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Abstract: We study the SU(3) gauge theory with twelve flavours of fermions in the fun-

damental representation as a prototype of non-Abelian gauge theories inside the conformal

window. Guided by the pattern of underlying symmetries, chiral and conformal, we ana-

lyze the two-point functions theoretically and on the lattice, and determine the finite size

scaling and the infinite volume fermion mass dependence of the would-be hadron masses.

We show that the spectrum in the Coulomb phase of the system can be described in the

context of a universal scaling analysis and we provide the nonperturbative determination

of the fermion mass anomalous dimension γ∗ = 0.235(46) at the infrared fixed point. We

comment on the agreement with the four-loop perturbative prediction for this quantity

and we provide a unified description of all existing lattice results for the spectrum of this

system, them being in the Coulomb phase or the asymptotically free phase. Our results

corroborate the view that the fixed point we are studying is not associated to a physical

singularity along the bare coupling line and estimates of physical observables can be at-

tempted on either side of the fixed point. Finally, we observe the restoration of the U(1)

axial symmetry in the two-point functions.
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1 Introduction

This work is devoted to the study of how the particle spectrum of non-Abelian gauge theo-

ries changes once they enter the conformal window. Strongly coupled scenarios beyond the

standard model provide the phenomenological motivation to study these theories, in partic-

ular, the preconformal phase that precedes the conformal window. On the other hand, the

properties of these theories inside the conformal window, such as the value of the anomalous

dimension of the fermion mass operator along the infrared fixed point (IRFP) line and the

ordering of the would-be hadron states can shed light on the dynamics at and just below the

lower endpoint of the conformal window. Our guiding principle, as in our previous studies

of these theories, is the identification of symmetry patterns; conformal symmetry and chiral

symmetry are the key ingredients in this case. Figure 1 guides us through the projection
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Figure 1. The phase diagram in the temperature (T ) and flavours (Nf ) plane for a non-Abelian

gauge theory with Nf massless Dirac fermions in the fundamental representation. A chiral phase

boundary (solid line) separates the hadronic phase from the quark-gluon plasma phase. The end-

point of the chiral phase boundary is where the conformal window opens.

on the plane temperature-flavour of the phase diagram of the chosen prototype theory, an

SU(3) gauge theory at zero chemical potential withNf flavours of massless Dirac fermions in

the fundamental representation, in other words massless QCD with varying flavour content.

For small Nf and at zero temperature, QCD has spontaneously broken chiral symmetry

and it is confining. At some finite temperature, the system enters the quark-gluon plasma

(QGP) phase, where chiral symmetry is restored and the system deconfines. For increasing

Nf the most favoured scenario, first discussed in [1, 2]1 and supported by lattice studies [4],

identifies the endpoint of the chiral phase boundary with the opening of the conformal win-

dow at some critical value N c
f . The conformal window refers to a family of theories that

develop an IRFP in the interval N c
f ≤ Nf ≤ Naf

f ; at Naf
f asymptotic freedom is lost.

As long as the theory is renormalizable, scale invariance in the ultraviolet was long

ago shown to imply conformal invariance if an energy-momentum tensor θµν exists for

which the scale current sµ satisfies sµ = xνθ
µν [5]. Recently, there has been progress in

classifying the possible IR and UV asymptotics of field theories in order to understand

if four dimensional scale invariant unitary quantum field theories are always conformally

invariant [6–8]. QCD-like theories in the conformal window belong to the class of theories

that flow between a (trivial) UV and a (non trivial) IR fixed point, where scale invariance

is expected to imply conformal invariance at least at the perturbative level and as long as

nonrenormalizable operators (e.g., induced by a lattice discretization) do not play a role.

To guarantee scale and conformal invariance, chiral symmetry has to be restored and the

theory deconfined in the usual sense. Everywhere in the parameter space of the theory,

except at the fixed point, the observables will only show remnants of conformality; these

remnants and the realization of exact chiral symmetry determine features of the correlation

functions and the spectrum that are quite distinct from those of QCD. The purpose of this

study is to isolate the aforementioned features and identify the universal scaling properties

of the IRFP. To this end, we take the Nf = 12 system as a prototype of theories inside the

1These works were preceded by the pioneering work in [3], where alternative scenarios with no phase

transition at Nc
f were considered.
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Figure 2. Phases of the many-flavour SU(N) gauge theory formulated on the lattice inside the

conformal window. As the bare lattice gauge coupling gL increases from left to right, the lattice

theory encounters an asymptotically free phase (negative β-function), it crosses the IRFP at some

g∗L and enters a QED-like phase (positive β-function); chiral symmetry is exact in all these phases.

At g∗∗L a phase transition occurs to a chirally broken phase. It may be preceded by an exotic phase

(grey shaded area) due to the improvement of the lattice action [10–12].

conformal window and study both the fermion mass and volume dependence of the would-

be hadron masses in a lattice box, and the fermion mass dependence of the spectrum at

infinite volume. This analysis updates and largely extends our first study of this system [4].

Importantly, this is the first study of universal scaling for the complete would-be hadron

spectrum — pseudoscalar, scalar, vector, axial mesons and the nucleon. Inspired by [9], it

also provides a unified description of all existing lattice spectrum results for this system.

The paper is organized as follows. Section 2 contains a theoretical premise, where we

partly reformulate or adapt to this system existing knowledge for the scaling properties of

two-point functions and the spectrum at, or close to, a fixed point. Section 3 describes our

lattice action and the strategy adopted to compute the spectrum of the Nf = 12 theory

at a fixed lattice gauge coupling. Section 4 is entirely devoted to results, in order, the

universal scaling and violations of scaling for the would-be hadron spectrum at finite and

infinite volume, the fermion mass anomalous dimension at the IRFP, mass ratios, and the

degeneracy of chiral and U(1)A partners. We conclude in section 5.

2 Theoretical premise

As always, symmetries guide our understanding of a physical phenomenon, and we should

identify the observables sensitive to those symmetries. In this case, we are interested in

the two-point functions inside the conformal window, and the relevant symmetries are

conformal, chiral and, to a certain extent, the U(1) axial symmetry; the latter will be

shortly discussed at the end of this work. Figure 2 describes the pattern of phases for

a theory inside the conformal window formulated on the lattice, i.e. a gauge invariant

formulation on a discretized spacetime. At small bare lattice coupling gL < g∗L the theory

is in the asymptotically free phase, characterized by a negative β-function. The lattice

theory then crosses the IRFP at some lattice coupling g∗L and enters a Coulomb, or QED-

like, phase characterized by a positive β-function. For all gL > g∗L asymptotic freedom is

lost and the lattice theory has no continuum limit — the only exception being the possible
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appearance of a UVFP at stronger coupling. For all gL < g∗∗L in figure 2 chiral symmetry

is exact. At g∗∗L the lattice theory exhibits a zero temperature, i.e. bulk, phase transition

to a chirally broken phase. There are indications that the line of bulk phase transitions

ends at a finite Nf � Naf
f [13]. Finally, the grey shaded area in figure 2 indicates the

possible emergence of an exotic phase due to improvement of the lattice action [10–12];

chiral symmetry is still exact in this phase [10, 12].

In our first study [4] of the conformal window we outlined a strategy based on the

physics of phase transitions, in order to characterize the different phases in figure 2. We

highlighted the observables that are most suitable for probing the emergence of the confor-

mal window and its properties: the chiral condensate, order parameter of chiral symmetry,

the chiral susceptibilities and their ratios, and the would-be hadron masses. This goes

beyond the direct probe of the IRFP, it probes the very existence of the conformal window

and the nature of the symmetry breaking/restoring patterns. In fact, the existence of an

IRFP might not necessarily imply the existence of a conformal window characterized by

a phase transition at some N c
f . We also attempted for the first time in the study of this

theory a lattice determination of the fermion mass anomalous dimension, obtaining, with

all due caveats and still sizable uncertainties, a value in good agreement with most of later

results; ours were obtained in the QED-like region of figure 2, and we stress once again

the importance of identifying the phase where observables are measured. In this work

we concentrate on the would-be hadron spectrum in the QED-like phase of the Nf = 12

lattice system, as a specific probe of conformal and chiral symmetries. In line with recent

work [14] and renormalization group (RG) theory à la Wilson, figure 3 illustrates how the

fermion mass term perturbs the RG flow of the continuum massless interacting theory in-

side the conformal window — we have assumed that no other couplings are present besides

the gauge coupling and the mass itself. The mass term is a relevant operator that drives

the theory away from the IRFP, while the gauge coupling is irrelevant due to quantum

corrections. As discussed in [14], mass deformed conformal field theory (mCFT) can be

used within the basin of attraction of the IRFP to uncover the universal scaling properties

of the correlation functions at infinite and finite volume. Away from the IRFP violations

of universal scaling will gradually appear, while correlation functions still satisfy all con-

straints implied by the non spontaneously broken chiral symmetry. A UVFP at strong

coupling may emerge, however no indications of it have been found in preliminary lattice

studies of the Nf = 12 theory [15]. We also note that, at strong coupling, new operators

may be promoted from irrelevant to marginal or relevant; if so, the fixed point structure of

the theory needs to be reanalyzed in an enlarged space of couplings, possibly complicating

the lattice search for new UV/IR fixed points.

2.1 Two-point functions

We are interested in the two-point functions made of currents of the type JM ∼ q̄ΓMq,

with ΓM = 1, γ5, γµ, γµγ5 for the scalar (S), pseudoscalar (PS), vector (V) and pseudovector

(PV) mesons, respectively, and the nucleon correlation function with current JN ∼ qqq.

In other words, we identify the would-be hadrons of QCD in order to allow for a direct

comparison with the spectrum of theories inside the conformal window.

– 4 –
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Figure 3. Wilson RG flow and fixed points of non-Abelian SU(N) gauge theories in d = 4 spacetime

inside the conformal window, with fermion mass m and gauge coupling g. For the massless theory

(m = 0), the trivial UVFP (g = 0, asymptotic freedom) becomes unstable towards g perturbations

due to quantum corrections and the system flows toward the non-trivial IRFP at g∗, m = 0. The

fermion mass operator is always relevant and the gauge coupling is irrelevant at the IRFP. Mass

deformed conformal field theory (mCFT) for g ' g∗ and m→ 0 provides the universal scaling laws

for observables at the IRFP. The dashed line is a line of possible initial values (m, g) for the lattice

system, and its critical point C flows into the IRFP. A UVFP at strong coupling may emerge.

At the IRFP the theory is massless and interacting, and its two-point functions satisfy

universal scaling relations with nonzero anomalous dimensions

〈0|T JH(x1)J†H(x2)|0〉 ∼ (x1 − x2)−∆H H = M, N (2.1)

with ∆H/2 the scaling dimension of the current JH . More specifically, we are interested in

the Euclidean two-point functions with zero total 3-momentum

CH(t) =

∫
d3x 〈0|T JH(t, ~x)J†H(0, 0)|0〉 ∼ t−∆H+3

=

∫ ∞
0

dE K(E, t)σ(E) . (2.2)

This is the well-known power-law scaling of the correlations CH(t) at the IRFP. We have

also introduced the representation of CH(t) in terms of the spectral function σ(E) and the

kernel K(E, t). Spectral functions are a powerful probe, widely used in the study of the

QCD phase diagram at finite temperature and chemical potential; for example, they are a

direct probe of the gradual melting of bound states in the quark-gluon plasma close to the

critical temperature.

In the presence of a nonzero fermion mass mCFT provides rigorous results inside

the IRFP basin of attraction; these are derived in the next section. Away from the

IRFP, known cases, such as QCD at zero temperature or QGP close to its critical tem-

perature, provide a phenomenological insight. QCD is confining in the infrared, and

free in the ultraviolet. Its complete spectral function σ(E) entails the low-energy res-

onances and the high-energy continuum. Schematically, it is made of a series of Dirac
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δ-functions (the propagator poles) and a continuum with a high-energy threshold σ(E) ∼
E∆H−4

(
AHδ(E

2 −m2
H) + Cθ(E − E0)

)
, where for simplicity we assumed one resonance

(pole) per channel H. If we take in eq. (2.2) the kernel K(E, t) = exp (−Et), i.e. the

Fourier transform of a free boson propagator for infinite temporal extent, the two-point

function CH(t) can be exactly computed in terms of upper incomplete Γ functions

CH(t) = Cpole
H + Ccont

H ∼
∑
H

m∆H−3
H e−mH t +

C

t∆H−3
Γ (∆H − 3, E0t) . (2.3)

At large times t → ∞, using Γ(s, x)/(xs−1 exp (−x)) → 1 as x → ∞, one obtains for the

high-energy continuum contribution

Ccont
H (t) ∼ E∆H−4

0

t
e−E0t , t→∞ . (2.4)

The high-energy continuum generates an exponentially decaying contribution with time

dependent coefficients, and leading 1/t behaviour at large times, differently from the low-

energy poles.

QGP close to its critical temperature is instead an example of a deconfined, though

strongly interacting, theory with restored chiral symmetry; it is almost analogous to a

theory inside the conformal window, except that there is no IRFP. A realistic description

of the QGP two-point functions is a rich subject of study that is beyond our analogy. It

is here enough to observe that the system undergoes a gradual melting of the QCD bound

states till their disappearance into a continuum. How gradual is the analogous transition

inside the conformal window depends on various factors: the nature of the zero temperature

phase transition that opens the conformal window at N c
f , the strength of the interactions

at the IRFP, the quantum numbers of the would-be hadrons.

2.1.1 Universal scaling laws at infinite volume

In order to understand the behaviour of the two-point functions CH(t) and the would-

be hadron masses in the surroundings of the IRFP we summarize, partly reformulate and

adapt to our case known aspects of the scaling theory at a conformal fixed point. The scales

of the system are the lattice spacing a (that can be thought as the inverse of an ultraviolet

momentum cutoff), the characteristic length ξ that will emerge in the scaling analysis, and

the spatial length L of the lattice box; we shall consider specific ranges for a, ξ and L. The

couplings are the fermion mass m and the gauge coupling g. They have scaling dimensions

[m] = 1 + γ [g] = −γg , (2.5)

where the scaling dimension is the sum of the canonical dimension and the anomalous di-

mension, γ and −γg, respectively. At the IRFP, g = g∗ and m = 0, the anomalous dimen-

sions have values γ∗ and −γ∗g , and we introduce the exponent δ = (1 + γ∗)−1 for later use.

For the interacting theory, the coupling m is always relevant in the RG sense (0 < γ < 2),

while g has −γg < 0 due to perturbative quantum corrections and it is thus irrelevant. We

first consider the lattice system in the infinite volume limit L→∞ and in the continuum
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limit a→ 0.2 The invariance of the system under a rescaling of coordinates in the presence

of a small perturbation of the relevant couplingm at the IRFP provides the universal scaling

relations for CH(t); they are universal in the sense that they do not depend on the micro-

scopic details of the system. Under a rescaling of coordinates x′ = x/b — where x indicates

both space and time — the form of the correlation is dictated by its scaling dimension sH

CH(t/b; b1/δm) = bsHCH(t;m) , (2.6)

where sH = ∆H − 3. Setting m = 0, eq. (2.6) yields CH(t/b) = bsHCH(t), hence

CH(t) ∼ t−sH , the scaling form already introduced in eq. (2.2). Setting b = exp (l) gives

a better intuition of the approach to large distances. Since eq. (2.6) holds for any l, we

can choose l = l∗ so that m exp (l∗/δ) = 1. We can also define a characteristic length

ξ = exp (l∗), so that we obtain

CH(t) = ZH ξ
−sH F

(
t

ξ

)
. (2.7)

The coefficient ZH accounts for the microscopic details of the system and has zero scaling

dimension. The second factor carries the scaling dimension sH of CH , while the third

factor is the adimensional universal scaling function that only depends on the ratio t/ξ,

with zero scaling dimension. In the most general case, the scaling function F will depend

upon all possible products with zero scaling dimension, made of a scale and a coordinate

or a relevant coupling. The function F is universal in the sense that does not depend on

the microscopic details of the system. It depends on the scaling dimension of the operators

H = M,N , their spin and normalisation. For any nonzero m, one can think of ξ as a

finite characteristic length ξ = m−δ; eq. (2.7) says that for a change of m, the coordinate

t changes at the scale ξ. In the limit ξ → ∞, or equivalently t � ξ, the system ap-

proaches the IRFP and eq. (2.7) should reproduce the form CH(t) ∼ t−sH ; this constrains

the asymptotic behaviour of the scaling function F (t/ξ). In the opposite limit t � ξ, the

two-point functions decay exponentially, so that

CH(t) ∼ t−sH t� ξ

CH(t) ∼ ξ−sH f

(
t

ξ

)
e−t/ξ t� ξ . (2.8)

While the time dependence is dictated by the scaling dimension of CH , the numerator in

the limit t� ξ depends on the spin and normalisation of the operators H = M,N . In the

opposite limit t � ξ, dimensional reasoning allows for all terms in f(t/ξ) that reproduce

the correct scaling at the fixed point, ξ → ∞ or equivalently t � ξ. Specifically, it allows

for all powers t−α, with 0 ≤ α ≤ sH and including α = 0. While the limit t� ξ is uniquely

determined by the conformal fixed point, the details of the limiting behaviour for t � ξ

depend on the nature of the interactions in the quantum system. Our case is that of com-

posite operators in a deconfined and interacting non-Abelian gauge theory close to a non

2The latter limit is realized, in practice, whenever the characteristic length ξ, defined later in eq. (2.7),

is much larger than a.
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trivial IRFP; we do not know a priori if the system is weakly or strongly coupled. Without

a detailed knowledge of the quantum correlators, we can still infer their most general form

close to the fixed point. The presence of a mass threshold, i.e. ξ finite, produces a pole and

branch-cuts (i.e., a continuum of critical excitations) in the propagators of the quantum

composite operators.3 Using for the sake of illustration the schematic form in eq. (2.3) for

the continuum part, with threshold E0 = n/ξ, for some n, one obtains

CH(t) ∼ ξ−sHe−t/ξ +
C

tsH
Γ

(
sH ,

nt

ξ

)
, (2.9)

for any intermediate time and finite ξ. The first term is generated by the would-be hadron

pole with residue ξ−sH . The second term is a continuum of excitations with energy thresh-

old proportional to ξ−1. The relative position of the pole and thresholds depends on the

specific theory and interactions. It is always true, however, that all thresholds and the pole

merge at the fixed point, where the residue at the pole vanishes.

Note that the would-be hadron pole, the first term in eq. (2.9), is proper of the decon-

fined theory close to the IRFP and is not to be identified with the hadron poles of confined

QCD. In fact, it vanishes at the fixed point and the theory smoothly flows to pure Yang

Mills at infinite fermion mass, i.e. ξ → 0. This description of theories inside the conformal

window does not need, but does not exclude, the occurrence of a phase transition at a finite

fermion mass between a deconfined and a confined phase, a scenario proposed in [16]; note

that confinement is always realized in the limit m→∞, where fermions decouple.

From the practical viewpoint of a lattice study of the system, it is sufficient to observe

that the two-point functions CH(t) in the presence of a fermion mass m = ξ−1/δ are

dominated by a constant times an exponential, i.e. ξ−sH exp (−t/ξ), for t � ξ and ξ 6= 0,

while the time-dependent power-law contributions to f(t/ξ) in eq. (2.8) become increasingly

important at smaller times and for decreasing masses. We also observe that the addition

of a UV cutoff, i.e. a nonzero lattice spacing a, or a finite temporal extent t ≤ T , do

not qualitatively change any of the properties discussed, nor affect the extraction of the

would-be hadron mass from the dominant pole contribution.

The comparison of eq. (2.7) with the large euclidean time behaviour CH(t) ∼
exp (−mHt) for a would-be hadron of mass mH provides the universal scaling form

mH = cH m
δ , (2.10)

at coupling g = g∗ and with coefficient cH that depends on the spin of the operator

H = M,N .

2.1.2 Universal scaling laws at finite volume

Keeping g = g∗, we now consider the system at finite volume L, with ξ, L � a, and we

trade the characteristic scale ξ for the mass m, using ξ−1 = mδ; in this way, the system

3Analogous examples can be found in magnetic systems close to a quantum critical point, where a

quasiparticle pole and multiparticle continuum thresholds are present in the system.

– 8 –



J
H
E
P
1
2
(
2
0
1
4
)
1
8
3

has effectively one relevant scale L, and we can study the scaling of CH under a change of

L. In full analogy with eq. (2.7), the correlation is now4

CH(t;m,L) = Z̃H L
−sH F

(
t

L
, Lmδ

)
. (2.11)

It is the product of a coefficient Z̃H , which accounts for the microscopic details, a scaling

factor and the universal scaling function F with zero scaling dimension arguments, made

of products of the scale L and a coordinate or a coupling. The leading scaling form of the

would-be hadron mass in the channel H as a function of the fermion mass and L now reads

mH = c̃H
1

L
f(x) x = Lmδ , (2.12)

where the scaling function f(x) depends on the parameter x with zero scaling dimension. To

recover the infinite volume limit of eq. (2.10), one needs f(x) ∼ x as x→∞ and c̃H = cH .

One has also f(x) → const as x → 0. The function f(x) a priori depends on the channel

H = M,N through the spin of the corresponding operators. However, once the constant cH
is factored out, its x→∞ limit is H independent. Moreover, the study of section 4.3 and

figure 12 suggests that most of the H dependence is contained in cH for all x. Eqs. (2.10)

and (2.12), important for the scaling analysis of the lattice results, were first derived in [14].

Eq. (2.12) says that finding the universal curve followed by LmH/cH as a function of x,

with 1/δ = 1 + γ∗, is a way to determine the mass anomalous dimension γ∗ at the IRFP.

2.1.3 New operators and corrections to universal scaling

The emergence of new marginal or relevant operators can occur in the system at sufficiently

strong coupling, e.g., the four fermion operator can turn from irrelevant to marginal, or

relevant. In this case the fixed point structure has to be reconsidered, together with the

RG flow towards the fixed point(s) in the enlarged parameter space. This is hardly the

case for the IRFP studied here, but it may play a role in the possible emergence of a new

ultraviolet fixed point at stronger coupling.

On the lattice, one can isolate the universal scaling in eq. (2.12) by identifying the

perturbative corrections in the volume L and mass m that produce a deviation from the

scaling function f(x) and possible nonperturbative scaling violations. We discuss a few

aspects below.

• perturbative corrections in L and m: close to the fixed point the irrelevant

couplings, i.e. g 6= g∗ in our case, generate perturbative corrections made of products

of couplings and scales with zero scaling dimension.

• nonperturbative corrections: they should be expected when the scale(s) of

the microscopic dynamics becomes comparable to or larger than the characteristic

length of the system. Violations of universal scaling in this context can appear with

nonuniversal functions that cannot be factored out of f(x). One example is when

4The large volume limit of the field theory at the IRFP can be treated analogously to the low-temperature

perturbation of a lattice spin system at a zero temperature critical point.
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the box size L becomes small compared to the Compton wavelength of the would-be

hadron ξ. Other examples are provided in this context by the occurrence of the

bulk phase transition at strong coupling, which changes the underlying symmetries

of the system, or the possible appearance of new phases that precede the bulk

transition and are induced, e.g., by competing interactions in Symanzik-improved

lattice fermion actions on coarse lattices [10].

The first type of corrections, perturbative in L and m, deserves some discussion. They

are induced by the irrelevant coupling g, whenever we take g 6= g∗. Consider a small

variation ∆g; the smaller the scaling dimension γ∗g of g, the slower the system will flow

back to the IRFP. The leading perturbative corrections to eqs. (2.7) and (2.11) can be

of two types. Firstly, ZH (Z̃H) and m (the relevant coupling) should be redefined, in a

way that may generically be difficult to compute.5 Secondly, multiplicative corrections

to the scaling function F appear. They can be written in terms of products with zero

scaling dimension, made of the coupling ∆g and the relevant scale, thus 1 + ∆gξ−γ
∗
g , or

equivalently 1 + ∆gmδγ∗g , in eqs. (2.7) and (2.11), and 1 + ∆gL−γ
∗
g in eq. (2.11). The

first corrections become increasingly unimportant as ξ → ∞ (m → 0), the second ones as

L → ∞. The same perturbative corrections for g 6= g∗ will enter mH as redefinitions of

cH , the fermion mass m itself (equivalently the scaling dimension δ), and multiplicative

corrections of the type 1 + ∆gξ−γ
∗
g and 1 + ∆gL−γ

∗
g .

• The coefficient ∆g, referred to as the fitting parameter b in section 4, measures

the deviation of the gauge coupling from its value at the fixed point, or, on the

lattice, the deviation from g∗ along the line of lattice parameters that flows to the

IRFP in the continuum limit. It is a nonuniversal parameter that vanishes at the

IRFP, possibly changing its sign. In particular, when symmetries allow for a linear

dependence on g − g∗, we can expect ∆g (or the parameter b) to change sign at

the boundary between the two phases of the lattice system, indicating if the latter

is located on the strong coupling side of the IRFP, i.e. the QED-like phase on the

lattice, or the weak coupling side of the fixed point, i.e. the asymptotically free phase

on the lattice. We also expect ∆g to flow to zero in the continuum, i.e. βL → ∞,

where the lattice system reaches the IRFP.

• The exponent δγ∗g , entering the perturbative corrections to scaling, is universal and

it is given by the anomalous dimension of the fermion mass γ∗ and the anomalous

dimension of the gauge coupling at the fixed point −γ∗g ; this tells that the universal

scaling function as well as its perturbative corrections contain information on γ∗.

We will encounter realizations of the perturbative corrections in m and nonperturbative

corrections in L in section 4. As a final note, the mixing of the couplings m and g under the

RG flow cannot generate in this system a new fixed point à la Wilson-Fischer at m∗ 6= 0 due

to the chirality protection of the fermion mass term, i.e., dm/dµ ∝ m with renormalization

scale µ. We study eq. (2.12) on the lattice in section 4.3 and eq. (2.10) in section 4.5.

5However, a perturbative treatment of the RG equations in the case of an IRFP at weak coupling may

provide the leading contributions to these corrections.
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2.2 The fermion mass anomalous dimension at the IRFP

One aim of this study is to measure γ∗ nonperturbatively on the lattice, by identifying uni-

versal scaling and the pattern of scaling violations in the would-be hadron spectrum. Nu-

merous lattice studies have recently reported over a wide variety of evidences that the Nf =

12 theory is inside the conformal window, supporting the first results in [17], based on the

flattening of the running gauge coupling, and [4] that probed the very existence of the con-

formal window. While the phenomenological interest mainly resides in theories just below

the conformal window, it remains important to determine the pattern and sizes of observ-

ables inside the window, since they are directly, and in some cases smoothly, related to their

value below the window lower endpoint; one such quantity is the fermion mass anomalous

dimension γ∗ along the IRFP line. Its value determines if the theory is strongly or weakly in-

teracting at the IRFP. It is null in the free theory, atNf = Naf
f , and it is bounded to be γ∗ <

2 by the unitarity of the conformal theory [18, 19]. An appealing conjecture suggests γ∗ = 1

at the lower endpoint of the conformal window, Nf = N c
f , so that chiral symmetry breaking

is triggered [20] — for γ∗ = 1 the four-fermion operator becomes relevant. The theoretical

question if γ∗ = 1 holds exactly at N c
f is still open; it is however appealing to think that the

exactness is realized [21], and some consequences of this scenario are discussed in section 4.5.

The value of γ∗ can be determined nonperturbatively on the lattice6 and it has been

computed in perturbation theory at two-loops [22], three and four loops [23, 24], see

also [25, 26] for studies in the large-Nf limit, [27, 28] for analyses of renormalization scheme

transformations and [29] for a recent fixed point analysis of classes of gauge theories. It

is thus mandatory to compare the genuinely nonperturbative lattice determination with

perturbation theory, and in this spirit we analyze the lattice results in section 4. Here,

we discuss a few relevant aspects that can be inferred from [23, 24] and we compute the

gauge coupling anomalous dimension −γ∗g to four loops. By inspection of the four-loop

β-function and the mass anomalous dimension γ in [23, 24] one observes that:

• The Nf = 12 IRFP coupling in the MS scheme moves from g2/(4π2) ' 0.24 at two

loops to g2/(4π2) ' 0.15 at four loops, and the mass anomalous dimension at the

IRFP — a renormalization scheme independent quantity — moves from γ∗ ' 0.77 to

γ∗ ' 0.25. The latter value provides δ ' 0.8; this value will turn out to be in good

agreement with our lattice determination.

• The IRFP coupling moves towards the origin when going from two to four loops,

while the lower endpoint of the conformal window stays around Nf = 8.

• The Nf dependence of the coefficients βi and γi, i = 0, 1, 2, 3, of the four-loop β-

function and γ, respectively, deserves some discussion. The four-loop coefficient β3

grows rapidly with Nf and it is responsible for the appearance of a new zero for

Nf ≥ 17, just above the conformal window. Analogously, the four-loop coefficient

γ3 grows rapidly with Nf and causes a change of sign of the running anomalous

6It is worth noting that other field-theoretical techniques, such as conformal bootstrap and variations

thereof, are becoming increasingly useful in constraining correlators and anomalous dimensions of operators

in strongly coupled field theories.
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dimension at some g for Nf ≥ 8; importantly, this happens at a coupling g � g∗

for Nf = 12, suggesting that perturbation theory may still be reliable for Nf = 12

at g = g∗. This is no longer true for Nf ∼ 8, where g∗ is larger and the change

of sign occurs for g < g∗. We do not further address the problem of the reliability

of perturbation theory for Nf ∼ 8, with or without a truncation to a given order

in the loop expansion. We only note that this is the region where nonperturbative

contributions can play a significant role in the disappearance of the conformal window.

An instructive comparison between perturbation theory and nonperturbative results

can be carried out in the Veneziano limit, see [27] for studies in this limit, or with a

large-Nf resummation as initially proposed in [25]. Recent progress in constraining by

field-theoretical techniques the correlators of large-N QCD and N = 1 SQCD [30, 31]

should help in the task of identifying the role of nonperturbative contributions.

• Finally, we derived the value of the gauge coupling anomalous dimension at the

IRFP to two and four loops from [23] as −γ∗g = ∂β(g)/∂g|g=g∗ . As all other critical

exponents, this is a renormalization group invariant quantity. A straightforward

calculation gives γ∗g |2−loop ' 0.360 and γ∗g |4−loop ' 0.283, consistently with the fact

that the IRFP moves towards weaker coupling from two to four loops.

To summarize, four-loop perturbation theory predicts γ∗ ' 0.25, i.e. δ ' 0.8, and the

universal exponent δγ∗ ' 0.23 for the Nf = 12 system at the IRFP. This prediction

misses the nonperturbative contribution, and some renormalization scheme dependence

can be induced by the truncation of the perturbative expansion. A comparison with

the nonperturbative lattice determination of γ∗ is therefore instructive. Figure 4 collects

recent lattice determinations of γ∗ and the predictions of perturbation theory, anticipating

the result of this work later discussed in section 4. The most salient feature of figure 4

is the agreement among lattice determinations, and their agreement with the four-loop

perturbative prediction, once a universal scaling analysis is carried out. This is true for [9]

and this work. Previous pioneering determinations of the mass anomalous dimension, the

very first one in [4] and the ones in [32–36] were obtained through the analysis of specific

H channels in the would-be hadron spectrum or the eigenvalues of the Dirac operator

at some bare lattice coupling, without a systematic identification of the universal scaling

contributions and violations thereof. Despite this, all determinations are contained in an

interval that is well below γ = 1. This shows the stability of the prediction and the fact

that the (lattice) system is not largely sensitive to deviations from the IRFP. Importantly,

measurements can be done on both sides of the fixed point, being it the asymptotically

free side or the QED-like side. In section 4.5 we futher discuss our determination of γ∗

and the implications of the obtained value.

2.3 The Edinburgh plot

Besides conformal symmetry, one relevant ingredient characterizing the two-point functions

in the conformal window is restored chiral symmetry. Everywhere in the asymptotically

free and the QED-like phase, chiral Ward identities must be fulfilled by the renormalized
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perturb.
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Figure 4. Collection of recent lattice determinations of the mass anomalous dimension γ for the

Nf = 12 system, and the perturbative prediction of its value at the IRFP to 2, 3 and 4 loops. From

top to bottom, the value from this work, [0] from [4], [1] from [32], [2] from [33], [3] from [34], [4]

from [9], [5] from [35], and the perturbative determinations from [23, 24].

correlation functions. There is no Goldstone boson, since chiral symmetry is not sponta-

neously broken, and all chiral partners, scalar and pseudoscalar, vector and axial, must be

degenerate in the chiral limit.7

The Edinburgh plot, widely used in lattice QCD studies and suggested as a probe of

the conformal window in [37], is constructed in terms of adimensional ratios of masses,

and/or decay constants, and it traditionally offers a powerful way to combine results of

lattice calculations performed at different lattice spacings and with different lattice actions.

In this case, it also provides a clear visualisation of different mass regimes and distinguishes

between QCD and theories inside the conformal window; we use it here to illustrate the

behaviour of the Nf = 12 system, adopted as a prototype of theories inside the conformal

window. Figure 5 shows the Edinburgh plot for the Nf = 12 infinite volume lattice results

in table 1 for am > 0.025 and in table 4 for am ≤ 0.025. The physical point of QCD (left of

figure) corresponds to mπ/mρ ' 0.18 and mN/mρ ' 1.21. At the other side of the figure

a useful theoretical limit is the heavy quark mass limit, where all masses of the would-

be hadrons are given by the sum of their valence quark masses so that mπ/mρ = 1 and

mN/mρ = 3/2. A QCD scenario would correspond to a curve in figure 5 that extrapolates

to the QCD physical point for decreasing quark masses, i.e., it would join the two red

points in figure 5. Instead, we observe that the two mass ratios are “stuck” at a tiny corner

of the plot, away from the heavy-quark limit and the QCD physical point for a wide range

of bare fermion masses 0.01 ≤ am ≤ 0.07. This is to be expected inside the conformal

window; would-be hadron masses scale as mH = cH m
δ at the IRFP, ideally producing one

point in the Edinburgh plot. Moving away from the IRFP — in mass, coupling(s) and

7Exact chiral symmetry implies the degeneracy of the complete renormalized two-point functions in the

channels that are chiral partners, and the degeneracy of the corresponding renormalized chiral susceptibil-

ities — the integrals of the two-point functions.
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Figure 5. The Nf = 12 Edinburgh plot for the infinite volume lattice results in table 1 and 4

at βL = 3.9: the ratio of the nucleon (N) and the vector (ρ) mass is shown as a function of the

ratio of the pseudoscalar (π) and the vector mass. We show the scaling point (blue diamond) with

coordinates (x, y) = (cπ/cρ, cN/cρ), with cπ,N from Fit I in table 5 and cρ in table 7 (This work).

The superimposed (blue solid) line y = (cN/cπ)x (error band not shown) entails the perturbative

scaling violations derived in section 4. The coefficients cH , H = π, ρ, N are a priori βL dependent,

so that the solid (blue) line as well as the scaling point flow to their continuum value, as βL →∞,

cf. section 4.3. The QCD physical point (red star, leftmost) and the heavy quark limit (red star,

rightmost) are also displayed.

volume — produces some scattering of the data. A mild mass dependence of the infinite

volume mass ratios is induced by perturbative scaling violations for g 6= g∗ and m 6= 0.

Anticipating the results of section 4, these are represented by points distributed along the

solid line that passes through the scaling point in figure 5. All scaling violations still obey

the constraints implied by the underlying restored chiral symmetry.

3 Numerical setup

3.1 The action

We have generated configurations of an SU(3) gauge theory with twelve degenerate flavours

Nf of staggered fermions in the fundamental representation using a tree level Symanzik

improved gauge action

S = −
Nf

4
Tr lnM(am,U) +

∑
i=0,1

βi(g
2)
∑
C∈Si

Re(1−U(C)) (3.1)

where U(C) are the traces of the ordered product of link variables along the closed paths

C divided by the number of colors. S0 and S1 contain all the 1 × 1 plaquettes and

1 × 2 and 2 × 1 rectangles, respectively. The SU(3) lattice coupling of the unimproved

action is given by β = 6/g2
L and the βi are defined in terms of β as β0 = (5/3)β and

β1 = −(1/12)β. According to the way lattice simulations are performed and reported, we
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use βL(= β0) = 10/g2
L for the lattice results of this work, and β = 6/g2

L for some of the

existing lattice results discussed in section 4.

Improvement is extended to the fermionic sector following the Naik prescription. The

action of the fermionic sector can be written in terms of the one component staggered

fermion field χ(x) as

SF = a4
∑
x;µ

ηµ(x)χ̄(x)
1

2a

{
c1

[
Uµ(x)χ(x+ µ)− U †(x− µ)χ(x− µ)

]
+c2 [Uµ(x)Uµ(x+ µ)Uµ(x+ 2µ)χ(x+ 3µ)

−U †µ(x− µ)U †µ(x− 2µ)U †µ(x− 3µ)χ(x− 3µ)
]}

+a4m
∑
x

χ̄(x)χ(x) (3.2)

with the phase factor ηµ(x) = (−1)(x0+x1...+xµ−1). Order a2 accuracy at tree level is achieved

by using the Naik choice c1 = 9/8 and c2 = −1/24.

This action is the same used in previous studies conducted by our group on SU(3)

with Nf = 12 [4, 10, 12]. In particular, this action corresponds to the choice D of [10].

The theory under study exhibits a bulk transition separating a region at weak coupling

where chiral symmetry is restored from a region at strong coupling where chiral symmetry

is broken [4], as it is expected for all theories in the conformal window. For small enough

bare fermion masses and with our choice of action, the competition induced by next-to-

nearest neighbour interactions in eq. (3.2) causes the emergence of an intermediate phase

at finite lattice spacing, just before chiral symmetry is broken, as one goes from weak to

strong coupling [10], see also figure 2.

We generated configurations for a range of bare fermion masses going from am = 0.01

to am = 0.07 at fixed coupling βL = 10/g2
L = 3.9. This choice guarantees that our

simulations are carried in the chirally restored region, away from the bulk transition and

the exotic phase induced by the improvement. For the heaviest bare masses am = 0.06 and

am = 0.07 we simulated volumes 163 × 24 and 244. For bare masses am = 0.05, 0.025 and

0.020 we have simulated volumes 244 and 324. For bare masses am = 0.01, 0.04 we have

simulated volumes 243 × 32 and 324. In addition, volume 163 × 32 was simulated for bare

masses am = 0.01, 0.02, 0.025 in order to make it possible for us to obtain infinite volume

estimates of the spectrum for these quark masses.

During the runs, the parameters for the acceptance rate have been tuned to yield

a good acceptance while keeping a fixed trajectory length l ≈ 0.4 for all ensembles.

Configurations were saved every five simulated trajectories, so that saved configurations

are separated by approximately two unit trajectory lengths. Measurements of observables

such as the chiral condensate and the average plaquette were conducted on the fly, while

the measurements of the particle spectrum were conducted on the saved configurations

following the strategy described in the next section.

– 15 –



J
H
E
P
1
2
(
2
0
1
4
)
1
8
3

3.2 Strategy for the spectrum measurements

We have measured the two-point functions with currents JM ∼ q̄ΓMq in the scalar, pseu-

doscalar, vector and axial channels and the nucleon correlation function on the saved en-

sembles using corner-wall sources with fixed Coulomb gauge. The gauge fixing procedure

in traditional QCD is known to reduce contamination from excited states and helps to

better isolate the ground state of the system. In order to extract the lowest-lying masses

we found it useful to construct the meson correlators from quark propagators with different

combinations of temporal boundary conditions. This procedure was discussed in [38], it

is extensively used in lattice QCD and, recently, it was explicitly implemented for SU(3)

with Nf = 12 in [34]. Some caveats are in order inside the conformal window, where the

two-point function has the form in eqs. (2.7) and (2.8). We first summarize the strategy in

the case of an exponentially decaying two-point function with constant coefficient, which

is realized in all studied cases over a large time interval. Consider the quantity

C(t) =
1

2
[Cp.b.c.(t) + Ca.b.c.(t)] (3.3)

built from meson correlators with periodic (Cp.b.c.) and antiperiodic (Ca.b.c.) temporal

boundary conditions on a lattice of temporal extent T . It can be shown that the resulting

combined correlator C(t) has its lattice temporal extent effectively doubled and it can also

be written as the periodic correlator Cp.b.c.(t) with doubled period 2T [38]. In the case

of the pseudoscalar meson, the staggered two-point function does not contain a staggered

parity partner state. Taking into consideration a possible constant oscillation term that

might appear as a consequence of the wrapping of a quark line around the antiperiodic

time boundary, we can then write

CPS(t) = A
(
e−mπt + e−mπ(2T−t)

)
+B(−1)t (3.4)

The constant oscillation term can be removed by using the combination

C̃PS(2t) =
CPS(2t)

2
+
CPS(2t+ 1)

4
+
CPS(2t− 1)

4
(3.5)

so that the final correlator is

C̃PS(2t) = A
(
e−mπ2t + e−mπ(2T−2t)

)
. (3.6)

The effective doubling of the temporal extent allows to better isolate the first term in

eq. (2.9) and enlarges the corresponding effective mass plateau.

A similar combination of meson correlators with different boundary conditions in the

time direction can be performed for the other mesons. We use the PV correlator to extract

the masses of the would-be ρ vector meson and the a1 axial meson. The averaged PV

correlator can be written in this case as

CPV (t) = Aρ

(
e−mρt + e−mρ(2T−t)

)
+Aa1(−1)t

(
e−ma1 t + e−ma1 (2T−t)

)
+B(−1)t , (3.7)

It is possible to proceed with a similar combination to that of eq. (3.5), so that
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Figure 6. Examples of antiperiodic (blue circles), periodic (red squares) and combined (black

diamonds) meson correlators from eq. (3.3), obtained from configurations generated with bare quark

mass am = 0.05 at volume V = 324. (Left) The pseudoscalar correlator, (right) the pseudovector

correlator.

Figure 7. (Left) The periodic (red squares), antiperiodic (blue circles) and combined (black dia-

monds) scalar correlators, (right) the periodic (red squares) and antiperiodic (blue circles) nucleon

correlator for a bare quark mass am = 0.05 and volume V = 324.

C̃PV (2t) = Ãρ1

(
e−mρ2t + e−mρ(2T−2t)

)
+ Ãρ2

(
e−ma12t + e−ma1(2T−2t)

)
. (3.8)

In fact, such an approach has been followed in [34], where it was noted that, for the range of

volumes and quark masses studied by the authors, Ãρ1 � Ãρ2, and the resulting correlator

is well approximated by a single exponential form with coefficient Ãρ1

C̃PV (2t) ' Ãρ1

(
e−mρ2t + e−mρ(2T−2t)

)
. (3.9)

We have noticed that while the approximation (3.9) holds true for our heavier quark masses,

it starts to break down for our lightest quark masses. In addition to that, we are also

interested in studying the behaviour of the mass of the axial meson ma1 . For these reasons,

we fit the PV correlators obtained from our configurations to the complete functional

form (3.7) in order to extract both mρ and ma1. Examples of the initial correlators and

the quality of the final combined correlators are shown in figure 6.
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In similar fashion to eq. (3.7), we extract the mass mσ of the scalar meson from the

averaged S correlator

CS(t) = Aσ

(
e−mσt + e−mσ(2T−t)

)
+Bσ(−1)t

(
e−Mt + e−M(2T−t)

)
+B(−1)t . (3.10)

Lastly, we built the nucleon correlators from quark and antiquark propagators with an-

tiperiodic boundary conditions in the temporal direction. These were then fitted with

the usual expression for the lowest-lying states of a staggered baryon two-point function

containing four parameters

CN (t) = AN

(
e−mN t − (−1)te−mN (T−t)

)
+BN (−1)t

(
e−Mt − (−1)te−M(T−t)

)
(3.11)

with parity partner of mass M . Examples of these correlation functions are shown in

figure 7.

4 Results

Table 1 collects all lattice measurements of this work. Simulations have been done at inverse

lattice coupling βL = 3.9, located in the QED-like region of figure 2. The same coupling was

also used in our first study [4]. The masses of all would-be hadrons have been measured for

a range of bare fermion masses between am = 0.01 and am = 0.07, and volumes between

163×24 and 324. This section is organized as follows. After comparing the two-point func-

tions with the ones of the free theory, and testing them against eqs. (2.7) and (2.8) in sec-

tion 4.1, we provide in section 4.2 a tool to establish in which phase, QED-like or asymptot-

ically free, the lattice system is. Section 4.3 is dedicated to the spectrum in a finite volume.

It establishes the realization of universal scaling for the lattice results according to eq. (2.12)

and provides a unified description of all available lattice data for the Nf = 12 system while

identifying the pattern of scaling violations on both sides of the IRFP. Section 4.4 treats the

extrapolation to infinite volume, needed for the lightest masses. Section 4.5 is dedicated

to the spectrum at infinite volume, it established the realization of universal scaling for

the lattice results according to eq. (2.10) and identifies the pattern of scaling violations, in

particular, for the spin-1 states of this work and those in [34]. This analysis leads to the

determination of γ∗ that consistently describes all available lattice data for the spectrum of

the Nf = 12 system at finite and infinite volume. Finally, section 4.6 is a brief discussion

of mass ratios and degeneracies of chiral partners, probe of restored chiral symmetry.

4.1 Two-point functions

We have analyzed all two-point functions according to eq. (2.7) and its asymptotic forms

in eq. (2.8). Our results are easily summarized. For the entire range of masses explored,

the best fits to C(t) (with period 2T ) over the late time range are obtained for the

form a exp (−mt), symmetrized on 2T , with a constant and mass m. Time dependent

corrections will increasingly be present at small times for decreasing masses, rendering

more difficult the determination of the would-be hadron masses. The corrected form

a exp (−mt) + b/t exp (−nt), with b > 0 and n > m, ameliorates the fits at smaller times,
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am V olume amπ amρ amN amσ ama1

0.01 163 × 32 0.4421(17) 0.516(10) 0.867(26) 0.4388(15) 0.5086(36)

243 × 32 0.2701(44) 0.3002(61) 0.478(9) 0.2682(36) 0.305(30)

324 0.1942(21) 0.2114(52) 0.326(10) 0.2057(22) 0.2295(31)

0.02 163 × 32 0.4480(16) 0.499(25) 0.846(27) 0.446(8) 0.509(14)

244 0.3112(34) 0.3432(85) 0.528(14) 0.3297(35) 0.3903(91)

324 0.2624(13) 0.2857(11) 0.428(8) 0.3117(20) 0.3464(34)

0.025 163 × 32 0.4511(16) 0.5081(46) 0.892(31) 0.4598(48) 0.5102(32)

244 0.3447(12) 0.374(10) 0.591(21) 0.3916(82) 0.411(20)

324 0.3087(13) 0.3332(16) 0.530(13) 0.3786(49) 0.4048(55)

0.04 243 × 32 0.4236(57) 0.4890(60) 0.726(13) 0.543(24) 0.617(49)

324 0.4210(16) 0.4717(23) 0.709(2) 0.5359(51) 0.5783(83)

0.05 244 0.5020(23) 0.5652(76) 0.851(17) 0.6452(26) 0.703(41)

324 0.5031(21) 0.5689(17) 0.850(5) 0.6463(32) 0.7097(83)

0.06 163 × 24 0.5921(48) 0.678(12) 1.028(49) 0.747(13) 0.823(40)

244 0.5881(20) 0.6700(18) 1.003(8) 0.746(19) 0.831(10)

0.07 163 × 24 0.6600(19) 0.7663(48) 1.116(47) 0.831(14) 0.914(48)

244 0.6596(27) 0.7597(24) 1.111(6) 0.831(27) 0.918(34)

Table 1. Masses of the lowest-lying would-be hadrons, the pseudoscalar (π), the vector (ρ), the

scalar (σ) — obtained from the quark-line connected part of the isoscalar correlator — the axial

(a1), and the nucleon (N) for bare quark masses am = 0.01 to 0.07 and lattice coupling βL = 3.9.

The volumes span from 163 × 24 to 324.

as expected — for our lightest mass am = 0.01, such corrections start to become relevant

when considering times t < 10 and requires n & m.

In figure 8 we compare the two-point functions at βL = 3.9 with the corresponding

ones obtained in the free case, with the same lattice staggered action and the same bare

fermion masses; this comparison is useful to clarify how far the studied regime is from the

free limit. In fact, if the theory is deconfined one may expect a faster approach to the free

limit than it is realised in the confined theory. One useful ingredient in the comparison is

that two-point functions built with increasingly free quarks exhibit increasing sensitivity

to the change of boundary conditions, both in the spatial and temporal direction. The

zero-momentum free meson two-point functions reproduce the known analytical form for

staggered correlators on even and odd temporal sites [39], and indeed figure 8 (left) shows

the significant difference between the standard periodic meson two-point function built

with periodic (P) and the one built with antiperiodic (A) temporal boundary conditions

on the single free quark propagators. This difference is absent in the two-point functions at

βL = 3.9 in figure 8 (right), for the same bare fermion mass. Note also that exact point-by-
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Figure 8. (Left) The pseudoscalar two-point function Cp.b.c. (logarithmic scale) in the free case

with am = 0.05, made of two free quark propagators with antiperiodic boundary conditions (red

squares) and periodic boundary conditions (black circles) in the temporal direction. (Right) The

same two-point function at βL = 3.9. Vertical axes are rescaled to match.

point degeneracy of the scalar and pseudoscalar free meson correlators in the chiral limit

is only realized at zero lattice spacing, since they involve a sum over the momenta of the

fermion and antifermion propagators. In accordance with their analytical form [39], we

find that pairs of chiral-partner free correlators are exactly degenerate at odd times and

increasingly degenerate at even times towards the chiral limit. This comparison confirms

that the two-point functions at βL = 3.9 are significantly away from the free limit, and

well described by an exponential with a constant coefficient AH over a large time interval.

4.2 Would-be hadrons in the QED-like region

Figure 9 provides a tool to understand which phase of the Nf = 12 system we are looking

at. It shows the mass ratio of the would-be pseudoscalar and vector mesons as a function of

the bare fermion mass; these are the infinite volume lattice results in table 1 for am > 0.025

and in table 4 for am ≤ 0.025. It also provides a direct comparison of our results with

those of [34], the latter obtained with a HISQ staggered action at two lattice couplings. In

our initial study [4], where more than one lattice coupling — including βL = 3.9 and 4.0 —

was considered, we could conclude that our results were located in the QED-like region of

the theory, i.e. on the strong coupling and non asymptotically free side of the IRFP, with a

positive β-function. The results in figure 9 update that study at lattice coupling βL = 3.9;

data for the ratio at βL = 4.0 would be located on a curve with similar slope, to the right

of βL = 3.9. The analogous study in [34] led the authors conclude that their results are

instead located on the weak coupling and asymptotically free side of the IRFP. The same

can be inferred from figure 9, where the crucial ingredients are the slopes and the ordering

of curves. A line of constant physics would lead to a constant ratio mπ/mρ; a realization

of such a line occurs at the IRFP, where the β-function is zero and universal scaling holds

with mπ ,ρ = cπ ,ρm
δ. Away from the fixed point, a family of curves at different lattice

couplings as in figure 9 carries information about the sign of the β-function. For our data,

the crossing of a line of constant ratio with the curves at fixed lattice coupling — βL = 3.9

and an ideal line for βL = 4.0 at its right — implies a positive sign of the β-function, where
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Figure 9. The pseudoscalar (π) to vector (ρ) mass ratio as a function of the bare fermion mass.

Data at βL = 3.9 (left of figure) are at the largest volumes from table 1 (black circles) and the

infinite volume extrapolation from table 4 is shown for the three lightest points (red squares). Data

at βL = 4.0 would draw a line to the right of βL = 3.9 [4]. Data from [34] (right of figure) are

obtained with a HISQ staggered action, at β = 6/g2L = 3.7 (green diamonds) and β = 4.0 (blue

triangles), am = 0.04 to 0.2.

to first approximation we assume a constant physical mass between the intersections. The

data of [34] have the opposite behaviour, and correspond instead to a negative sign of the

β-function. At first sight, the reduced slope of the curves in the latter case would suggest

that the data of [34] are less affected by violations of scaling and plausibly closer to the

IRFP. Another possibility, implied by the results in section 4.3 and in line with [9], is that

different mass regimes are covered by the two sets of lattice measurements, both affected in

different ways and to different degree by violations of universal scaling. Summarizing, the

combined set of data in figure 9 nicely covers the region on both sides of the IRFP. This

illustrates the fact that observables in this system are actually sensitive to the change of

sign of the β-function and that some clever combination of these observables can be used

to locate the IRFP; we are currently investigating a strategy along this line.

4.3 The spectrum in a box

Figure 10 illustrates the pseudoscalar and vector products LmH for each given L as a

function of the bare fermion mass. It is clear that finite volume effects are present at the

largest spatial volume for the three lightest bare masses am = 0.01 , 0.02 and 0.025. At

the same time, these data offer the interesting option of a finite size scaling study with the

aim of identifying a universal scaling behaviour and define the functional form appropriate

to extrapolate these data to infinite volume. Barring the emergence of new operators,

we proceed to identify universal and nonuniversal behaviours in the space of couplings

(g,m). A comparison with the superimposed best-fit curves obtained at infinite volume

in section 4.5 helps locating the threshold where substantial deviations from a genuine

power-law appear in the scaling of LmH , at fixed L. These deviations can a priori contain
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Figure 10. LmH for the pseudoscalar (left) and vector (right) would-be hadrons as a function

of am and for varying L. For sufficiently large volumes and masses the points fall onto a curve

(superimposed), which is the power-law best-fit curve obtained at infinite volume (table 5).

nonasymptotic contributions to the scaling function f(x) of eq. (2.12), as well as genuine

scaling violations not described by f(x). The following analysis is devised to identify these

contributions at small and large x.

Anticipating the results of section 4.5, we note that the infinite volume best fit

to eq. (2.10) for the pseudoscalar, scalar and nucleon masses gives a critical exponent

δ = 0.81, while the vector and axial states favour a slightly larger exponent δ = 0.86,

see table 5. While the difference in the values of δ for different H channels is in itself

an indication of scaling violations, we note that universality appears to be realized in

all but the vector channels and δ = 0.81 gives a value of γ∗ = 1/δ − 1 in agreement,

within uncertainties, with the best fit reported in [9] and, noticeably, with the four-loop

perturbative prediction [23, 24]; it is thus tempting to conclude that our data are in the

universal scaling regime and provide a measure of the mass anomalous dimension at the

IRFP. The study that follows supports this conclusion.

In figure 11 we vary the scaling variable x about the best-fit value for δ (central figures)

and on the range δ = [0.5, 1] to study the x dependence of the ratio Lmπ/cπ (left) and

Lmρ/cρ (right). For x & 1, the data in the central figures align on a common curve. They

increasingly scatter and deviate from it when δ is moved away from its best-fit value, over

the range 0.5 to 1. Figure 12 reports all states for the reference value δ = 0.81; we observe

the universal behaviour of the pseudoscalar, scalar and nucleon states at x & 1 and the

displacement and slight change of slope of the vector and axial states. For x . 1, the

asymptotic behaviour of the universal scaling function f(x)→ const as x→ 0, is corrected

by nonperturbative L-dependent scaling violations. These are discussed in the next section.

Inspired by recent work [9], we now attempt a unified description of the finite volume

results of this work and the results obtained for the same system with other lattice actions,

at a priori different bare lattice couplings and fermion masses. In particular, we consider

the results at β = 2.2 in [40] and the results at β = 3.7 and β = 4.0 in [34]. We limit

this analysis to the pseudoscalar channel, studied in all works, while later in section 4.5 we

compare our results and those in [34] for the vector state. Figure 13 summarises this study,
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Figure 11. Ratios LmH/cH , cH from table 5, for the pseudoscalar state (left) and the vector state

(right) as a function of the scaling variable x = Lmδ for varying δ on [0.5, 1] and L = 16, 24, 32.

The central figures display the data alignment for the best-fit values of δ in table 5.

where we show the collapse on a common universal curve of data obtained with different

lattice actions and lattice couplings, once perturbative corrections to the universal scaling

are divided out. The general conclusions of this analysis are in good agreement with the

study in [9], while our analysis differs from [9] in some details and interpretation of the

parameters. We briefly highlight the relevant ingredients and results.

• Perturbative corrections to universal scaling are present whenever the system is close

to, but not at the fixed point. As pointed out in [9], perturbative corrections due to

g 6= g∗ and a finite fermion mass can explain the deviations from universal scaling
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Figure 12. LmH/cH , cH from table 5, as a function of x = Lmδ with δ = 0.81, excluding the

vector and axial states (top) and including them (bottom).

R b

This work 1 0

LH 1 0

LatKMI 3.7 1.054 −0.5435

LatKMI 4.0 1.193 −0.4926

Table 2. Values of R and b used in figure 13.
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Figure 13. Collapse of curves for the rescaled pseudoscalar product LmπR/(1 + bmω), with

ω = 0.23 from 4-loop perturbation theory and R, b in table 2, as a function of the universal scaling

variable x = Lmδ with δ = 0.81 from this work. Data are from [40] at β = 2.2 (LH, green

crosses), [34] at β = 4.0 (LatKMI, magenta hexagons) and β = 3.7 (LatKMI, blue triangles), and

from this work for L = 24, 32 (red squares) and L = 16 (red circles).

of many results for the Nf = 12 system. As explained in section 2.1.2, these contri-

butions can be parameterized to leading order as multiplicative corrections 1 + bmω,

with universal exponent ω = δγ∗g .

• We find that our best-fits favour values of ω lower than ω = 0.41 of [9], though we

cannot perform a fully unconstrained fit. It is therefore appealing to consider the

value ω = 0.23 given by δ = 0.81 — our central value in good agreement with the

4-loop prediction within uncertainties — and the 4-loop prediction γ∗g ' 0.283.

• The values of b in table 2 and the analysis of the vector state in table 7 corroborate

the interpretation of ∆g in section 2. We observe that all data are sufficiently close to

universal scaling. Our data are located in the QED-like phase of the system and do

not show corrections to scaling at these light masses, thus b = 0. The data from [40]

are close to our data, and again they seem not to be sensitive to corrections to scaling

at the light masses they consider; the only difference is that their data are located

away from the asymptotic linear form of f(x) and we cannot clearly discriminate

to which phase they pertain. The results from [34] are located on the other — i.e.

asymptotically free — side of the fixed point, thus showing b < 0. We expect the

data of [9] to be located between ours and the data from [34] on the asymptotically

free side, with b < 0, in agreement with their analysis. In section 4.5 we provide an

example of a positive b for our system in the QED-like phase, needed to successfully

describe perturbative corrections to scaling for the vector and axial states. Thus,

the parameter b changes sign at the boundary between the two phases of the lattice

system and we expect it to flow to zero in the continuum, i.e. βL → ∞, where the

lattice system reaches the IRFP.

– 25 –



J
H
E
P
1
2
(
2
0
1
4
)
1
8
3

• An overall rescaling is the usual procedure to bring together sets of data that follow

universal scaling. We perform a rescaling of Lmπ by the factor R in table 2. R is given

by the ratio of the coefficients cH entering the infinite volume functional form mH =

cHm
δ(1 + bHm

ω) for each given data set and channel H. Such a rescaling is asymp-

totically equivalent to a rescaling of the variable x, as used in [9], provided it does not

enter the corrections to the universal scaling function. The factor R for LatKMI is

derived in section 4.5. R shows a monotonic dependence on the lattice bare coupling

βL, converging to its universal value as βL → ∞. This statement, as the previous

one for b, assumes that the lattice system is in the basin of attraction of the IRFP.

• Once rescaled by R and once the perturbative mass corrections are divided out, the

product Lmπ for all the lattice data in figure 13 is described by a universal curve

f(x) for all x values, except for the presence of nonperturbative violations of scaling

for L . ξ for some data of this work.

4.4 Extrapolation to infinite volume

For am = 0.04 to 0.07, no residual finite volume dependence is left within the esti-

mated uncertainties; we thus take the result at the largest available volume as the in-

finite volume value for am = 0.04 to 0.07. For the three lightest bare fermion masses,

am = 0.01, 0.02, 0.025 we have instead performed an extrapolation to infinite volume.

Lüscher’s formula [41, 42] for particles in a box does in principle apply to any interacting

quantum field theory, provided the scattering amplitude of the particles involved is known.

The latter problem is perturbatively solved by chiral perturbation theory (χPT) for QCD-

like theories in the chirally broken phase, predicting the leading order behaviour of the

Goldstone boson mass to be [43, 44] mπ(L) = mπ + c exp (−mπL)/(mπL)3/2 for mπL� 1.

The functional form to be used in our case is what describes the scaling violations at small

x in figures 11 and 12.

The small x behaviour of the pseudoscalar would-be hadron is analyzed in figure 14,

for δ = 0.81. At the smallest values of x, Lmπ shows an L-dependent deviation from a

common curve. L dependent deviations from scaling can be expected whenever the box

size L becomes comparable to or smaller than the would-be hadron Compton wavelength

∼ ξ. The entire range of x in figure 14 can be described in terms of the universal scaling

function f(x), with asymptotics f(x) ∼ x as x → ∞ and f(x) → const as x → 0, and

a nonperturbative L-dependent violation of scaling at small x — note that perturbative

corrections in L of the type 1 + ∆gL−γg would instead multiply the entire scaling function

f(x) and modify its behaviour at all x. Hence, F (x, L) = ax + g(L)f̃(x) should describe

figure 14, except for the presence of nonlinear universal contributions to f(x) at intermedi-

ate x. The coefficient a is nothing but cH , H = π of table 5, the function g(L) increases for

decreasing L according to figure 14, and f̃(x) → const as x → 0. Figure 14 also displays

the best-fit curves for the simplified ansatz F (x, L) = ax + c exp (−kx), with best-fit

values of a, c, k in table 3. Rather than aiming at the optimal χ2/d.o.f , the purpose of this

example is to illustrate the trend of small volume corrections through effective parameters

c and k. The latter is quite stable for varying L, while, as expected, the parameter c
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Figure 14. Lmπ as a function of the scaling variable x = Lmδ with δ = 0.81, for L = 16, 24, 32.

The curves are the best fits to the functional form F (x, L) = ax+c exp (−kx), with a, c, k in table 3.

The analogous figures for H = S, V, PV,N are in figure 22 in the appendix.

L = 16 L = 24 L = 32

a 5.21(20) 5.59(10) 5.63(20)

c 8.07(70) 7.1(2.0) 4.7(3.2)

k 1.20(20) 1.31(30) 1.22(70)

χ2/dof 8.5 10 9

Table 3. Best-fit values of the parameters a, c, k and χ2/dof for the fits of Lmπ to the functional

form F (x, L) = ax+ c exp (−kx), with x = Lmδ and δ = 0.81.

increases with decreasing L; a polynomial g(L) ∼ (1− bL) perfectly describes the data and

provides a volume dependence milder than the universal scaling form 1/L exp (−L/ξ) for

mπ(L) at small x. At the same time, the shift in the paramater a at L = 16, as compared

to the larger volumes in table 3, should be attributed to the intermediate x contributions

to f(x) that are not captured by the simple ansatz for F (x, L).

A volume dependence milder than QCD and milder than the universal scaling form

can be traced back to the Coulomb dynamics in the QED-like phase and the absence of a

confining potential. It is favoured by the combination of data in figure 14, figure 15 and

the infinite volume study of the heavier masses am > 0.025. Having only three volumes

for each bare fermion mass, we have performed the extrapolation of the lightest would-be

hadron masses to infinite volume with the simplest ansatz

mH(L) = mH + c e−k̃mHL H=π, σ, ρ, a1, N (4.1)

with parameters c, k̃ and the infinite volume mass mH for the channel H. The results of

the extrapolation are summarized in figure 15, table 4 and in the appendix. In order to

account for the uncertainty induced by the lack of a complete knowledge of the function
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Figure 15. Spatial L dependence of the pseudoscalar mass (left) and the vector mass (right)

and extrapolation to infinite volume according to eq. (4.1). From top to bottom, am = 0.025

(blue diamonds), am = 0.02 (red squares) and am = 0.01 (black circles). The extrapolated value

and its uncertainty is indicated by the horizontal bands and reported in table 4. The channels

H = S, PV,N are in figure 21 in the appendix.

am amπ amρ amN amσ ama1

0.01 0.1343(58)(+599
−321) 0.1496(49)(+618

−277) 0.228(16)(+80
−17) 0.1696(51)(+361

−149) 0.1842(64)(+453
−176)

0.02 0.2353(26)(+271
−77 ) 0.2522(79)(+335

−136) 0.382(11)(+57
−3 ) 0.3084(27)(+32

−0 ) 0.3205(40)(+259
−0 )

0.025 0.2903(27)(+184
−60 ) 0.3155(24)(+177

−55 ) 0.515(18)(+5
−0) 0.3755(76)(+30

−0 ) 0.4043(66)(+5
−0)

Table 4. Values of the would-be hadron masses extrapolated to infinite volume for am =

0.01, 0.02, 0.025. The first uncertainty is given by the best-fit to eq. (4.1). The second uncer-

tainty accounts for the lack of complete knowledge of F (x, L), see text.

F (x, L) we add a second uncertainty to each extrapolated mass obtained as follows. The

simple parameterization g(L) = c(1−bL) provides an explicit expression for F (x, L), which

in turn gives the volume dependence

mH(L) = mH + c

(
1

L
− b
)
e
− k
cH

mHL . (4.2)

Here, we used x = Lmδ and the infinite volume mass relation mH = cHm
δ inside F (x, L),

where cH is nothing but the parameter a in the scaling study of figure 14 and table 3. For

each channel H, the second asymmetric uncertainty on the infinite volume mass in table 4

has the L = 32 mass value as upper bound, and as a lower bound we take the infinite

volume mass given by a fit to eq. (4.2), with free parameters c, b and mH and fixed k/cH
equal to its L = 24 value in table 3 and table 8 in the appendix.

4.5 The spectrum at infinite volume

Figure 16 shows the bare fermion mass dependence of the would-be hadron masses at

infinite volume, taken from tables 1 and 4. The results of a single power-law fit on the

heavier mass range (Fit I), the full mass range (Fit II), and a linear fit with free intercept

(Fit III) are summarized in table 5 and reproduced in figure 16. The linear fit turns out
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Ch. Fit I Fit II Fit III

π δ = 0.81(3), cπ = 5.7(5) δ = 0.81(1), cπ = 5.8(2) m0 = 0.07(3), cπ = 8.6(3)

ρ δ = 0.86(3), cρ = 7.5(6) δ = 0.86(2), cρ = 7.4(2) m0 = 0.06(2), cρ = 10.0(2)

σ δ = 0.80(6), cσ = 7(1) δ = 0.81(1), cσ = 7.2(2) m0 = 0.08(1), cσ = 11.4(4)

a1 δ = 0.87(7), ca1 = 10(2) δ = 0.85(2), ca1 = 9.0(5) m0 = 0.06(2), ca1 = 12.9(4)

N δ = 0.81(4), cN = 10(1) δ = 0.81(2), cN = 9.7(6) m0 = 0.14(3), cN = 14.1(6)

Table 5. Best-fit results for the fermion mass dependence of the would-be hadrons at L = ∞.

Fit I is a power-law cH m
δ on the range am = 0.04 to 0.07, Fit II is a power-law on the range

am = 0.01 to 0.07 that includes only the first uncertainty for the three lightest masses, and Fit III

is a linear fit with free intercept m0 + cHm on the range am = 0.01 to 0.07. Values of the χ2/d.o.f.

are reported in the figures.

Ch. Fit IIb

π δ = 0.81(1) cπ = 5.71(19) χ2/dof = 0.95

ρ δ = 0.86(1) cρ = 7.47(23) χ2/dof = 0.82

σ δ = 0.80(1) cσ = 7.08(24) χ2/dof = 0.43

a1 δ = 0.83(2) ca1 = 8.43(57) χ2/dof = 0.64

N δ = 0.81(2) cN = 9.58(46) χ2/dof = 1.72

Table 6. Fit IIb is Fit II of table 5 where the second (symmetrized) uncertainty for am = 0.01,

0.02 and 0.025 is added in quadrature to the first one in table 4.

to be significantly worse than the power-law fits in all cases. This confirms, once again,

that chiral symmetry is restored. Fit IIb, reported in table 6, is a single power-law fit

on the full mass range where the symmetrized second uncertainty in table 4 has been

added in quadrature to the first uncertainty. In almost all cases in table 6 we obtain a

χ2/dof . 1, likely indicating that the uncertainties on the lightest points are in this case

slightly overestimated. What is most interesting is the value of the exponent δ and its

dependence, or lack thereof, on the different quantum numbers H. A value δ 6= 1/2 for the

pseudoscalar state says that it is not a Goldstone boson and chiral symmetry is exact. A

value δ < 1 says that we are away from the heavy quark limit where mH ∼ m. We observe

a common δ = 0.81 within errors in the channels H = PS, S,N — a sign of universality

— and a slightly larger value δ = 0.86 within errors for the vector states H = V, PV ; this

could be attributed to the different pattern of spin-spin interactions for spin-1 and spin-0

or 1/2 states. Noticeably, the value δ = 0.81 agrees with the four-loop prediction [23, 24] at

the IRFP and it agrees with the best-fit result of [9]. We conclude that the lattice results

for the pseudoscalar, scalar and the nucleon states are in the universal scaling regime, i.e.,

at masses sufficiently light to be insensitive to perturbative mass corrections to universal

scaling arising for g 6= g∗. For this reason, we take δ = 0.81 and these results for the

pseudoscalar (scalar and nucleon) state as reference in the combined analysis with other

lattice results, i.e., R = 1 and b = 0 in table 2.
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Figure 16. Would-be hadron masses at L = ∞ in the pseudoscalar (top left), scalar (top right),

vector (centre left), axial (centre right) and the nucleon (bottom) channels as a function of the bare

fermion masses. Three fits are shown: fit I (solid black) is a power-law on the range am = 0.04 to

0.07, Fit II (dashed red) is a power-law on the range am = 0.01 to 0.07, and Fit III (solid blue) is

a linear fit with free intercept on the range am = 0.01 to 0.07. The total uncertainty used in Fit

IIb is shown (red bar) for am = 0.01, 0.02, 0.025. Largest volume data are also shown for the same

points (green diamonds). Fit results are in table 5 and 6.
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cπ bπ cρ bρ

This work 5.7(5) 0 5.13(26) 0.52(12)

LatKMI 3.7 5.408(86) −0.544(16) 6.899(68) −0.594(10)

LatKMI 4.0 4.778(64) −0.493(14) 5.96(11) −0.560(18)

Table 7. Best-fit values for two power laws eq. (4.3) for the infinite volume pseudoscalar and vector

masses from this work and [34]. The exponents are fixed to δ = 0.81 and ω = 0.23. The value of

cπ from this work is from Fit I in table 5.

Figure 17. Collapse of the rescaled infinite volume masses amHR/(1+bH(am)ω), ω = 0.23, for the

pseudoscalar (π) and vector (ρ) states in this work (red squares), and in [34] at β = 4.0 (orange cir-

cles) and β = 3.7 (green crosses). The values of R = cH/c
KMI
H and bH , H = π, ρ, are from table 7.

Instead, δ = 0.86 for the vector states suggests the presence of perturbative corrections

to scaling. The results of a fit with two power laws, according to the parameterization of

the perturbative corrections to scaling discussed in section 2.1.3

mH = cH m
δ (1 + bHm

ω) (4.3)

with δ = 0.81 and ω = 0.23 for the vector state are in table 7 (This work). Note that

bρ > 0, as expected, consistently with the fact that our system is on the strong coupling

side of the IRFP. To further corroborate this statement we combine the data for the vector

and the pseudoscalar with those of [34], all at infinite volume within uncertainties. The

best-fit values for eq. (4.3) are in table 7. While bH > 0 on the strong coupling side of

the IRFP (This work), bH < 0 on the weak coupling side of the IRFP (LatKMI), and we

expect bH → 0 for βL → ∞. Finally, figure 17 shows the collapse of the infinite volume

pseudoscalar and vector states of this work and [34], after rescaling. The rescaling factor

R = cH/c
KMI
H is the ratio of the leading power-law coefficients for the channel H in table 7.

This analysis leads to the determination of the mass anomalous dimension γ∗ at the IRFP.

We quote the value obtained from Fit I in the pseudoscalar channel from table 5

δ = 0.81(3) γ∗ = 0.235(46) (4.4)

This value is in agreement with the perturbative four-loop prediction, with the best-fit

result of [9] and not far from the first lattice determination of the fermion mass anomalous
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Figure 18. Ordering of the would-be hadrons in the QED-like phase of the Nf = 12 system. From

bottom to top, the pseudoscalar (π), the vector (ρ), the scalar (σ), the axial (a1) and the nucleon N .

dimension for the Nf = 12 system in [4], though the latter was affected by rather large

uncertainties. The value of γ∗ in eq. (4.4) suggests a rather weakly coupled Nf = 12 system

at the IRFP, so that perturbation theory should be expected to hold. Conversely, four-loop

perturbation theory seems to fail for Nf ∼ 8, where it predicts an IRFP at rather strong

coupling g∗ and, even worse, a change of sign of the mass anomalous dimension for g < g∗,

see end of section 2.2.8 This reinforces the idea that nonperturbative dynamics, known to

be chiral dynamics in this case, has to play a role at the opening of the conformal window,

for 8 . Nf . 12. Also, if γ∗ = 1 has to be realized at the lower endpoint of the IRFP line,

where the conformal window disappears, a rapid variation of the mass anomalous dimension

for N c
f . Nf . 12 should be expected in a lattice (or any nonperturbative) determination

of the IRFP line, where nonperturbative dynamics is fully encompassed. The present study

also corroborates the view that the IRFP of these theories is not associated to a physical

singularity, no discontinuity happens there and estimates of physical observables including

the anomalous dimensions can be attempted on either side of the fixed point.

We conclude this section with showing the ordering of the would-be hadrons in fig-

ure 18. To summarize, a universal power law with exponent δ = 0.81 describes all would-be

hadrons, with additional perturbative mass corrections of the type 1+∆gmδγ∗g in the vector

and axial channels. The pseudoscalar is the lightest state, but it is not a Goldstone boson.

The vector, the scalar, the axial, and finally the nucleon follow. It is worth noting that

the scalar state9 is heavier than the vector state. Their ordering becomes phenomenologi-

cally relevant when the theory is just below the conformal window — it remains, however,

difficult to identify a broad scalar resonance, such as f0(500) of QCD,10 on the lattice.

8This effect is not encountered at two loops.
9We remind the reader that σ of this work is the state extracted from the connected scalar two-point

function.
10This state could in addition be an admixture of ordinary q̄q states and tetraquarks.
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Figure 19. The ratio of the vector and axial masses (left) and the ratio of the pseudoscalar and

scalar masses (right) as a function of the bare fermion mass.

4.6 Mass ratios and degeneracies

We conclude this work with some remarks on the interplay of conformal and chiral sym-

metry inside the conformal window. Ratios and degeneracies of would-be hadron masses

are a combined probe of both symmetries, and, as shortly discussed below, the U(1) axial

symmetry. At the IRFP conformal symmetry implies exact chiral symmetry. Away from

the IRFP, inside the conformal window, restored chiral symmetry implies the degeneracy of

chiral partners in the chiral limit. Figure 19 shows the mass ratios pseudoscalar-scalar and

vector-axial. The two ratios are essentially constant ∼ 0.8 over the explored mass range,

as it can be deduced from the best-fit values for the power-law exponent δ. Due to the

presence of perturbative corrections to universal scaling for the vector states, deviations

from a constant ratio will instead be observed in all cases that mix the vector (or axial)

channel with the other ones, one example is figure 9. Before discussing the degeneracy

patterns, it is important to recall that the scalar “σ” studied here is extracted from the

quark-line connected piece of the scalar-isoscalar two-point function; for clarity, we then

call this state σc in the following discussion and with σ we refer to the lowest-lying state of

the complete (connected plus disconnected) scalar-isoscalar correlator. The pseudoscalar

π and the scalar σ, not σc, belong to the same chiral multiplet of SU(Nf )L × SU(Nf )R,

and they must be degenerate in the chiral limit m→ 0 when chiral symmetry is not spon-

taneously broken. The vector ρ and the axial a1 are also chiral partners and show the

same degeneracy pattern. In other words, the mass degeneracy of the chiral partners ρ

and a1, π and σ, can be used as an indicator of the restoration of chiral symmetry. What

about the degeneracy of π and σc? For degenerate fermion masses, as in our case, the

connected contribution to the scalar-isoscalar, σc, equals the connected contribution to

the scalar-isovector δ — the latter has no disconnected contributions. The δ is the U(1)A
partner of π. We should thus conclude that the degeneracy of π and σc is probing the

effective restoration of U(1)A, at least at the level of the two-point functions.11 Figure 20

11A complete probe of U(1) axial and chiral restoration obviously includes the direct observation of the

disconnected contributions and the degeneracy patterns of all states, including η′ and σ.
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Figure 20. Degeneracy pattern and best-fit curve of the pseudoscalar π and the scalar σc (con-

nected) (top left) states. The ratio of the mass difference to the mass average (top right). Analogous

figures for the vector ρ and the axial a1 states (bottom).

shows the mass difference and the ratio (mi −mj)/(mi +mj) for the spin-0 U(1)A part-

ners π − σc and the spin-1 chiral partners ρ− a1. The degeneracies in the chiral limit are

evident from the best-fit curves of the mass difference on the left of figure 20, thus con-

firming once again exact chiral symmetry and the effective restoration of U(1)A. This also

implies that the disconnected contributions to the scalar-isoscalar correlator are at least

O(m). We defer to future work the question to which degree U(1)A is exact inside the con-

formal window beyond the two-point functions and how its restoration pattern compares

with high-temperature QCD. The approximately constant ratios on the right of figure 20

highlight, once again, the realization of the scaling form cH m
δ, modulo small perturbative

corrections (1 + bHm
ω) in the spin-1 case, with universal exponents δ and ω and mass

independent nonuniversal coefficients cH and bH .

5 Conclusions

We have studied the SU(3) gauge theory with twelve fundamental fermions as a prototype

of theories inside the conformal window, with emphasis on the two-point functions and

their properties when the IRFP is perturbed by a fermion mass. In order to disentangle the
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imprint of the IRFP in the dynamics of the system, we have analyzed the complete would-be

hadron spectrum, the would-be mesons and the nucleon, and performed a universal scaling

study at finite and infinite volume. The identification of universal contributions dictated by

the conformal invariance at the fixed point and deviations from universal scaling induced

in the surroundings of the fixed point has allowed for the nonperturbative determination

of the fermion mass anomalous dimension γ∗ = 0.235(46) and a unified description of all

lattice results for the would-be hadron spectrum of the Nf = 12 theory.

This analysis shows that the lattice system retains all signatures of the underlying

conformal symmetry of the fixed point, in addition to the restored chiral symmetry, that

the pattern of symmetries can be followed across the IRFP and the critical exponents —

or any other physical observable — can be determined on either side of the fixed point,

be it the asymptotically free phase of the lattice system or the QED-like phase. In other

words, one should conclude that no singularity is associated to such a fixed point.

The obtained nonperturbative value of γ∗ hints at a rather weakly coupled Nf = 12 sys-

tem at the IRFP. It is thus amusing, and perhaps not unexpected, to observe the agreement

with the four-loop perturbative prediction at the fixed point. Based on this agreement, it

is tempting to infer that the perturbative expansion is working well in this range of Nf ,

and that the missing nonperturbative contributions and the effects of a truncation of the

perturbative series amount to a negligible correction for this system.

It also reinforces the idea that nonperturbative dynamics, known to be chiral dynamics

in this case, has to play a role at the opening of the conformal window, for 8 . Nf . 12.

Should γ∗ = 1 be realized at the lower endpoint of the IRFP line, where the conformal

window disappears, a rapid variation of the mass anomalous dimension on the interval

N c
f . Nf . 12 should be expected. Plausibly, nonperturbative contributions would be-

come increasingly important towards N c
f , making mandatory the use of a nonperturbative

strategy, lattice or else, in the study of the infrared dynamics of systems close to the lower

endpoint of the conformal window.

As a byproduct, we have confirmed the restoration of chiral symmetry through the

degeneracy of chiral partners and the effective restoration of the U(1) axial symmetry at

the level of the two-point functions.
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Figure 21. Spatial volume dependence and extrapolation to infinite volume with functional form

eq. (4.1) for the masses of the scalar (top left), axial (top right) and the nucleon (bottom) states,

and bare fermion masses am = 0.01, 0.02 and 0.025. The extrapolated value and its uncertainty is

indicated by horizontal lines and can be read from table 4.

Fermi at CINECA. This work is part of the research programme of the Foundation for

Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation

for Scientific Research (NWO).

A Volume dependence and extrapolation to infinite volume

This appendix completes the study in sections 4.3, 4.4 and 4.5 for some of the would-

be hadrons. The extrapolation to infinite volume for the scalar, axial and the nucleon

are analogous to the ones presented in section 4.4 and are reported in figure 21. The

nonperturbative L dependent violations of scaling at small x have been studied for all

states. We report in figure 22 and table 8 the analogous of figure 14 and table 3 for the

channels H = S, V, PV,N . The best-fit values of a, c, k for the simplified ansatz F (x, L) =

ax+ c exp (−kx) are reported in table 8.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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Figure 22. LmH/(1+bHm
ω) for H = σ,N, ρ, a1 as a function of the scaling variable x = Lmδ with

δ = 0.81, for L = 16, 24, 32. The coefficient bH = 0 for H = S,N , bρ = 0.52(12) and ba1 = 0.45(24).

The curves are best fits to the functional form F (x, L) = ax+ c exp (−kx), see table 8.

H = σ H = N

L = 16 L = 24 L = 32 L = 16 L = 24 L = 32

a 7.10(17) 7.25(10) 7.31(9) 7.8(1.4) 9.54(10) 9.56(19)

c 10.12(80) 12.2(3.4) 10.84(19.58) 14.83(2.26) 14.84(3.20) 13.49(21.02)

k 2.23(23) 2.93(48) 3.15(2.35) 0.82(41) 1.57(35) 1.93(1.84)

H = ρ H = a1

L = 16 L = 24 L = 32 L = 16 L = 24 L = 32

a 4.77(17) 5.01(06) 5.08(06) 6.24(30) 6.53(12) 6.45(16)

c 9.077(76) 7.52(70) 6.1(1.1) 10.4(1.7) 13.3(5.0) 3.8(1.9)

k 1.46(20) 1.47(15) 1.57(25) 2.08(40) 2.84(66) 1.30(70)

Table 8. Best-fit values of the parameters a, c, k for the fits of LmH , H = σ,N, ρ, a1 to the

functional form F (x, L) = ax+ c exp (−kx), with x = Lmδ and δ = 0.81.
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