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1 Introduction

Entanglement entropy is a rapidly developing technique in condensed matter physics [1–5]

and holography [6, 7]. One of the main theoretical gaps that substantially limits its studies

is the paucity of computational tools. In this paper we construct a perturbative framework

for computing entanglement entropy of the vacuum purely within the context of quantum

field theory (QFT).

As of today the existing tools for computing entanglement entropy include: the replica

trick, conifolds, and the elegant prescription of Ryu and Takayanagi [6, 7]. The replica trick,

and its generalizations, is the only generic approach to calculating entanglement entropy

within field theory [4, 5, 8, 9]. It rests on evaluating the partition function on an n-

folded cover of the background geometry where a cut is introduced throughout the exterior

of the entangling surface. However, evaluation of the partition function on a replicated

manifold can only be carried out in a limited number of cases [10, 11]. On the other hand,

the Ryu-Takayanagi prescription is much easier to implement. It plays a central role in

characterizing new properties of holographic field theories, e.g., [12], and provides new

insights into the quantum structure of spacetime [13–18]. Recently, the generalized replica

trick was successfully implemented in the bulk AdS space to provide strong evidence for

the Ryu-Takayanagi conjecture [19].1

1For precursors, see also [20] and critique of [20] in [21].
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In [22] Casini, Huerta and Myers showed that the reduced density matrix for spherical

entangling surfaces in flat space is conformally equivalent to a thermal state on the hyper-

bolic geometry, and that the entanglement entropy equals the thermodynamic entropy of

this thermal state. This observation provided an alternative derivation of the holographic

entanglement entropy for spherical regions in flat space. However, their construction tightly

relies on the conformal symmetry of the boundary CFT and on the (spherical) geometry

of the entangling surface. Hence, their work raises a natural question: how does one ac-

commodate small disturbances of their framework within a perturbative approach? In this

paper we propose a Euclidean path integral formalism that addresses this question. In par-

ticular, our method paves the way for an alternative approach to calculating entanglement

entropy within quantum field theory.

In section 2 we set aside holography, the replica trick, and other existing methods of

calculating entanglement entropy and begin with the ‘standard’ Euclidean path integral

definition of the reduced density matrix. Next, we foliate spacetime in the vicinity of the

entangling surface in such a way as to encode both the geometric structure of the surface and

the geometry of the background. This choice of coordinates is one of the central aspects of

our approach, as any deformation can be now thought of as a background deformation. As

a result, a perturbative framework around systems with known reduced density matrices is

established. We finish this section with analysis of small perturbations induced by relevant

deformations of the QFT.

In section 3 we consider the entanglement entropy obtained by dividing the field theory

into two (semi-infinite) regions with a single flat plane separating them. In this case the

entanglement entropy for any QFT equals the thermal entropy observed by an accelerating

Rindler observer [23]. We apply our general formalism to calculate leading order corrections

induced by either slight curvature of the background or mild deformations of the flat wall

separating the two subsystems. In particular, we evaluate the universal divergence of the

entanglement entropy induced by these modifications in four dimensional spacetimes. The

results are in complete agreement with the structure of the universal terms in entanglement

entropy of 4D conformal field theories originally proposed by Solodukhin [24].2

The main focus of section 4 is the analysis of perturbations around spherical entangling

surfaces. The unperturbed case in the context of QFT was studied in [22], whereas in this

work we implement our formalism to investigate consequences of small perturbations. The

resulting corrections to the universal divergence of entanglement entropy in 4D match

known results in the literature [24].

2 General framework

We start with a general quantum field theory that lives on a d-dimensional Euclidean

manifold M equipped with a Riemannian metric gµν . The action of the field theory is

given by I0(φ, gµν), where φ collectively denotes all the QFT fields. We assume that the

2See also [25–27] for a recent derivation based on the squashed cones technique and [28–30] for early

studies of the logarithmic divergences in the context of black hole entropy.
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Figure 1. Abstract sketch of the two dimensional transverse space to the entangling surface Σ. C±
are the two sides of the cut C where the values φ± of the field φ are imposed.

system resides in the vacuum state.3 The entangling surface is chosen to be some general

(d − 2)-dimensional surface Σ. Our notation for the rest of the paper is summarized in

appendix A.

The degree of entanglement between the QFT degrees of freedom inside and outside

of Σ is encoded in the reduced density matrix ρ0 that can be written as a path integral

over M with a (d− 1)-dimensional cut C, such that ∂ C = Σ

[ρ0]φ−φ+ ≡ 〈φ−|ρ0|φ+〉 =

∫
φ(C+)=φ+
φ(C−)=φ−

Dφ e−I0(φ,gµν) , (2.1)

where C± are the two sides of the cut and φ± are some fixed field configurations (see

figure 1).

In general, evaluation of the above path integral is not a tractable problem, but there

are exceptions, e.g., planar and spherical surfaces in Rd that we are going to explore later.

For the rest of this section the details of ρ0 are not crucial, we only need to assume that it

is known, since the main purpose is to get a closed form expression for small perturbations

of ρ0 as a consequence of slight deformations of the background metric gµν and entangling

surface Σ, or perturbations of the QFT by, e.g., a relevant operator.

We start with the normalized density matrix,

ρ̂0 =
ρ0

Trρ0
. (2.2)

The corresponding modular Hamiltonian, K̂0, and the entanglement entropy, S0, are

given by

K̂0 = − log ρ̂0 ,

S0 = −Trρ̂0 log ρ0 . (2.3)

Now let us consider a perturbation of ρ̂0 by a small amount δρ̂,

ρ̂ = ρ̂0 + δρ̂ , (2.4)

3For entanglement entropy of excited states in the holographic context see, [31, 32, 34], whereas the path

integral approach to this problem is elaborated on in [35].
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The new density matrix ρ̂ is assumed to be normalized, and therefore Tr δρ̂ = 0. The cor-

responding modular Hamiltonian, K̂, and the entanglement entropy, S, can be constructed

perturbatively provided that ρ̂0 and δρ̂ are known

S = −Trρ̂ log ρ̂ = S0 + Tr(δρ̂ K̂0)− 1

2
Tr(δρ̂ ρ̂−1

0 δρ̂) +O(δρ̂3) . (2.5)

We note that the expression (2.5) should, via the Baker-Cambell-Hausdorff formula, in-

clude terms involving commutators. We have, however, suppressed such terms as for our

applications these terms are contact terms, and in cases where it is relevant it will be im-

plicitly assumed that one accounts for contact terms appearing in correlation functions. To

first order in δρ̂ the above expansion reveals a ‘first law’ of entanglement entropy [33–35]

δS = Tr(δρ̂ K̂0) = δ〈K0〉 . (2.6)

In those examples that we are going to consider, it is possible (but not always necessary)

to implement a conformal transformation that maps the backgroundM, and hence the path

integral (2.1), onto S1×Hd−1 which we will denote as H. Of course, we implicitly restrict

our consideration here to CFTs. Remarkably, under this transformation the entangling

surface Σ is mapped onto the conformal boundary of Hd−1 while fixed states |φ±〉 are

mapped onto constant slices τE = 0 and τE = β (see section 4 and figure 4 there). The

latter condition ensures that under this map the reduced density matrix ρ̂0 transforms into

a normalized thermal density matrix ρ̂T on H. In particular, S1 plays the role of Euclidean

time, τE, and its period is identified with the inverse temperature β. Additionally,

ρ̂T = Û ρ̂0 Û
−1 , (2.7)

where Û is a unitary CFT operator that implements the conformal transformation. For

example, the primary spinless operators, Ô, of the CFT locally transform as4

ÔH = Ω∆ Û ÔM Û−1 , (2.8)

where ∆ is the scaling dimension of Ô and Ω is the conformal factor that relates the metrics

on the two manifolds

ds2
M = Ω2ds2

H . (2.9)

In what follows we consider separately perturbations of the QFT action, and perturbations

associated with either slight changes in the background geometry or mild deformations of

the entangling surface Σ.

2.1 Geometric perturbations

In general, the modular Hamiltonian depends on the background geometry as well as on

the geometry of the entangling surface. The same is true about conformal transformations

of M onto H that relate the density matrices as in (2.7). Such mappings are sensitive to

changes in the background geometry as well as to deformations of the entangling surface Σ.

While the former sensitivity is obvious, the latter follows from the fact that (2.7) is valid if

4The subscript on Ô indicates on which manifold the operator has support.
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and only if the field configurations φ+ and φ− are mapped onto constant slices τE = 0 and

τE = β, respectively. Therefore the mapping, if it exists, certainly depends on the details

of Σ.

These observations lead us to construct a special foliation ofM that encodes both the

background geometry as well as the structure of the entangling surface [19, 26, 27]. Such a

foliation for a generic M and Σ can only be found perturbatively in the distance from the

entangling surface. Sufficiently far from Σ caustics may be encountered and our coordinate

system will break down. However, this region is not relevant for us. We present here the

final answer for the foliation, with the details relegated to appendix B. To second order in

the distance from Σ, the metric on M is given by

ds2
M = (δab −

1

3
Racbd|Σxcxd)dxadxb +

(
Ai +

1

3
xbεdeRibde

∣∣
Σ

)
εac x

adxcdyi

+
(
γij + 2Kaij x

a + xaxc
(
δacAiAj +Riacj |Σ +Kc ilK

l
a j

))
dyidyj +O(x3) , (2.10)

where {yi}d−2
i=1 and {xa}2a=1 parametrize Σ and the 2-dimensional transverse space, respec-

tively. The entangling surface Σ is located at xa = 0 and γij is the corresponding induced

metric, εac is the volume form of the transverse space, whereas Rµναβ and Ka
ij are the

background and extrinsic curvatures, respectively. Finally, Ai is the analog of the Kaluza-

Klein vector field associated with dimensional reduction over the transverse space. Note

that by construction the structure of Σ is built into the above ansatz.

The ansatz for the metric with a slightly perturbed background and mildly modified en-

tangling surface Σ can be obtained by varying (2.10) around the unperturbed background.

In particular, the metric will take the following form

gµν = ḡµν + hµν , (2.11)

where ḡµν is the unperturbed metric of the form (2.10) with known coefficients, while

hµν contains all the information about perturbations that occurred in the background and

entangling surface geometries.

If Σ is everywhere a small deformation of the original entangling surface, e.g., if it

is a plane everywhere except that in some localized region there is a small “bump”, then

perturbative analysis applies globally on Σ. However, hµν does not necessarily even need

to be small everywhere on the entangling surface. If, for example, the surface does not

globally look like a plane by having a low curvature but long turn, then we can implement

a cut and paste procedure suggested in [16]. We cut the surface along regions which are

sufficiently flat, compute the entanglement entropy for each section, and then paste the

results together. Of course, this cut and paste procedure is not straightforward and there

are potential computational subtleties that need to be addressed.

Substituting decomposition (2.11) into the path integral representation of the density

matrix, (2.1), and expanding the result around ḡµν yields,

[ρ̂]φ−φ+ =
1

N

∫
φ(C+)=φ+
φ(C−)=φ−

Dφ e−I0(φ,ḡµν+hµν)

=
1

N

∫
φ(C+)=φ+
φ(C−)=φ−

Dφ e−I0(φ,ḡµν)
(
1 +

1

2

∫
M
TµνMhµν + . . .

)
, (2.12)
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where TµνM is the energy-momentum tensor of the QFT on the unperturbed Euclidean

manifold M

TµνM = − 2√
ḡ

δI0

δḡµν
. (2.13)

The normalization constant N appearing in (2.12) is given by

N =

∫
Dφ0

∫
φ(C+)=φ(C−)=φ0

Dφ e−I0(φ,ḡµν)
(
1 +

1

2

∫
M
TµνMhµν + . . .

)
= N0

(
1 +

1

2

∫
M
〈T̂µνM 〉0hµν + . . .

)
, (2.14)

where 〈T̂µνM 〉0 is the expectation value of the stress tensor in the state ρ̂0, while N0 is the

normalization constant of the unperturbed density matrix ρ̂0,

N0 =

∫
Dφ0

∫
φ(C+)=φ(C−)=φ0

Dφ e−I0(φ,ḡµν) . (2.15)

It is convenient to think of the path integral in (2.12), (2.14) and (2.15) as an effective

evolution from the slice C+ to the slice C− [35]. In particular, based on these equations one

can write

[δρ̂]φ−φ+ = 〈φ−|δρ̂|φ+〉 =
1

2

∫
M
〈φ−, θf |Û(θf , θ) T̂

µν
M (θ) Û(θ, θi)|φ+, θi〉hµν

−1

2
[ρ̂0]φ−φ+

∫
M
〈T̂µνM 〉0hµν(θ) , (2.16)

where we have used the definition δρ̂ = ρ̂− ρ̂0, θ is the polar angle around the entangling

surface such that θi and θf correspond to the slices C+ and C− respectively, and Û is the

evolution operator. In general, Û has a complicated structure. If, however, the unperturbed

background is such that the undeformed entangling surface exhibits rotational symmetry in

the transverse space, then this symmetry will be inherent in the path integral representation

of ρ̂0. In particular, as shown in [23] (see also [37–41]) in this case K̂0 is identical to the

generator of angular evolution around Σ and Û takes the form

Û(θ2, θ1) = exp
(
− θ2 − θ1

2π
K̂0

)
. (2.17)

Stripping off the field states in (2.16), yields

δρ̂ =
1

2

∫
M
Û(θf , θ)

(
T̂µνM (θ)− 〈T̂µνM 〉0

)
Û(θ, θi)hµν . (2.18)

The entanglement entropy across Σ now reads

S = S0 +
1

2

∫
M
〈T̂µνM K̂0〉c hµν + . . . , (2.19)

where 〈. . .〉c is the connected two point function in the state ρ̂0. We should note that our

result (2.19) is valid for a general field theory, and is not necessarily restricted to a CFT.

– 6 –
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Moreover, if we restrict our consideration to conformal field theories, then it is possible

to generalize the above results to include the case when the state undergoes a conformal

mapping as in (2.7), (2.9). We first recall the rule for conformal transformation of the

energy-momentum tensor,

TµνM = Ω−d−2 ∂x
µ

∂Xα

∂xν

∂Xβ

(
TαβH +Aαβ

)
, (2.20)

where Xµ are coordinates on H, xµ collectively denotes (xa, yi) and Aµν is the higher

dimensional analog of the Schwarzian derivative. Hence, from (2.12) we obtain

[Û ρ̂ Û−1]φ̃+φ̃− =
1

N

∫
φ(τE=0)=φ̃+

φ(τE=β)=φ̃−

Dφ e−I0(φ,ḡµν)

(
1+

1

2

∫
H

Ω−2
(
TµνH +Aµν

)
hµν+. . .

)
, (2.21)

where φ̃± are the conformally transformed field configurations φ±,

|φ̃±〉 = Û |φ±〉 . (2.22)

Also note that the normalization constant N in (2.14) can be rewritten as

N = N0

(
1 +

1

2

∫
H

Ω−2〈T̂µνH 〉Thµν +
1

2

∫
H

Ω−2Aµνhµν + . . .

)
, (2.23)

where 〈T̂µνH 〉T is the thermal expectation value of the stress tensor on H. Combining eqs.

(2.21) and (2.23), yields

Ûδρ̂ Û−1 =
1

2

∫
H
ÛT (β, τE)

(
T̂µνH (τE)− 〈T̂µνH 〉T

)
ÛT (τE, 0) Ω−2hµν , (2.24)

where we used the transformation rule (2.7), and ÛT is the evolution operator on H,

ÛT (τ̃E, τE) = exp
(
− (τ̃E − τE) Ĥ

)
, (2.25)

where Ĥ is the Hamiltonian that generates τE translations. It is related to the modular

Hamiltonian on M by K̂0 = Û−1βĤÛ .

Since the von Newman entropy is invariant under unitary transformations, the entan-

glement entropy across Σ can be evaluated using the density matrix on H. Substituting

(2.24) into (2.5), yields

S = ST +
β

2

∫
H

Ω−2〈T̂µνH Ĥ〉c hµν + . . . , (2.26)

where ST is the thermal entropy of the CFT in the state ρ̂T , while 〈. . .〉c is the (thermal)

connected two point function on H. This result is simply a conformal transformation (2.9)

of (2.19), accompanied by the rule (2.20).

– 7 –
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2.2 Relevant perturbations

The main goal of this subsection is to investigate the consequences of small perturbations

of the QFT by, e.g., relevant operators. The general form of the reduced density matrix

(2.12) that undergoes such a perturbation is

[ρ̂]φ+φ− =
1

N

∫
φ(C+)=φ+
φ(C−)=φ−

Dφ e−I0(φ,ḡµν)+g
∫
MO

=
1

N

∫
φ(C+)=φ+
φ(C−)=φ−

Dφ e−I0(φ,ḡµν)

(
1 + g

∫
M
O +

g2

2

( ∫
M
O
)2

+ . . .

)
, (2.27)

where g is the coupling constant, the scaling dimension of Ô is ∆ < d, and we assume that

the effect of the deformation is small, e.g., the theory sits sufficiently close to the UV fixed

point.

The normalization constant this time is given by

N = N0

(
1 + g

∫
M
〈O〉0 +

g2

2

∫
M

∫
M
〈ÔÔ〉0 + . . .

)
, (2.28)

where the expectation values are taken in the vacuum state. Following now the same steps

as in the previous subsection, we obtain the leading order correction to S0,

δS = g

∫
M
〈ÔK̂0〉c . (2.29)

If the unperturbed theory is a CFT and the entangling surface is either a plane or a

sphere, then the leading correction to S0 vanishes since K̂0 ∼ T̂µν and therefore 〈K̂0Ô〉c = 0.

Hence, in this case we have to resort to the second order perturbation. Using (2.5) yields,5

δS =
g2

2

∫
M

∫
M

(
〈K̂0ÔÔ〉c − 〈ÔÔ〉c

)
. (2.30)

We finish this section with a comment that it would be interesting to compare the

results based on (2.30) with the holographic predictions made in [42] and with the field

theory computations in [43, 44] where the deformations of critical points by relevant oper-

ators were studied. We hope to report on this in a forthcoming publication.

3 Perturbations of a planar entangling surface

In this section we explore the leading order correction (2.19) in the case of small perturba-

tions of a planar entangling surface in flat space. These perturbations could arise from the

entangling surface being slightly deformed (see figure 2), or if the background geometry is

weakly curved. For simplicity we restrict our discussion to four spacetime dimensions and

evaluate the logarithmic divergence of entanglement entropy. This divergence is universal

since it is independent of the regularization scheme.

5It was verified in [36] that the second order terms in (2.5) are legitimate in the case of a plane in flat

space. For a general entangling surface the modular Hamiltonian is expected to be nonlocal, and there may

be subtleties with the appropriate treatment of contact terms and with the use of (2.30).
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x
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x
2

y

Figure 2. A sketch of a slightly deformed entangling surface (curved line) in three dimensions.

(x1, x2) span the transverse space to Σ , while y parametrizes Σ. The foliation (2.10) is designed

to capture the geometry of the neighborhood of a given entangling surface Σ.

The entanglement entropy of the unperturbed plane in flat space is closely related

to the Unruh effect observed by a uniformly accelerating observer in Minkowski space.

Indeed, the reduced density matrix for the vacuum for the semi-infinite domain x1 > 0 is

obtained by tracing out the region x1 < 0 on a constant zero Minkowski time slice. This

is precisely the region hidden by Rindler horizon and the resulting reduced density matrix

has a thermal interpretation in the sense of Unruh [23, 39, 40] with a space dependent

temperature that scales as x−1
1 . A Rindler observer who is confined to the right wedge,

and who is passing through x1 at t = 0, finds himself immersed in a thermal bath of

Unruh radiation. The sum of thermal entropies observed by all Rindler observers is the

entanglement entropy, and the divergence of the temperature as x1 → 0 gives rise to the

UV divergence of entanglement entropy.

Analytic continuation of the Rindler wedge to Euclidean signature maps it onto the

entire Euclidean space with a puncture at the origin. In Minkowski signature, this punc-

ture corresponds to the Rindler horizon. Furthermore, the analytically continued Rindler

Hamiltonian, ĤR , becomes the generator of rotations in the transverse space to Σ, and as

shown in [23] the path integral (2.1) can be written as

[ρ0]φ+φ− = 〈φ−|e−2πĤR |φ+〉 . (3.1)

In particular, we immediately deduce that the modular Hamiltonian is proportional to the

Rindler Hamiltonian, K̂0 = 2πĤR, which plays the role of the angular evolution operator

in the transverse space to Σ. (see figure 3)

What we have said so far is the standard story for flat space. In a general spacetime,

since any region locally looks flat, we expect the leading divergence of the entanglment

entropy will be insensitive to the background, in so much as that it scales as an area.

The subleading terms of the entanglement entropy are dominated by the region near the

entangling surface but have sensitivity to regions slightly away from it as well.

Far away from the surface corrections to the background metric induced by perturba-

tions of the system may be large. However, the further away some region is from the surface,

– 9 –
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x
1

x
2

ɸ
+

ɸ
_

Figure 3. Transverse space to the entangling surface in the analytically continued spacetime. Σ

is located at the origin. The reduced density matrix is given by a path integral (2.1) with fixed

boundary conditions φ+ (φ−) on the upper (lower) dashed blue lines.

the less relevant it is for the entanglement entropy. Stated in the language of accelerated

observers: those who are highly accelerated and close to the Rindler horizon are unlikely

to notice a large deviation from a thermal spectrum, while those with small acceleration

who are far away find little Unruh radiation and the thermal effect is practically zero.

3.1 Calculation

The leading order correction to the entanglement entropy of a flat plane is given by (2.19),

δS = π

∫
R4

〈TµνHR〉hµν . (3.2)

Here HR is the Rindler Hamiltonian in the unperturbed spacetime,6

HR = −
∫
A
Tµνξ

µnν , (3.3)

where A = {x ∈ R4
∣∣x2 = 0, x1 > 0}, ξ = x1∂2 − x2∂1 is the Killing vector field associated

with rotational symmetry around the plane at xa = 0, while n = ∂2 is normal to A. Thus,

HR = −
∫
A
x1 T22 . (3.4)

Substituting HR into (3.2) gives

δS = −π
∫
d2x d2y d2ȳ dx̄1 x̄1 h

µν(x, y) 〈Tµν(x, y)T22(x̄, ȳ)〉 . (3.5)

Here the coordinates are xµ = (xa, yi) where xa with a = 1, 2 are orthogonal to the

entangling surface (see figure 3) and yi with i = 1, 2 are along the entangling surface. Also,

x̄2 = 0. From (2.10) we find that there are two terms in hµν that are responsible for the

logarithmically divergent contribution to δS. They are

hij = xaxcRiacj (3.6)

hab = −1

3
Racbdxcxd . (3.7)

6The minus sign appears due to the definition (2.13) of the energy-momentum tensor in Euclidean

signature.
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Note that the δγij term in (2.10) is not relevant as it contributes to the ‘area law’ correction.

Also, the cross terms dxdy will give vanishing contributions. Finally, terms proportional

to the extrinsic curvatures contribute at second order within our perturbative expansion

(since the extrinsic curvature of the plane is zero and the contribution of the linear term

vanishes identically).

The connected 2-pt function for the stress tensor for a CFT is given in [45, 46],

〈Tµν(x, y)T22(x̄, ȳ)〉 =
CT Iµν,22

((x− x̄)2 + (y − ȳ)2)4 (3.8)

where

Iµν,22 = Iµ2Iν2 −
δµν
4
, (3.9)

with

Iµ2 = δµ2 −
2(x− x̄)µ x2

(x− x̄)2 + (y − ȳ)2
. (3.10)

In appendix C we preform the integral (3.5) and find

δS =
c

6π

∫
d2y

(
δacδbdRabcd + δijδacRiacj

)
log(`/δ) . (3.11)

Here ` is the characteristic scale of the perturbations, δ is the UV cut-off, and CT = 40c/π4

with c being the central charge of the CFT defined by the trace anomaly,

〈Tµµ〉 =
c

16π2

∫
M
CµνρσC

µνρσ − a

16π2

∫
M
E4 , (3.12)

where Cµνρσ is the Weyl tensor and E4 is the Euler density,

E4 = RµνρσR
µνρσ − 4RµνR

µν +R2 . (3.13)

Our correction (3.11) should be compared with Solodukhin’s formula [24] for the uni-

versal part of entanglement entropy in the case of a four dimensional CFT,

SCFT =
1

2π

∫
Σ

[
c (δacδbdCabcd +Ka

ijK
ij
a −

1

2
KaKa)− aRΣ

]
log(`/δ) , (3.14)

where RΣ is the intrinsic curvature of the entangling surface. Of course, for the case of a

planar surface in flat space SCFT vanishes identically.

Varying (3.14) around the flat plane embedded in Rd, we obtain to linear order in

small perturbations

δSCFT =
c

2π

∫
Σ
δacδbdCabcd log(`/δ)

=
c

6π

∫
Σ

(
δacδbdRabcd + γijδacRiâcj + γijγklRikjl

)
log(`/δ) , (3.15)

where in the second equality we used the definition of the Weyl tensor. This expression

matches (3.11) since the last term is a total derivative in this case, and therefore its integral
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R
r

t
E

Figure 4. We conformally transform between H (left) and Rd (right). We first map from the

σ ≡ u + iτ coordinates of H to e−σ (middle); here the origin is u = ∞ and the boundary circle is

u = 0. We then map via (4.4) to Rd. Dashed lines on the left represent τE = 0+, β− slices of H
that are mapped through an intermediate step onto t = 0± sides of the cut throughout the interior

of the sphere r = R on the right

vanishes. Indeed, the first variation of the Gauss-Codazzi relation (B.15) around the flat

plane embedded in flat space gives

γijγklRikjl|Σ = ∂i(∂jδγij − γmn∂i δγmn) , (3.16)

where we have used the general variational rule

δRΣ = −RijΣ δγij +∇i(∇jδγij − γmn∇i δγmn) , (3.17)

where ∇i is covariant derivative compatible with the unperturbed induced metric γij .

Before closing this section let us make a couple of comments. First, we note that (3.11)

and (3.15) are independent of the central charge a. This is a straightforward consequence of

the fact that RΣ is the Euler density of a two-dimensional manifold, and therefore the last

term in (3.14) is a topological invariant that does not change under smooth deformations

of the entangling surface and background, i.e.,

δ

∫
Σ
RΣ =

∫
Σ

(
1

2
γijRΣ −RijΣ

)
δγij = 0 , (3.18)

where by assumption the deformed and original setups approach each other at infinity and

we used the fact that Σ is a two-dimensional manifold.

Second, it should be noticed that terms in (3.14) that are quadratic in extrinsic cur-

vature do not contribute to the leading order correction to the entanglement entropy since

Ka
ij of a flat plane vanishes. To see the effect of extrinsic curvatures one has to study sec-

ond order perturbations within our formalism and this will be addressed in a forthcoming

publication. In order to see the effect of extrinsic curvatures at first order, we now turn to

spherical entangling surfaces.

4 Perturbations of a spherical entangling surface

In this section the background manifold M will be identified with Rd, and the entangling

surface Σ will be a sphere, Sd−2, of radius R. We first show that there is a conformal map

that transforms between Euclidean path integral representations of ρ̂0 and ρ̂T and then
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apply the analysis of section 2 to compute the first order corrections to the entanglement

entropy due to slight deformations of Rd and Sd−2.

Let us recall that the partition function on H ≡ S1×Hd−1 can be evaluated by a path

integral on the Euclidean background

ds2
H = dτ2

E +R2
(
du2 + sinh2u dΩ2

d−2

)
, (4.1)

where the Euclidean time coordinate has period ∆τE = β = 2πR. In the following, it will

be convenient to introduce complex coordinates:

σ = u+ iτE/R and ω = r + itE , (4.2)

where the latter will be used below to describe a conformally mapped geometry. Note that

both u and r are radial coordinates, and we must have Re(σ) = u > 0 and Re(ω) = r > 0.

With the first of these new coordinates, the above metric (4.1) can be written as

ds2
H = R2

(
dσ dσ̄ + sinh2

(
σ + σ̄

2

)
dΩ2

d−2

)
. (4.3)

Now we make the coordinate transformation [47] (see figure 4)

e−σ =
R− ω
R+ ω

. (4.4)

Since we are considering d ≥ 3 there is no guarantee that this holomorphic change of

coordinates will result in a conformal transformation. However, one can readily verify the

above metric (4.3) becomes

ds2
H = Ω−2

[
dω dω̄ +

(
ω + ω̄

2

)2

dΩ2
d−2

]
= Ω−2

[
dt2E + dr2 + r2 dΩ2

d−2

]
, (4.5)

where

Ω−1 =
2R2

|R2 − ω2|
= cosh u+ cos(τE/R) . (4.6)

Hence, after eliminating the conformal factor Ω−2 in the second line of (4.5), we recog-

nize that the final line element is simply the metric on d-dimensional flat space. Written

explicitly in terms of real coordinates, (4.4) takes the form (see figure 5)

r = R
sinhu

coshu+ cos(τE/R)
,

tE = R
sin(τE/R)

coshu+ cos(τE/R)
. (4.7)

Note that (4.7) can be obtained by analytic continuation to Euclidean time of the conformal

mapping between causal domain of a sphere in Minkowski space and Lorentzian H [22].

Under this analytic continuation the boundary of the causal domain shrinks to a sphere of
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1 2 3

r
�������

R

-4

-2

2

4

tE

Figure 5. We show the constant τE slices (blue) and constant u slices (red) in the (r, tE) plane (4.7).

The sphere is located at r/R = 1, tE = 0 and corresponds to u → ∞. The vertical line (r = 0)

corresponds to u = 0.

radius R while its interior spans the rest of Euclidean space. Note also that the conformal

factor (4.6) is everywhere regular on the Euclidean space excluding the sphere of radius R.

Eq. (4.7) implements a simple bijection betweenH and Rd. Furthermore, the conformal

boundary of the hyperbolic space Hd−1 is mapped onto a (d − 2)-dimensional sphere of

radius R sitting on a tE = 0 slice of Rd. Finally, constant time slices τE = 0+ and τE = β−

are mapped respectively onto tE = 0− and tE = 0+ of the cut C = {xµ ∈ Rd | 0 ≤ r <

R , tE = 0}. Hence we have shown that the conformal map (4.4) transforms between the

thermal state on H and the entangled state ρ̂0 for a spherical region in Rd.

In particular, the Hamiltonian on H is simply related to the modular Hamiltonian

on Rd,

K̂0 = Û−1βĤÛ = β

∫
Hd−1

Û−1 T τEτEH Û . (4.8)

This expression agrees with the result of [22]. Indeed, using eq. (4.4), we obtain

∂u

∂tE
= − 1

R

∂τE
∂r

=
iR(ω2 − ω̄2)

(R2 − ω2)(R2 − ω̄2)
,
∂u

∂r
=

1

R

∂τE
∂tE

=
2R3 −R(ω2 + ω̄2)

(R2 − ω2)(R2 − ω̄2)
, (4.9)

where the first equalities in the above expressions reveal the standard Cauchy-Riemann

conditions. Now choosing for simplicity the slice τE = 0 in (4.8), and using transformation

rule (2.20), yields

K̂0 = 2π

∫
R2 − r2

2R
T tEtEM + c′ , (4.10)

where the integral runs over the interior of the sphere of radius R, and c′ is some constant

that ensures that the density matrix has unit trace.

4.1 Geometric perturbations

The metric on M is given by

ds2
M = dt2E + dr2 + r2 dΩ2

d−2 . (4.11)

We rewrite it as

ds2
M = dx2

1 + dx2
2 +

(
1 +

2

R
x2 +

x2
2

R2

)
ds2

Σ , (4.12)
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where we defined a new set of coordinates tE = x1 , r = R + x2 with −R ≤ x2 < ∞, and

ds2
Σ is the line element on a sphere of radius R

ds2
Σ = R2dΩ2

d−2 . (4.13)

The extrinsic curvatures of Σ in this case are given by

K 1̂
ij = 0 , K 2̂

ij =
γij
R
, (4.14)

where γij is the induced metric on a sphere of radius R.

We assume that the background curvature, induced metric, and extrinsic curvatures

acquire corrections Rµναβ , δγij and δKc
ij parametrized by some infinitesimal parameter ε

R2Rµναβ ∼ RδKc
ij ∼ δγij ∼ ε (4.15)

As a result, the slightly perturbed metric can be expressed in the form of (2.11), where ḡµν
is given by (4.12), while hµν takes the form

hµνdx
µdxν = −1

3
Racbd|Σxcxddxadxb +

(
Ai +

1

3
xbεdeRibde

∣∣
Σ

)
εac x

adxcdyi

+
(
δγij + 2 δKaij x

a + xaxc
(
Riacj |Σ +

2

R
δ2̂
c δKa ij − δ2̂

aδ
2̂
c

δγij
R2

))
dyidyj +O(ε2) .

(4.16)

Here yi are just the standard spherical angles multiplied by R. In what follows we use the

unperturbed induced metric γij to raise and lower the indices on the entangling surface.

To use (2.26) we need the connected correlator 〈T̂µνH Ĥ〉c. Since the Hamiltonian is

conserved and hyperbolic space is maximally symmetric, the correlator is insensitive to

where the operators are inserted, and therefore it is constant on H. In particular, it was

shown in [48, 49] that

〈T̂ τEτEH Ĥ〉c = − (d− 1)

2d+2π2d

Ωd+2

Rd+1
CT , Ωd =

2π
d+1
2

Γ
(
d+1

2

) , (4.17)

where CT is a “central charge” common to CFTs in any number of dimensions. In four

dimensions this coefficient is related to the standard central charge c which appears as the

coefficient of the (Weyl)2 term in the trace anomaly7 CT = (40/π4)c.

Since the background geometry is conformally flat, all Weyl invariants of the trace

anomaly vanish. Further, the background is the direct product of two lower dimensional

geometries which dictates that the Euler density is also zero. Hence, the trace anomaly

vanishes in this particular background. Using the tracelessness of the energy-momentum

tensor and maximal symmetry of Hd−1 yields

〈T̂ i
H jĤ〉c =

δij
2d+2π2d

Ωd+2

Rd+1
CT , (4.18)

7See (3.12) for the definition of the central charges that we use throughout this paper.
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where indices i, j run over the hyperbolic space Hd−1. It follows from (2.26) that the off

diagonal elements of (4.16) do not contribute to linear order corrections since the connected

correlator 〈T̂µνH Ĥ〉c is diagonal.

Eqs. (2.26), (4.16), (4.17) and (4.18) give a general solution for linear perturbations of

spherical regions in flat space. In the next subsection we carry out a particular calculation

in d = 4 and show that our formula (2.26) agrees with the known results in the literature.

4.2 Calculation

Let us evaluate the logarithmic divergence of entanglement entropy for a four dimensional

CFT using our result (2.26). This divergence is universal since it is independent of the

details of regularization scheme, and it was shown in [22] that for a perfect sphere in flat

space it is entirely fixed by the coefficient of the A-type trace anomaly. In particular, in

d = 4 the universal divergence takes the form

Suniv = −4a log(R/δ) , (4.19)

Here δ is the UV cut-off and a is the central charge defined in (3.12),

As argued in [22], the leading order term in (2.26) satisfies ST = Suniv. The logarithmic

divergence within the thermal computation on H is a result of the divergent volume of

hyperbolic space. This IR divergence emerges because we have a uniform entropy density,

but the volume of H3 is infinite. Hence, to regulate the thermal entropy in H we integrate

to some maximum radius, u = umax where umax � 1. On the other hand, the divergence

of entanglement entropy is entirely due to short distance fluctuations in the vicinity of Σ.

Thus, in order to regulate this divergence we exclude the δ-neighborhood of the entangling

surface Σ, where δ/R � 1. These two UV and IR cut-off’s should be related by the

conformal mapping between the two spaces. If we focus on the tE = 0 slice (or equivalently

the τE = 0 slice), then (4.7), yields the following relation [22]

1− δ

R
=

sinhumax

coshumax + 1
⇒ umax ' log(R/δ). (4.20)

To get corrections to the leading order result we substitute eqs. (4.16), (4.17) and (4.18)

into (2.26) and use eqs. (4.1), (4.6) and (4.7) to carry out the integrals. The final answer

for the logarithmically divergent part of the integrals is given by

δSuniv =
c

6π

∫
Σ

(
δγ

R2
− 2

R
δ2̂
c δK

c + γijδacRiâcj |Σ + δacδbdRabcd
)

log(R/δ) , (4.21)

where Σ is a sphere of radius R, δγ and δKc are the traces of the perturbations δγij and

δKc
ij , and we used (4.7) to evaluate the components of hµν in coordinates (4.1),

huu = −R
2 Ω4

6
δacδbdRabcd e−2u sin2(τE/R) ,

hτEτE = −R
2 Ω4

6
δacδbdRabcd

(
1 + e−u cos(τE/R)

)2
,

huτE =
R2 Ω4

24
δacδbdRabcd e−u sin(τE/R)

(
1 + e−u cos(τE/R)

)
. (4.22)
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Let us now compare (4.21) with Solodukhin’s formula (3.14). For the case of a sphere

in flat space, this formula reduces to (4.19). Corrections to (4.19) can be evaluated by

varying (3.14) around sphere of radius R embedded into Rd. Provided that variations

are small and satisfy (4.15), we get (3.15) again. The latter is not a coincidence, it is a

straightforward consequence of the fact that (3.14) is Weyl invariant while the two setups

(a plane and a sphere in flat space) are conformally equivalent. To see it explicitly, let us

write the metric around flat plane as follows

ds2 = dr2 + r2dθ2 + δijdy
idyj =

r2

R2

(
dτ2

E +
R2

r2
(dr2 + δijdy

idyj)
)
, (4.23)

where we have defined τE = Rθ and used polar coordinates in the transverse space to the

plane. Stripping off conformal factor on the right hand side of this expression leaves us

with the metric on H in Poincare patch. Note that conformal factor is everywhere regular

in the punctured Euclidean space (or analytically continued Rindler wedge), and the plane

at r = 0 is mapped onto conformal boundary of H.

Hence, we have shown that two setups are conformally equivalent to H with entangling

surfaces being mapped onto conformal boundary of the hyperbolic space. Therefore they

are conformally equivalent to each other. In particular, it follows that quadratic in extrinsic

curvatures term of (3.14),

I =

∫
Σ

(Ka
ijK

ij
a −

1

2
KaKa) , (4.24)

does not contribute to the first variation of entanglement entropy around spherical region.

This claim can be verified by direct computation, however there is a simple argument

based on the Weyl symmetry inherent to the problem. Indeed, this term is separately

Weyl invariant and its first variation vanishes in the planar case, therefore the same is true

for conformally equivalent spherical region in flat space. In our forthcoming publication we

are going to explore the second order perturbation theory to uncover the effect of extrinsic

curvatures on the entanglement entropy.

Let us now show that (3.15) agrees with (4.21). Varying the Gauss-Codazzi relation

(B.15) around the unperturbed sphere of radius R embedded in flat space gives

γijγklRikjl|Σ =
1

R2
δγ − 2

R
δ2̂
c δK

c +∇i(∇jδγij − γmn∇i δγmn) , (4.25)

where we have used the variational rule (3.17). Substituting this result into (3.15) gives

(4.21).8
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A Notation

In this appendix we explain our notation and conventions. Greek indices run over the entire

background, whereas Latin letters from the ‘second’ half of the alphabet i, j, . . . represent

directions along the entangling surface.

There is a pair of independent orthonormal vectors which are orthogonal to Σ, we

denote them by nµa (with a = 1, 2), where the letters from the beginning of the Latin

alphabet are used to denote the frame or tangent indices in the transverse space. Then

delta Kronecker δab = nµanνbgµν is the metric in the tangent space spanned by these vectors

and δab is the inverse of this metric.

We also have tangent vectors tµi to Σ, which are defined in the usual way with tµi =

∂xµ/∂yi, where xµ and yi are the coordinates in the full embedding space and along the

surface, respectively. The induced metric is then given by γij = tµi t
ν
j gµν . It can also be

defined as a bulk tensor with γµν = gµν − g⊥µν , where g⊥µν = δabn
a
µn

b
ν is the metric in the

space transverse to Σ. The second fundamental forms are defined for the entangling surface

with Ka
ij = tµi t

ν
j∇µnaν , where ∇µ is covariant derivative compatible with gµν . We use this

definition to construct the bulk vector Kµ
ij = nµaKa

ij .

Next we define the volume form in the tangent space spanned by the normal vectors

εab = −εba , ε1̂2̂ = 1 ,

εab = δacδbdεcd = εab . (A.1)

Using this definition the volume form in the transverse space can be written as εµν =

εabn
a
µn

b
ν . We use g⊥µν to raise and lower the indices in the transverse space, while indices

along the direction of the entangling surface are raised and lowered with the induced metric

γµν . Note that the following useful identity holds,

εµνερσ = g⊥µρg
⊥
νσ − g⊥µσg⊥νρ . (A.2)

Finally, our convention for the curvature tensor is given by

Rµνρσ =
1

2
(gµσ,νρ + gνρ,µσ − gµρ,νσ − gνσ,µρ) + Γνρ,χΓχµσ − Γνσ,χΓχµρ . (A.3)

B Foliation of M in the vicinity of the entangling surface

In this appendix we build a particular foliation ofM in the vicinity of Σ. First, we choose

some parametrization {yi}d−2
i=1 for the entangling surface Σ, then for a given point O ∈ Σ

we fill the transverse space with geodesics radiating orthogonally out from O. For each

point p on the resulting two-dimensional manifold, TO, we find a geodesic that connects it

to O, such that p lies a unit affine parameter from O. Tangent vector to such a geodesic at

O can be expanded in terms of a chosen two-dimensional basis nµa . We give its components

the names xa and choose them as coordinates on TO. Together {yi, xa} parametrize M in

the vicinity of Σ.

Note that we keep the parametrization of the entangling surface unspecified and

therefore the final answer for entanglement entropy will be symmetric with respect to

– 18 –



J
H
E
P
1
2
(
2
0
1
4
)
1
7
9

reparametrizations of Σ. On the other hand, choosing a particular foliation of the trans-

verse space does not destroy general covariance of the entanglement entropy since the final

answer is obtained by integrating out this space.

By construction, the following relations hold

naµ = δaµ , tµi = δµi , g⊥µν = δac δ
a
µ δ

c
ν , gia = 0 on Σ . (B.1)

In particular, δac plays the role of the transverse metric in this foliation and one can readily

evaluate the extrinsic curvatures of Σ,

Ka
ij = ∇inaj

∣∣
Σ

=
1

2
δac∂c gij

∣∣
Σ
. (B.2)

Hence,

gij = γij + 2Kaij x
a +O(x2) . (B.3)

Furthermore, geodesics radiating orthogonally out from a given point y ∈ Σ take the form

xa(τ) = vaτ , where va belongs to the two-dimensional tangent space spanned by two

normal vectors at y. Substituting this parametrization into the geodesic equation yields

Γµacv
avc = 0 ⇒ Γµac = 0 at O . (B.4)

This identity can be further generalized by differentiating the geodesic equation n times

with respect to τ and setting τ = 0. This gives

∂(d1∂d2 · · · ∂dnΓµac) = 0 at O , (B.5)

where as usual (· · · ) denotes symmetrization with respect to the indices within the paren-

thesis. This result (B.5) with index µ in the transverse space can be used to derive the

expansion of the metric on Ty,

gab(x, y) = δab −
1

3
Racbd(y)xcxd − 1

6
∂eRacbd(y)xcxdxe +O(x4) . (B.6)

Moreover, it follows from Γiac|Σ = ∂(dΓ
i
ac)|Σ = 0 that Taylor expansion of gic in the vicinity

of Σ can be written as follows

gic =
(
Ai +

1

3
xbεdeRibde

∣∣
Σ

)
xaεac +O(x3) , (B.7)

where we have introduced a vector field that lives on Σ

Ai =
1

2
εac∂agic

∣∣
Σ
, (B.8)

and used the following identity that holds for our foliation

Ribac
∣∣
Σ

= ∂b∂[a gc]i
∣∣
Σ
, (B.9)

where [· · · ] denotes antisymmetrization with respect to the indices inside the

square brackets.
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We only need to compute O(x2) term in (B.3) to get the expansion of the full metric

to second order in the distance from the entangling surface. We first note that Christoffel

symbols with at least one index in the transverse space are given by

Γµac|Σ = 0 , Γaic|Σ = −εacAi , Γaij |Σ = −Ka
ij , Γjia|Σ = Kj

a i . (B.10)

Now using (A.3), we obtain

Riajb|Σ =
1

2
εbaFij −

1

2
∂a∂bgij |Σ + δabAiAj +Kb ilK

l
a j , (B.11)

where Fij = ∂iAj − ∂jAi is the field strength. Symmetrizing this expression with respect

to a and b, yields

1

2
∂a∂bgij |Σ = Ri(ab)j |Σ + δabAiAj +

1

2
(Kb ilK

l
a j +Ka ilK

l
b j) , (B.12)

where (· · · ) means symmetrization with respect to the indices inside the parenthesis. Hence

(B.3) to second order in xa takes the form

gij = γij + 2Kaij x
a + xaxc

(
δacAiAj +Ri(ac)j |Σ

)
+ xaxcKc ilK

l
a j +O(x3) . (B.13)

Altogether eqs. (B.6), (B.7) and (B.13) correspond to the second order expansion of the

full metric gµν in the vicinity of Σ. To linear order in the distance from Σ this metric takes

the simple form,

ds2 = δacdx
adxc + 2Aiεac x

adxc dyi + (γij + 2Kaij x
a)dyidyj +O(x2) . (B.14)

Note that using the definition (A.3) and (B.10), one can evaluate various components

of the Riemann tensor that were not necessary so far. For instance, considering directions

along the entangling surface Σ yields the well known Gauss-Codazzi identity

Rijkl|Σ = RΣ
ijkl +Ka

jkKa il −Ka
jlKa ik , (B.15)

where RΣ
ijkl is the intrinsic curvature tensor on Σ.

Furthermore,

Rijab|Σ = εbaFij +Kb ilK
l
a j −Ka ilK

l
b j , (B.16)

This identity can be used to express the field strength in terms of the background curvature

and extrinsic geometry of Σ.

Finally,

Rijla|Σ = ∇iKajl −∇jKail + 2 εbaA[iK
b
j]l ,

Rabcd|Σ = RTabcd|Σ , (B.17)

where ∇i is the covariant derivative compatible with the induced metric on Σ and RTabcd is

the intrinsic curvature tensor of the transverse space, Ty, at a given point y ∈ Σ.
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C Intermediate calculations for section 3

In this appendix we evaluate the integral (3.5) appearing in the calculation of the first

order correction to the entanglement entropy for a deformed plane in a weakly curved

background. First we consider the contribution of the metric perturbation with indices in

the direction of the entangling surface, i.e., hij = xaxcRiacj . In this case (3.9) is given by,

Iij,22 =
4 x2

2 (y − ȳ)i(y − ȳ)j

((x− x̄)2 + (y − ȳ)2)2 −
1

4
δij (C.1)

We begin evaluating (3.5) by first doing the integral over ȳ through a change of variables

ȳ → ȳ + y giving

δS1 = −π
2

10
CT

∫
x̄1>0

d2x d2y dx̄1 x̄1
δij hij

((x1 − x̄1)2 + x2
2)3

(
x2

2

(x1 − x̄1)2 + x2
2

− 5

6

)
. (C.2)

Next, we carry out the x̄1 integral and introduce polar coordinates in the transverse space,

x1 = r cos θ, x2 = r sin θ,

δS1 =
π2

240
CT

∫
d2y dθ

dr

r3
δij hij , (C.3)

As expected, the integral over r exhibits logarithmic divergence close to the entangling

surface at r = 0. Hence, we introduce a UV cut off, δ, to regularize divergence and

integrate over r and θ

δS1 =
c

6π

∫
d2y δijδacRiacj log(`/δ) , (C.4)

where ` is characteristic scale of small perturbations, and we used the value of CT =

(40/π4)c in four spacetime dimensions.

Next we calculate the contribution of perturbations in the transverse space, i.e., hab =

−1
3Racbdx

cxd. Using Iab,22 from (3.9) and performing the integral over ȳ in (3.5) yields

δS2 = −π2CT

∫
x̄1>0

d2x d2y dx̄1 x̄1 hab(x, y)

×

(
1

3

δa2δb2 − δab/4(
(x1 − x̄1)2 + x2

2

)3 − x2(x− x̄)b δa2(
(x1 − x̄1)2 + x2

2

)4 +
4

5

x2
2 (x− x̄)a(x− x̄)b(
(x1 − x̄1)2 + x2

2

)5
)

As before, we preform the x̄1 integral, introduce polar coordinates in the transverse space,

substitute hab, carry out θ integral, and finally get

δS2 =
c

6π

∫
d2y δacδbdRabcd log(`/δ) (C.5)

Combined with (C.4), we have thus recovered (3.11).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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