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1 Introduction

Since the seminal paper [1] in which the first gauged maximal supergravity was constructed

with gauge group SO(8), much work has been done to study the vacua of this model and to

construct new gauged maximal supergravities. Certain vacua of the original SO(8)-gauged

model,1 like the anti-de Sitter (AdS) vacuum with N = 8 residual supersymmetry, were put

in correspondence with compactifications of D = 11 supergravity on a seven-dimensional

sphere or on warped/stretched versions of a seven-sphere, possibly with torsion. Non-

compact and even non-semisimple gaugings, defined by groups of the form CSO(p, q, r),

1See [2] for early results in the search for vacua of the original theory and [3] for a recent study.
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p+ q+ r = 8, were first constructed in [4] and their de Sitter vacua put in correspondence

with reductions on non-compact spaces with negative curvature [5]. Flat-gaugings in D = 4

describing Scherk-Schwarz reductions of maximal D = 5 supergravity and yielding no-scale

models, were first constructed in [6].

A new formulation of gauged extended supergravities in terms of the so called em-

bedding tensor [7–9], has opened the way for a more systematic analysis of the possible

gaugings and their vacuum structure. All possible choices of gauge groups in the maximal

supergravity are encoded in a single object ΘM
α (the embedding tensor), which defines

the embedding of the gauge algebra inside the algebra e7(7) of the on-shell global sym-

metry group E7(7) of the ungauged theory. This object is formally E7(7)-covariant and is

constrained, by linear and quadratic conditions originating from the requirement of super-

symmetry and gauge invariance, to belong to certain orbits of the 912 representation. An

interesting feature of this formulation is that the field equations and Bianchi identities of

the gauged model are formally E7(7)-covariant if the fields are transformed together with

the embedding tensor. In other words there is a mapping (or duality) between gauged

theories defined by embedding tensors that are related by E7(7) transformations. Such

mapping should encode the effect of string/M-theory dualities on flux compactifications.

In particular the scalar potential V (Θ, φ) is a quadratic function of ΘM
α and is invariant

under the simultaneous action of E7(7) on the 70 scalar fields φ = (φijkl) of the model and

the embedding tensor:

∀g ∈ E7(7) ; V (Θ, φ) = V (g ?Θ, g ? φ) , (1.1)

where g? denotes the generic action of a group element g on the scalars (non-linear action)

and on ΘM
α (linear action). The above property and the homogeneity of the scalar man-

ifold has motivated what has been dubbed as the “going-to-the-origin” approach for the

study of vacua of gauged supergravities [10–12]: any vacuum of a given gauged model can be

mapped into the origin of the scalar manifold2 by means of a suitable E7(7)-transformation,

provided the embedding tensor is transformed accordingly. This means that the vacua of

gauged maximal supergravity can be systematically studied by restricting to the origin of

the manifold so that the extremization condition on V becomes another condition on ΘM
α

only. In this way, one can search for vacua with particular properties without commit-

ting to a particular gauge group, i.e. while simultaneously scanning through all possible

gaugings.

In [13] a new family of SO(8)-gauged maximal supergravities was constructed by ex-

ploiting the freedom in the original choice of the symplectic frame defining the electric

and magnetic gauge fields. These models were obtained as a deformation of the original

de Wit and Nicolai model, parametrized by an angle ω. They all exhibit an N = 8 vac-

uum at the origin. Their spectrum is identical while the ω parameter only affects the

higher-order interactions. Similar generalizations of non-compact gaugings were studied

in [14, 15]. Adopting the “going-to-the-origin” approach, the authors of [16–18] systemat-

ically searched for vacua with certain residual symmetries and found several vacua of the

2By origin we mean the point in the scalar coset manifold E7(7)/SU(8) at which all scalar fields φijkl

vanish and is thus manifestly SU(8)-invariant.
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new ω-deformed models. An interesting feature observed in all the above works, is that

the ω-deformed models in general exhibit a much richer vacuum structure that the original

ω = 0 models from [1, 4]. In other words, many vacua of these theories disappear in the

limit ω → 0.

In the present paper we start a systematic analysis of vacua of maximal supergravity

with a minimal amount of residual supersymmetry. We focus on AdS vacua preserving

N > 2 supersymmetries by implementing the supersymmetry conditions (Killing spinor

equations) directly on the embedding tensor (with the scalar fields fixed at the origin).

Our (computer aided) analysis is systematic and we find, aside from the known N = 8

vacua, only two other classes of solutions with residual supersymmetry N = 4 and N = 3,

respectively. These are, to our knowledge, the first AdS vacua of maximal supergravity with

residual N > 2 supersymmetry, aside from the N = 8 ones. We can exclude, by general

argument, solutions with 8 > N > 4. Each class of the newly found vacua is parametrized

by an angle ϕ and, depending on its values, the corresponding vacua are embedded in

different (ω-deformed) CSO(p, q, r) models. In particular the N = 4 vacua, depending on

ϕ, belong to gaugings of the form SO(1, 7) and [SO(1, 1)×SO(6)]nT 12, while N = 3 vacua

to models with gauge group SO(8), SO(1, 7) and ISO(7).

We compute the mass spectra on these vacua, which turn out to be ϕ-independent, and

determine the corresponding AdS-supermultiplet structure. Our analysis shows that, while

there are several AdS N = 8 −→ N = 3 supersymmetry breaking patterns, only one, for

each residual symmetry, seems to be dynamically realized in the full non-linear theory.

As a last comment, vacua with residual SO(4) symmetry were investigated in [18].

This analysis however missed the vacua discussed here since it restricted the SO(8) singlets

to a sector which is invariant under a D4 discrete subgroup of SU(8).3

The paper is organized as follows. In section 2 we formulate the problem of systemat-

ically studying the spontaneous N = 8 supersymmetry breaking on an AdS vacuum with

residual extended supersymmetry: after a first introduction of the embedding tensor for-

malism, we consider the spontaneous supersymmetry breaking to N > 2 on AdS vacua and

derive the corresponding system of quadratic equations on the non-vanishing components

of the embedding tensor. We show that N > 2 residual supersymmetry requires the mas-

sive gravitinos to transform non-trivially under the associated SO(N ) R-symmetry group.

In particular, we deduce the absence of solutions with 8 > N > 4 residual supersymmetry.

In section 3, we study the possible AdS N = 8 −→ N = 3 supersymmetry breaking

patterns at the level of the corresponding supersymmetry multiplets. In section 4, we

then describe the N = 4 and N = 3 classes of solutions to the quadratic equations. We

identify, for the different values of the angular parameter ϕ, the corresponding gauge groups

through the signature of the Cartan-Killing metric and by identifying the E7(7)-invariant

quantities constructed out of the embedding tensor with the same quantities evaluated on

ω-rotated SO(8) [13], SO(1, 7) groups and on ISO(7). We show that these vacua disappear

in the ω → 0 limit. Finally we give the AdS-supermultiplet structure and bosonic mass

3As a consequence, the gravitino mass matrix which is consistent with these symmetry requirements is

proportional to the identity matrix and thus is different from the one we obtain for N = 4.
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spectrum for the two classes of solutions. Appendix A summarizes our conventions and

normalizations for the mass matrices; appendix B collects some of the computational details

for the results of the main text.

2 AdS vacua with extended supersymmetry

2.1 Gauged N = 8 supergravity

Let us briefly review some key formulas of gauged N = 8 supergravity, for details we refer

to [7, 9, 19]. Gaugings of maximal N = 8 supergravity are described by the gauge group

generators XMN
K , (M,N = 1, . . . , 56) which in turn are obtained by contracting the E7(7)

generators tα (α = 1, . . . , 133) with a given embedding tensor ΘM
α

XMN
K = ΘM

α (tα)N
K . (2.1)

They satisfy the quadratic identity

[XM , XN ] = −XMN
K XK ⇐⇒ ΩMNΘM

αΘN
β = 0 , (2.2)

which poses a quadratic constraint on the embedding tensor ΘM
α, and exhibits the closure

of the gauge algebra. The dressing of the generators (2.1) with the scalar dependent

complex vielbein
{
VM [ij],VM [ij] ≡ (VM [ij])

∗}, i, j = 1, . . . , 8, defines the T -tensor

(Tij)
klmn ≡ 1

2
(V−1)ij

M (V−1)klN (XM )N
K VKmn , etc. . (2.3)

The various components of this tensor will show up in the field equations of the gauged the-

ory and parametrize the couplings. The fact that the embedding tensor ΘM
α is restricted

to the 912 representation of E7(7) can be expressed by parametrizing the components of

the T -tensor according to

(Tij)kl
mn =

1

2

(
δ[k

[mAn]
l]ij + δi[k

mnAl]j − δj[kmnAl]i
)
,

(Tij)
rs
pq = −1

2

(
δ[p

[rAs]q]ij + δi[p
rsAq]j − δj[prsAq]i

)
,

(Tij)kl pq =
1

24
εklpqrstu δ[i

rAj]
stu ,

(Tij)
rs mn = δ[i

[rAj]
smn] , (2.4)

in terms of the scalar tensors4 Aij , Ai
jkl, satisfying A[ij] = 0, Ai

jkl = Ai
[jkl], and Ai

jki =

0. These tensors represent the 36 and 420 representations of SU(8), respectively, and

parametrize the Yukawa-type couplings in the Lagrangian as

LYuk = e

{
1

2

√
2A1 ij ψ̄

i
µγ

µνψjν +
1

6
Ai

jkl ψ̄iµγ
µχjkl

+
1

144

√
2 εijkpqrlmAnpqr χ̄ijk χlmn + h.c.

}
, (2.5)

4Here and in the following the coupling constant g is absorbed in the definition of the tensors Aij , Ai
jkl.
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for the eight gravitini ψµ
i and the 56 fermions χijk . The quadratic constraints (2.2) on

the embedding tensor induce the following identities among the scalar dependent tensors

Aij , Ai
jkl

0 = Aklij An
mij −Alkij Amnij − 4A(k

lniA
m)i − 4A(n

mkiAl)i

− 2 δml AniA
ki + 2 δknAliA

mi ,

0 = Aijk[mA
k
npq] +Ajkδ

i
[mA

k
npq] −Aj[mAinpq]

+
1

24
εmnpqrstu

(
Aj

ikr Ak
stu +AikδrjAk

stu −AirAjstu
)
,

0 = Arijk Ar
mnp − 9A[m

r[ij Ak]
np]r − 9 δ[i

[mAn|rs|j Ak]
p]rs

− 9 δ[ij
[mnA|u|k]rsAu

p]rs + δijk
mnpAurstAu

rst . (2.6)

Let us finally note that the scalar potential of the theory is given in terms of these tensors by

V = −3

4

(
AklA

kl − 1

18
An

jklAnjkl

)
, (2.7)

and that its extremal points are given by those values for the scalar fields at which the

tensor

Cijkl = Am[ijkAl]m +
3

4
Amn[ijA

n
kl]m , (2.8)

becomes anti-selfdual:

Cijkl +
1

24
εijklmnpq Cmnpq = 0 . (2.9)

At these extremal points, the couplings (2.5) give rise to the fermionic mass terms. For

example, the gravitino masses are obtained as the eigenvalues of the properly normalized

tensor Aij . For vanishing gauge fields and constant scalars, the Killing spinor equations of

the theory reduce to

0
!≡ δεψ

i
µ = 2Dµεi +

√
2Aijγµεj ,

0
!≡ δεχ

ijk = − 2Al
ijkεl . (2.10)

Let us give, for the sake of completeness, the mass matrices for the various fields [19]. The

linearization of the scalar field equations yields, to lowest order,

� δφijkl = Mijkl
mnpq δφmnpq +O(δφ2) , (2.11)

where δφijkl are fluctuations of the self-dual scalar fields φijkl = 1
24εijklpqrs φ

pqrs around

their vacuum value φ0 = (φijkl0 ) and the scalar mass matrix Mijkl
mnpq is given by

Mijkl
mnpq δφijklδφmnpq = 6

(
Am

ijkAlijn− 1
4Ai

jklAijmn

)
δφmnpqδφklpq

+
(

5
24 Ai

jklAijkl − 1
2AijA

ij
)
δφmnpqδφmnpq

− 2
3 Ai

jklAmnpq δφ
inpqδφjklm

= 12V (2)(δφ) , (2.12)
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where we have denoted by V (2)(δφ) the terms on the scalar potential (2.7) which are second

order in δφ upon expansion around the vacuum φ0:

V (φ) = V0 + V (2)(δφ) +O(δφ3) . (2.13)

The vector mass matrix reads

Mvec =

(
Mij

kl Mijkl

Mijkl Mij
kl

)
, (2.14)

with

Mij
kl = −1

6 A[i
npqδ

[k
j]A

l]
npq + 1

2 A[i
pq[kAl]j]pq ,

Mijkl = 1
36 A[i

pqrεj]pqrmns[kAl]
mns . (2.15)

We can also give this matrix a manifestly symplectic covariant form

MvecM
N =

1

6

[
Tr(XM XP ) + Tr(M−1XM M (XP )T )

]
MPN , (2.16)

where MMN = (V VT )MN is the symmetric, symplectic, positive definite matrix constructed

from the coset representative VMN in the 56 of E7(7). By virtue of the quadratic con-

straint (2.2) on Θ, the matrix Mvec always has 28 vanishing eigenvalues (corresponding

to the magnetic vector fields), while the remaining eigenvalues define the masses of the

(electric) vector fields.

Finally, the gravitino and fermion mass matrices are:

Mψ
ij =

√
2Aij , Mχ

ijk,lmn = 1
12

√
2 εijkpqr[lmAn]

pqr . (2.17)

The first matrixMψ carries the information about the breaking of supersymmetry and the

latter matrix has to be evaluated after projecting out the fermions that are eaten by the

massive gravitinos. Explicitly, at an AdS vacuum and in a basis in which Aij is diagonal,

the effective fermion mass matrix is given by

Mχ
ijk,lmn =

1

12

√
2

(
εijkpqr[lmAn]

pqr +
4

3

∑
p,q

′Ap
ijkAq

lmn

(
A

A2 + 1V/6

)pq)
, (2.18)

with the sum running only over the massive gravitino directions.

2.2 N > 2 AdS vacua

We have reviewed, how a given embedding tensor defines the scalar potential (2.7) of gauged

supergravity which in turn may carry extremal points (2.9) at which supersymmetry is

(partially) broken. The embedding tensor formalism allows to nicely invert the problem and

to search for vacua with given properties by simultaneously scanning the set of all possible

gaugings. That strategy has e.g. been applied in [10, 11, 16–18] in order to identify and

analyze vacua with a given residual symmetry group. Concretely, any joint solution to the

– 6 –
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quadratic equations (2.6) and the vacuum condition (2.9) defines a vacuum in some maximal

gauged supergravity. The associated embedding tensor and gauge group generators can

then be restored via (2.4), (2.3), and (2.1).

In this section, we will investigate AdS vacua in maximal supergravity that preserve

more than 2 supersymmetries. Let us assume that the matrices Aij , Ai
jkl describe an

AdS vacuum preserving N supersymmetries, i.e. assume the existence of N independent

solutions of (2.10). Without loss of generality, we may then choose a basis i = (α, a)

in which

|Aαβ| = g δαβ , Aαa = 0 , Aαijk = 0 ,

for α, β = 1, . . . ,N , a = N + 1, . . . , 8 , (2.19)

and try to solve the quadratic equations (2.6), (2.9) under these assumptions for the re-

maining components of the tensors Aij , Ai
jkl . First, let us note that for all non-vanishing

N > 0, equations (2.9) follow directly as upon reduction of equations (2.6) by (2.19). This

is nothing but a remnant of the fact that the existence of a Killing spinor in general implies

part of the remaining bosonic equations of motion (in this case the scalar field equations

for constant scalars). It thus remains to solve equations (2.6) with the ansatz (2.19). Since

they are homogeneous, we may furthermore set g = 1 . Some contraction of the first

equation from (2.6) then allows to deduce the value of the potential as

V = −6 . (2.20)

On the other hand, the first equation of (2.6) with k = α, l = β, n = γ yields

0 = −2Amβγδ A
αδ =⇒ Amαβγ = 0 , (2.21)

thus imposes the absence of the components Amαβγ . For later use, we also note that the

second equation of (2.6) in particular implies that

0 = 3Aaαe[bA
e
cd]β +AaeαβA

e
bcd +Aαβ A

a
bcd −

1

6
εαβ bcd ijkA

aeAe
ijk . (2.22)

Let us now specialize to the case of N > 2 preserved supersymmetries. In this case,

the preserved supercharges transform in the vector representation of the AdS R-symmetry

SO(N ). We can then give a systematic discussion of these vacua according to the transfor-

mation of the broken supercharges (i.e. the massive gravitino fields) under that SO(N ). In

particular, all non-vanishing components of the tensors Aij , Ai
jkl must be singlets under

SO(N ). Let us consider as an example the case when all broken supercharges are singlet

under SO(N ). If N > 4 this is the only option (in the absence of non-trivial SO(N ) rep-

resentations of sufficiently small size). The non-vanishing components of the tensors Aij ,

Ai
jkl are thus given by

{Aαβ, Aab, Aabcd} , (2.23)

with all other possible singlets under SO(N ) vanishing, in view of (2.19) and (2.21).

Now (2.22) immediately implies that also Aabcd = 0, i.e. the entire tensor Ai
jkl vanishes.

– 7 –
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∆
∖
s 3

2 1 1
2 0

E0 + 3 [j]

E0 + 5
2 [j + 1] + [j] + [j − 1]

E0 + 2 [j + 1] + [j] + [j − 1]
[j + 2] + [j + 1] + [j]

+ [j] + [j − 1] + [j − 2]

E0 + 3
2 [j]

[j + 2] + [j + 1] + [j + 1]

+ 2[j] + 2[j − 1] + [j − 2]

E0 + 1 [j + 1] + [j] + [j − 1]
[j + 2] + [j + 1] + 2[j]

+ [j − 1] + [j − 2]

E0 + 1
2 [j + 1] + [j] + [j − 1]

E0 [j]

Table 1. The long N = 3 gravitino multiplet DS(3/2, E0, j)L, organized by energy ∆ and spin s.

When the energy saturates the unitarity bound E0 = j+1, the blue states in the table form a semi-

short multiplet DS(3/2, j + 1, j)S and the other states decouple as a vector multiplet DS(1, j + 2).

Then however the first equation of (2.6) implies that

AacA
cb = δa

b , (2.24)

i.e. after diagonalisation the eigenvalues of Aab are of absolute value 1 and all correspond to

unbroken supersymmetries. The resulting vacuum thus is an N = 8 vacuum. We conclude

that there are no N > 2 AdS vacua (other than the N = 8 ones) if the broken supercharges

transform as singlets under the SO(N ) R-symmetry. In particular, there are no AdS vacua

in maximal supergravity preserving 4 < N < 8 supersymmetries. For N = 6 AdS vacua,

this is consistent with the result of [20].

In the following, we will thus assume that the broken supercharges transform non-

trivially under the SO(N ) R-symmetry and determine the general solution of (2.6) for

N > 2.

3 AdS N = 8 −→ N = 3 supersymmetry breaking patterns

Before we start the analysis of the N = 3 solutions of the quadratic constraints (2.6), it

is instructive to study the possible decompositions of the N = 8 supergravity multiplet

into N = 3 multiplets, i.e. to identify the possible kinetic scenarios of supersymmetry

breaking. The multiplet structure of the N = 3 AdS supergroup OSp(3|4) is well known,

see [21–23], in the following we will adopt the notation from [23]. The relevant multiplets for

our discussion are the massive gravitino multiplets which accommodate the five massive

gravitinos after the supersymmetry breaking N = 8 −→ N = 3. The structure of the

generic long gravitino multiplet DS(3/2, E0, j)L is recollected in table 1. It is characterized

by two numbers: the energy E0 of its ground state, and the isospin j, characterising the

– 8 –
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representation of the gravitino under the R-symmetry group SO(3). Unitarity imposes the

bound E0 ≥ j + 1 for the ground state energy (the ground state having spin 0). As usual

for such supergroups, multiplet shortening occurs when the unitarity bound is saturated.

At this value of E0, the multiplet splits into a short massive gravitino multiplet together

with a vector multiplet according to

DS(3/2, E0, j)L

∣∣∣
E0=j+1

−→ DS(3/2, j + 1, j)S +DS(1, j + 2) , (3.1)

with the structure of the vector multiplet DS(1, j + 2) given in table 2. At low values

of j, the multiplet structure becomes non-generic, but the tables still capture the correct

representation content upon formally extending the definition of SO(3) representations [j]

to negative j according to5

[−j] ≡ −[j − 1] . (3.2)

In particular, the lowest-lying short gravitino multiplet DS(3/2, 1, 0)S carries a massless

gravitino, three massless vectors, three fermions, and two scalars of energy 1 and 2. Due

to the massless gauge fields, its presence in the spectrum implies an enhancement of super-

symmetry and gauge symmetry. Similarly, the massless vector multiplet DS(1, 1) carries

six scalars together with a massless vector and four fermions.

With the multiplet structure given in tables 1, 2, the possible supersymmetry breaking

patterns correspond to the different ways of splitting up the N = 8 supergravity multiplet

into N = 3 multiplets. At this stage, we do not make any assumption about the energies

of the various states (other than those implied by unitarity). The N = 8 supergravity

multiplet consists of the graviton, 8 gravitinos, 28 vectors, 56 fermions and 70 scalars.

Upon subtracting the N = 3 supergravity multiplet DS(2, 3/2, 0)S, given in table 3, we are

left with 5 gravitinos, 25 vectors, 55 fermions and 70 scalars, to be packaged into N = 3

multiplets. There are various options for the splitting of the five massive gravitinos into

SO(3) R-symmetry representations:

I) 5 −→ 5 ,

II) 5 −→ 3 + 1 + 1 ,

III) 5 −→ 2 + 2 + 1 , (3.3)

where we have taken into account the reality property of the gravitinos which rules out

decompositions such as 4+1, 3+2, etc. Moreover, the general discussion of section 2.2 has

ruled out the trivial decomposition 5 −→ 1+1+1+1+1 . Let us discuss the patterns (3.3)

one by one.

Option I) in (3.3) leaves the five massive gravitinos in the irreducible spin-2 representa-

tion of SO(3). According to table 1, they can sit either in a long multiplet DS(3/2, E0, 2)L

or in its shortened version D(3/2, 3, 2)S. Simple counting of states shows that the long

multiplet carries 30 vector fields and thus does not fit into N = 8 supergravity. The short

5By −[j − 1] we mean that the isospin multiplet structure is obtained by deleting the representations

with negative isospin ([−j]) and, for each of them, a representation [j − 1].
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∆
∖
s 1 1

2 0

j0 + 2 [j0 − 2]

j0 + 3
2 [j0 − 1] + [j0 − 2]

j0 + 1 [j0 − 1] [j0] + [j0 − 1] + [j0 − 2]

j0 + 1
2 [j0] + [j0 − 1]

j0 [j0]

Table 2. The N = 3 vector multiplet DS(1, j0).

∆
∖
s 2∗ 3

2

∗
1∗ 1

2

3 [0]
5
2 [1]

2 [1]
3
2 [0]

Table 3. The N = 3 massless gravity multiplet DS(2, 3/2, 0)S.

multiplet DS(3/2, E0, 2) on the other hand does fit into N = 8 supergravity with the re-

maining states filling precisely two vector multiplets. A first possible kinetic pattern thus

is given by

I) : N = 8 −→ DS(2, 3/2, 0)S +DS(3/2, 3, 2)S + 2 ·DS(1, 1) . (3.4)

The next option in (3.3) is the partition 3 + 1 + 1, in which case there are various possibil-

ities depending on the embedding of these gravitinos into the corresponding long or short

gravitino multiplets. Naive counting allows for the following possibilities

II) 3 1 1 vectors

a): L S S 1

b): S L L 0

c): S L S 3

d): S S S 6

. (3.5)

The last column denotes the number of vector multiplets that describe the remaining

matter spectrum, once the gravity and gravitino multiplets are subtracted from N = 8.

Here, we note the following property of the vector multiplet: when ignoring the energy

of the states, the field content of DS(1, j0) coincides with the tensor product of DS(1, 1)

with the SO(3) representation [j0 − 1] of the vector fields. As a consequence, for instance

the 3 vectors in the third row of (3.5) can either correspond to three multiplets DS(1, 1)

or to a single multiplet DS(1, 2), the field content only differs in energies. Let us take a

closer look at the decompositions of (3.5): the cases a) and d) both carry two gravitinos

in the short massless DS(3/2, 1, 0)S, i.e. both cases in fact correspond to a supersymmetry

enhancement to N = 5. Such vacua have been ruled out by the general discussion in

section 2 and cannot be dynamically realized. We are thus left with the options IIb) and

IIc), of which the latter corresponds to a supersymmetry enhancement to N = 4.
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The third option in (3.3) is the partition 2 + 2 + 1, for which we find two possibilities

III) 2 2 1 vectors

a): S S L 3

b): S S S 6

. (3.6)

In summary, the possible AdS N = 8 −→ N = 3 supersymmetry breaking patterns

are given by the following decompositions of the N = 8 supergravity multiplet

I) : DS(2, 3/2, 0)S +DS(3/2, 3, 2)S + 2 ·DS(1, 1) , (3.7)

IIb) : DS(2, 3/2, 0)S +DS(3/2, 2, 1)S +DS(3/2, E1, 0)L +DS(3/2, E2, 0)L ,

IIc) : DS(2, 3/2, 0)S +DS(3/2, 2, 1)S +DS(3/2, E0, 0)L +DS(3/2, 1, 0)S +DS(1, 2) ,

IIIa) : DS(2, 3/2, 0)S + 2 ·DS(3/2, 3/2, 1/2)S +DS(3/2, E0, 0)L +DS(1, 2) ,

IIIb) : DS(2, 3/2, 0)S + 2 ·DS(3/2, 3/2, 1/2)S +DS(3/2, 1, 0)S + 2 ·DS(1, 2) .

In the following we will study which of these patterns can actually be dynamically realized

in N = 8 supergravity and determine the specific gaugings which allow for the correspond-

ing vacua.

4 N = 3 and N = 4 vacua

4.1 Solutions of the quadratic equations

The SO(8) subgroup of SU(8) naturally splits into SO(3)× SO(5). We require the vacuum

at the origin (and thus the tensors Aij , A
i
jkl) to be invariant under the diagonal group

SO(3)d of the SO(3) group acting only on the Killing spinors and a second SO(3) embedded

inside SO(5) according to the transformation of the massive gravitinos. We shall separately

discuss the three cases corresponding to the allowed inequivalent embeddings (3.3) of SO(3)

inside SO(5) and in each if them study the solutions to the system (2.6). In all cases we

have reduced the system by implementing the most general ansatz in terms of singlets

under SO(3)d and (with the help of mathematica) systematically scanned the remaining

equations for their real solutions. Such solutions turn out to be extremely rare. Some

computational details are relegated to appendix B.

4.1.1 Case 5→ 5

With this decomposition, there are six SO(3)d singlets in the tensors Aij , Ai
jkl, three of

which are killed by the general discussion of section 2.2. It is straightforward to verify that

the remaining system of quadratic equations for three parameters does not possess any real

solution (other than the known N = 8 solution), such that this possibility is ruled out by

direct computation.

4.1.2 Case 5→ 2 + 2 + 1

Let us first split the A,B, . . . indices into Λ,Σ, . . . = 4, 5, 6, 7 labeling the fundamental of

the SO(4) inside SO(5), and identify the singlet in the decomposition with the value i = 8.
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The index i thus splits in i = α,Λ, 8. Next we embed SO(3) inside SO(4) by identifying

its generators with the anti-self-dual matrices (t
(−)
α )Λ

Σ:

t
(−)
1 =


0 1

2 0 0

−1
2 0 0 0

0 0 0 −1
2

0 0 1
2 0

 ; t
(−)
2 =


0 0 −1

2 0

0 0 0 −1
2

1
2 0 0 0

0 1
2 0 0

 ; t
(−)
3 =


0 0 0 −1

2

0 0 1
2 0

0 −1
2 0 0

1
2 0 0 0

 (4.1)

We also have the complementary set of generators (t
(+)
α̂ )Λ

Σ, commuting with tα, obtained

by changing the sign of the 4th row and columns of the latter. The following properties hold:

t
(±)
αΛΣ = ±1

2
εΛΣΓ∆ t

(±)
αΓ∆ . (4.2)

The SO(3)d generators in the 8 of SO(8) read:

tα =

εβαγ 0 0

0 (t
(−)
α )Λ

Σ 0

0 0 0

 , (4.3)

and close the so(3)d algebra:

[tα, tβ] = εαβγ tγ . (4.4)

With the general ansatz for Aij , Ai
jkl in terms of singlets under this SO(3)d (cf. ap-

pendix B), we find aside from the known N = 8 solution Ai
jkl = 0, A77 = ±1, A88 = eiϕ,

only the following N = 3 solution:

Aαβ = δαβ , AΛΣ =
3

2
ε δΛΣ , A88 = −

√
3 e3iϕ ,

AΛ
Σαβ = εαβγ (t(−)

γ )Λ
Σ , AΛ

Σα8 = −
√

3 eiϕ (t(−)
α )Λ

Σ , (4.5)

AΛ
ΣΓ∆ = ε

√
3

2
e−iϕ εΛΣΓ∆ , A8

αβγ = 0 , A8
8ΛΣ = 0 , A8

αΛΣ = −2 ε e−2iϕ t
(−)
αΛΣ ,

with real ϕ and ε = ±1 . It effectively depends only on the phase ϕ, since the sign ε = ±1

can be absorbed by an SU(8) transformation.

4.1.3 Case 5→ 3 + 1 + 1

Let us split the index i into i = α, α′, a, where α = 1, 2, 3, α′ = 4, 5, 6 and a = 7, 8 is the

index labeling the singlets. The SO(3)d generators in the 8 of SO(8) read:

tα =

εβαγ 0 0

0 εβ′αγ′ 0

0 0 02

 , (4.6)

and satisfy the relations (4.4). With the general ansatz for Aij , Ai
jkl in terms of singlets

under this SO(3)d (cf. appendix B), we find aside from the known N = 8 solution only the
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following solution:

Aαβ = δαβ , Aα′β′ = 2ξ δα′β′ , A77 = 2 η , A88 = ξ η eiϕ ,

A7
α′β′γ =

√
2 ξ η e−i

ϕ
4 εα′−3β′−3 γ , Aα

′
β′γ7 = −

√
2 e−i

ϕ
4 εα′−3β′−3 γ ,

Aα
′
β′γ′8 =

√
2 ξ ei

ϕ
4 εα′−3β′−3 γ′−3 , Aα

′
αab = −η ei

ϕ
2 δα

′−3
α εab ,

A7
8α′α = −ξ ei

ϕ
2 δα′−3α , Aα

′
β′αβ = −2 δα

′−3β′−3
αβ , (4.7)

where η, ξ = ±1. The parameter ξ can be disposed of by means of a SU(8) transformation

while the sign η can be changed by shifting ϕ → ϕ + 2π. We can thus set ξ = η = +1.

Notice that A8
ijk = 0 which implies that this is actually an N = 4 solution and that the

residual symmetry group is enhanced to SO(4).

4.2 Gauge groups and E7(7)-invariants

We have identified two AdS vacua in maximal supergravity by solving the system of

quadratic constraints (2.6) for the embedding tensor. As the next step, we will have to

determine the associated gauge groups, i.e. identify in which gauged maximal supergravity

these vacua live. We can compute the associated gauge group generators via (2.4), (2.3),

and (2.1). Much of the structure of the gauge group can already be inferred from the

E7(7)-invariant signature of the (generalized) Cartan-Killing metric

sign[Tr(XM ·XN )] . (4.8)

The above matrix has 28 vanishing eigenvalues (due to the locality constraint (2.2)) while

the other 28 eigenvalues define the Cartan-Killing metric of the gauge algebra.

4.2.1 The N = 4 vacuum

We first compute the Cartan-Killing metric (4.8) for the N = 4 vacuum (4.7) as a function

of the angular parameter ϕ. This allows the following identification of the corresponding

underlying gauge group:

parameter signature of C.-K. metric gauge group

ϕ = 2π (1+, 15−, 120) [SO(1, 1)× SO(6)] n T 12

0 ≤ ϕ < 2π (7+, 21−) SO(1, 7)

(4.9)

where T 12 denotes a subgroup generated by twelve nilpotent operators. Notice that AdS

vacua in theories with gauged SO(1, 7) and [SO(1, 1) × SO(6)] n T 12 groups were found

in [11]. The residual supersymmetry, symmetry group (SO(4)) and spectrum of our vacuum

distinguishes it from those found in the same reference.

The gauge group SO(1, 7) alone is not sufficient to determine the gauged supergravity,

since there is a one-parameter class of such theories [13, 15]. Rather, we expect to find

a mapping between the angular parameter ϕ which defines our vacua, and the ω-angle

that labels the one-parameter class of SO(1, 7) theories. To this end, we compute other
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E7(7)-invariants on the N = 4 vacuum, to compare with the same quantities evaluated for

the ω-rotated SO(1, 7) gauge group. In particular, we consider the 1540× 1540 matrix:

KMN
PQ ≡ 1

4
dR1R2R3R4 XR1M

K XR2NK XR3
PLXR4L

Q , (4.10)

quartic in the gauge group generators (2.1), which is antisymmetric in [MN ] and [PQ],

by virtue of the total symmetry of the E7(7)-invariant tensor dR1R2R3R4 . This tensor K is

related to one computed in [13] for the ω-deformed SO(8) gauging. Instead of evaluating

the eigenvalues of this matrix, as was done for the corresponding tensor in [13] for a specific

gauging, we evaluate the traces of its powers. We compute them for our N = 4 solution

and for the (ω-deformed) SO(1, 7) and SO(8) gauging.

For the invariant d-tensor we use the following form in the SU(8)-basis:

dMNPQ ΛMΛNΛPΛQ = Λi1i2Λi3i4Λi5i6Λi7i8 εi1...i8 + Λi1i2Λi3i4Λi5i6Λi7i8 ε
i1...i8+

+ 96 Tr(ΛΛ̄ΛΛ̄)− 24 Tr(ΛΛ̄)2 ,

ΛM ≡ (Λ, Λ̄) ≡ (Λij ,Λ
ij) . (4.11)

For the SO(8) and SO(1, 7) gaugings theX-tensor (2.1) is computed via (2.3), (2.4), starting

from fermion shift tensors of the form [11]:

Aij = ei ω Tr(θ) δij , Ai
jkl = e−i ω (Γi

jkl)IJθ
IJ , (4.12)

where

θIJ = diag(1, 1, 1, 1, 1, 1, 1, κ) , (4.13)

with κ = +1 for SO(8) and −1 for SO(1, 7). We find for the traces of the various powers

of (4.10)

Tr(K) = 0 ,

Tr(K2) = 223 × 34 × 5× 7× (7(5κ+ 3) + 28(κ− 1) cos(4ω) + (κ+ 7) cos(8ω)) ,

Tr(K3) = 236 × 37 × 5× 7× (35κ+ 4(7κ+ 1) cos(4ω) + (κ− 1) cos(8ω)− 3) sin2(2ω) ,

Tr(K4) ∝ Tr(K2)2 . (4.14)

Notice that in the SO(8) case these invariants have half-period π/8, namely they assume all

possible values in the interval ω ∈ (0, π/8), while for the SO(1, 7) gauging the half-period

is π/4. In the former case we have independent gaugings only for ω ∈ (0, π/8), while in

the latter case for ω ∈ (0, π/4), consistently with the results of [13, 14]. Eqs. (4.14) do not

hold for κ = 0, corresponding to ISO(7), in which case all traces are zero.

On our N = 4 solution (4.7), (denoting the corresponding tensor by Ks) these traces

become

Tr(Ks) = 0 ,

Tr(K2
s) = 26 × 34 × 5× 7×

(
3 cos

(ϕ
2

)
+ cos(ϕ) + 2

)
,

Tr(K3
s) = −210 × 37 × 5× 7× cos4

(ϕ
4

)
,

Tr(K4
s) ∝ Tr(K2

s)
2 . (4.15)
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These expressions are symmetric under ϕ→ −ϕ and ϕ→ ϕ+ 4π, so that they assume all

possible values in the interval (0, 2π). Following the same reasoning as for the SO(1, 7) and

SO(8) cases, we can then argue that X tensors in this class with generic ϕ can be SU(8)-

rotated to one with ϕ ∈ (0, 2π). In comparing the traces for the N = 4 vacuum (4.15) to

those of the SO(1, 7) gauging (4.14), we assume that

X
(s)
MN

P = λ(ϕ) E7(7) ? (XMN
P ) , (4.16)

where X
(s)
MN

P is the X-tensor on the N = 4 vacuum, E7(7) ?(XMN
P ) is the E7(7)-rotated X

tensor of the SO(1, 7) gauging, and we allowed for a proportionality factor λ(ϕ) depending

on the parameter φ. Clearly the traces of K do not depend on the E7(7)-rotation, so that

eq. (4.16) implies:

Tr(K2
s) = λ(ϕ)8 Tr(K2) , Tr(K3

s) = λ(ϕ)12 Tr(K3) . (4.17)

We immediately realize that for ω = 0 the above system has no solution since Tr(K2
s) = 0

while Tr(K2) 6= 0, thus implying λ = 0. Similarly for ϕ = 2π, the second of (4.17)

implies ω = 0 while in the first Tr(K2
s) = 0 while Tr(K2) 6= 0, againg implying λ = 0.

This is compatible with our finding (4.9) that the gauge group at ϕ = 2π degenerates to

[SO(1, 1)× SO(6)] n T 12.

For generic values of ω and ϕ the relation between the two parameters can then be

deduced from the (λ-independent) equation

Tr(K3
s)

2

Tr(K2
s)

3
=

Tr(K3)2

Tr(K2)3
⇐⇒

cos2
(ϕ

4

)(
2 cos

(ϕ
2

)
+ 1
)3 =

32 (cos(4ω) + 3)4 sin4(2ω)

(−28 cos(4ω) + 3 cos(8ω)− 7)3
, (4.18)

whose solution ω(ϕ) is plotted in figure 1. We conclude that the N = 4 vacuum can

be found (for generic values of ϕ), only in the ω-rotated SO(1, 7) gauging, while in the

limit ω → 0 it disappears. At the corresponding point ϕ = 2π in the parameter space

of solutions it turns into a vacuum of the gauging with non-semisimple gauge group

[SO(1, 1)× SO(6)] n T 12.

4.2.2 The N = 3 vacuum

The same analysis can be repeated for the N = 3 vacuum (4.5). In this case the com-

putation of the Cartan-Killing metric (4.8) for the gauge group indicates the following

correspondence between the values of ϕ and the gauge group

parameter signature of C.-K. metric gauge group

0 ≤ ϕ < π
6 (0+, 28−) SO(8)

π
6 < ϕ ≤ π (7+, 21−) SO(1, 7)

ϕ = π
6 (0+, 21−, 70) ISO(7)

(4.19)
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Figure 1. The parameters ω (blue) and λ (red) as function of ϕ for the N = 4 vacuum. The gauge

group is SO(1, 7) except for the point ϕ = 2π where λ vanishes and the gauge group degenerates

to [SO(1, 1)× SO(6)] n T 12.

Computing the traces of the tensor (4.10) on our N = 3 solution we find in this case:

Tr(Ks) = 0 ,

Tr(K2
s) = −2−1 × 38 × 5× 7× cos(ϕ)

(√
3(cos(2ϕ) + 3)− 7 cos(ϕ)

)
,

Tr(K3
s) = 2−2 × 311 × 5× 7× (24

√
3 cos(ϕ)− 18 cos(2ϕ) + 2

√
3 cos(3ϕ)− 27) ,

Tr(K4
s) ∝ Tr(K2

s)
2 , (4.20)

which should now be compared to (4.14) for κ = ±1 in the different intervals of (4.19). The

expressions of (4.20) are symmetric under ϕ→ −ϕ and ϕ→ ϕ+ 2π, so that they assume

all possible values in the interval (0, π). We then argue that an X-tensor in this class with

a generic ϕ can be SU(8)-rotated to one within ϕ ∈ (0, π). The correspondence between ϕ

and ω for the ω-rotated SO(1, 7) and SO(8) groups is obtained from an equation analogous

to (4.18) and plotted in figure 2. This illustrates that λ vanishes, as ω → 0 (ϕ→ π/6), so

that the vacuum disappears from the corresponding gauged theories. At this point in the

ϕ parameter space it becomes a vacuum of an ISO(7) gauged theory. Indeed, for ϕ = π/6,

all traces of (4.20) vanish.

The existence of the proportionality parameter λ(ϕ) depending on ϕ (or, equivalently

on ω) is due to the fact that we have fixed the value the potential in our vacua to a

given value (−6) by choosing the coupling constant. This function therefore encodes the

dependence, in the corresponding ω-rotated theories, of the cosmological constant of these

vacua on ω, which is a generic feature of all extrema of the potential aside from the N = 8

one [13, 17].

4.3 Mass spectra

We can eventually compute the spectra around the new vacua by evaluating the mass

formulas (2.12), (2.14), and (2.17) for our solutions Aij , Ai
jkl and compare the result to

the general multiplet structure discussed in section 3. We find that in all cases the spectra

are independent of the parameter ϕ.
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Figure 2. The parameters ω (blue) and λ (red) as function of ϕ for the N = 3 vacuum. The gauge

group is SO(8) for ϕ < π/6 and SO(1, 7) for ϕ > π/6. A the point ϕ = π/6 where λ vanishes, the

gauge group degenerates to ISO(7).

4.3.1 The N = 3 vacuum

The scalar mass spectrum on the N = 3 vacuum is:

m2 L2
0 :1×

(
3(1 +

√
3)
)

; 6×
(

1 +
√

3
)

; 1×
(

3(1−
√

3)
)

; 6×
(

1−
√

3
)

;

4×
(
−9

4

)
; 18× (−2) ; 12×

(
−5

4

)
; 22× (0) , (4.21)

in units of the inverse anti- de Sitter radius 1/L0 from (A.7). The Breitenlohner-Freedman

bound m2 L2
0 ≥ −9

4 [24] is satisfied by virtue of supersymmetry. The normalized vector

masses are given by:

m2 L2
0 : 3×

(
3 +
√

3
)

; 3×
(

3−
√

3
)

; 4×
(

15

4

)
; 12×

(
3

4

)
; 6× (0) , (4.22)

The 22 massless scalar fields are the Goldstone bosons for the massive vector fields. To-

gether, we conclude that the N = 3 vacuum realizes option IIIa) from (3.7) with one long

spin 3/2 multiplet of energy E0 =
√

3

DS(2, 3/2, 0)S + 2 ·DS(3/2, 3/2, 1/2)S +DS(3/2,
√

3, 0)L + 3 ·DS(1, 1) (4.23)

The three extra massless vectors describe an extra SO(3) symmetry. Explicit computation

of the fermionic mass matrices (2.17) also confirms the multiplet structure.

4.3.2 The N = 4 vacuum

The scalar mass spectrum on the N = 4 vacuum is:

m2 L2
0 : 1× (10) ; 10× (4) ; 11× (−2) ; 48× (0) . (4.24)

The vector masses are

m2 L2
0 : 7× (6) ; 15× (2) ; 6× (0) , (4.25)
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22 of the massless scalar fields are the Goldstone bosons for the massive vector fields, while

the six massless vectors gauge the residual SO(4) group. This solution thus realizes option

IIc) from (3.7) with a long spin 3/2 multiplet of energy E0 = 2

DS(2, 3/2, 0)S +DS(3/2, 1, 0)S +DS(3/2, 2, 1)S +DS(3/2, 2, 0)L +DS(1, 2) , (4.26)

and supersymmetry enhancement to N = 4, under which the first two multiplets combine

into the N = 4 massless supergravity multiplet and the remaining three multiplets combine

into a single N = 4 massive spin 3/2 multiplet. Again, an explicit computation of the

fermionic mass matrices (2.17) confirms this multiplet structure.

5 Conclusions

In this paper we have studied AdS vacua of maximal supergravity in four dimensions with

residual N > 2 supersymmetry. We exclude on general grounds 8 > N > 4 vacua and

find two 1-parameter classes of N = 3 and 4 vacua, which can be embedded only in the ω-

rotated gauged models. Of particular importance are the models with SO(8) gauging since

they exhibit in addition an N = 8 vacuum. The eleven dimensional origin of the latter is

still debated and in [13] it was conjectured to corrrespond to certain to ABJ theories [25],

through the AdS/CFT duality [26]. Understanding the higher dimensional origin of the

new N = 3 and 4 vacua is an important problem which deserves investigation.

Still in the light of the AdS/CFT correspondence, these new vacua should describe

conformal fixed points of some dual (three-dimensional) field theory. It would be also

interesting, in this respect, to study RG flows between the conformal critical points dual

to the two kinds of vacua in the ω-deformed SO(1, 7) models, or interpolating between the

N = 8 and N = 3 vacua in the ω-deformed SO(8) theories, thus generalizing the analysis

of [27, 28].

An other issue which deserves investigation is the study of black holes asymptoting the

new N = 3 and 4 vacua, along the lines of [29]. It would also be interesting to understand

to which extend the methods developed in this paper can be extended to a systematic

analysis of the AdS (and Minkowski) vacuum in maximal supergravity with N = 2 and

N = 1 supersymmetry.
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A Normalizations and conventions

Let us recall the relevant notations for the scalar masses. The bosonic Lagrangian of N = 8

supergravity reads (setting κ2 = 8πG = 1):6

L = e

[
−R

2
+

1

12
P ijklµ Pµijkl +

1

4
IΛΣ(φ)FΛ

µνF
Σ µν +

1

8 e
εµνρσ RΛΣ(φ)FΛ

µνF
Σ
ρσ − V (φ)

]
.

(A.1)

6We use the notations of [9], though in the ’mostly minus’ notation.
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We choose the vacuum at the origin φ0 = 0 in which the scalar potential is negative

V0 = V (0) < 0 (AdS vacuum), and we expand about it:

φijkl = φijkl0 + δφijkl = δφijkl . (A.2)

Being interested in the scalar kinetic and mass terms, we set AΛ
µ = 0 so that vielbein P ijklµ

on the vacuum reads:

P ijklµ = ∂µδφ
ijkl . (A.3)

Let us denote by φα, α = 1, . . . , 70 the real and imaginary parts of φijkl subject to the self-

duality condition. On the vacuum the kinetic and mass terms of the scalar fluctuations read:

L(2)
s = 4

∑
α

∂µδφ
α∂µδφα − 1

2

∂2V

∂φα∂φβ

∣∣∣∣
φ=0

δφαδφβ , (A.4)

from which we deduce the mass matrix:

(m2)αβ =
1

8

∂2V

∂φα∂φβ

∣∣∣∣
φ=0

=
1

8

∂2V (2)

∂δφα∂δφβ
, (A.5)

where V (2)(δφ) is given in (2.12).

Four-dimensional anti-de Sitter space can be defined as the connected hyperboloid in

R5 described by the equation:

ηABy
A yB = L2

0 ; η = diag(+−−−+) , (A.6)

L0 being the “radius” of the AdS space-time. The Ricci tensor reads:

Rµν = −Λ gµν , Λ = − 3

L2
0

< 0 , (A.7)

where Λ is the cosmological constant. From (A.1) we can identify:

Λ = V0 = − 3

L2
0

. (A.8)

If m2 is a generic eigenvalue of (m2)αβ, stability of the vacuum implies the following

condition:

m2 L2
0 =

3

|V0|
m2 ≥ −9

4
, (A.9)

which is the Breitenlohner-Freedman bound [24].

For the reader’s convenience we give the relations between the AdS energy E0 and the

masses of the various fields [30]:

scalars : E0 =
1

2

(
3±

√
9 + 4m2 L2

0

)
,

vectors : E0 =
1

2

(
3 +

√
1 + 4m2 L2

0

)
,

spinors, gravitino : E0 =
1

2
(3 + 2 |mL0|) .

(A.10)
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B N = 3 vacua: computational details

B.1 Case 5→ 2 + 2 + 1

The SO(3)d-invariant tensors Aij , A
i
jkl have, in general, the following non-vanishing com-

ponents:

Aαβ = δαβ ; AΛΣ = A77 δΛΣ ; A88 ,

AΛ
Σαβ = A(0) εαβγ (t(−)

γ )Λ
Σ +A(α̂) εαβγ (t(−)

γ t
(+)
α̂ )Λ

Σ ,

AΛ
Σα8 = C(0) (t(−)

α )Λ
Σ + C(α̂) (t(−)

α t
(+)
α̂ )Λ

Σ ,

AΛ
ΣΓ∆ = D(0) εΛΣΓ∆ +D(α̂) δΛ

[Σ(t
(+)
α̂ )Γ∆] ,

A8
αβγ = B(0) εαβγ ; A8

8ΛΣ = B(α̂) (t
(+)
α̂ )ΛΣ ; A8

αΛΣ = E(0) t
(−)
αΛΣ . (B.1)

The traceless condition on Aijkl sets B(α̂) = −2D(α̂)/3, so that we end up with the 16

independent parameters:

A77, A88, A
(0), A(α̂), B(0), C(0), C(α̂), D(0), D(α̂), E(0) . (B.2)

Using the residual SU(8) symmetry we can set A77 to be real. It is useful to identify the

last 14 parameters with entries of Ai
jkl:

A(0) = 2A7
236; A(1) = 4A7

237; A(2) = 4A7
234; A(3) = −4A7

235 ,

C(0) = −2A7
348; C(1) = −4A7

358; C(2) = 4A7
368; C(3) = −4A7

378 ,

D(0) = −A7
456; D(1) = −3A8

678; D(2) = −3A8
578; D(3) = −3A8

568 ,

B(0) = A8
123 , E(0) = 2A8

356 . (B.3)

Aside from the known N = 8 solution Ai
jkl = 0, A77 = ±1, A88 = eiϕ, we only find the

the following N = 3 solution (4.5), corresponding to A(α̂) = D(α̂) = C(α̂) = 0, B(0) = 0 and

A77 =
3

2
ε; A88 = −

√
3 e2iϕ; A(0) = 1; C(0) = −

√
3 eiϕ ,

D(0) = ε

√
3

2
e−iϕ; E(0) = −2 ε e−2iϕ . (B.4)

B.2 Case 5→ 3 + 1 + 1

Let us split the index i into i = α, α′, a, where α = 1, 2, 3, α′ = 4, 5, 6 and a = 7, 8 is the

index labeling the singlets. The SO(3)d generators in the 8 of SO(8) read:

tα =

εβαγ 0 0

0 εβ′αγ′ 0

0 0 02

 , (B.5)

and satisfy the relations (4.4).
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The SO(3)d-invariant tensors Aij , A
i
jkl have the following non-vanishing components:

Aαβ = δαβ; Aα′β′ = A66 δα′β′ ; Aab ,

Aaα′β′γ′ = Aa εα′−3β′−3 γ′−3; Aaα′β′γ = Ba εα′−3β′−3 γ ,

Aaα′βγ = Da εα′−3βγ ; Aaαβγ = Ca εαβγ ,

Aab′β′γ = Aab δβ′−3 γ

Aα
′
β′γ′a = Ãa εα′−3β′−3 γ′−3; Aα

′
β′γa = B̃a εα′−3β′−3 γ ; Aα

′
βγa = D̃a εα′−3β γ ,

Aα
′
αab = B δα

′−3
α εab; Aα

′
β′αβ = E δα

′−3β′−3
αβ ; Aα

′
βαγ = C δα

′−3β
αγ . (B.6)

We can always set A78 = 0 and A66, A77 to be real and the 21 complex parameters enter-

ing Aiijk:

Aab, A
a, Ba, Ca, Da, Ãa, B̃a D̃a, B, C, E , (B.7)

are subject to the tracelessness condition:

C = Aaa , (B.8)

which leaves us with a total of 23 complex parameters

A66, Aaa, A
a
b, A

a, Ba, Ca, Da, Ãa, B̃a D̃a, B, C, E ,

two of which (A66, A77), as previously mentioned, can be made real. The relation of the

parameters (B.7) to the entries of Aiijk is:

Aab = −Aab36; Aa = Aa456; Ba = Aa345; Ca = Aa123 ,

Da = Aa234; Ãa = A6
45a; B̃a = −A6

24a; D̃a = A6
12a ,

B = A6
378; E = −2A6

235 . (B.9)

Aside from the known N = 8 solution , we find the following solution

A66 = 2 ξ ; A77 = 2 η; A88 = ξ η eiϕ ,

Aa = Ca = Da = 0 ; B7 =
√

2 ξ η e−i
ϕ
4 ; B8 = 0 ,

Ã7 = 0 ; Ã8 =
√

2 ξ ei
ϕ
4 ; B̃7 = −

√
2 e−i

ϕ
4 ; B̃8 = 0 ; D̃a = 0 ,

C = 0; B = −η ei
ϕ
2 ; E = −2 ,

A7
7 = A8

8 = A8
7 = 0; A7

8 = −ξ ei
ϕ
2 , (B.10)

where η, ξ = ±1. Using the above identifications we can write the non-vanishing compo-

nents of the tensors as in (4.7).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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