutions to the force-free equations in

the background of NHEK. We obtain an SL(2,R)× U(1)-invariant solution (section 4), as

well as an infinite tower of solutions, which lie in highest-weight representations of SL(2,R)

with arbitrary highest-weight h ∈ R − {1} (subsection 5.1). These all possess timelike

currents (J 2 < 0) and have F 2 6= 0. Next, in subsection 6.1 we turn to the null case

F 2 = 0, where we obtain a highest-weight solution with highest weight h = 1 and null

current. Moreover, for each solution we also compute the corresponding fluxes of energy

and angular momentum, both at the horizon of the black hole and at the boundary of

the throat.

We also expound upon a surprising property exhibited by our solutions, namely that

their linear combinations are still solutions. Due to the non-linear character of the force-

free equations, it is remarkable that we can find new exact nonlinear solutions to these

equations by forming linear superpositions, and we provide a simple explanation of this

phenomenon.

Some mathematical details of our analysis have been relegated to appendices A and B.

2 Force-free electrodynamics

This section contains a lightning review of force-free electrodynamics. Maxwell’s equa-

tions are

∇µFµν = J ν . (2.1)

where J ν is the matter charge current and Fµν = ∇µAν − ∇νAµ. The electromagnetic

stress-energy tensor is

TµνEM = FµαF να −
1

4
gµνFαβF

αβ. (2.2)

In general, this tensor is not covariantly conserved by itself. Indeed, Maxwell’s equations

imply that

∇νTµνEM = −FµνJ ν . (2.3)

where the right hand side is the relativistic form of the Lorentz force density. The full

stress-energy tensor

Tµν = TµνEM + Tµνmatter (2.4)

is always conserved

∇νTµν = 0. (2.5)

Force-free electrodynamics describes systems in which most of the energy resides in the

electrodynamical sector of the theory, so that

Tµν ≈ TµνEM. (2.6)

– 3 –
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Under this assumption, the conservation of energy-momentum equation (2.5) reduces to

∇νTµνEM = 0. (2.7)

This approximation is known as the “force-free” condition, since by (2.3) it is equivalent

to the requirement that the Lorentz force density vanishes

FµνJ ν = 0. (2.8)

In the study of systems obeying this condition, the current J µ may be defined as the

right hand side of ∇µFµν = J ν rather than independently specified. A complete set of

equations of motion for the electromagnetic sector is obtained by appending to Maxwell’s

equations the force free condition (2.8). In other words, a vector potential Aµ is a solution

of force-free electrodynamics if and only if the resulting Fµν and Jµ obey (2.8).1

It is widely believed that astrophysical black holes are typically surrounded by mag-

netospheres composed of an electromagnetic plasma governed by these equations. Hence

they are of both mathematical and physical interest.

3 The NHEK geometry

This section briefly reviews the geometry of Kerr and the near-horizon NHEK region. The

force-free equations in NHEK and the conserved fluxes associated to the isometries are

also described.

3.1 Kerr geometry

The Kerr metric describes a rotating black hole with angular momentum J and mass M .

In Boyer-Lindquist coordinates (t̂, r̂, θ̂, φ̂), its line element is

ds2 =− ∆

Σ

(
dt̂− a sin2 θ̂ dφ̂

)2
+

Σ

∆
dr̂2 +

sin2 θ̂

Σ

[(
r̂2 + a2

)
dφ̂− a dt̂

]2
+ Σ dθ̂2, (3.1)

where we set c = G = 1 and defined

∆ ≡ r̂2 − 2Mr̂ + a2, Σ ≡ r̂2 + a2 cos2 θ̂, a ≡ J

M
. (3.2)

There is an event horizon at

r̂H = M +
√
M2 − a2, (3.3)

from which it follows that the Kerr solution has a naked singularity unless |a| ≤ M . This

last bound is saturated by the so-called extreme Kerr solution, which carries the maximum

allowed angular momentum

|J | = M2. (3.4)

1The initial data problem is subtle: see [19] for a discussion.
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3.2 The scaling limit

In this paper we are interested in the region very near the horizon of extreme Kerr, de-

scribed by the so-called Near-Horizon Extreme Kerr (NHEK) geometry. It can be obtained

by a near-horizon limiting procedure from the Kerr metric in usual Boyer-Lindquist coor-

dinates (3.1). Following [12], define new dimensionless coordinates (t, r, θ, φ) by

t =
λt̂

2M
, r =

r̂ −M
λM

, θ = θ̂, φ = φ̂− t̂

2M
. (3.5)

In taking the limit λ→ 0 while keeping these coordinates fixed, one is effectively “zooming”

into the region near the horizon. This procedure yields the NHEK line element in Poincaré

coordinates

ds2 = 2JΓ

[
−r2 dt2 +

dr2

r2
+ dθ2 + Λ2( dφ+ r dt)2

]
, (3.6)

where t ∈ (−∞,∞), r ∈ [0,∞), θ ∈ [0, π], φ ∼ φ+ 2π and

Γ(θ) ≡ 1 + cos2 θ

2
, Λ(θ) ≡ 2 sin θ

1 + cos2 θ
. (3.7)

The event horizon of the original extreme Kerr black hole is now located at

rH = 0. (3.8)

In contrast with the original Kerr metric (3.1), the NHEK geometry is not asymptotically

flat.

3.3 Isometries

A crucial feature of the NHEK region is that the orignal U(1)× U(1) Kerr isometry goup

is enhanced to SL(2,R) × U(1). This enhanced symmetry governs the dynamics of the

near-horizon region of extreme Kerr. The U(1) rotational symmetry is generated by the

Killing vector field

W0 = ∂φ. (3.9)

The time translation symmetry becomes part of an enhanced SL(2,R) isometry group

generated by the Killing vector fields

H0 = t ∂t − r ∂r, (3.10)

H+ =
√

2 ∂t, (3.11)

H− =
√

2

[
1

2

(
t2 +

1

r2

)
∂t − tr ∂r −

1

r
∂φ

]
. (3.12)

It is easily verified that these satisfy the SL(2,R)× U(1) commutation relations, namely:

[H0, H±] = ∓H±, [H+, H−] = 2H0, (3.13)

[W0, H±] = 0, [W0, H0] = 0. (3.14)

These symmetries do not leave the original Kerr horizon (3.8) invariant and mix up the

inside and outside of the original black hole.

– 5 –
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3.4 Global coordinates

The Poincaré coordinates (t, r, θ, φ) cover only the part of the NHEK geometry outside the

horizon of the original extreme Kerr. Global coordinates (τ, ψ, θ, ϕ) for NHEK are given by

r =
cos τ − cosψ

sinψ
, t =

sin τ

cos τ − cosψ
, φ = ϕ+ ln

∣∣∣∣cos τ − sin τ cotψ

1 + sin τ cscψ

∣∣∣∣ . (3.15)

In these new coordinates the line element (3.6) becomes

ds2 = 2JΓ
[(
−dτ2 + dψ2

)
csc2 ψ + dθ2 + Λ2 ( dϕ− cotψ dτ)2

]
, (3.16)

where τ ∈ (−∞,∞), ψ, θ ∈ [0, π] and ϕ ∼ ϕ+ 2π. In global coordinates, a useful complex

basis for the SL(2,R)× U(1) Killing vectors is:

L± = ie±iτ sinψ (− cotψ ∂τ ∓ i ∂ψ + ∂ϕ) , (3.17)

L0 = i ∂τ , (3.18)

Q0 = −i ∂ϕ. (3.19)

These obey

[L0, L±] = ∓L±, [L+, L−] = 2L0, (3.20)

[Q0, L±] = 0, [Q0, L0] = 0, (3.21)

and are related to (3.9) and (3.10) by

Q0 = −iW0, L0 =
i√
2

(
1

2
H+ +H−

)
, L± = ∓H0 +

i√
2

(
1

2
H+ −H−

)
. (3.22)

The inverse relation is

H0 =
L− − L+

2
, H+ = − i√

2
(2L0 + L+ + L−) , H− = − i

2
√

2
(2L0 − L+ − L−) .

(3.23)

3.5 Force-free electrodynamics in NHEK

We now turn to the study of force-free electrodynamics in the NHEK geometry. It is

convenient to use differential form notation (see e.g. [20] for conventions) in which F ≡ dA

denotes the electromagnetic field strength, and the complete force-free equations of motion

for F are

dF = 0, (3.24)

d†F = J , (3.25)

J ∧ ?F = 0, (3.26)

with ? the Hodge dual, ∧ the wedge product and d† the adjoint of the exterior derivative d.

In general these equations are highly nonlinear and can only be solved numerically.

However in NHEK the symmetries can be exploited to simplify the analysis. Given one

– 6 –
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solution of the force-free equations, another can always be generated by the action of an

isometry. Therefore the solutions must lie in representations of SL(2,R)×U(1), which are

studied for example in [21]. In this paper, we look for axisymmetric solutions which lie in

the so-called highest-weight representations of SL(2,R). These contain an element obeying

the relations

LL+F = 0, (3.27)

LL0F = hF, (3.28)

LQ0F = 0, (3.29)

where LV denotes the Lie derivative with respect to the vector field V and h is a constant

characterizing the representation. The last condition requires that F be U(1)-invariant,

while the first two conditions state that F is in a highest-weight representation of SL(2,R)

with weight h.

In the ensuing analysis we will find force-free solutions obeying (3.27)–(3.29) for every

real value of h. From each of these, an infinite family is obtained by the action of SL(2,R).

Since L+ is complex, all of these solutions are complex. However we will show that the

real and imaginary parts of these solutions surprisingly also solve the force-free equations

and hence provide physical field configurations.

3.6 Energy and angular momentum flux

The NHEK geometry possesses an axial U(1) symmetry generated by W0 = ∂φ, as well as

a time-translation symmetry generated by H+ =
√

2 ∂t. It is therefore natural to define

energy and angular momentum in NHEK as the conserved quantities associated with H+

and W0, respectively.2

Given a solution to the force-free equations (3.24)–(3.26), one may compute its stress-

energy-momentum tensor Tµν = TEM
µν and thence obtain the associated NHEK energy

current IE and angular momentum current IL

IEν ≡ Hµ
+Tµν , (3.30)

ILν ≡Wµ
0 Tµν . (3.31)

By (2.5) and the Killing equation, these currents are conserved:

∇νIE,Lν = 0. (3.32)

Therefore, integrating either one of them over any region R in the bulk yields∫
R

d4x
√−g∇νIE,Lν = 0. (3.33)

2This definition coincides with that of angular momentum in the Kerr spacetime (3.1) because under

the “zooming” procedure (3.5), the axial symmetry generator ∂φ̂ of the Kerr black hole descends precisely

to the NHEK generator W0 = ∂φ. However, the notions of energy in NHEK and Kerr differ because the

generator ∂t̂ of the Kerr metric does not simply correspond to the NHEK energy generator H+ =
√

2 ∂t —

instead, it becomes mixed with the angular momentum.

– 7 –
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Figure 2. Penrose diagram for the NHEK geometry (3.6). The horizon is at r = rH = 0.

Now suppose that R is the entirety of the NHEK Poincaré patch, as depicted in figure 2.

Then by Stokes’ Theorem, the previous equation implies the energy conservation relation

∆E+
H + ∆E−H + ∆EB = 0, (3.34)

where ∆E+
H denotes the total energy crossing into the future horizon (ψ = +τ), ∆E−H

is minus the energy coming out of the past horizon (ψ = −τ), and ∆EB is the total

energy extracted from the boundary of the throat (at r → ∞ in Poincaré coordinates or

ψ = π in global coordinates). These quantities are most conveniently computed in global

coordinates, which are smooth across the horizon, as

∆E+
H =

∫ π

0
dτ

∫ π

0
dθ

∫ 2π

0
dϕ E+H , (3.35)

∆E−H =

∫ 0

−π
dτ

∫ π

0
dθ

∫ 2π

0
dϕ E−H , (3.36)

∆EB =

∫ π

−π
dτ

∫ π

0
dθ

∫ 2π

0
dϕ E∞, (3.37)

where the integrands correspond to the energy flux density per solid angle on the horizon

and the boundary of the throat

E±H ≡
√
γ
(
±
√

2Hν
+

)
IEν
∣∣∣
ψ=±τ

, (3.38)

E∞ ≡
√
−σ nνIEν

∣∣∣
ψ=π

. (3.39)
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In these expressions, σ is the induced 3-metric on the boundary of the throat and n is the

outward unit vector normal to this boundary, while γ denotes the 2-metric on the event

horizon, which has null generator H+ (see [22] and appendix A for details). A completely

analogous story holds for the angular momentum flux, with L and L replacing E and

E, respectively.

In the following sections, we will evaluate the energy and angular momentum densities

at the horizon r = rH (EH and LH) and at the boundary r →∞ (E∞ and L∞) of NHEK to

show that our force-free solutions do indeed produce non-trivial fluxes. Some of the details

involved in these calculations are presented in appendix A.

4 Maximally symmetric solution

In this section we construct the unique solution with the full SL(2,R)× U(1) symmetry.

Consider the vector potential

A(0,0) ≡ P0 (cotψ dτ − i dψ) (4.1)

= − iP0

2JΓ
(ΦL+ +Q0) , (4.2)

where P0 is a function of θ only and

Φ(τ, ψ) ≡ e−iτ sinψ. (4.3)

For the maximally symmetric case we could actually eliminate the ΦL+ term in (4.2) by

a gauge transformation:3 we keep it to facilitate the generalizations of the next section.

A(0,0) is SL(2,R)× U(1)-invariant

LL±A(0,0) = LL0A(0,0) = LQ0A(0,0) = 0. (4.5)

The field strength is

F(0,0) = −P0 csc2 ψ dτ ∧ dψ + P ′0 (cotψ dτ ∧ dθ − idψ ∧ dθ) (4.6)

= − i

(2JΓ)2

[
P0 (ΦL+ ∧ L0 − Φ cotψ L+ ∧Q0 − L0 ∧Q0)

− P ′0 (ΦL+ ∧Θ +Q0 ∧Θ)
]
, (4.7)

where we have defined a 1-form

Θ ≡ 2JΓ dθ. (4.8)

Here and hereafter, it is understood that in this paper we use the same symbol (e.g. ‘L+’) to

denote both a vector field and its associated 1-form, and rely on the context to distinguish

between the two uses.
3An equivalent gauge potential is

Ã(0,0) ≡
iQ0

Q0 ·Q0
= −2JΓ csc2 ψ

[(
1− Λ2) cotψ dτ + Λ2 dϕ

]
. (4.4)

– 9 –
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The Hodge dual of F(0,0) is

?F(0,0) =
i

(2JΓ)2Λ

[
P0Q0 ∧Θ− P ′0 (Φ cotψ L+ ∧Q0 + L0 ∧Q0)

]
. (4.9)

The current J(0,0) ≡ d†F(0,0) will evidently obey the force free condition if it is proportional

to Q0. This requires

∂θ (Λ ∂θP0) = 0, (4.10)

whose general solution is

P0(θ) = C0 +D0

∫
dθ

Λ(θ)
, (4.11)

for some constants C0 and D0. In order for P0 to be nonsingular on [0, π] and F real, one

must set D0 = 0 and C0 real (recall that Q0 is imaginary). One then finds

J(0,0) = − iC0

(2JΓ)2
Q0, F(0,0) = −C0 csc2 ψ dτ ∧ dψ, (4.12)

and

J(0,0) ∧ ?F(0,0) = 0. (4.13)

Hence we have a solution to (3.24)–(3.29) with h = 0. Note that for this solution

F 2
(0,0) = − 2C2

0

(2JΓ)2
(4.14)

is negative which indicates the field is largely electric.

5 Axisymmetric highest-weight representations: generic case

In this section we construct large families of U(1) axisymmetric solutions to the force-free

equations in highest-weight representations labelled by a real parameter h. The solutions

degenerate for the case h = 1. A separate treatment of this case is given in the next section.

5.1 Highest-weight solutions

An axisymmetric highest weight vector potential with weight h obeys

LL+A(h,0) = 0, (5.1)

LL0A(h,0) = hA(h,0), (5.2)

LQ0A(h,0) = 0. (5.3)

These conditions are solved by

A(h,0) ≡ ΦhPh (cotψ dτ − i dψ) (5.4)

= − iΦ
hPh

2JΓ
(ΦL+ +Q0) , (5.5)

– 10 –
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where Ph is a function of the θ. Φ(τ, ψ) was introduced in (4.3) and obeys

LL+Φh = 0, LL0Φh = hΦh, LQ0Φh = 0. (5.6)

For h = 0 this vector potential reduces to the SL(2,R) × U(1)-invariant potential A(0,0)

analyzed in the previous section. The field strength F(h,0) ≡ dA(h,0) is given by

F(h,0) = −Φh
[
(h− 1)Ph csc2 ψ dτ ∧ dψ + P ′h (cotψ dτ ∧ dθ − idψ ∧ dθ)

]
(5.7)

=
iΦh

(2JΓ)2
{

(h− 1)Ph [(ΦL+ +Q0) ∧ L0 − Φ cotψ L+ ∧Q0]+P
′
h (ΦL+ +Q0) ∧Θ

}
.

(5.8)

The Hodge dual of this expression is

?F(h,0) = − iΦh

(2JΓ)2Λ

[
(h− 1)PhQ0 ∧Θ + P ′h (Φ cotψ L+ ∧Q0 + L0 ∧Q0)

]
. (5.9)

If the function Ph satisfies

∂θ (Λ ∂θPh) + h(h− 1)ΛPh = 0, (5.10)

then

J(h,0) =
iΦhPh
(2JΓ)2

(h− 1)Q0, (5.11)

is proportional to Q0, guaranteeing satisfaction of the force free condition J(h,0)∧?F(h,0) =

0. Observe that when h = 1, J(1,0) vanishes and we obtain a solution to the free Maxwell

equations which trivially solves the force-free equations.

The differential equation (5.10), which defines a generalized Heun’s function, is ana-

lyzed in appendix B. It has a unique nonsingular solution up to a multiplicative constant.

There is no closed form expression but it may be expanded as

Ph(θ) =

∞∑
n=0

an sin2n θ, (5.12)

where

an+1 = Bnan + Cnan−1, (5.13)

and

Bn =
6n2 − h(h− 1)

4(n+ 1)2
, Cn = −(2n− h− 2)(2n+ h− 3)

8(n+ 1)2
. (5.14)

This power series converges everywhere on the domain of interest θ ∈ [0, π]. Moreover, it

renders manifest the reflection symmetry of Ph about the θ = π/2 plane. In figure 3 we

illustrate Ph for representative values of h.

We note that F 2 is in general nonzero and complex:

F 2
(h,0) = −2

(
Φh

2JΓ

)2 [
(h− 1)2P 2

h + P ′2h
]
. (5.15)
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Figure 3. The figure shows Ph(θ) with h = 2, 3, 4 (respectively black to lighter grays).

5.2 Descendants

SL(2,R) invariance of NHEK guarantees that any finite SL(2,R) transformation of the

above highest weight solutions are also solutions. If the equations were linear, this would

immediately imply that the SL(2,R) descendants (i.e. the fields obtained by acting with

the raising operator LL−) of these solutions, which are infinitesimal transformations, are

also solutions. Despite the nonlinearity of the equations, the descendants also turn out to

solve the force-free equations.

The reason for this is simple. If we start with the vector potential A(h,k) ≡ LkL−
A(h,0)

given by the kth descendant, the resulting dual field strength and current ?F(h,k) and J(h,k)
will also be kth descendants. Since both the highest weight dual field strength and current

are proportional to Q0 and LL−Q0 = 0, the descendants are all also proportional to Q0.

This guarantees that ?F(h,k) ∧ J(h,k) = 0 and the force-free equations are satisfied.

To be explicit the kth descendant

A(h,k) ≡ LkL−A(h,0) = − iPh
2JΓ

k∑
n=0

(
k

n

)
Φ(h,k−n)LnL− (ΦL+ +Q0) , (5.16)

with

Φ(h,k) ≡ LkL−Φh (5.17)

= −2Γ
(
h+ 1

2

)
Γ (2h+ k)√

πΓ(2h)(k + 1)
Φk+h

k∑
n=0

(−1)k+nΓ
(
h+ 1

2

)
Γ
(
h+ n− 1

2

) (
k + 1

k + 2− 2n

)
(cotψ)k+2−2n

(5.18)

yields the currents

J(h,k) = LkL−J(h,0) =
iΦ(h,k)Ph

(2JΓ)2
(h− 1)Q0 (5.19)

and solves the force-free equations (3.24)–(3.26).
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5.3 Reality conditions

So far the solutions of this section have been complex. Physically we are interested in

real solutions. In general the real or imaginary part of a solution to a nonlinear equation

will not itself solve the equation. However in the present case, taking the real part of

the vector potential leads to dual field strengths and currents which are the real parts of

the original ones. Since Q0 has constant phase, the real or imaginary parts of anything

proportional to Q0 is itself proportional to Q0. It follows that the real or imaginary parts of

all the solutions, <A(h,k) and =A(h,k), are themselves solutions, although no longer simple

descendants of a highest-weight solution.

It is important to note that these physical solutions no longer have a complex F 2

as in (5.15). Rather, we find that F 2 may be positive or negative at different points in

the spacetime.

5.4 A very general solution

The arguments of the preceding two subsections are readily generalized to imply that the

general linear combination

A(c, d) =

∫ ∞
−∞

dh
∞∑
k=0

[
ck(h)<A(h,k) + dk(h)=A(h,k)

]
(5.20)

for arbitrary real functions ck(h) and dk(h) is a real solution to the force free equations.

This follows because every term on the right hand side of (5.20) gives both a ?F and a J
proportional to Q0. Hence the force-free equation ?F (c, d) ∧ J (c, d) = 0 is satisfied.

What has happened here is that we have effectively linearized the equations: the

conditions that ?F and J be proportional to Q0 are linear conditions which imply the full

nonlinear equation. Solutions of linear equations can always be added, hence the general

solution (5.20).

To visualize the physical properties of these solutions, we animate the electric and

magnetic field strengths E2 = EνE
ν and B2 = BνB

ν corresponding to the real solution

F = <F(2,0), where

Eν ≡ −UµFµν , Bν ≡ Uµ(?F )µν , (5.21)

and Uµ = (1, 0, 0, 0) is the 4-vector of a static observer in Poincaré coordinates. The result

is accessible at [18]. Figure 1 contains screenshots of the simulations at t = 0. Likewise, we

also animated the energy and angular momentum currents IE and IL. Figure 4 depicts

screenshots of these simulations at t = 0. In all these figures, the color scheme is in

natural units.

Finally, we also animated the flow of the current J . Figure 5 depicts screenshots of

the simulations at t = 0 and at t = 5.

5.5 Energy and angular momentum flux

For the solutions <F(h,0), the energy and angular momentum fluxes (3.38) at the horizon are

E±H = ±2
√

2Λ
[
P ′h (sin±τ)h+1 cos (h+ 1)τ

]2
, L±H = 0. (5.22)

– 13 –



J
H
E
P
1
2
(
2
0
1
4
)
1
8
5

Figure 4. Energy current intensity
(
IE
)2

(left) and angular momentum current intensity
(
IL
)2

(right) evaluated at Poincaré time t = 0 for the solution F = <F(2,0). Full animations are available

at [18].

Figure 5. Current J for the solution <F(2,0). At t = 0 we begin to evolve the colored points on

the left, resulting at t = 5 in the image on the right. A full animation is accessible at [18].

Likewise, for the solutions =F(h,0),

E±H = ±2
√

2Λ
[
P ′h (sin±τ)h+1 sin (h+ 1)τ

]2
, L±H = 0. (5.23)

In both cases, the fluxes out of the boundary of NHEK vanish for h > 1
2 :

E∞ = L∞ = 0, (5.24)

Plugging these expressions into (3.35) yields

∆E+
H = −∆E−H , ∆EB = 0, (5.25)

which is of course consistent with (3.34). This case is illustrated in figure 6. On the other

hand, when h < 1
2 , the energy flux density E∞ at the boundary becomes divergent. For

the boundary case h = 1
2 , it is nonzero but finite: for the solutions <F(1/2,0),

E∞ = 2
√

2 ΛP ′1/2
2
(1 + cos τ) sin τ cos2

τ

2
, (5.26)
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Figure 6. Diagram of the energy flux when h 6= 1 and θ = 0 (left) or θ = π
4 (right).

while for the solutions =F(1/2,0),

E∞ = −2
√

2 ΛP ′1/2
2

cos τ sin τ cos2
τ

2
. (5.27)

In either situation, the total flux through the boundary ∆EB is still zero, which is consistent

with the fact that the energy flux out of the future horizon equals that into the past horizon.

Finally, note from (5.22) and (5.23) that the total horizon fluxes ∆E±H are only finite

when h ≥ −1. For h < −1, even though these quantities diverge, the relation ∆E+
H = ∆E−H

still holds.

6 Null h = 1 solutions

In section 5, we presented an infinite family of axisymmetric solutions to the force-free

equation in NHEK given by highest-weight representations of SL(2,R) with highest-weight

h ∈ R− {1}. The special case h = 1 degenerated to a trivial solution of the free Maxwell

equations. In this section, we present a different highest-weight solution with h = 1, which

is nontrivial but has “null” F 2 = 0. We suspect that it is some kind of limit of the null

solutions for full Kerr found in [4], but have not verified the details.

6.1 Null highest-weight solution

Consider the Ansatz

A(1,0) = ΨΛP̃ dθ, (6.1)

– 15 –



J
H
E
P
1
2
(
2
0
1
4
)
1
8
5

where in the last line we introduced a scalar function

Ψ(τ, ψ) ≡ −e−i(τ+ψ), (6.2)

while P̃ (θ) can be an arbitrary regular function. Ψ(τ, ψ) is a U(1)× U(1) eigenfunction

LL0Ψ = Ψ, (6.3)

LQ0Ψ = 0. (6.4)

However, it does not lie in a scalar highest-weight representation of SL(2,R) because it is

not annihilated by L+. Instead, it obeys

LL+Ψ = 1. (6.5)

Note also that is just a complex phase: Ψ∗Ψ = 1. It follows that A(1,0) obeys

LL+A(1,0) = Ψ∗A(1,0) = ΛP̃ dθ, (6.6)

LL0A(1,0) = A(1,0), (6.7)

LQ0A(1,0) = 0. (6.8)

Observe that it is annihilated by L+ up to a gauge transformation. The corresponding

2-form field strength F(1,0) ≡ dA(1,0) is

F(1,0) = −iΨΛP̃ dθ ∧ ( dτ + dψ) (6.9)

=
iΦΛP̃

2JΓ
dθ ∧ (ΨL+ − L0 −Q0) , (6.10)

where Φ(τ, ψ) is defined in (4.3). From (6.9), it is easily checked that LL+F(1,0) = 0, which

together with (6.7)–(6.8) implies that F(1,0) is U(1)-invariant and forms a highest-weight

representation of SL(2,R) with highest weight h = 1. The associated current J(1,0) ≡
d†F(1,0) is given by

J(1,0) =
iΨ
(
ΛP̃ ′ + 2Λ′P̃

)
2JΓ

( dτ + dψ) (6.11)

=
iΦ
(
ΛP̃ ′ + 2Λ′P̃

)
(2JΓ)2

(ΨL+ − L0 +Q0) . (6.12)

while

?F(1,0) = −iΨΛ2P̃ [cotψ dτ ∧ dψ + ( dτ + dψ) ∧ dϕ] (6.13)

=
iΦP̃

(2JΓ)2
Q0 ∧ (ΨL+ − L0 +Q0) . (6.14)

Since both are proportional to dτ + dψ (or ΨL+ − L0 +Q0)

J(1,0) ∧ ?F(1,0) = 0 (6.15)
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and F(1,0) is a force-free solution. Note that it is null in the sense that

F 2
(1,0) = 0. (6.16)

The stress energy-momentum tensor of this solution takes the simple form

Tµν(1,0) = 2JΓ

(
ΛP̃

ΛP̃ ′ + 2Λ′P̃

)2

J µ(1,0)J
ν
(1,0). (6.17)

Hence we may interpret this solution as describing a pressureless perfect fluid.

6.2 Descendants, reality conditions and general solutions

Let us now consider descendants. The situation here is similar to the generic case of

section 5.2. Using the relation

LL−( dτ + dψ) = Ψ ( dτ + dψ) , (6.18)

it is easily seen that all descendants of both J(1,0) and ?F(1,0) (as well as real or imaginary

parts thereof) are proportional to dτ + dψ. Hence any linear combination of the real or

imaginary parts of any descendants of A(1,0) is a force-free solution.

6.2.1 Energy and angular momentum flux

For the solution <F(1,0), the energy and angular momentum fluxes at the horizon (3.38) are

E+H = 8
√

2Λ3
(
P̃ sin2 τ sin 2τ

)2
, E−H = 0, L±H = 0. (6.19)

The energy flux at the boundary is

E∞ =
√

2Λ3
[
P̃ (1 + cos τ) sin τ

]2
. (6.20)

Likewise, for the solution =F(1,0),

E+H = 8
√

2Λ3
(
P̃ sin2 τ cos 2τ

)2
, E−H = 0, L±H = 0, (6.21)

and

E∞ =
√

2Λ3
[
P̃ (1 + cos τ) cos τ

]2
. (6.22)

As for the angular momentum fluxes at the boundary of the throat, they vanish in

both cases

L∞ = 0. (6.23)

Plugging these expressions into (3.35) yields

∆E+
H = −∆EB, ∆E−H = 0, (6.24)

which is still consistent with (3.34). This solution is illustrated in figure 7.

– 17 –



J
H
E
P
1
2
(
2
0
1
4
)
1
8
5

Figure 7. Diagram of the energy flux when h = 1.
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A Fluxes in Poincaré and global coordinates

Here we elaborate some subtleties that arise in the computations of the energy and angular

momentum fluxes for the NHEK geometry in Poincaré or global coordinates.

To determine the unit vector normal to the spherical shell of constant radius r = r0,

note that in Poincaré coordinates (3.6) it is defined by the vanishing of

f(t, r, θ, φ) ≡ r − r0. (A.1)

We may thus obtain a normal vector ξ to this hypersurface by defining

ξ ≡ ∇µf ∂µ =
r2

2JΓ
∂r. (A.2)

As expected, this vector field is spacelike for r > 0,

ξ · ξ =
r2

2JΓ
, (A.3)
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but it becomes null at r = rH = 0, the location of the event horizon. In fact, it vanishes

identically there, ξ|r=rH = 0, and we should replace it by H+, which is the null vector

normal to the horizon. This complication is an artifact of the coordinate system, and does

not arise in the global coordinates (3.16), which are smooth across the horizon. Away from

the horizon, we may normalize ξ to obtain a unit normal vector

n ≡ ξ√
ξ · ξ =

r√
2JΓ

∂r. (A.4)

The flux densities of energy and angular momentum at the boundary of the throat (r →∞
in Poincaré coordinates) are then

E∞ ≡ lim
r0→∞

√
−σ nνIEν , (A.5)

L∞ ≡ lim
r0→∞

√
−σ nνILν . (A.6)

The induced 3-metric on the hypersurface r = r0 has determinant
√−σ = (2JΓ)3/2Λr0,

which grows linearly in the radius.

For the special case of the event horizon at r = rH = 0, where n diverges (since ξ·ξ = 0),

we must instead define the energy and angular momentum flux densities threading the black

hole, denoted by E±H and L±H respectively, by

E±H =
√
γ
(
±
√

2Hν
+

)
IEν
∣∣∣
r=rH

, (A.7)

L±H =
√
γ
(
±
√

2Hν
+

)
ILν
∣∣∣
r=rH

. (A.8)

The factor of
√

2 introduced here compensates for the one in the definition of H+. The

determinant of the induced metric on the 2-sphere is
√
γ = 2JΓΛ, which is independent

of radius. These are the rate of energy and angular momentum extraction from the black

hole per unit solid angle. Great care must be taken when evaluating these quantities in

Poincaré coordinates: noting from (3.15) that t ∝ r−1, we see that as we send r → 0, we

must simultaneously push t→∞. Therefore, we can reach the (future or past) horizon by

simply defining r = ε, t = t0 ± 1/ε and taking the limit ε→ 0.

These quantities are more easily computed in global coordinates (3.16), which are

smooth across the horizon. By (3.15), the event horizon at r = rH = 0 becomes

the hypersurface

τ = ±ψ, (A.9)

where the sign depends on whether one is at the future or past horizon of the Poincaré

patch. Also, the boundary of the throat (r → ∞ in Poincaré coordinates) becomes the

hypersurface ψ = π in global coordinates. This explains (3.38). As a consistency check,

note that in global coordinates,

f(τ, ψ, θ, ϕ) ≡ cos τ − cosψ

sinψ
− r0, (A.10)

=⇒ ξ ≡ ∇µf ∂µ =
1

2JΓ
[sin τ sinψ ∂τ + (1− cos τ cosψ) ∂ψ + sin τ cosψ ∂ϕ] .

(A.11)
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As expected, this vector field is spacelike,

ξ · ξ =
1

2JΓ

(
cos τ − cosψ

sinψ

)2

> 0, (A.12)

except at the event horizon τ = ±ψ, where it becomes null and agrees (up to a normalization

factor) with

±H+√
2

∣∣∣∣
τ=±ψ

= 2JΓξ
∣∣
τ=±ψ. (A.13)

Away from the horizon, we may normalize ξ to obtain a unit normal vector

n ≡ ξ√
ξ · ξ =

sin τ sinψ ∂τ + (1− cos τ cosψ) ∂ψ + sin τ cosψ ∂ϕ√
2JΓ (cos τ − cosψ) cscψ

, (A.14)

which agrees with the expression (A.4) for n in Poincaré coordinates.

B Analysis of Ph

In order to determine the θ-dependence of the highest-weight solutions, we need to deter-

mine the behavior of the function Ph(θ) and solve (5.10)

∂θ (Λ ∂θPh) + h(h− 1)ΛPh = 0. (B.1)

By performing a suitable coordinate transformation to a new variable z = sin2 θ, we may

put this equation into the form of a generalized Heun equation, namely

P ′′h (z) +

(
γ

z
+

δ

z − 1
+

ε

z − a

)
P ′h(z) +

αβ (z − q)
z(z − 1)(z − a)

Ph(z) = 0, (B.2)

where α+β+ 1 = γ+ δ+ ε and q is an accessory parameter. In our case, these parameters

are given by γ = 1, δ = 1/2, ε = −1, α = −h/2, β = (h − 1)/2 and q = 2. The 4 regular

singular points of this equation are located at z = z0, with z0 ∈ {0, 1, a = 2,∞}. The

corresponding roots (t1, t2) of the indicial equation are (0, 1− γ), (0, 1− δ), (0, 1− ε) and

(α, β), respectively.

We may solve (5.10) by expanding in a power series around each singularity z0 (Frobe-

nius’ method). Since z = sin2 θ, the interval of interest to us, θ ∈ [0, π/2], gets mapped to

the interval z ∈ [0, 1]; the poles θ = 0, π are mapped to z = 0, while the θ = π/2 plane is

mapped to z = 1. It therefore suffices for us to use the power series solutions (B.3) and

these will converge everywhere on θ ∈ [0, π].

Depending on the nature of the roots of the indicial equation, there are three forms

for the two linearly independent solutions on the intervals. On the one hand, at θ = π/2

(or correspondingly, the singularity z0 = 1), the roots of the indicial equation are (t1, t2) =

(0, 1 − δ), hence t1 − t2 6= N, N ∈ Z and therefore we can obtain the two independent

solutions to the equation from the power series

P
(1)
h (z) = zt1

∞∑
n=0

ã(1)n (z − z0)n and P
(2)
h (z) = zt2

∞∑
n=0

ã(2)n (z − z0)n. (B.3)
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These have a radius of convergence of |z − z0| < r0, where r0 corresponds to the distance

to the closest singularity. Only one of the two solutions is symmetric about the θ = π/2

plane. On the other hand around z0 = 0 the two roots of the indicial equation are (t1, t2) =

(0, 1− γ) but since γ = 1, the roots are repeated: t1 = t2 = 0. Hence the solutions to the

ODE are

P
(1)
h (z) =

∞∑
n=0

a(1)n zn and P
(2)
h (z) = P

(1)
h (z) log(z) +

∞∑
n=1

a(2)n zn. (B.4)
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