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1 Introduction

One of the remarkable features of the holographic AdS/CFT correspondence is the ge-

ometrization of quantum-field-theoretic concepts. While certain aspects of recasting field-

theory quantities into geometric notions have been ingrained in our thought, we are yet

to fully come to grips with new associations between QFT and bulk geometry. A case

in point is the fascinating connection of quantum entanglement and spacetime geometry.

The genesis of this intricate and potentially deep connection harks back to the observa-

tion of Ryu-Takayanagi (RT) [1, 2] and subsequent covariant generalization by Hubeny-

Rangamani-Takayanagi (HRT) [3] that the entanglement entropy of a quantum field theory

is holographically computed by the area of a particular extremal surface in the bulk. In

recent years, much effort has been expended in trying to flesh out the physical implica-

tions of these constructions and in promoting the geometry/entanglement connection to a

deeper level [4–7] which can be summarized rather succinctly in terms of the simple phrases

“entanglement builds bridges” and “ER = EPR”. Whilst any connection between entan-

glement and geometry is indeed remarkable, further progress is contingent on the accuracy
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and robustness of this entry in the holographic dictionary. Let us therefore take stock of

the status quo.1

The RT proposal is valid for static states of a holographic field theory, which allows one

to restrict attention to a single time slice Σ̃ in the bulk spacetime M. The entanglement

entropy of a region A on the corresponding Cauchy slice Σ of the boundary spacetime

B is computed by the area of a certain bulk minimal surface which lies on Σ̃. In this

case we have a lot of confidence in this entry to the AdS/CFT dictionary; firstly the RT

formula obeys rather non-trivial general properties of entanglement entropies such as strong

subadditivity [8–10], and secondly a general argument has been given for it in the context

of Euclidean quantum gravity [11].

However, it should be clear from the outset that restricting oneself to static states

is overly limiting. Not only is the field theory notion of entanglement entropy valid in

a broader, time-dependent, context, but more importantly, one cannot hope to infer all

possible constraints on the holographic map without considering time dependence.

The HRT proposal, which generalizes the RT construction to arbitrary time-depend-

ent configurations by promoting a minimal surface on Σ̃ to an extremal surface EA in M,

allows one to confront geometric questions in complete generality. However, this proposal

has passed far fewer checks, and an argument deriving it from first principles is still lacking.

This presents a compelling opportunity to test the construction against field-theory expec-

tations and see how it holds up. Since the new ingredient in HRT is time-dependence, the

crucial property to check is causality. The present discussion therefore focuses on verifying

that the HRT prescription is consistent with field-theory causality.2

Let us start by considering the implications of CFT causality on entanglement en-

tropy, in order to extract the corresponding requirements to be upheld by its putative bulk

dual. As we will explain in detail in section 2, there are two such requirements. First,

the entanglement entropy is a so-called wedge observable. This means that two spatial

regions A, A′ that share the same domain of dependence, D[A] = D[A′], have the same

entanglement entropy, SA = SA′ ; this follows from the fact that the corresponding reduced

density matrices ρA, ρA′ are unitarily related [13]. Second, fixing the initial state, a per-

turbation to the Hamiltonian with support contained entirely inside D[A] ∪D[Ac] (where

Ac is the complement of A on a Cauchy slice) cannot affect SA. The reason is that we can

choose a Cauchy slice Σ′ that lies to the past of the support and contains a region A′ with

D[A′] = D[A]; since the perturbation cannot change the state on Σ′, it cannot affect SA′ ,

which by the previous requirement equals SA. Time-reversing the argument shows that,

similarly, SA cannot be affected by a perturbation in D[A]∪D[Ac] when we consider time

evolution toward the past with a fixed final state.

Having specified the implications of causality for the entanglement entropy in the field

theory, let us now translate them into requirements on its holographic dual. First, in

1We will focus exclusively on local QFTs with conformal UV fixed points which are holographically dual

to asymptotically AdS spacetimes in two-derivative theories of gravity.
2As we elaborate in the course of our discussion this result follows from Theorem 6 of [12]. As this is

however not widely appreciated we focus on proving the result from a different perspective highlighting

certain novel bulk constructs in the process.

– 2 –



J
H
E
P
1
2
(
2
0
1
4
)
1
6
2

order to ensure that the HRT formula in general gives the same entanglement entropy for

A and A′, they should have the same extremal surface, EA = EA′ . Second, in order for

EA to be safe from influence by perturbations of the boundary Hamiltonian in D[A] and

D[Ac] (when evolving either toward the future or toward the past), it has to be causally

disconnected from those two regions. This means that the extremal surface has to lie in a

region which we dub the causal shadow, denoted by Q∂A and defined in (2.7) as the set of

bulk points which are spacelike-separated from D[A] ∪D[Ac].
This causality requirement takes an interesting guise in the case where A is an entire

Cauchy slice for a boundary. If this is the only boundary, and the bulk is causally trivial,

then there is no causal shadow; indeed, EA = ∅, corresponding to the fact that the entan-

glement entropy of the full system vanishes in a pure state. However, if the state is not

pure, the bulk geometry is causally nontrivial: typically the bulk black-hole spacetime has

two boundaries, dual to two field theories in an entangled state (which can be thought of

as purifying the thermal state of the theory on one boundary). If we take the region A to

be a Cauchy slice for one boundary and Ac a Cauchy slice for the other, then the extremal

surface whose area, according to HRT, measures the amount of entanglement between the

two field theories must lie in a region out of causal contact with either boundary.3

How trivial or expected is the claim that the extremal surface resides in the causal

shadow? It is interesting to note that for local CFT observables, analogous causality

violation is in fact disallowed by the gravitational time-delay theorem of Gao and Wald [14].

This theorem, which assumes that the bulk satisfies the null energy condition, implies that

a signal from one boundary point to another cannot propagate faster through the bulk than

along the boundary, ensuring that bulk causality respects boundary causality. However,

since entanglement entropy is a more nonlocal quantity, which according to HRT is captured

by a bulk surface that can go behind event and apparent horizons [15, 16] and penetrate

into causally disconnected regions from the boundary, it is far less obvious whether CFT

causality will survive in this context.

Let us first consider a static example. Although it is guaranteed to be consistent

with CFT causality since it is covered by the RT prescription which is “derived” from

first principles, it is useful to gain appreciation for how innocuous or far-fetched causality

violation would appear in the more general case. Intriguingly, already the simplest case of

pure AdS reveals the potential for things to go wrong. As illustrated in figure 1, the null

congruence from a single boundary point (which bounds the bulk region which a boundary

source at that point can influence) is simultaneously foliated by spacelike geodesics {EA}.
So a signal that can influence a given extremal surface EA in that set can also influence

∂A, thereby upholding CFT causality. However, note that here causality was maintained

marginally: if the extremal surface was deformed away from A by arbitrarily small amount,

one would immediately be in danger of causality violation.

Another, less trivial, test case is the static eternal Schwarzschild-AdS black hole. The

extremal surface that encodes entanglement between the two boundaries is the horizon

3For the well-known eternal static Schwarzschild-AdS case, the shadow region degenerates to the bifur-

cation surface, but we will see that in general it is a finite codimension-zero bulk region.
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Figure 1. For AdS3, the RT formula satisfies field-theory causality marginally. The plane generated

by null geodesics (color-coded by angular momentum) from a given boundary point (blue) is also

ruled by spacelike geodesics at constant time (color-coded by time).

bifurcation surface. Again, arbitrarily small deformation of this surface would shift it

into causal contact with at least one of the boundaries, thereby endangering causality; in

particular, entanglement entropy for one CFT should not be influenced by deformations in

the other CFT. For static geometries we’re in fact safe because extremal surfaces do not

penetrate event horizons [17]; however this is no longer the case in dynamical situations [15,

16, 18–20]. Moreover, as illustrated in [21], in Vaidya-AdS geometry, EA can be null-related

to the past tip of D[A], thereby again upholding causality just marginally — an arbitrarily

small outward deformation of the extremal surface would render it causally accessible from

D[A]. These considerations demonstrate that the question of whether the HRT prescription

is consistent with field-theory causality is a highly nontrivial one.

The main result of this paper is a proof that, if the bulk spacetime metric obeys the

null energy condition, then the extremal surface EA does indeed obey both of the above

requirements. We conclude that the HRT formula is consistent with field-theory causality.

This theorem can be viewed as a generalization of the Gao-Wald theorem [14]. We regard

it as a highly nontrivial piece of evidence in favor of the HRT formula. Along the way, we

will also slightly sharpen the statement of the HRT formula, and in particular clarify the

homology condition on EA.

Partial progress towards this result was achieved in [22, 23], which showed that the

extremal surface EA generically lies outside of the “causal wedge” of D[A], the intersection

of the bulk causal future and causal past of D[A]. (However, these works did not make the

connection to field-theory causality). A stronger statement equivalent to our theorem was

proved in [12] (cf., Theorem 6) and it is noted in passing that this would ensure field theory

causality. We present an alternate proof which brings out some of of the bulk regions more

cleanly and make the connections with boundary causality more manifest.

As a byproduct of our analysis, we will identify a certain bulk spacetime region, which

we call the entanglement wedge and denote WE [A], which is bounded on one side by D[A]

and on the other by EA. Apart from providing a useful quantity in formulating and deriving

our results, the entanglement wedge is, as we will argue, the bulk region most naturally

associated with the boundary reduced density matrix ρA.
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The outline of this paper is as follows. We begin in section 2 with an overview of

the causal domains of interest on each side of the gauge-gravity duality, and motivate and

state the core theorem of the paper, which shows that the HRT proposal is consistent

with boundary causality. We motivate one of the major implications of our theorem by

considering spherically symmetric deformations of the eternal black hole containing a region

out of causal contact with both asymptotically AdS boundaries, the causal shadow, and

showing that the HRT surface lies in this causal shadow. In section 3, we begin to develop

some intuition used in the proof of our main theorem, by considering classes of null geodesic

congruences in AdS3. In section 4 we prove the general theorem which establishes the main

result of the paper. We conclude in section 5 with a discussion of the physical implications

of our result and open questions.

Note added: while this paper was nearing completion [24] appeared on the arXiv, which

has some overlap with the present work. It introduces the notion of quantum extremal

surfaces and argues that for bulk theories that satisfy the generalized second law such

surfaces satisfy the causality constraint.

2 Causal domains and entanglement entropy

In this section we will state our basic results and discuss some of their implications. The

specific proof, and some additional results, will be presented in section 4. In section 5 we

will suggest some further interpretations of our results, particularly regarding the dual of

the reduced density matrix.

We will open in section 2.1 by deriving the causality properties of entanglement entropy

in a QFT, and setting up some notation regarding causal domains which will be useful in the

sequel. In section 2.2, we will review the HRT formula and discuss various causal regions

in the bulk. In section 2.3, we state the basic theorem and some implications for the bulk

causal structure relative to specific regions arising in the HRT conjecture. section 2.4 spells

out a particular consequence of our results for spacetimes with multiple boundaries.

Where left unspecified, our notation follows [25].

2.1 Causality of entanglement entropy in QFT

Consider a local quantum field theory (QFT) on a d-dimensional globally hyperbolic space-

time B. The state on a given Cauchy slice4 Σ is described by a density matrix ρΣ; this

could be a pure or mixed state. We are interested in the entanglement between the degrees

of freedom in a region5 A ⊂ Σ and its complement Ac. Following established terminology,

we call the boundary ∂A the entangling surface.

4Throughout this paper we will require all Cauchy slices to be acausal (no two points are connected by

a causal curve). This is slightly different from the standard definition in the general-relativity literature,

in which a Cauchy slice is merely required to be achronal. The reason is to ensure that different points

represent independent degrees of freedom, which is useful when we decompose the Hilbert space according

to subsets of the Cauchy slice.
5Technically, A is defined as the interior of a codimension-zero submanifold-with-boundary in Σ, ∂A is

the boundary of that submanifold, and Ac := Σ \ (A ∪ ∂A).
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The entanglement entropy is defined by first decomposing the Hilbert space H of the

QFT into HA ⊗ HAc , after imposing some suitable cutoff.6 The reduced density matrix

ρA := TrHAc ρΣ captures the entanglement between A and Ac; in particular, the entangle-

ment entropy is given by its von Neumann entropy: SA := −Tr (ρA ln ρA). For holographic

theories, we expect that this quantity has good properties in the large-N limit,7 unlike the

Rényi entropies Sn,A := − 1
n−1 ln Tr (ρnA) [10, 31]. Note that both quantities are determined

by the eigenvalues of ρA, and are thus insensitive to unitary transformations of ρA.

Now, since Σ is a Cauchy slice, the future (past) evolution of initial data on it allows

us to reconstruct the state of the QFT on the entirety of B. In other words, the past and

future domains of dependence of Σ , D±[Σ], together make up the background spacetime

on which the QFT lives, i.e., D+[Σ] ∪ D−[Σ] = B. Likewise, the domain of dependence

of A, D[A] = D+[A] ∪D−[A], is the region where the reduced density matrix ρA can be

uniquely evolved once we know the Hamiltonian acting on the reduced system in A.8

Ac similarly has its domain of dependence D[Ac]. However, unless A comprises the

entire Cauchy slice, the two domains do not make up the full spacetime, D[A]∪D[Ac] 6= B,

since we have to account for the regions which can be influenced by the entangling surface

∂A. Denoting the causal future (past) of a point p ∈ B by J±(p) we find that we have

to keep track of the regions J±[∂A] which are not contained in either D[A] or D[Ac]. As

a result, the full spacetime B decomposes into four causally-defined regions: the domains

of dependence of the region and its complement, and the causal future and past of the

entangling surface:

B = D[A] ∪D[Ac] ∪ J+[∂A] ∪ J−[∂A] . (2.1)

These four regions are non-overlapping (except that J±[∂A] both include ∂A). See figure 2

for an illustration of this decomposition. Although this decomposition is fairly obvious

pictorially, for completeness we provide a proof in section 4 (cf. theorem 12).

The decomposition (2.1) is particularly convenient for formulating the QFT causality

constraint. Recall that the eigenvalues of the reduced density matrix ρA, and hence the

Rényi and von Neumann entropies, are invariant under unitary transformations which act

on HA alone or on HAc alone. These include perturbations of the Hamiltonian and local

unitary transformations supported in the domains D[A] or D[Ac]. In particular, if we

consider another region A′ of a Cauchy slice Σ′ such that D[A] = D[Ac] (as indicated in

figure 2), then the state ρΣ′ is related by a unitary transformation to the state ρΣ. It is

clear that such a transformation can be constructed from operators localized in A, and

so does not change the entanglement spectrum of ρA. Furthermore, if we fix the state at

t→ −∞, then a perturbation to the Hamiltonian with support R cannot affect the state on

a Cauchy slice to the past of R (i.e. that doesn’t intersect J+[R]). Such a perturbation can

6In the case of gauge fields, this decomposition is not possible even on the lattice. Instead, one must ex-

tend the Hilbert spaces HA, HAc to each include degrees of freedom on ∂A, so that H ⊂ HA ⊗HAc [26–29].
7Technically, by “large-N” we mean large ceff, where ceff is a general count of the degrees of freedom

(see [30] for the general definition of ceff).
8We remind the reader that D[A] is defined as the set of points in B through which every inextendible

causal curve intersects A. Note that, given that we have defined A as an open subset of Σ, D[A] is open

subset of B.
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J+[∂A]

J−[∂A]

Figure 2. An illustration of the causal domains associated with a region A, making manifest the

decomposition of the spacetime into the four distinct domains indicated in (2.1). Two deformations

A′ are also included for illustration in the right panel.

therefore affect the entanglement spectrum only if R intersects J−[∂A], because otherwise

we can imagine evaluating SA by using a sufficiently early Cauchy slice Σ′ ⊃ ∂A that passes

to the past of R. Similarly, if we fix the state at t → +∞, the spectrum can be affected

only by perturbations in J+[∂A]. In summary, we have the following properties of ρA:

• The entanglement spectrum of ρA depends only on the domain D[A] and not on

the particular choice of Cauchy slice Σ. The spectrum is thus a so-called “wedge

observable” (although it is not, of course, an observable in the usual sense).

• Fixing the state in either the far past or the far future, the entanglement spectrum

of ρA is insensitive to any local deformations of the Hamiltonian in D[A] or D[Ac].

These are the crucial causality requirements that entanglement (Rényi) entropies are re-

quired to satisfy in any relativistic QFT.

The essential result of this paper is that the HRT proposal for computing SA satisfies

these causality constraints. In the conclusions we will revisit the question of what the dual

of ρA, and thus of the data in D[A], might be.

2.2 Bulk geometry and holographic entanglement entropy

Let us now restrict attention to the class of holographic QFTs, which are theories dual

to classical dynamics in some bulk asymptotically AdS spacetime. To be precise, we only

consider strongly coupled QFTs in which the classical gravitational dynamics truncates to

that of Einstein gravity, possibly coupled to matter which we will assume satisfies the null

energy condition.

The dynamics of the QFT on B is described by classical gravitational dynamics on a

bulk asymptotically locally AdS spacetime M with conformal boundary B, the spacetime

where the field theory lives. We define M̃ := M∪ B. M̃ is endowed with a metric g̃ab
which is related by a Weyl transformation to the physical metric gab on M, g̃ab = Ω2gab,

where Ω → 0 on B.9 Causal domains on M̃ will be denoted with a tilde to distinguish

9These are necessary but not sufficient conditions for the spacetime to be asymptotically AdS.
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them from their boundary counterparts, e.g., J̃±(p) will denote the causal future and past

of a point p in M̃ and D̃[R] will denote the domain of dependence of some set R ⊂ M̃.

It will also be useful to introduce a compact notation to indicate when two points p

and q are spacelike-separated; for this we adopt the notation �, i.e.

p � q ⇔ @ a causal curve between p and q. (2.2)

Moreover, to denote regions that are spacelike separated from a point, we will use S(p)

and S̃(p) in the boundary and bulk respectively,

S(p) := {q | p � q} =
(
J+(p) ∪ J−(p)

)c
and S̃(p) :=

(
J̃+(p) ∪ J̃−(p)

)c
. (2.3)

Just as for other causal sets, we can extend these definitions to any region R, namely

S[R] := ∩p∈RS(p) is the set of points which are causally disconnected from the entire

region R, etc.

Having established our notation for general causal relations, let us now specify the

notation relevant for holographic entanglement entropy. As before we will fix a region

A on the boundary. The HRT proposal [3] states that the entanglement entropy SA is

holographically computed by the area of a bulk codimension-two extremal surface EA that

is anchored on ∂A; specifically,

SA =
Area(EA)

4GN
. (2.4)

In the static (RT) case, it is known that the extremal surface is required to be homologous

to A, meaning that there exists a bulk region RA such that ∂RA = A∪ EA. So far, it has

not been entirely clear what the correct covariant generalization of this condition is. In

particular, should it merely be a topological condition, or should one impose geometrical

or causal requirements on RA, for example, that it be spacelike? (A critical discussion of

the issues involved can be found in [32].) In this paper, we will show that a clean picture,

consistent with all aspects of field-theory causality, is obtained by requiring that RA be a

region of a bulk Cauchy slice.10 We will call this the “spacelike homology” condition.11

The homology surface RA naturally leads us to the key construct pertaining to entan-

glement entropy, which we call the entanglement wedge of A, denoted by12 WE [A]. This

can be defined as a causal set, namely the bulk domain of dependence of RA,

WE [A] := D̃[RA] . (2.5)

Note that the entanglement wedge is a bulk codimension-zero spacetime region, which

can be equivalently identified with the region defined by the set of bulk points which are

10Technically, similarly to A, we define RA to be the interior of a codimension-zero submanifold-with-

boundary of a Cauchy slice Σ̃ of M̃ (with Σ̃∩B = Σ). Since Σ̃ itself has a boundary (namely its intersection

with B), the interior of a subset (in the sense of point-set topology) includes the part of its boundary along

B. Thus, RA includes A (but not EA).
11If there are multiple extremal surfaces obeying the spacelike homology condition, then we are to pick

the one with smallest area. However, in this paper we will not use this additional minimality requirement;

all our theorems apply to any spacelike-homologous extremal surface.
12While we have associated it notationally with the region A, it depends only on D[A].
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spacelike-separated from EA and connected toD[A]. The latter definition has the advantage

of absolving us of having to specify an arbitrary homology surface RA rather than just EA
and D[A]. As we shall see below, the bulk spacetime can be naturally decomposed into

four regions analogously to the boundary decomposition (2.1); the entanglement wedge is

then the region associated with (and ending on) D[A].

While we have focused on the regions in the bulk which enter the holographic entan-

glement entropy constructions, we pause here to note two other causal constructs that can

be naturally associated with A. First of all we have the causal wedge WC [A] which is set

of all bulk points which can both send signals to and receive signals from boundary points

contained in D[A], i.e.,13

WC [A] := J̃+
[
D[A]

]
∩ J̃−

[
D[A]

]
. (2.6)

(The entanglement wedge WE [A] and causal wedge WC [A] are in fact special cases of the

“rim wedge” and “strip wedge” introduced recently in [33] as bulk regions associated with

residual entropy.)

The second bulk causal domain which will play a major role in our discussion below

is a region we call the causal shadow Q∂A associated with the entangling surface ∂A. We

define this region as the set of points in the bulkM that are spacelike-related to both D[A]

and D[Ac], i.e.,

Q∂A :=
(
J̃+[D[A]] ∪ J̃−[D[A]] ∪ J̃+[D[Ac]] ∪ J̃−[D[Ac]]

)c
= S̃[D[A] ∪D[Ac]] . (2.7)

For a generic region A in a generic asymptotically AdS spacetime, the causal shadow is a

codimension-zero spacetime region; see figure 3 for an illustrative example.14 In certain spe-

cial (but familiar) situations, such as spherically symmetric regions in pure AdS (where ρA
is unitarily equivalent to a thermal density matrix), it can degenerate to a codimension-two

surface. In such special cases, the entanglement wedge and the causal wedge coincide [22].

In general, the causal information surface for A and that for Ac comprise the edges of the

causal shadow. For a generic pure state these causal information surfaces each recede from

EA towards their respective boundary region but approach each other near the AdS bound-

ary. Hence the geometrical structure of Q∂A, described in language of a three-dimensional

bulk, is a “tube” (connecting the two components of ∂A) with a diamond cross-section,

which shrinks to a point where the tube meets the AdS boundary at ∂A.

For topologically trivial deformations of AdS, in the absence of EA (i.e. when the state

is pure and A = Σ) the causal shadow disappears, but intriguingly, even when A is the

13Following [22], we can also define a particular bulk codimension-two surface ΞA, the causal informa-

tion surface, to be the rim of the causal wedge; in fact, it is the minimal area codimension-two surface

lying on ∂WC [A].
14The bulk metric used in the plot for figure 3 is

ds2 =
1

cos2 ρ

(
−f(ρ) dt2 +

dρ2

f(ρ)
+ sin2 ρ dϕ2

)
, f(ρ) = 1− 1

2
sin2(2 ρ) .

The matter supporting this geometry satisfies the null energy condition as can be checked explicitly.
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EA AAc

← D[A]
D[Ac]→

yQ∂A

Figure 3. Example of a causally trivial spacetime and a boundary region A whose causal shadow is

a finite spacetime region. We have engineered an asymptotically AdS3 geometry sourced by matter

satisfying the null energy condition (see footnote 14) and taken A to nearly half the boundary,

ϕA = 1.503, at t = 0 (thick red curve). The shaded regions on the boundary cylinder are D[A] and

D[Ac] respectively. The extremal surface is the thick blue curve, while the purple curves are the rims

of the causal wedge (causal information surfaces) for A and Ac respectively. A few representative

generators are provided for orientation: the blue null geodesics generate the boundary of the causal

wedge for A while the green ones do likewise for Ac. The orange generators in the middle of the

spacetime generate the boundary of the causal shadow region Q∂A.

entire boundary Cauchy slice, the causal shadow can be nontrivial. This occurs for example

in the AdS3-geon spacetimes15 [34] and in perturbations of the eternal AdS black hole, such

as those studied by [35]. In such a situation we simply define the casual shadow of the

entire boundary (dropping the subscript) as

Q := S̃[B] =
(
J̃+[B] ∪ J̃−[B]

)c
(2.8)

Here B is understood generally to include multiple disconnected components; the causal

shadow is the region spacelike separated from points on all the boundaries.

2.3 Causality constraints on extremal surfaces

Having developed the various causal concepts which we require, let us now ask what the

constraints of field-theory causality concerning entanglement entropy translate to in the

15Since these describe pure states, the presence of a causal shadow region does not necessarily guarantee

the presence of an extremal surface whose area gives the entanglement entropy contained within it. However,

there will be some extremal surface spanning this region.
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bulk. The first constraint is that SA should be a wedge observable, i.e. if D[A] = D[A′]
then SA = SA′ . For this to hold in general, we need EA = EA′ . The second concerns

perturbations of the field-theory Hamiltonian. Such perturbations will source perturba-

tions of the bulk fields, including the metric, that will travel causally with respect to the

background metric. In particular, disturbances originating in D[A] will be dual to bulk

modes propagating in J̃+
[
D[A]

]
(if we fix the state in the far past) or in J̃−

[
D[A]

]
(if

we fix the state in the far future). If either of these bulk regions intersected EA, the dual

of local operator insertions in D[A] could change the area of EA, meaning that the HRT

proposal would be inconsistent with causality in the QFT. By the same token, the extremal

surface cannot intersect J̃+
[
D[Ac]

]
or J̃−

[
D[Ac]

]
. Since the region complement to union

of the causal sets J̃±[D[A]], J̃±[D[Ac]] is the set of points that are spacelike related to

D[A] ∪D[Ac], we learn that

EA � D[A] ∪D[Ac] . (2.9)

In others words, using (2.7) we can say that EA has to lie in the causal shadow of ∂A

EA ⊂ Q∂A . (2.10)

It is known, based on properties of extremal surfaces, that EA lies outside the causal

wedges WC [A] and WC [Ac] [12, 22, 23]. This leaves open the possibility that the surface

could still lie in the causal future (or past) of the boundary domain of dependence of A
or Ac. A particular worry arises in explicit examples in Vaidya-AdS geometries where the

extremal surface lies on the boundary of J̃+
[
D[A]

]
. This then leaves open the question

whether one might indeed be able to push EA into a causally forbidden region, by introduc-

ing appropriate deformations in D[A]. A theorem of Wall [12] (Theorem 6 of the reference),

guarantees that this does not occur (modulo some assumptions).

We will prove an essentially equivalent statement in section 4, directly for extremal

surfaces in an asymptotically AdS spacetime. The main result however can be stated in

terms of three simple causal relations:

D̃[RA] ∩ B = D[A]

D̃[RcA] ∩ B = D[Ac]
J̃±[EA] ∩ B = J±[∂A] .

(2.11)

In other words, the causal split of the bulk into spacelike- and timelike-separated regions

from EA restricts to the boundary at precisely the boundary split (2.1). Given the decom-

position (2.1), these causal relations imply that perturbations in D[A] ∪D[Ac] are not in

causal contact with EA. So, as required, the extremal surface lies in the causal shadow.

As a consequence of this theorem, we will also show that, if there is a spacelike region

A′ such that D[A′] = D[A], then there is a bulk region RA′ such that ∂RA′ = A′ ∪ EA,

so EA is spacelike-homologous to A′. Thus, the HRT formula gives the same entanglement

entropy for A′ and A, as required on the field-theory side.
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2.4 Entanglement for disconnected boundary regions

A striking consequence of the theorems discussed above emerges when we consider

spacetimes with two boundary components, and let A be (a Cauchy slice for) all of

one component.

As a starting point, consider the eternal Schwarzschild-AdSd+1 black hole in the Hartle-

Hawking state, with a Penrose diagram shown in figure 4(a) below. The left and right

boundaries of the diagram each have the topology Sd−1 × R. This geometry is believed

to be dual to the CFT on the product spatial geometry Sd−1
L × Sd−1

R , in the entangled

“thermofield double” state [36–39]:

|HH〉L,R =
∑
i

e−
1
2
β Ei |Ei〉L |Ei〉R (2.12)

where |Ei〉R,L is the energy eigenstate of the CFT on Sd−1
R,L .

Let ΣR lie on the t = 0 slice of the right boundary, and consider the reduced density

matrix for some region A ⊂ ΣR. Since this is a static geometry, its entanglement entropy

SA is computed by a minimal surface EA which never penetrates past the bifurcation surface

X of the black hole [17].16 If we let A be the full Cauchy slice of one of the boundaries, say

A = ΣR, the extremal surface precisely coincides with the black hole bifurcation surface, as

indicated in figure 4. Note that EA lies on the edge of the causally acceptable region since

X sits at the boundary of both WC [A] and WC [Ac], and therefore constitutes the entire

causal shadow for this special case.

One might now wonder what happens if we deform the state (2.12). This is not an

innocuous question. In time-dependent geometries, the global (teleological) nature of the

event horizon implies that extremal surfaces anchored on the boundary can pass through

this horizon [15]. Furthermore, as first explicitly shown in [16], even apparent horizons do

not form a barrier to the extremal surfaces. Hence we see that, a priori, in a state which

is a deformation of (2.12), EA is in danger of entering WC [Ac].
The theorems we have stated above indicate that this does not happen. The question

is, how precisely does the extremal surface EA avoid doing so? As a first step to answering

this, consider a deformation of the static eternal case localized along a null shell emitted

from the right boundary at some time. The corresponding metric is given by the global

Vaidya-SAdS geometry, where both the initial (prior to the shell) and final (after the shell)

spacetime regions describe a black hole. Figure 4b presents a sketch of the Penrose diagram

of such a geometry, contrasted with the standard static eternal Schwarzschild-AdS black

hole (figure 4a). The diagonal brown line represents the shell which is sourced at some

time on the right boundary and implodes into the black hole (terminating at the future

singularity), and the blue lines represent the various (future and past, left and right) event

horizons. The solid parts of these lines indicate where these event horizons coincide with

apparent horizons (as well as isolated horizons); the dashed parts are parts of the event

horizon which are not apparent horizons.

16Note that the extremal surface does not come arbitrarily close to the horizon — it either includes a

component that wraps the horizon, or stays a finite distance away from it [32].
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(a) (b)

F

P

RL

Fb
Fa

Fc

P

Pc

RaRc

Rb

L

Figure 4. Sketch of Penrose diagram for (a) static eternal Schwarzschild-AdS and (b) ‘thin shell’

Vaidya-Schwarzschild-AdS, with the various regions labeled. The AdS boundaries are represented

by vertical black lines, the singularities by purple curves, the horizons by diagonal blue lines, and

the ‘shell’ in the Vaidya case by diagonal brown line.

In such a geometry, let us again consider A = ΣR. Then our theorems guarantee that

the extremal surface must lie on the null sheet separating regions Rc and Pc: it is again

spacelike-separated from both D[ΣL] and D[ΣR]. (In fact, since the spacetime prior to

the shell is identical to the eternal static case, the extremal surface remains in the same

location as for the static case, namely the bifurcation surface where regions Rc and L

touch.) The situation is again marginal, much like the original undeformed case. Indeed,

any perturbation to Schwarzschild-AdS which emanates from (or reaches to) the right

boundary cannot change the location of the original extremal surface by causality; it could

at most generate a new extremal surface.

A less marginal case occurs when we symmetrically perturb both copies of the CFT

as above. Consider a perturbation at t = 0 such that spherically symmetric null shells

are emitted both to the past and future on both sides of the diagram. One then obtains

the Penrose diagram shown in figure 5; this has time-reflection symmetry about t = 0,

symmetry under exchanging the left and right sides, and the SO(d) rotational symmetry.

According to the theorems above, the extremal surface must be spacelike-separated

from both boundaries, when we take A = ΣR. Using both time and space reflection

symmetry, it is clear that EA must sit in the center of the causal shadow Q of the two

boundaries, spacelike separated from both.

In the general case of spherically symmetric spacetime (even in the absence of time

or space reflection symmetry) there is an easy proof of our claim that EA must lie in the

causal shadow. We proceed by contradiction: suppose that a spherical extremal surface

EA lies in J̃+ [ΣL]. This means that on a Penrose diagram, it lies somewhere in the top-left

region; say it is the surface FA indicated in figure 5 (which by rotational symmetry is a

copy of Sd−1). Let us then consider the past congruence of null normal geodesics from FA
towards BL. Since we assume that FA candidate surface lies in J̃+ [ΣL], past-going null

– 13 –
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CFTRCFTL

AEA

Q
WC [A]WC [Ac]

FA

Figure 5. Sketch of Penrose diagram for a symmetric Vaidya-Schwarzschild-AdS geometry obtained

by imploding null shells to the past and future from both boundaries. The crucial new feature of

note is the presence a causal shadow region that is spacelike separated from both boundaries. We

have also indicated the extremal surface EA for the region A = ΣR in red at the center of the figure

and FA is a Sd−1 of finite area in the causal future of the left boundary. The lightly shaded regions

are the causal wedges associated with A and Ac respectively.

congruences from the surface intersect BL on a spacelike codimension-one surface. In other

words, the area of the spheres grows without bound along this past-directed congruence.

However, by definition, for an extremal surface the initial expansion is vanishing. More-

over, if the matter in the spacetime satisfies the null energy condition,then it also follows

that the area along the congruence is guaranteed not to grow. Nor can the area go to zero

along the congruence, since the area of the Sd−1 represented by each point on the Penrose

diagram is finite. It therefore follows that our assumption about EA penetrating J̃+ [ΣL]

must be erroneous; FA cannot be an extremal surface. Running a similar argument for the

other unshaded regions in figure 5, we learn that the extremal surface must indeed lie in

the causal shadow region, as denoted by the red surface EA.

Indeed, in this particular case, the extremal surface lies at the point on the Penrose

diagram where the future and past apparent horizons meet — the “apparent bifurcation

surface”. The fact that it lies in the causal shadow is a consequence of the familiar fact

that the apparent horizon can never be outside the event horizon, applied to both future

and past horizons.

While the above result relied on the special properties of spherically symmetry (both

of the spacetime and the null congruences therein), the theorems we prove in section 4 will

establish this in full generality.

In the next two sections we set out to prove the theorems stated in section 2.3. The

proof in our spherically symmetric case indicates that understanding null congruences
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leaving the extremal surface might play a key role. We will therefore spend some time

in section 3 examining null congruences emanating from bulk codimension-two surfaces in

AdS3, in order to develop a picture of the relevant causal domains, before embarking on a

general proof in section 4.

3 Null geodesic congruences in AdS3

In this section, we consider null geodesic congruences emanating from curves in AdS3 that

are anchored at the boundary. Our aim is to build some intuition about such congruences

in a simple setting, since their properties will play a crucial role in the proofs in what

follows. Readers familiar with the general statements are invited to skip ahead to the

abstract discussion.

We work in the Poincaré patch of AdS3 with the standard metric:

ds2 =
1

z2

(
−dt2 + dx2 + dz2

)
(3.1)

Since our aim is to understand specifically the (causal) boundary of bulk causal domains, we

are going to examine properties of null geodesic congruences. In particular, for a spacelike

codimension-one region R ⊂ M which is anchored on the AdS boundary, the domain of

dependence D̃[R] is bounded by a family of outgoing null geodesics emanating from ∂R,

up to the point where each geodesic encounters a caustic or intersects another generator.17

To gain intuition for how these null congruences behave in the context of the extremal

surfaces of interest, we examine a more general family of codimension-two surfaces (these

are curves in AdS3) which in the above coordinates are given by

x2 +
z2

a2
= 1 , t = 0 (3.2)

parameterized by a. Note that all of these are anchored on the boundary R1,1 at the ends of

the interval A = {(t, x) ∈ R1,1 | t = 0, x ∈ [−1, 1]}. (For orientation, see the bottom set

of curves in figure 7.) When a = 1, the surface is a semi-circle, which is simultaneously the

causal information surface ΞA defined in [22], and the extremal surface EA for the region

A under consideration. Surfaces with a < 1 lie inside the causal wedge WC [A], while those

with a > 1 lie outside i.e., they are spacelike related to D[A]. We wish to study the family

of null congruences leaving these surfaces, as we vary a. The geodesics will be labelled by

their starting position x0 and parameterized by an affine parameter λ (fixed such that we

have unit energy along each geodesic).

3.1 Explicit solutions for geodesic congruences

Since the a = 1 surface is extremal, the null expansion Θ(λ; a = 1) = 0 for each generator.

For the surfaces with a < 1, closer to the boundary, we expect that the expansion is positive

and the congruence intersects the boundary in a spacelike curve inside D[A] = {(t, x) ∈
17The latter set of intersections is referred to as cross-over points; the set of these generically form a

crossover seam which is codimension-one on this null surface.
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R1,1 | |t ± x| ≤ 1}. For curves with a > 1, long ellipse, we expect the expansion to be

negative. The resulting congruence should develop a caustic before reaching the boundary.

Due to the relative simplicity of the set-up, we can confirm these expectations ex-

plicitly. Since everything is time-symmetric, let us consider just the future-directed

outgoing congruence:

z(λ) =
a
√

1− x2
0

√
1− x2

0 + a2 x2
0

a (1− x2
0)λ+

√
1− x2

0 + a2 x2
0

x(λ) = x0
a (1− a2) (1− x2

0)λ+
√

1− x2
0 + a2 x2

0

a (1− x2
0)λ+

√
1− x2

0 + a2 x2
0

t(λ) =
a2 (1− x2

0)
√

1− x2
0 + a2 x2

0 λ

a (1− x2
0)λ+

√
1− x2

0 + a2 x2
0

(3.3)

Note that the endpoints of these generators at λ =∞ are given by

z∞ = 0 , x∞ = x0 (1− a2) , t∞ = a
√

1− x2
0 + a2 x2

0 (3.4)

A representative plot of the generators is given in figure 6 for a = 0.5 (left) and a = 1.5

(right). We see that when a < 1, the generators don’t intersect each other before reaching

the boundary, and they reach within D+[A]. On the other hand, when a > 1, the generators

intersect in a seam (drawn as thick blue curve, whose explicit expression is given below

in (3.5)), before reaching the boundary (with the geodesic endpoints indicated by the red

curves in figure 6). We call the points on this seam the cross-over points; non-neighbouring

geodesics intersect at these points. This seam terminates in a caustic, which as always refers

to the locus where neighbouring geodesics intersect.

3.2 Intersections within congruences

We can determine the intersection between distinct geodesics in the bulk using the explicit

expressions from (3.3). By symmetry of the set-up, we know that geodesics with opposite

values of x0 necessarily intersect, and they must do so at x = x× = 0. Solving for the

intersection of the pair of geodesics starting from x0 and −x0 we find that they meet at:

t× =

√
1− x2

0 + a2 x2
0

a
, z× =

a2 − 1

a

√
1− x2

0 , λ× =

√
1− x2

0 + a2 x2
0

a (a2 − 1) (1− x2
0)

(3.5)

This generates the seam of cross-over points depicted in the right panel of figure 6, and

plotted for various values of a in figure 7 (the top set of curves, color-coded by a corre-

sponding to the initial surface indicated by the thick horizontal curve of the same color).

It is easy to see from (3.5) that the cross-over points terminate on the boundary at the

future tip of D+[A], i.e., at z = 0, x = 0, t = 1, corresponding to the intersection of

the boundary geodesics x0 = ±1. On the other hand, the cross-over seams for different a

start at the point in the bulk when neighbouring geodesics from x0 ' 0 intersect which

happens at

x× = 0 , t× =
1

a
, z× =

a2 − 1

a
, λ× =

1

a (a2 − 1)
(3.6)
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Figure 6. Null normal congruence from the initial surface given by (3.2) with a = 0.5 (left) and

a = 1.5 (right). The initial surface is the bold black curve on the bottom, the boundary is the

shaded plane on the left in each plot (with the domain of dependence D+[A] boundary indicated by

the thin black lines), the individual geodesics are the thin lines color-coded by x0, their endpoints

on the boundary are depicted by the red curve, and finally the seam of crossover points where

generators intersect for a > 1 is the blue thick curve. (The generators are cut off at a finite value

of λ ≈ 64, so in the plot they don’t look like they reach all the way to the boundary.)

Figure 7. Initial surfaces (thick curves at the bottom, color-coded by a), along with endpoints of

the generators of the corresponding null congruence: for a = 1 (initial surface is the red semi-circle),

all generators meet at the tip. Increasing a > 1 (color shift towards purple and blue) makes the

generators intersect at the seam of cross-over points before reaching the boundary. On the other

hand, decreasing a < 1 (color shift towards orange and green) makes the generators reach the

boundary within D+[A] (depicted as in figure 6).

To summarize, depending on whether a is greater or less than 1, the congruence has

qualitatively different behaviour, as illustrated in figure 7. For a < 1 (depicted by colors

from red toward green), the congruence reaches the boundary inside D+[A], while for a > 1,

the generators intersect each other at the seam of crossover points (depicted by colors from

red toward purple). At precisely a = 1, all generators reach the boundary at the future tip

of D+[A], namely z = 0, x = 0, t = 1.

– 17 –



J
H
E
P
1
2
(
2
0
1
4
)
1
6
2

-1.0 -0.5 0.5 1.0
x0

-2.0

-1.5

-1.0

-0.5

0.5

QHΛ=0L

2 4 6 8 10
Λ

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

QHx0=0L

Figure 8. Expansion Θ(λ;x0) along the generators for various values of a (color-coded by a as in

figure 7). On left, we show the expansion from the initial surface λ = 0 as a function of the starting

position x0. On right, we fix x0 = 0 as plot the evolution of Θ(λ) along the radial generator.

3.3 Expansion of congruences and caustics

Let us now analyze the expansion along this congruence. This can be calculated as the

change in area along the wavefront

Θ(λ, x0) =
1

A(λ, x0)

∂

∂λ
A(λ, x0) (3.7)

with

A(λ, x0) =

∫ x0+δx

x0

√
−t′(λ, x̃0)2 + x′(λ, x̃0)2 + z′(λ, x̃0)2

z2(λ, x̃0)
dx̃0 (3.8)

where t′(λ, x0) ≡ ∂
∂x0

t(λ;x0) etc., using the expressions given in (3.3). While one can

numerically solve for Θ(λ) it is easier to obtain the solution for small λ and evolve using

the Raychaudhuri equation.

Near λ = 0, the leading order expression for Θ is:

Θ0 ≡ Θ(λ = 0) =
a (1− a2) (1− x2

0)2

(1− x2
0 + a2 x2

0)3/2
(3.9)

This is plotted in the left panel of figure 8 (with same color-coding by a as employed in

figure 7). At the ends of the interval x0 = ±1, Θ0 vanishes (which is to be expected since

the congruence approximates a larger one with a = 1), while Θ0 reaches its extremum at

the midpoint, x0 = 0 (again, expected by symmetry), where Θ0(x0 = 0) = a (1 − a2).

Furthermore, Θ0 is positive for a < 1 and negative for a > 1; that is, the congruences are

expanding for a < 1 and converging for a > 1). The former make it out to the boundary

without intersecting, while the latter have a seam of cross-overs. As we will see below, the

geodesics end in a curve of caustics, which touches the seam of cross-overs at the endpoint

of the latter.

Given Θ0 as our initial condition, it is straightforward to solve the Raychaudhuri

equation
dΘ

dλ
= −Θ2 − 2σab σ

ab −Rab ξa ξb (3.10)

to find the expansion along the geodesics. Here ξa is the tangent vector to the null geodesics

and σµν is the shear of the congruence. For a one-dimensional congruence the shear trivially
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vanishes and the Ricci tensor contracted with null tangents likewise vanishes upon using

the bulk equations of motion Rab = −2 gab, so (3.10) simplifies to:

dΘ

dλ
= −Θ2 ⇒ Θ(λ) =

Θ0

1 + Θ0 λ
(3.11)

Using (3.9), we find:

Θ(λ, x0) =
a (1− a2) (1− x2

0)2

(1− x2
0 + a2 x2

0)3/2 + a (1− a2) (1− x2
0)2 λ

(3.12)

In figure 8 we have plotted this as a function of λ for x0 = 0, at which Θ = a (1−a2)
1+a (1−a2)λ

.

For a > 1, we expect the congruence to develop a caustic where the expansion diverges.

This occurs when infinitesimally nearby geodesics intersect each other. Eq. (3.12) shows

that this can only occur for a > 1, where the second term in the denominator is negative

for positive λ. In this case Θ(λ)→ −∞ at a finite value of λ = λc,

λc =
(1− x2

0 + a2 x2
0)3/2

a (a2 − 1) (1− x2
0)

(3.13)

for any x0. The spacetime coordinates for the points along the congruence where this

happens are given by

xc = (1− a2)x3
0 , tc =

(1− x2
0 + a2 x2

0)3/2

a
, zc =

a2 − 1

a
(1− x2

0)3/2 (3.14)

Viewed as a pair of parametric curves parametrized by x0 which starts at x0 = 0 and ends

at x0 = ±1, the caustic seams are null curves, starting at the intersection point (3.6) and

ending on the boundary at zc = 0, xc = ±(1 − a2), and tc = a2. Note that this is a finite

distance on the boundary.

The divergence Θ→ −∞ signifies the presence of conjugate points, but their geometric

meaning is a bit obscure in our discussion so far. The reason is as follows: as we see in

figure 6 and can check explicitly, we generically have caustics in the neighbourhood of

x0 ' 0, but more generally encounter cross-over points from the intersection geodesics

symmetrically placed about x0 = 0. The expansion is finite along the cross-over seam (3.5)

for x0 6= 0. This can be understood by realizing that the expansion is a local property of the

nearby geodesics which doesn’t know about any other piece of the congruence. So nothing

special ought to happen at the cross-over points which are non-local in the congruence,

and indeed these are not conjugate points.

The clue as to the geometric meaning of Θ → −∞ comes from plotting this locus

on the surface of the null congruence (continued through the cross-over seam). This is

presented in figure 9 by the thick red curves. We see that the surface intersects itself at

the cross-over seam, beyond which the constant-λ wavefronts form closed loops. On the

sharp flank, these wavefronts turn around and locally become null; this is precisely where

A(λ, x0) vanishes and therefore Θ→ −∞.
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Figure 9. Surface generated by the null normal congruence, along with the locus of points on

this surface where the expansion diverges, indicated by the thick red curves. The cyan contours

represent the geodesic generators, while the blue contours are the constant-λ wavefronts (we cut off

the surface at |x0| < 1 for convenience).

3.4 Summary

The upshot of our calculations can be summarized as follows. Consider the null geodesic

congruence emanating from a codimension-two spacelike surfaces FA ⊂ M anchored on

the boundary of a region A with ∂A = FA ∩ B.

• If FA ⊂ WC [A] then the congruence terminates inside D[A] along a spacelike bound-

ary codimension-one surface.

• If FA lies on the boundary of the causal wedgeWC [A] then the congruence intersects

the boundary on the null surface ∂D[A].

• If FA ⊂ S̃ [D[A]] then the congruence finds itself terminated by a seam of cross-over

points (and if continued further, would encounter caustic points prior to reaching the

AdS boundary). The seam itself however reaches out to the boundary and ends on

the future tip18 of ∂D[A].

This gives a clear picture of the causal domains for regions bounded by curves inside and

outside of WC [A]. As we will see in our explicit proof, the extremal surface will in general

lie outside of WC [A]; in special cases it can at best lie on the boundary, but never in the

interior, of the causal wedge.

18In higher-dimensional setting, D[A] itself may terminate in a crossover seam rather than a single point,

which occurs when the null generators of ∂D[A] on the boundary themselves cross over.
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4 Theorem and proof

We now get to the main part of the paper where we prove that the extremal surface

EA satisfies the causality requirements discussed in section 2.3. Our main goal will be

to establish the causal relations quoted there in (2.11). These will establish for us the

consistency of the HRT proposal for computing holographic entanglement entropy.

In section 4.1, we remind the reader of the holographic set-up and of our assumptions.

In section 4.2, we study null geodesic congruences in the bulk and their intersections with

the boundary. In particular, since a geodesic that reaches the boundary travels an infinite

affine parameter, a non-expanding congruence that reaches the boundary without hitting

a caustic must have vanishing shear, and therefore must intersect the boundary at a single

point. This allows us to show, using the null energy condition, that the intersection with

the boundary of the causal future of an extremal bulk surface equals the causal future

of its intersection with the boundary. As a warm-up, we prove a version of the Gao-

Wald theorem [14]. Finally, in section 4.3, we carefully define what we mean by a region

and by the spacelike homology condition. We prove that a region A implies a natural

decomposition of the spacetime into four regions D[A], D[Ac], and J±[∂A]. Then, given

the spacelike homology condition, and using the results of section 4.2, we establish the

compatibility of the boundary and bulk decompositions, (2.11), and prove that the extremal

surface is a wedge observable.

4.1 Holographic setup

In this subsection we will describe our holographic setup and assumptions.19

Let (M, gab) be a connected spacetime, of dimension greater than or equal to 3, that

can be embedded in a spacetime (M̄, g̃ab), such that the boundary B ofM in M̄ is a smooth

timelike hypersurface in M̄, and such that g̃ab = Ω2gab, where Ω is a smooth function on

M̄ that vanishes on B. (We do not assume that B is connected.) We define M̃ :=M∪B.

On M̃ we have a causal structure induced from g̃ab, which in M agrees with that induced

from gab. We make the following assumptions:

(i) (M, gab) obeys the null energy condition.

(ii) M̃ is globally hyperbolic.

(iii) Every null geodesic in (B, g̃ab) is a geodesic in (M̃, g̃ab).
20

19We largely follow the setup and assumptions of section 3 of [14], with two exceptions: we remove the

null generic condition and we add the condition that the boundary is totally geodesic for null geodesics

(assumption (iii) below).
20Assumption (iii) is equivalent to the following property of the extrinsic curvature Kab of B in M̃: for

any point p ∈ B and any null vector ka in the tangent space to B at p, Kabk
akb = 0. That it holds for an

asymptotically AdS spacetime can be seen by working in Fefferman-Graham coordinates. If we set Ω = 1/z,

where z is the standard radial coordinate, then Kab = 0 (so all geodesics in B are geodesics in M̃, i.e. B
is totally geodesic). The property Kab = 0 is not preserved by Weyl transformations, and so does not hold

for a general choice of Ω, but the weaker condition Kabk
akb = 0 does (as can be seen either from a direct

calculation or from the fact that the set of null geodesics is invariant under Weyl transformations).
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We begin by showing that B is globally hyperbolic. We omit the proofs, which are very

simple, cf., [40]. (For brevity, we will only indicate one time direction for each statement

below, but the time-reversed statements are clearly equally valid.)

Lemma 1. For any set Υ ⊂ M̃, D̃+[Υ] ∩ B ⊂ D[Υ ∩ B].

Lemma 2. If Σ̃ ⊂ M̃ is closed and acausal, then Σ̃ ∩ B is closed and acausal in B.

Corollary 3. If Σ̃ is a Cauchy slice21 for M̃, then Σ̃ ∩ B is a Cauchy slice for B.

Corollary 4. B is globally hyperbolic.

4.2 Congruences of null geodesics

In this subsection, we will study null geodesics in M̃. Assumption (iii) has the following

useful implication:

Lemma 5. Any null geodesic in M̃ either (1) lies entirely in B, or (2) does not intersect

B except possibly at its endpoints, where it is not tangent to B.

Proof. Given a point p in B and a non-zero null vector in the tangent space to B at p, there

exists a null geodesic in B passing through p with that tangent vector. By assumption

(iii), it is a geodesic in M̃, and by the uniqueness of geodesics it is the only one. Therefore

no null geodesic passing through M can intersect B tangentially. Finally, since B is the

boundary of M̃ and is smooth, any smooth curve that intersects B at some point without

ending there must be tangent to it.

Now we constrain the behavior of congruences of null geodesics that pass throughM,

using the fact that the metric gab obeys the null energy condition and the fact that a

geodesic that reaches B travels an infinite affine parameter.

Lemma 6. Consider a codimension-one congrence of future-directed null geodesics in M̃,

each of which lies entirely inM except possibly at its endpoints. Suppose that the part of the

congruence in M has the following properties: (1) its expansion with respect to the metric

gab is nowhere positive; (2) at each point, every deviation vector is spacelike and orthogonal

to the tangent vector. Then the congruence intersects B on a set of isolated points.

Proof. We begin by working in the metric gab. Since the deviation vectors are everywhere

spacelike, the expansion Θ is finite everywhere. On any geodesic that reaches B, the affine

parameter goes to infinity, so, by the null energy condition, Θ is nowhere negative, and

therefore vanishes everywhere. Again using the null energy condition, the shear therefore

vanishes everywhere also. Therefore, for any one-parameter family of geodesics that reach

B, the norm of the deviation vector Xa is a positive constant along each geodesic.

We now return to M̃, and switch to the metric g̃ab. On B, Xa has vanishing norm;

being also orthogonal to the geodesic’s tangent vector T a, it is proportional to T a (since

21We remind the reader that, as explained in footnote 4, throughout this paper we require all Cauchy

slices to be acausal, not just achronal.
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orthogonal null vectors are proportional). Without loss of generality, we choose the affine

parameter λ on each geodesic so that it intersects B at λ = 0; hence, at λ = 0, Xa is

tangent to B. However, by lemma 5, T a is not tangent to B. So Xa = 0. Since this holds

for every one-parameter family of geodesics, every connected set of geodesics that reach B
intersects it at a point.

As a warm-up for our main theorem of this subsection, we will now use lemma 6 to

prove a version of the Gao-Wald theorem [14] and a version of the topological censorship

theorem [41].

Theorem 7. For any point p ∈ B, J̃+(p) ∩ B = J+(p).

Proof. Clearly J+(p) ⊂ J̃+(p)∩B. Let t be a global time function on M̃. Then if t(q) < t(p)

we have q /∈ J̃+(p). Therefore, each connected component of B contains some points not

in J̃+(p). Therefore, if J̃+(p) ∩ B 6= J+(p), then ∂J̃+(p) ∩ B includes a hypersurface S in

B that is not in J+(p). We will now show that S cannot exist.

∂J̃+(p) consists of future-directed null geodesics starting at p on which, except at

the endpoints, every deviation vector is spacelike and orthogonal to the tangent vector.

By lemma 5, each such geodesic either lies entirely in B or lies entirely in M except at

its endpoints. In particular, the points in S must lie on geodesics that are entirely in M
except at their endpoints. We thus consider the congruence of geodesics inM starting at p.

Reversing its direction, every geodesic in this congruence reaches B (at p), so the expansion

is nowhere negative. Therefore, in the forward direction, its expansion is nowhere positive.

Thus the conditions of lemma 6 apply. Hence S consists of isolated points, contradicting

the fact that it is a hypersurface in B.

Corollary 8. If B1,B2 are distinct connected components of B, then J̃+(B1) ∩ B2 = ∅.

Corollary 8 rules out traversable wormholes through the bulk connecting different

boundary components, and is thus closely related to topological censorship. (A simple

argument establishing this can be found in [42].)

Our goal for the rest of this subsection is generalize Theorem 7 to codimension-two

surfaces that are extremal with respect to gab. First, we need two lemmas:

Lemma 9. Let E be a compact codimension-two submanifold-with-boundary of M̃, with

boundary N . Then every point p ∈ ∂J̃+[E ] is on a future-directed null geodesic lying

entirely in ∂J̃+[E ] that either (1) starts orthogonally from E and has no point conjugate to

E between E and p, or (2) starts orthogonally from N , moving away from E (i.e. UaT
a > 0,

where T a is the tangent vector to the geodesic at its starting point, and Ua is a vector at

the same point that is tangent to E, normal to N , and outward-directed from E).

Proof. This is a generalization of theorem 9.3.11 in [25]. Every p ∈ ∂J̃ [E ] lies on a null

geodesic starting from E . If neither condition (1) nor (2) is met, then it can be deformed

to a timelike curve and therefore p ∈ Ĩ+[E ].
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Lemma 10. Let E be a spacelike submanifold-with-boundary of M̃ whose restriction to M
is extremal with respect to the metric gab. Then E intersects B orthogonally, i.e., every

normal vector to E is tangent to B.

Proof. A short calculation shows that, in M, the mean curvature K̃a of E with respect to

g̃ab is related to that with respect to gab, K
a, as follows:

K̃a = Ω−2Ka + dim(E) Q̃ab∂b ln Ω , (4.1)

where Q̃ab := Qac g̃
bc and Qac is the projector normal to E . Since E is extremal, Ka = 0. So

K̃2 = dim(E)2 Q̃ab ∂a ln Ω ∂b ln Ω . (4.2)

Since E is smooth, K̃2 remains finite on B, where ln Ω → −∞. This requires that every

normal vector to E be tangent to B.

Theorem 11. Let E be a compact smooth spacelike codimension-two submanifold-with-

boundary in M̃, whose only boundary is where it intersects B, and whose restriction to M
is extremal with respect to the metric gab. Then J̃+[E ] ∩ B = J+[E ∩ B].

Proof. The proof is largely a repetition of that of Theorem 7. Clearly J+[E∩B] ⊂ J̃+[E ]∩B.

Let t be a global time function on M̃. Since E is compact, it has a minimum time tmin.

Clearly if for some point q ∈ B, t(q) < tmin, then q /∈ J̃+[E ]. Therefore, each connected

component of B contains some points not in J̃+[E ]. Therefore, if J̃+[E ] ∩ B 6= J+[E ∩ B],

then ∂J̃+(m) ∩ B includes a hypersurface Σ in B that is not in J̃+[E ∩ B]. We will now

show that S cannot exist.

By lemma 10, E intersects B orthogonally. Therefore, in lemma 9, the second type of

null geodesic in ∂J̃+[E ] does not exist. The first type of geodesic forms a codimension-two

congruence starting orthogonally from E on which, except possibly at the endpoints, every

deviation vector is spacelike and orthogonal to the tangent vector. By lemma 5, each such

geodesic either lies entirely in B or lies entirely inM except at its endpoints. In particular,

the points in S must lie on geodesics that are entirely in M except where they end. We

thus consider the congruence of geodesics in M starting orthogonally from E ∩M. Since

E ∩M is extremal, its expansion (with respect to gab) is initially zero. By the null energy

condition, its expansion is nowhere positive. Thus the conditions of lemma 6 apply. Hence

S consists of isolated points, contradicting the fact that it is a hypersurface in B.

Note that theorem 7 is a special case of theorem 11, in which we take E to be a small

(in the metric g̃ab) hemisphere centered on p and take the limit in which its radius goes to 0.

4.3 Spatial regions and causal decompositions

Let Σ be a Cauchy slice of B. Given a codimension-zero submanifold of Σ, let A be

its interior, ∂A its boundary, and Ac its complement; these three sets do not overlap

and cover Σ. They naturally induce a causal decomposition of the spacetime B into four

nonoverlapping regions (except that J±[∂A] both include ∂A):
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Theorem 12.

D[A] ∪D[Ac] ∪ J+[∂A] ∪ J−[∂A] = B (4.3)

D[A] ∩D[Ac] = D[A] ∩ J±[∂A] = D[Ac] ∩ J±[∂A] = ∅ (4.4)

J+[∂A] ∩ J−[∂A] = ∂A . (4.5)

Proof. Eqs. (4.4) and (4.5) are obvious from the definitions.

We now prove (4.3). Suppose a point p ∈ J+[Σ] is not in any of the four regions.

Each inextendible causal curve through p intersects Σ exactly once, but not in ∂A (else

p ∈ J+[∂A]). Nor can all such curves intersect it in A (else p ∈ D[A]) or Ac (else

p ∈ D[Ac]). So some must intersect Σ in A and others in Ac. Let λ1 be in the first set and

λ2 in the second. Join λ1 and λ2 at p to make a continuous curve λ from A to Ac. Now,

in any globally hyperbolic spacetime there exists a global timelike vector field; its integral

curves can be used to construct a continuous map f from J+(Σ) to Σ. f(λ) is a continuous

curve in Σ from A to Ac. There therefore exists a point q ∈ λ such that f(q) ∈ ∂A, and

therefore q ∈ I+[∂A]. Since p ∈ J+(q), p ∈ J+[∂A], which is a contradiction.

Now let EA be a surface in M̃ that satisfies the conditions of theorem 11 and is

spacelike-homologous to A. The precise meaning of the latter condition is as follows:

there exists a Cauchy slice Σ̃ for M̃ such that Σ̃ ∩ B = Σ, containing a codimension-zero

submanifold with boundary A ∪ EA; we call its interior RA. Since Σ̃ is itself a manifold-

with-boundary (namely Σ̃∩B), one has to be careful about the definitions of “interior” and

“boundary” for a submanifold. We mean “interior” in the sense of point-set topology; thus

RA includes A but not EA. The “boundary” can be either in the sense of “submanifold-

with-boundary” (which is what we call ∂RA), or in the sense of point-set topology. In

the latter sense, the boundary is just EA.22 As with A, we define RcA := Σ̃ \ (RA ∩ EA).

To summarize, in parallel to the decomposition of Σ into A, Ac, and ∂A, we have a

decomposition of Σ̃ into RA, RcA, and EA. Furthermore, RA ∩ B = A, RcA ∩ B = Ac, and

EA ∩ B = ∂A.

We can now apply theorem 12 to obtain a decomposition of M̃ into the four spacetime

regions D[RA], D[RcA], J±[EA]. The central result of this section is that this decomposition

reduces on the boundary precisely to its decomposition into D[A], D[Ac], and J±[∂A]:

Theorem 13.

D̃[RA] ∩ B = D[A] (4.6a)

D̃[RcA] ∩ B = D[Ac] (4.6b)

J̃±[EA] ∩ B = J±[∂A] (4.6c)

Proof. Equation (4.6c) is Theorem 11 (and its time reverse). Using Theorem 12 both in B
and in M̃ to take the complement of both sides, we have(

D̃[RA] ∩ B
)
∪
(
D̃[RcA] ∩ B

)
= D[A] ∪D[Ac] . (4.7)

Lemma 1 then implies (4.6a), (4.6b).

22The point-set-topology boundary can be shown to equal the “edge” of the submanifold, in the sense

used in the general-relativity literature (see e.g. [25]).
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Theorem 13 immediately implies that EA is outside of causal contact with D[A] and

D[Ac], as required by field-theory causality.

The spacelike-homology condition raises the following practical question: given a

codimension-one submanifold of M̃ with boundary A ∪ EA, under what circumstances

is it contained in a Cauchy slice? Obviously, it must be acausal. However, this is not

sufficient; for example, a spacelike hypersurface in Minkowski space that approaces null

infinity is not contained in a Cauchy slice. The following lemma, which will also be needed

in theorem 15, shows that compactness is a sufficient additional condition. (This lemma

applies in any globally hyperbolic spacetime.)

Lemma 14. If R is a compact acausal set, then there exists a Cauchy slice containing it.

Proof. Let t ∈ R be a global time function, and define tmax := maxR(t), tmin := minR(t)

(these exist since R is compact). Define Υ := {p : t > tmax} and Υ′ := Υ ∪ I+[R]. Define

Σ := ∂Υ′ =
(
∂Υ \ I+[R]

)
∪
(
∂I+[R] \Υ

)
. (4.8)

∂I+[R] contains R, and Υ ∩ R = ∅, so R ⊂ ∂I+[R] \ Υ ⊂ Σ. Next we show that Σ is

achronal. The maximum value of t on Σ is tmax, so there can be no future-directed timelike

curve from ∂Υ to Σ. Further ∂I+[R] is itself achronal. Finally, if there is a future-directed

timelike curve from p ∈ ∂I+[R] to q ∈ ∂Υ, then q ∈ I+[R] and hence q 6∈ Σ. So Σ

is achronal.

Next, we show that every inextendible future-directed timelike curve intersects Σ. On

such a curve, t increases monotonically and continuously from −∞ to +∞. For t ≤ tmin,

the curve is not in Υ′; for t > tmax, it is. Therefore for some value of t it intersects Σ.

While Σ is achronal, it is not quite a Cauchy slice (in the sense used in this paper)

because it is not acausal. However, since R is acausal, Σ can be deformed outside of R to

be acausal.

Theorem 15. Let Σ′ be a Cauchy slice for B and A′ ⊂ Σ′ a region such that A′ ∪ ∂A′ is

compact and D[A′] = D[A]. Then A′ is spacelike-homologous to EA.

Proof. Since EA and A′ ∪ ∂A′ are both compact, EA ∪ A′ is compact as well. (Recall that

∂A′ = ∂A ⊂ EA.) EA and A′ are acausal, since each sits on a Cauchy slice. Furthermore, by

theorems 12 and 11, there are no causal curves connecting them; hence EA ∪A′ is acausal.

Therefore, by theorem 14, there is a Cauchy slice Σ̃′ containing both EA and A′.
Choosing a global timelike vector field on M̃, its integral curves define a diffeomorphism

f : Σ̃→ Σ̃′. Let R′A := f(RA). Since EA is contained in both Σ and Σ′, f(EA) = EA. Since

every timelike curve in D[A] intersects Σ in A and Σ′ in A′, f(A) = A′. So R′A := f(RA)

is a region in Σ̃′ with ∂R′A = A′ ∪ EA. (Strictly speaking, we also need to define a new

Cauchy slice for B, Σ′′ := Σ̃′∩B, and to consider A′ to be a region in Σ′′, since the equality

Σ′′ = Σ̃′ ∩ B is part of the definition of the spacelike homology condition.)

Theorem 15 shows that the HRT formula gives the same value for the entanglement

entropy of A and A′, as required by field-theory causality.
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5 Discussion

The main result of this paper, Theorem 13, shows that the HRT prescription for computing

holographic entanglement entropy [32] is consistent with the requirements of field theory

causality. As we have explained with various simple examples and gedanken experiments in

section 2.4, the result was in no way a priori obvious, since there are several marginal cases

where arbitrarily small deformation of the bulk extremal surface would place it in causal

future of a boundary deformation which however cannot affect the entanglement entropy.

With the primary result at hand, we now take stock of the various physical consequences

it implies for holographic field theories.

Causality constraints on holography: let us start by asking what we can learn about

holography from causality considerations. Recall that we proved our result for extremal

surfaces in the context of two-derivative theories of gravity satisfying the null energy con-

dition. This was crucial for us to be able to use the Raychaudhuri equation in order to

ascertain properties of null geodesic congruences. Thus the domain of validity of our state-

ments was strong coupling in a planar (large-N) field theory. This translates to demanding

a macroscopic spacetime with `s � `AdS in a perturbative string (gs � 1) regime. Lets see

what happens as we move away from this corner of moduli space.

Firstly, consider classical stringy corrections which we can encapsulate in an effective

higher-derivative theory of gravity. In such a theory, as long as higher-derivative opera-

tors are suppressed by powers of `s, our conclusions will hold, since the dominant effect

will come from the leading two-derivative Einstein-Hilbert term in the bulk. When the

higher-derivative operators are unsuppressed we have little to say for two reasons: (a) the

holographic entanglement prescription so far is only given for static situations (or with

time reversal symmetry) [43, 44] and (b) even assuming the covariant generalizations, one

is stymied by the absence of clean statements regarding dynamics of null geodesic con-

gruences (even for example in Lovelock theories).23 One could, however, use the causality

constraint to rule out certain higher-derivative theories from having unitary relativistic

QFT duals (see e.g. [45]); this is similar in spirit to the recent discussions on causality

constraints on the three-graviton vertex [46].

Turning next to 1/N , or bulk quantum corrections, while we have less control in

general, we can make some observations about the leading 1/N correction which has been

proposed to be given by the entanglement of bulk perturbative quantum fields across

EA [47]. Since the bulk theory itself is causal, it follows that entanglement across the

extremal surface satisfies the desired causality conditions.

Does causality prove the HRT conjecture? One intriguing possibility given, the

importance of the causality, is whether we can use it to constrain the location of the

extremal surface in the bulk, and thus prove the HRT conjecture.24 Unfortunately, causality

23The family of f(R) theories can be brought to heel, since here we can map the theory to Einstein-

Hilbert via a suitable Weyl transformation. Causality constraints can be discerned here so long as the Weyl

transformation (which is non-linear in the curvature) is well-behaved.
24We thank Vladimir Rosenhaus for inspiring us to think through this possibility.
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alone is not strong enough to pin down the location of the extremal surface. What we can

say is that the extremal surface EA has to lie inside the causal shadow Q∂A. In a generic

asymptotic AdS spacetime, for a generic region A, the casual shadow is a codimension-zero

volume of the bulk spacetime M. It is only in some very special cases that we zero in on

a single bulk codimension-two surface uniquely (e.g., spherical regions in pure AdS or in

the eternal Schwarzschild-AdS black hole).25

Causality constraints on other CFT observables: our discussion has exclusively

focused on the causality properties of a particular non-local quantity in the field theory,

namely the entanglement entropy. However, causality places restrictions on other physical

observables we can consider on the boundary as well. For instance, correlation functions

of (time-ordered) local operators, Wilson loop expectation values, etc., should all obey

appropriate constraints which we can infer from basic principles. Indeed, this can be

shown to be the case, for example, for correlation functions, by considering the fact that

the bulk computation involves solving a suitable boundary initial value problem for fields

in the bulk, which can be checked to manifestly satisfy causality.

However, this is less clear when we approximate, say, two point functions of heavy local

operators using the geodesic approximation [48]. Similar issues arise for the semi-classical

computation of Wilson loop expectation values [49, 50] using the string worldsheet area. In

these cases, one generically encounters some tension between the use of extremal surfaces

— geodesics, two-dimensional worldsheets, etc.—for the bulk computation, and field theory

expectations regarding causality (cf., [51] for an earlier discussion of this issue). Indeed,

it appears that codimension-two extremal surfaces are special in this regard, for we can

rely on the boundary of the entanglement wedge being generated by a codimension-one

null congruence, and thus apply the Raychaudhuri equation. Understanding the proper

application of the WKB approximation for other observables is an interesting question; we

hope to report upon in the near future [52].

Entanglement wedges: one of the key constructs in our presentation, naturally asso-

ciated with a given boundary region A, has been the entanglement wedge WE [A]. This is

the domain of dependence of the homology surface RA (recall that RA forms a part of a

Cauchy surface which interpolates between A and EA). Equivalently, it comprises the set

of spacelike-separated points from EA which is connected to A, one of the four regions in

the natural decomposition of the bulk spacetime.

Given A, one might ask how unique this decomposition is. Since WE [A] is a causally-

defined set, its specification only requires the specification of the (oriented) extremal surface

EA (possibly consisting of multiple components when so required by the homology con-

straint). The prescription for constructing the null boundary of WE [A] is unambiguous:

simply to follow all null normals (emanating from EA in the requisite direction, towards

D[A]) until they encounter another generator (i.e. a crossover seam) or a caustic. However,

there is a possibility that the extremal surface itself is not uniquely determined from A.

25The examples are all cases where, by a suitable choice of conformal frame, the extremal surface can be

mapped onto the bifurcation surface of a static black hole. The black funnel and droplet solutions (see [30]

for a review) provide nontrivial examples, cf., [23].
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CFTRCFTL

A

Q
WE [Ac] WE [A]

Figure 10. Sketch of Penrose diagram for a symmetric Vaidya-Schwarzschild-AdS geometry ob-

tained by imploding null shells to the past and future from both boundaries now displaying the

entanglement wedges and the causal shadow region, with A being a full Cauchy surface for CFTR.

This happens when multiple (sets of) extremal surfaces satisfy (2.4) but have the same

area. Since entanglement entropy itself cares only about the area, the HRT (as well as RT

and maximin) prescription is to take any of these. However, which we take does matter

for the entanglement wedge. We propose that, just as for the extremal surfaces, in such

cases we may have multiple entanglement wedges WE [A] associated to the same boundary

region A.

The most “obvious” class of examples where this can happen is the case of A consisting

of multiple regions or in higher dimensions where the entangling surface ∂A consists of

multiple disjoint components. As we vary the parameters describing the configuration, the

extremal surfaces involved typically exchange dominance, so at some point their areas must

agree. Applying continuity from both sides, at the transition point, both entanglement

wedges should be naturally associated with A. However, in complicated states, there can

actually be multiple extremal surfaces even for when A and ∂A are both connected. In such

cases, we could have candidate entanglement wedges which are proper subsets of (rather

than merely overlapping with) other candidate entanglement wedges.

It is also interesting to note that the decomposition of the bulk into four spacetime

regions causally defined from EA need not coincide with the bulk decomposition defined

from EAc , despite there being a unique boundary decomposition defined from ∂A. For pure

states, where the homology constraint trivializes and we have EA = EAc , we can write the

bulk decomposition equivalently with respect to both A and Ac,

M =WE [A] ∪WE [Ac] ∪ J̃+[EA] ∪ J̃−[EA] (5.1)
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which is directly analogous to the boundary decomposition (2.1). However, for mixed

states, where typically EA 6= EAc , the decomposition (5.1) is not true;26 instead the correct

decomposition should replace WE [Ac] with the bulk domain of dependence of the comple-

ment of RA within the bulk Cauchy slice Σ̃, or more precisely D̃[Σ̃\RA\EA].

Dual of ρA? Within the class of CFTs and states with a geometrical holographic dual, it

has often been asked,27 for a given region A, what is the bulk “dual” of the reduced density

matrix ρA. One way to formulate what one means by this is as follows: suppose we fix ρA
and vary over all compatible density matrices for the full state ρ. What is the maximal bulk

spacetime region which coincides for all such ρ’s? By “coinciding bulk regions” one means

having the same geometry, i.e. the same bulk metric modulo diffeomorphisms. Another

way to define the dual of ρA is to ask what is the maximal bulk region wherein we can

uniquely determine the bulk metric (again modulo diffeomorphisms). In fact there are

several (generally distinct) bulk regions that might be naturally associated with the density

matrix; in nested order:

• The bulk region that ρA is sensitive to; in other words, regions wherein a deformation

of the metric affects ρA.28

• The bulk region that ρA determines, i.e. where we can uniquely reconstruct all the

components of the metric (up to diffeomorphisms).

• The bulk region that ρA affects, i.e. where by changing ρA one can change the bulk

metric.

Here we focus on the second case, following [53, 54]. Based on lightsheet arguments,

the authors of [53] proposed the causal wedge as the correct dual. On the other hand, [54],

as well as [12, 22], argued that the requisite region should contain more than the causal

wedge. In particular, [54] presented a number of criteria that such a region should satisfy,

and explored several possibilities, most notably the region they denoted ŵ(DA) which

corresponds to the bulk domain of dependence of the spacetime region spanned by all

codimension-two extremal surfaces anchored within D[A]. If every point of RA lies on at

least one of these, then this region coincides with our entanglement wedge WE [A]. On the

other hand, as [54] pointed out, there may be “holes” in such a set, i.e., regions of RA
which do not lie along any least-area extremal surface anchored on a given region A′ ⊂ A.29

We propose that, since the most “natural” causal set associated with ρA from the bulk

point of view is the entanglement wedge, this is indeed the most appropriate region to be

26Note however that if we purify a mixed state by additional boundaries, such as in the deformed eternal

black hole example illustrated in figure 10, then the decomposition (5.1) does hold.
27In recent years this question has been invigorated by e.g. [53, 54].
28In fact there is a further subdivision here based on whether any geometrical deformation of the metric

should change ρA or merely whether there should exist some deformation of the metric which changes ρA.

We thank Mark Van Raamsdonk for discussions on this issue.
29The example given in [54] involves a region through which traversing surfaces are not the smallest-area

ones anchored on the given region, but a simpler physical example would be a point sufficiently close to an

event horizon of an eternal spherical black hole, with A = Σ of one side as considered in section 2.4.
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identified with the “dual” of the reduced density matrix ρA (even in the presence of such

entanglement “holes”). In this context, we should note that we can strip away the rest of

the boundary spacetime, and consider the field theory just on D[A], which is a globally

hyperbolic spacetime in its own right, in the state ρA. Whether this state in general

admits a holographic description is not known, but, if it does, then a natural candidate

would seem to be the entanglement wedge: this is, in its own right, a globally hyperbolic,

asymptotically AdS spacetime, whose conformal boundary (according to theorem 13) is

precisely D[A], and the area of whose edge EA gives the entropy of ρA.

Here the word “natural” should be qualified, especially in light of the arguments in [22]

that the causal wedge WC [A] is a natural bulk codimension-zero region associated with A.

The latter can be obtained more minimally: it suffices to know the causal structure of

the bulk to define WC [A]. On the other hand, the density matrix clearly encodes much

more than the bulk causal structure, since at least it knows the entanglement entropy (as

well as entanglement entropies of all subregions, apart from other observables). Since,

in the bulk, the corresponding extremal surface is defined only once we know the bulk

geometry, the entanglement wedge WE [A] it defines is a less minimal construct that the

causal wedge WC [A]. Nevertheless, once EA is identified, the rest of the bulk construction

of the entanglement wedge is purely causal, and therefore defined fully robustly for any

time-dependent asymptotically AdS spacetime.

The statement that the entanglement wedge is the natural dual of the reduced density

matrix (which implies that the boundary observer in D[A] can learn about the bulk geom-

etry in the entire WE [A]) has a profound consequence. We have shown that the extremal

surface EA has to lie in the causal shadow. This set can however be quite large, and so

EA can lie very deep inside the bulk (as indicated by the shaded region in figure 10). In

fact, a simple example supports the idea that the entanglement wedge represents the state

in such a case (see figure 11). We start with a deconfined thermal state at t = 0 on a

single Sd−1, represented holographically by the exterior Schwarzschild-AdS solution. We

add an outgoing null shell that reaches the boundary at t < 0 and an ingoing one that

leaves it at t > 0. At t = 0 we still have the thermal state. The bulk solution is also

unchanged between the past and future shells. However, these shells move the singularity

and therefore have the effect of bringing the future and past event horizons closer to the

boundary, leaving the previous bifurcation surface hidden behind both horizons. While

this surface is no longer the bifurcation surface of a global Killing vector, it remains the

extremal surface whose area gives the entropy of the state of the field theory on the right

boundary. Presumably the holographic description of the state extends all the way down

to this extremal surface, as it does in the absence of the shells, and thus consists of the

entire entanglement wedge.

Another (related) example where the separation between entanglement wedge and

causal wedge is particularly striking is the eternal (two-sided) black hole deformed by

many shocks considered in [35, 55]. The Einstein-Rosen bridge is highly elongated and

the extremal surface probably lies somewhere in the middle of it — so that the entangle-

ment wedge for the entire right boundary is substantially larger than the causal wedge,

which in this case is simply the right exterior (domain of outer communication) of the
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AA
RA RAEA EA

Figure 11. Left : exterior AdS-Schwarzschild solution, dual to a deconfined thermal state on Sd−1.

The extremal surface for the entire boundary (red dot) coincides with the bifurcation surface and

the causal information surface. Right : Vaidya solution with an ingoing null shell that reaches the

boundary at t < 0 and an outgoing one that leaves it at t > 0 (brown); the geometry between

the shells is unchanged, but the past and future event horizons (blue) have moved closer to the

boundary, leaving the extremal surface (red dot) hidden behind them. The entanglement wedge in

both cases is the entire spacetime (with a homology surface shown in green), while the causal wedge

in the right figure is just the part outside of the event horizons. (The causal information surface is

shown as the black dot.)

black hole. So not only does the entanglement wedge penetrate arbitrarily close to the

curvature singularity, it also contains a substantial part of the spacetime far beyond the

black hole horizon!
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