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1 Introduction

The construction and classification of conformal field theories (CFTs) plays a key role in

modern quantum field theory. One approach to this problem is to solve the conformal

bootstrap.1 Another approach that has proven useful is to study the low energy (or IR)

limits of renormalization group (RG) flows from known CFTs. This has challenges of its

own, since the IR dynamics often involves emergent degrees of freedom and interactions.

1This is difficult in practice and can be carried out analytically only in theories with enormously enlarged

symmetries like the WN algebras of the minimal models [1]. Recently progress has been made with numeric

techniques, for example in applications to the three-dimensional Ising model [2, 3].
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Nevertheless, as already indicated in the seminal work of [4–7], it is often possible to

identify certain classes of operators and their OPEs and correlators of an IR CFT with

corresponding objects in terms of the UV degrees of freedom. This is especially useful

when the UV theory is asymptotically free, since then perturbative computations can

provide information about a non-trivial CFT without a notion of a weak coupling. The

identification of UV and IR data is simplified when some amount of supersymmetry is

preserved along the RG flow: SUSY constraints lead to well-known simplifications such as

the relation between dimensions and R-charges of chiral operators and non-renormalization

theorems. For instance, in two dimensional theories with (2,2) SUSY these structures are

responsible for many well-known phenomena such as mirror symmetry and the Calabi-Yau

(CY) / Landau-Ginzburg (LG) correspondence [8], and the identification of UV and IR

data is a key tool in exploration and exploitation of these two-dimensional gems.

Such techniques rely on the assumption that accidental symmetries that might emerge

in the IR limit do not invalidate the identification of operators in the IR with their UV

avatars. This assumption is well-tested in (2,2) theories but is also often applied to theories

with only (0,2) supersymmetry. For instance, it is key to various gauged linear sigma model

constructions of (0,2) CFTs corresponding to heterotic string vacua [9–12].

In this note we show that the assumption cannot be taken for granted in (0,2) theories,

and the resulting “accidents” have drastic consequences for the IR physics and the relation

between UV parameters and IR data. The examples we consider are (0,2) Landau-Ginzburg

theories, and we identify a class of accidental symmetries of (0,2) LG RG flows by studying

the space of F-term UV couplings modulo field redefinitions. We find that these accidental

symmetries significantly modify the analysis of the IR theory. For instance, the spectrum

of chiral operators and even the IR central charge are in general modified. This invalidates

certain UV theories from giving good models for (0,2) SCFTs appropriate for a heterotic

string vacuum — we examine an example taken from [10].

A classic (2,2) example. To describe the challenges of (0,2) accidents more precisely, it

is useful to review the successes of the (2,2) theories. Consider the quintic (2,2) LG model

with chiral superpotential

W = α0X
5
0 + α1X

5
1 + · · ·+ α4X

5
4 − 5α5X0X1 · · ·X4 .

Here the Xi are (2,2) chiral superfields and the αa are complex parameters. This theory

flows to a c = c = 9 (2,2) SCFT.2 The complex parameter

ψ = α5
5(α0α1 · · ·α4)−1

is invariant under C∗ rescalings of the chiral superfields Xi and labels a one-parameter

family of IR CFTs. At generic values of ψ the IR fixed point is a well-behaved CFT, and

small changes in ψ correspond to small marginal deformations of the CFT, where “small”

2A Z5 orbifold of the theory describes a (2,2) non-linear sigma model with target space the quintic CY

hypersurface in P4 at a special value of the complexified Kähler parameter. A complex structure parameter

of the geometry is then related to the LG parameter ψ.
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refers to the distance in the Zamolodchikov metric. At special values of ψ the CFT can

become singular. For instance, ψ = 1 is a finite distance singularity —the analogue of a

conifold point. This can be detected in the UV description: the theory develops a family

of supersymmetric vacua with Xi = const., and these signal a non-compact CFT: a theory

with a continuum spectrum of conformal dimensions. Another point, ψ =∞ is an infinite-

distance singularity.

The quotient of the UV parameter space by field redefinitions is a complicated ob-

ject [13, 14] with singularities and non-separated points. For instance, we can take the

limit α0 → 0 and α5 → 0 while keeping ψ constant so as to obtain a product of four

minimal models coupled to a free chiral superfield X0, with c = c = 3(3 + 2
5). Fortunately,

all such bad points are singular CFTs. The bad points corresponding to various infinite

distance singularities and “wrong” central charges are easily identified in terms of the UV

data: they all correspond to singular superpotentials with a continuum of supersymmetric

vacua and therefore a continuum of states in the IR CFT. Away from such points the

quotient is sensible and describes (2,2) marginal deformations of the IR theory.

Similar considerations apply to more general (2,2) gauged linear sigma models, and

with the parametrization of the smooth CFTs in terms of the UV parameters in hand, local-

ization and topological field theory techniques can be used to compute certain correlators

and chiral spectra in the CFT in terms of the weakly coupled UV Lagrangian.

(0,2) challenges. As we will show in section 3, the situation is more delicate in (0,2)

theories, even in the relatively simple class of LG models (we review these in section 2).

The essential difference is that we lack the simple diagnostic we had for a “bad” point in

(2,2) theories. It is not sufficient to exclude UV parameters that lead to flat directions in

the potential, and the identification of UV parameters with marginal deformations of the

CFT requires (at least) a study of loci with enhanced symmetry. Unlike in (2,2) examples,

accidental symmetries can emerge for non-singular UV potential, thereby complicating the

description of IR physics in terms of the UV data. Unlike in (2,2) theories a family of

smooth UV potentials with each potential preserving the same R-symmetry along the RG

flow need not correspond to a family of CFTs related by truly marginal deformations.

Fortunately, at least in (0,2) LG models it appears that we have enough control to

identify accidental symmetries and special loci in the parameter space by generalizing

the (2,2) paradigm of parametrizing the IR fixed points by the space of UV parameters

modulo field redefinitions. This uncovers a rich structure of (0,2) RG flows and of the

space of marginal deformations of (0,2) fixed points and will undoubtedly play a role in

quantitatively descriptions of (0,2) moduli spaces.

Once we have identified a (0,2) LG theory with some particular IR fixed point, it

is useful to develop the correspondence between deformations of the UV Lagrangian and

(0,2) conformal perturbation theory. In section 4 we describe some properties of (0,2)

conformal perturbation theory independent of any embedding of the CFT in a critical

heterotic string. This section can be read independently from the rest of the paper. We

use these observations in section 5 to describe a conjecture for the global structure of the

moduli space of (0,2) SCFTs with expected central charge in terms of the UV data for

what we term plain (0,2) LG models.

– 3 –
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2 A glance at (0,2) Landau-Ginzburg theories

We begin with a quick review of (0,2) LG theories following [10, 15, 16].3 We work in

Euclidean signature and a (0,2) superspace with coordinates (z, z, θ, θ). The UV theory

consists of n bosonic chiral multiplets Φi = φi + . . . , and N fermionic chiral multiplets

ΓA = γA + . . ., as well as their conjugate anti-chiral multiplets. These are given a free

kinetic term and a (0,2) SUSY potential term as interactions:

Lint =

∫
dθ W + h.c. , W = m0

∑
A ΓAJA(Φ) , (2.1)

where m0 has mass dimension 1 and the JA are polynomial in the Φi. This is the simplest

example of a (0,2) SUSY asymptotically free theory: for energies E � m0 the theory is

well-described by the set of free fields. Conversely, when E � m0 the interactions become

important and lead to non-trivial IR dynamics that depend on n,N , as well as the choice

of ideal J = 〈J1, . . . , JN 〉 ⊂ C[Φ1, . . . ,Φn]. What can we say about the IR limit of this

theory?

A basic constraint comes from the gravitational anomaly. In the UV the central charges

are easy to determine: each Φ multiplet contains a complex boson and a right-moving Weyl

fermion, while each Γ contains a left-moving Weyl fermion and an auxiliary field. Hence,

we have cUV = 2n + N , cUV = 3n. The RG flow induced by W will decrease the central

charges, but since it is Lorentz-invariant, it will preserve the difference c− c = N − n.

Another basic property of the theory is the set of global symmetries. The free theory

has a large global symmetry that commutes with (0,2) SUSY: namely, U(n) × U(N) ro-

tations of the chiral superfields. In addition we have the R-symmetry that rotates θ and

leaves the lowest components of the superfields φi and γA invariant. The interactions break

these symmetries. For completely generic JA the remaining symmetry just U(1)0
R — an

R-symmetry that assigns charge +1 to θ and γA and charge 0 to φi.

Properties of the superpotential. A key feature of (0,2) LG theories is that the

holomorphic superpotential obeys the same non-renormalization properties as the, perhaps

more familiar N=1 d=4 Wess-Zumino model’s superpotential. The kinetic term, on the

other hand, is a full superspace derivative and will receive complicated corrections along the

RG flow. However, just as in (2,2) theories, we expect these corrections to be irrelevant

provided that the fields Φ and Γ all acquire non-trivial scaling dimensions. In order to

relate these scaling dimensions to properties of the UV theory, we will assume that the

interactions preserve an additional global U(1) symmetry, which we will call U(1)L, under

which ΓA have charges QA, while the Φi carry charges qi. This will be the case if and only

if the ideal is quasi-homogeneous, i.e.

JA(tqiΦi) = t−QAJA(Φ) (2.2)

for all t ∈ C∗. We will demand that the ideal is zero-dimensional, i.e. JA(Φ) = 0 for all A

if and only if Φ = 0. If it is not then the theory necessarily has a non-compact set of su-

3Our superspace conventions are those of [16].
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persymmetric vacua labeled by vevs of the bosonic fields. We will call such superpotentials

singular. We are interested in “compact” CFTs and exclude this possibility.4

Another important property of the superpotential is that typically some of its pa-

rameters are not, in fact, F-terms. To see this, consider a perturbation of the form

δW =
∑

A ΓAδJA around a theory with W0 =
∑

A ΓAJA. In the undeformed theory,

if we assume canonical kinetic terms, the equations of motion read

DΓ
A

= JA(Φ) , D∂zΦi =
∑
A

ΓA
∂JA
∂Φi

, (2.3)

where D is the antichiral superspace derivative D = ∂θ + θ∂z. A more general kinetic term

leads to more complicated expressions under the D derivative of the left-hand sides of the

equations.5 Hence, a first order deformation of W of the form

δJA =
∑
B

MB
A (Φ)JB(Φ) +

∑
i

∂JA
∂Φi

Fi(Φ) (2.4)

is equivalent up to equations of motion to a D-term deformation.

The LG assumption that the D-terms are irrelevant along the flow implies that any

two UV theories with superpotentials related by a holomorphic field redefinition lead to the

same IR fixed point. Hence, any two UV superpotentials that are related by a holomorphic

field redefinition belong to the same universality class.

(2,2) LG theories. The (0,2) theory will have an enhanced left-moving SUSY when

N = n, so that in the free limit we can combine (Γi,Φi) into (2,2) chiral multiplets Xi,

and when Ji = ∂W/∂Φi for some potential W . In that case, we can rewrite the theory in

a manifestly (2,2) supersymmetric fashion with a chiral superpotential W (X). The quasi-

homogeneity conditions set Qi = qi − 1, and the resulting central charge is given by the

famous

c = 3
∑
i

(1− 2qi) . (2.5)

IR consequences of UV symmetries. Returning to the more general (0,2) setting, if

we assume that U(1)0
R and U(1)L are the only symmetries along the whole RG flow, then

we can determine the linear combination of charges corresponding to the IR R-symmetry

U(1)IR
R as well as those of a left-moving U(1)IR

L . The charges of the latter are fixed up to

normalization by the quasi-homogeneity condition, and the normalization is fixed by

−
∑
A

QA −
∑
i

qi =
∑
A

Q2
A −

∑
i

q2
i . (2.6)

4A CFT is compact if its spectrum is such that for every fixed real ∆ there is a finite number of fields

with dimension less than ∆.
5In a NLSM such total derivatives are more subtle than in this LG setting, as they are usually only

sensible patch by patch in target space. Indeed, marginal deformations of NLSMs are such F-terms that

cannot be globally recast as D-terms [17, 18].
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This ensures that U(1)IR
L and U(1)IR

R have no mixed anomalies and become, respectively,

left-moving and right-moving Kac-Moody symmetries in the IR theory. The central charge

is determined from the two-point function of the U(1)IR
R current. The result is

c = 3(r + n−N) , r = −
∑
A

QA −
∑
i

qi . (2.7)

By studying the cohomology of the supercharge Q of the theory, we can also describe chiral

operators and their charges. More details can be found in [16], but for our purposes it will

be sufficient to note the charges and corresponding dimensions of φi and γA. Denoting the

U(1)IR
L and U(1)IR

R charges by, respectively, q and q, we have

φi γA

q qi QA

q qi 1 +QA

h qi
2

2+QA
2

h qi
2

1+QA
2

Since these are chiral operators, the right-moving weights are determined in the usual

fashion h = q/2, and the left-moving weights are fixed since RG flow preserves the spin of

the operators.

This structure determines many properties of the IR theory such as the elliptic genus [15]

and the topological heterotic ring [16]. As for (2,2) theories, there is also a simple prescrip-

tion for using orbifolds of such (0,2) LG theories to build spacetime SUSY heterotic string

vacua [10, 19]. For instance, the elliptic genus is given by [15]

Z(τ, z) = TrRR(−)F yJ
IR
L0e2πiτHLe−2πiτHR

= iN−ne2πiτ(N−n)/12y−r/2
[
χ(y) +O(e2πiτ )

]
, (2.8)

where y = e2πiz, and

χ(y) =

∏
A(1− y−QA)∏
i(1− yqi)

∣∣∣∣
yinteger

. (2.9)

The remaining τ -dependent terms are determined by modular properties of Z(τ, z).

Enhanced symmetry and c-extremization. For special values of the superpotential

the UV theory will acquire enhanced symmetries that commute with the (0,2) SUSY alge-

bra. In two dimensions these cannot be spontaneously broken, and, as in four dimensions,

the abelian component U(1)M can mix with U(1)0
R and U(1)L symmetries. Fortunately,

as in the four-dimensional case we can still find candidate U(1)IR
L and U(1)IR

R symmetries

by applying the analogue of a-maximization [20] known as c-extremization [21]. We can

summarize the results of [21] as follows. Let J0 denote the U(1)0
R R-symmetry current,

and let Jα, α = 1, . . . ,M be the currents for U(1)M . Assuming that the correct U(1)IR
R

– 6 –
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symmetry is a linear combination of J0 and the Jα, [21] construct the trial current and

trial central charge

J = J0 +
∑
α

tαJα , 1
3C = n−N + 2

∑
α

tαK
α +

∑
α,β

tαtβLαβ , (2.10)

where

Kα = −
∑
A

QαA −
∑
i

qαi , Lαβ =
∑
i

qαi q
β
i −

∑
A

QαAQ
β
A . (2.11)

Here QαA and qαi denote the U(1)α charges of ΓA and Φi, respectively. The U(1)IR
R is then

identified by extremizing C with respect to tα, leading to U(1)IR
L charges

qi =
∑
α

qαi tα∗ , QA =
∑
α

QαAtα∗ , (2.12)

where tα = tα∗ is the extremum point. The central charge is then also fixed as c = C(t∗).

The symmetric form L has a real spectrum, and the sign of an eigenvalue has the

following significance in the IR theory. We decompose the UV currents according to the

sign of the eigenvalues as Jα → {J +,J 0,J −}. If we assume that there are no accidental

symmetries in the IR, then unitarity of the SCFT implies that in the IR the J + currents

must correspond to right-moving Kac-Moody (KM) currents and the J − must flow to left-

moving KM currents. Finally, the J 0 must decouple from the SCFT degrees of freedom.

The last point has two consequences: on one hand, we should treat a theory with kerL 6= 0

with some care; on the other hand, if we can be certain that the IR limit is nevertheless a

unitary CFT, we can without loss of generality restrict to symmetries orthogonal to kerL.

In typical examples of (0,2) LG theories L is negative definite; we do not know of a

non-singular model where L has a positive eigenvalue. In fact, as far as the extremization

procedure goes, symmetries corresponding to the positive eigenspace of L cannot be broken

in the SCFT. More precisely, a UV deformation away from an RG trajectory with a

“positive” symmetry is irrelevant — in the IR the “positive” symmetry will be restored.

To understand this, we consider the change in the extremized central charge upon breaking

a symmetry. Assuming kerL = 0, the extremum central charge is

1
3C0 = n−N −KTL−1K . (2.13)

Now suppose we change parameters so that some of the symmetries are broken. We can

characterize the unbroken symmetries by a a vector vα, so that the unbroken symmetries

satisfy tT v = 0. The modified extremization is then easily carried out with the aid of a

Lagrange multiplier s:

1
3Cv(t, s) = n−N + 2tTK + tTLt+ 2stT v . (2.14)

Extremizing with respect to t leads to

1
3Cv(s) = 1

3C0 − 2svTL−1K − s2vTL−1v . (2.15)

– 7 –
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This may be extremized for s if and only if vTL−1v 6= 0, in which case we obtain

1
3Cv = 1

3C0 +
(vTL−1K)2

vTL−1v
. (2.16)

The first observation is that the deformation changes the IR central charge if and only if

the original symmetry, with charges determined from t∗ = −L−1K is broken. Next, we

see that if in addition v belongs to the positive eigenspace of L, then the central charge of

the deformed theory is strictly greater than that of the undeformed theory — this means

the deformation must be irrelevant in the IR, and we expect the deformed theory to flow

to the original undeformed fixed point. Once we eliminate these irrelevant deformations

from the parameter space, the symmetries corresponding to the positive eigenvalues of L

are never broken, and we can restrict to v in the negative eigenspace of L.

We stress that in all examples we considered L is negative definite. In that case (2.16)

shows that when a deformation breaks a symmetry the central charge changes if and only

if the deformation breaks the R-symmetry, and whenever that happens the central charge

decreases.

Constraints on UV data. The structure relating UV and IR physics sketched above

assumes that for a given set of charges (qi, QA) there exists a non-singular potential with

a zero-dimensional ideal J and of course that U(1)L and U(1)0
R are the only symmetries

all along the RG flow. Both of these are non-trivial assumptions.

It is an open problem to classify all sets of charges consistent with (2.7) and some fixed

c that can be realized by a non-singular J .6 Demanding that χ(y) is a polynomial rules

out many choices of charges, but while being a necessary condition, it is not sufficient to

show that there exists a zero-dimensional J realizing the charge assignment.

The second assumption, which amounts to the statement that there are no accidental

symmetries in the IR, also leads to some necessary conditions. For instance, just as in N=1

d = 4 SQCD [24], violation of unitarity bounds on the charges can indicate an inconsistency

in the assumption. In particular, we have the unitarity bounds

0 < qi ≤ c/3 , 0 < (1 +QA)
∑
A

(1 +QA) ≤ c/3 . (2.17)

These arise by demanding that φi, γ
A, and

∏
A γ

A are chiral primary operators of a unitary

N=2 superconformal algebra. The latter is particularly strong and eliminates many possible

candidate charges.7 While these criteria are important and will certainly play a role in any

attempt to classify (0,2) LG theories, they are not sufficient to rule out accidents.

3 Accidents

Having reviewed the basic structure of (0,2) LG theories, we will now study it in a few

examples that will illustrate some of the subtleties in their analysis.

6This should be contrasted with (2,2) LG models, for which such a classification exists [22, 23] and yields

a finite set of quasi-homogeneous potentials at fixed central charge.
7In the (2,2) case this translates to the known bound

∑
i qi ≤ n/3 [25].
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3.1 Accidents in (2,2) Landau-Ginzburg orbifolds

There are two familiar examples of accidental symmetries in (2,2) flows. Consider LG

orbifolds with potentials

W3 = X3
1 +X3

2 +X3
3 − ψX1X2X3 , W4 = X4

1 +X4
2 +X4

3 +X4
4 − ψX1X2X3X4 , (3.1)

For W3 (W4) we take the orbifold by Z3 ⊂ U(1)R (Z4 ⊂ U(1)R). The endpoint of the flow

in each case has accidental symmetries. In the case of W3, which is a special point in the

moduli space of a (2,2) compactification on T 2, there is an accidental N=2 Kac-Moody

U(1) algebra for both left and right movers, corresponding to the isometries of the torus.

In the case of W4 the IR theory is actually a (4,4) SCFT, and there are additional currents

that enhance U(1)L×U(1)R to SU(2)L×SU(2)R. Of course this is the case for any Landau-

Ginzburg orbifold (or more generally linear sigma model) that corresponds to a locus in

the moduli space of T 2 or K3 compactification.

3.2 A contrived (2,2) example

Consider a (2,2) LG theory with

W = X3 + Y 4 . (3.2)

There is a unique assignment of R-charge q(X) = 1/3 and q(Y ) = 1/4, and the IR fixed

point is the E6 minimal model. On the other hand, we can make a field redefinition

X̃ = X − Y and Ỹ = Y . This is certainly non-singular and leads to a superpotential

W̃ = X̃3 + 3X̃2Ỹ + 3X̃Ỹ 2 + Ỹ 3 + Ỹ 4 . (3.3)

If we also perform the field redefinition in the kinetic terms, we have of course done nothing;

however, if we assume the D-terms are indeed irrelevant, then taking standard kinetic terms

and either W or W̃ interactions should lead to the same IR fixed point. Unlike the original

theory, the W̃ theory has no manifest R-symmetry along the flow — the symmetry emerges

accidentally in the IR.

The example is very contrived, but it illustrates the basic issue: field redefinitions can

obscure the UV fields that should be identified with IR operators of some fixed scaling

dimension. As we show in 3.5, if we restrict to (2,2) theories with a quasi-homogeneous

potential, this ambiguity turns out to be harmless. As the next example shows, in (0,2)

theories this is not the case.

3.3 A simple (0,2) example

Consider a theory with N = 3, n = 2 and superpotential

W0 =
(

Γ1 Γ2 Γ3
)α11 α12 α13

α21 α22 α23

α31 α32 α33


 Φ6

1

Φ2
2

Φ3
1Φ2

 . (3.4)
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For generic values of the 9 parameters α the potential preserves a unique U(1)L symmetry,

and normalizing the charges as in (2.6) leads to r = 2, c = 3, and charge assignments

Φ1 Φ2 Γ1,2,3

q 1
7

3
7 −6

7

q 1
7

3
7

1
7

(3.5)

To obtain a description of the parameter space of the IR theory we consider the α modulo

field redefinitions consistent with (0,2) SUSY and the U(1)L symmetry:

ΓA →
∑
B

ΓBMA
B , Φ1 → xΦ1 , Φ2 → yΦ2 + zΦ3

1 . (3.6)

These transformations are invertible if and only if M ∈ GL(3,C) and x, y ∈ C∗. The

induced action on the Φ monomials is then Φ6
1

Φ2
2

Φ3
1Φ2

→ S

 Φ6
1

Φ2
2

Φ3
1Φ2

 , S =

 x6 0 0

x3z x3y 0

z2 2yz y2

 , (3.7)

and hence the action on the parameters α is α 7→MαS.

A bit of algebra shows that every non-singular ideal J described by α is equivalent by

a field redefinition to one of three superpotentials:

W1 = Γ1Φ6
1 + Γ2Φ2

2 + Γ3Φ3
1Φ2 ,

W2 = Γ1(Φ6
1 + Φ2

2) + Γ2Φ3
1Φ2 ,

W3 = Γ1Φ6
1 + Γ2Φ2

2 . (3.8)

The UV parameter space is stratified to three points, and we consider each in turn.

1. W1 has a U(1)2 global symmetry that acts independently on Φ1 and Φ2; extremization

picks out the following charges.

θ Φ1 Φ2 Γ1 Γ2 Γ3

q 0 26
167

64
167 −156

167 −128
167 −142

167 c = 3
(
1 + 2

167

)
q 1 26

167
64
167

11
167

39
167

25
167

2. W2 has a free Γ3 multiplet. The interacting part of the theory has no extra global

symmetries and U(1)IR
L ×U(1)IR

R charges

θ Φ1 Φ2 Γ1 Γ2

q 0 4
31

12
31 −24

31 −24
31 c = 3

(
1 + 1

31

)
.

q 1 4
31

12
31

7
31

7
31
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3. W3 has a free Γ3 multiplet, and the interacting part of the theory is a product of

(2,2) minimal models with (2,2) superpotential W = X7
1 +X3

2 and charges

θ Φ1 Φ2 Γ1 Γ2

q 0 1
7

1
3 −6

7 −2
3 c = 3

(
1 + 1

21

)
.

q 1 1
7

1
3

1
7

1
3

If we assume that there are no accidental symmetries for the W1, W2 and W3 theories, we

obtain a consistent picture of the RG flows starting with the UV theory in (3.4). There

are three basins of attraction; each has a central charge c > 3, a set of charges consistent

with unitarity bounds and no marginal deformations. Moreover, we can construct interpo-

lating RG flows W3 →W2 →W1 by adding relevant deformations to the superpotentials.

However, W1 has no U(1)L-invariant relevant deformations that make it flow to a putative

c = 3 theory described by W0.

We conclude that (0,2) LG RG flows have accidental symmetries, and identifying these

is key in order to correctly pinpoint even basic properties of the IR theory. For instance,

we see in the example at hand that no point in the UV parameter space leads to an IR

theory with c = 3 and r = 2.

3.4 Puzzles from enhanced symmetries

There are two questions that probably occur to our erudite reader. First, what’s the big

deal? One has to take account of field redefinitions when discussing the parameter space

of a theory, and it seems that all we learned here is that the parameter space is smaller

than one may have naively thought. Second, is it not perverse to discover some accidental

symmetries associated to W1,2,3 versus W0 but then blithely assume that W1,2,3 do not

themselves suffer from accidents?

There is a pragmatic answer to the second question: we assume there are no accidents

unless we are able to identify some paradox in the putative description of the IR physics in

terms of the UV parameters. In our example we find such a paradox: while a genericW has

a unique global symmetry in the UV, there are special points with enhanced symmetries

and a central charge that exceeds the putative c = 3 of the generic W! Once we take

into account the accidental symmetries, we discover that the enhanced symmetries are

unavoidable, and there is no c = 3 theory that can be reached within the parameter space

of these UV theories. It is also easy to construct paradoxical examples that would violate

unitarity bounds unless one takes accidents into account [16].

The answer to the first question is contained in this pragmatic perspective. The “big

deal” is that in the examples with which we are most familiar, namely the (2,2) LG theories,

one never encounters these enhanced symmetry puzzles: although there are plenty of points

with enhanced symmetries, these never mix with U(1)IR
R , and the central charge does not

jump for any choice of non-singular (2,2) superpotential. We discuss this in detail in the

next section.
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3.5 Enhanced symmetries of (2,2) LG theories

Consider a (2,2) LG theory with a quasi-homogeneous (2,2) superpotential W (X) obeying

W (tqiXi) = tW (X). Unless W satisfies an independent quasi-homogeneity condition,

the (2,2) R-symmetries are fixed uniquely, giving charge q = qi to Φi and Γi, where

(Φi,Γ
i) are the (0,2) components of the (2,2) multiplet Xi. Without loss of generality

we can restrict attention to 0 < qi < 1/2.8 A special case occurs when we can split the

fields {Xi} → {Xa} ∪ {Xp} so that W = W 1(Xa) + W 2(Xp). This leads to an enhanced

symmetry, but the enhancement is very large: on both the left and right we obtain two

N = 2 superconformal algebras with c1 and c2 that add up to the total c. The enhanced

right-moving U(1) symmetry is not part of an N=2 Kac-Moody algebra: there are two

commuting N=2 superconformal algebras, and each U(1) is the lowest component of a

different N = 2 algebra. Thinking of this theory as a (0,2) LG model and carrying out

c-extremization leads to the same result for c and charges of the chiral fields.

We will now show that in non-singular (2,2) theories this is the only way that enhanced

symmetries occur. Hence, there are no (2,2) accidents.

A necessary and sufficient condition to be able to perform the split {Xi} → {Xa}∪{Xp}
and W = W 1(Xa) +W 2(Xp) is that the matrix of second derivatives Wki is block diagonal

in the two sets of variables.9 Since we understand the symmetry enhancement in that

case, we assume that Wki has no non-trivial block.10 We will now show that no additional

symmetry is possible when W is non-singular. The argument uses three facts.

1. A non-singular W can satisfy at most one linearly independent quasi-homogeneous

relation. To see this, suppose the contrary. By taking linear combinations of two

relations we arrive at
∑

i αiXiWi = 0. We can now split the fields Xi according to

αi > 0, αi < 0, or αi = 0: {Xi} → {Ya} ∪ {Zs} ∪ {Uα} and recast the relation as∑
a

βaYaWa =
∑
s

γsZsWs , (3.9)

where βa, γm > 0. Without loss of generality we may assume β1 = 1 ≥ βa for a 6= 1.

Every monomial in W that contains Y1 must contain at least one Z. Hence, W will

be singular unless W ⊃ Y m
1 Zs for some s, say s = 1. Similarly, dW |Y=0 will be

independent of Z1 unless W ⊃ Zp1Ya for some a, which requires βa = γ1p = pm > 1,

where the last inequality follows since W has no quadratic terms in the fields. That

is in contradiction with βa ≤ 1, so the theory must be singular.

2. Suppose we have a symmetry of the (2,2) theory that commutes with the (0,2) SUSY

algebra. This means that there are charges Q′i and q′i such that

−Q′iWi =
∑
j

q′jXjWij =⇒ −Q′iWik = q′kWki +
∑
j

qjXjWjik .

8We assume qi > 0. In that case for a non-singular potential any fields with qi ≥ 1/2 can be eliminated

by their equations of motion.
9We use the shorthand Wi = ∂W/∂Xi, Wki = ∂W/∂Xk∂Xi , etc.

10Take the n×n matrix Wki and set to 1 all non-zero components. The result is a symmetric matrix Aki

that is the adjacency matrix for a graph G on n nodes, with each Aki 6= 0 specifying a path in the graph

from node k to node i. The statement that there is no non-trivial block is simply that G is connected.
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Exchanging i and k in the second equation and taking the difference, we obtain

(Q′k − q′k)Wki = Wki(Q
′
i − q′i) .

This means that whenever Wki 6= 0 we need Q′k − q′k = Q′i − q′i.11

3. The (2,2) superpotential satisfies

(q′i −Q′i)W −
∑
j

q′jXjWj = U i ,

where U i is independent of Xi. This follows by integrating the quasi-homogeneity

condition obeyed by Wi.

Using these observations, we now complete the argument as follows. Since Wki does

not contain a non-trivial block, we see from the second fact that for all k, i Q′k−q′k = Q′i−q′i.
Combining this with the third fact, we find that W satisfies a quasi-homogeneity relation

W (tq
′
jXj) = tq

′
i−Q′iW (X); the first fact then implies that either q′i = cqi and q′i − Q′i = c,

or W is singular.

3.6 Subtleties for heterotic vacua

We have seen that the identification of UV parameters with a deformation space of an IR

CFT, while reasonably well understood for (2,2) theories, is more subtle for (0,2) theories.

The difference is that while in non-singular (2,2) theories enhanced symmetries are always

associated to a decomposition of the UV theory into non-interacting components, this is

not the case for (0,2) models. An enhanced symmetry of a (0,2) model does generically mix

with the naive U(1)R, so that the enhanced symmetry point has a different central charge

from what one might expect naively. As illustrated by the example in section 3.3, the RG

fixed points of a (0,2) model need not realize any CFT with the naive central charge.

There are situations where the consequences are more benign: there is a choice of

UV parameters that leads to a CFT with the expected IR symmetries, but even then the

identification of UV parameters with marginal deformations of the IR theory requires a

careful study of the field redefinition orbits on the space of UV parameters. The following

familiar example illustrates the issue.

An SO(10) heterotic Landau-Ginzburg orbifold. Consider a (0,2) theory with the

following field content and charge assignment

θ Φ1,2 Φ3,...,6 Γ1,...,7

q 0 2
5

1
5 −4

5

q 1 2
5

2
5

1
5

(3.10)

It is easy to see that this symmetry leads to r = 4 and c = 9. The orbifold of this theory

by e2πiJ0 is a candidate for an internal SCFT of an SO(10) heterotic vacuum. As described

11This is trivially satisfied for the usual (2,2) U(1)L, where Qi = qi − 1.
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in [10] that does seem to be the case: the massless spectrum is organized into sensible

SO(10) multiplets, and there is a reasonable large radius interpretation in terms of a rank

4 holomorphic bundle on a complete intersection CY manifold in CP5
111122. The generic

superpotential for this theory is

W =
∑
A

ΓAJA , (3.11)

where each JA has charge q = 4/5. We can choose the UV parameters of the theory to

produce the following non-singular potential:

W1 = Γ1Φ2
1 + Γ2Φ2

2 +

6∑
i=3

ΓiΦ4
i + Γ7 × 0 . (3.12)

This is a product of (2,2) minimal models and a free left-moving fermion. The resulting

central charge is c = 3(3 + 1
15). Thus, this choice of UV parameters does not correspond

to a point in the moduli space of the c = 9 CFTs. Of course the orbit of field redefinitions

of this point yields a large basin of attraction of UV theories that flow to the same CFT

with c = 3(3 + 1
15). In this case we can identify another point that does lead to c = 9:

W2 = Γ1Φ2
1 + Γ2Φ2

2 +

6∑
i=3

ΓiΦ4
i + Γ7Φ1Φ2 . (3.13)

While this superpotential still has a U(1)6 global symmetry, c-extremization leads to c = 9

and R-charges as in the table above. Clearly there is a relevant deformation by Γ7Φ1Φ2

that leads to an RG flow from the c = 3(3 + 1
15) theory to the c = 9 CFT.

The general lesson is clear: field redefinitions stratify the space of UV parameters into

orbits, and in general these orbits correspond to different IR fixed points that are not

related by marginal deformations — in particular they can have different central charges.

The orbits may or may not include an IR fixed point for which the manifest symmetry of

the generic superpotential becomes the U(1)IR
R : in this example they do, while in that of

section 3.3 they do not.

4 Marginal deformations of a unitary (2,0) SCFT

This section contains a number of results on (2,0) SCFTs. Many if not all of these are

well-known in the context of heterotic compactifications, but the derivations given here are

more general and give a useful alternative perspective.

4.1 Basic results

Consider a unitary compact (2,0) SCFT with the usual superconformal algebra generators

J(z), G±(z), and T (z), with modes given respectively by Jn, G±r and Ln.12

12While for many purposes it is very convenient to treat the supersymmetric side of the theory as anti-

holomorphic, in the discussion that follows it leads to a great profusion of bars. Hence, in this section the

SUSY side will be taken to be holomorphic.
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We will show that marginal Lorentz-invariant and supersymmetric deformations of this

theory by a local operator take the form

∆S =

∫
d2z ∆L , ∆L = {G−−1/2,U}+ h.c. , (4.1)

where U is a chiral primary operator with U(1)L-charge q = 1 and weights (h, h) =

(1/2, 1).13 In string theory, where one considers (0,2) SCFTs with quantized q charges,

this is a classic result [26]. Here we will apply the point of view developed for N = 1 d = 4

SCFTs [27] to arrive at the statement without any assumptions of charge integrality.

Constraints from supersymmetry. Without loss of generality we can consider defor-

mations δL = O(z, z) by a quasi-Virasoro primary operator O, since a descendant would

just be a total derivative. Lorentz invariance requires O to have spin 0, i.e. hO = hO.

In order for δL to be supersymmetric, we need [G∓−1/2,O] to be a total derivative, i.e.

G∓−1/2|O〉 = L−1|M∓〉. Applying G±−1/2 to both sides of the equation and using the N=2

algebra, we obtain

G±−1/2G
∓
−1/2|O〉 = L−1G

±
−1/2|M

∓〉 ,

=⇒ L−1

[
|O〉 −G+

−1/2|M
−〉 −G−−1/2|M

+〉
]

= 0 . (4.2)

Hence, up to a constant multiple of the identity operator, which does not lead to a defor-

mation of the theory, we can write |O〉 as

|O〉 = G−−1/2|M
+〉+G+

−1/2|M
−〉 , (4.3)

and hence, without loss of generality, any non-trivial deformation corresponds to a state

|O〉 = G−−1/2|U〉+G+
−1/2|V〉+

[
G+
−1/2G

−
−1/2 − (1 + qK

2hK
)L−1

]
|K〉 , (4.4)

where |U〉, |V〉 and |K〉 are all quasi-primary with respect to the N=2 superconformal

algebra, i.e. annihilated by the lowering modes of the global N=2 algebra, L1 and G±1/2.

The linear combination of operators in the last term is fixed by L1|O〉 = 0. The spins of

the fields are

hU − hU = 1/2 , hV − hV = 1/2 , hK − hK = 1 . (4.5)

The remaining constraints from supersymmetry are

G+
−1/2G

−
−1/2|U〉 = L−1|X〉 , G−−1/2G

+
−1/2|V〉 = L−1|Y 〉 (4.6)

for some states |X〉 and |Y 〉. We will now show that the only solution to these equations

is that U (V) is a chiral primary (anti-chiral primary ) state. It suffices to work out the

constraint on |U〉 — the one on |V〉 follows by exchanging G+ and G−.

13Some of the arguments given here were developed by IVM and MRP in collaboration with Ido Adam.
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Without loss of generality we decompose

|X〉 = a|U〉+ |χ〉 , (4.7)

where a is real and |χ〉 is orthogonal to |U〉. The condition now becomes

(G+
−1/2G

−
−1/2 − aL−1)|U〉 = L−1|χ〉 . (4.8)

Applying 〈U|L1 to both sides and using orthogonality of |U〉 and |χ〉, we find a = 1 + qU
2hU

.

Application of 〈χ|L1 to both sides shows L−1|χ〉 = 0, so we are left with

G+
−1/2G

−
−1/2|U〉 = (1 + qU

2hU
)L−1|U〉 . (4.9)

Finally, applying G−−1/2, we find

(1 + 1
2hU

)(2hU − qU ) = 0 . (4.10)

The only solution of this equation consistent with unitarity is 2hU = qU , i.e. |U〉 is a chiral

primary state of the N=2 superconformal algebra.

Combining the preceding results and applying them to deformations by real operators,

we conclude that real Lorentz-invariant supersymmetric deformations take the form

O(z, z) =
[
{G−−1/2,U(z, z)}+ h.c.

]
+ {G+

−1/2, [G
−
−1/2,K(z, z)]} , (4.11)

where U is a fermionic chiral primary operator with hU = 1
2 + hU , hU = qU/2, and K is

a real bosonic quasi-primary operator with hK = 1 + hK. As in four dimensions [27], we

recognize the familiar superpotential and Kähler deformations.

Marginal operators. If we impose in addition that the perturbation is marginal, we

obtain the constraints qU = 1 and hK = 0. The latter implies that L−1|K〉 = 0, i.e. K(z)

is an anti-holomorphic conserved current that leads to a trivial deformation of the action.

We arrive at the result (4.1).

4.2 A few consequences

The preceding analysis, when combined with some basic assumptions about superconformal

perturbation theory, leads to important constraints on (2,0) SCFTs. The key feature is

that we can use a (2,0) superspace to recast the marginal deformations into the form

∆S =

∫
d2z

∫
dθ αiUi + h.c. , (4.12)

where αi denote the couplings and Ui are denote the chiral primary marginal fermi su-

perfields. Assuming there exists a manifestly supersymmetric regularization scheme for

conformal perturbation theory, the renormalized action at a renormalization scale µ must

take the form

∆Lren =

∫
d2θ

[
Za(α, α;µ)Ja +

∑
A

µ2−dAKA

]

+

{∫
dθ
[
(αi + δαi(α;µ))Ui + ζI(α;µ)UI

]
+ h.c.

}
. (4.13)
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At the conformal point (α = 0) the Ja and KA are real operators of dimension ∆a = 2

and ∆A > 2, while the Ui and UI are chiral primary operators with q = 1 and q >

1 respectively.14 The first line is parallels the N = 1 d = 4 situation; however, the

second line is new, following from the fact that the UiUj OPE will in general have singular

z dependence. Of course supersymmetry still requires that the renormalization of the

superpotential should be holomorphic in the parameters.

Marginal irrelevance. Marginal deformations preserve the R-symmetry of the original

SCFT. Hence, the unitarity bound hU ≥ q/2 implies that a marginal deformation is at

worst marginally irrelevant and never marginally relevant.

D-terms and F-terms. Assuming that conformal perturbation theory is renormalizable,

the terms involving the KA and UI do not arise, and scale invariance of the theory is

equivalent to

Da(α, α) ≡ µ ∂

∂µ
Za = 0 and F

i
(α) ≡ µ ∂

∂µ
δαi = 0. (4.14)

A two-dimensional unitary compact scale-invariant theory is automatically conformal [28],

so every deformation satisfying these “D-term” and “F-term” constraints is exactly

marginal.

The “D-term” obstructions to marginality are exactly the same as in the d = 4 case

studied in [27] — such a scale dependence requires the breaking of a global right-moving

symmetry. This is easy to understand at leading order in conformal perturbation theory.

In the presence of abelian currents Ja, the OPE of U with its conjugate takes the form

Ui(z, z)U (w,w) ∼ gi
(z − w)(z − w)2

+
giq

i
aJ

a
(w,w)

(z − w)(z − w)
+ . . . , (4.15)

where J
a

= γabJb, and zz〈Ja(z)Jb(0)〉 = γab in the undeformed theory. This leads to a

logarithmic divergence in conformal perturbation theory proportional to∫
d2wG+

−1/2G
−
−1/2

∫
d2z
|αi|2qiaJ

a
(w,w)

(z − w)(z − w)
∼ logµ× |αi|2qiaJ

a
(w,w) , (4.16)

which corresponds to the leading order D-term proportional to

Da =
∑
i

|αi|2qia . (4.17)

In applications to heterotic compactifications such a symmetry necessarily corresponds to

a gauge boson in the space-time theory, and the space-time picture of the breaking is

just the Higgs mechanism: the obstruction to marginality of a coupling α that breaks a

right-moving symmetry is encoded in a space-time D-term potential.

We believe that in (0,2) LG models without an orbifold there are no F-term obstruc-

tions. The reason is simple: the free field UV presentation of the theory comes with

14Compactness of the CFT ensures a gap in dimensions between Ja and KA, as well as between Ui
and UI .

– 17 –



J
H
E
P
1
2
(
2
0
1
4
)
1
5
7

the usual non-renormalization theorems for the superpotential, so the only divergences we

expect to encounter will correspond to D-term counter-terms.

The two sources of obstruction are in one to one correspondence with the two ways in

which a short chiral primary multiplet can combine into a long multiplet of (2,0) SUSY.

Suppose we consider an infinitesimal (2,0) SUSY deformation under which a marginal chiral

primary state |U〉 acquires weights (h, h) = (1
2 + ε

2 , 1 + ε
2). In this case |U〉 is no longer

chiral primary, and by a choice of basis we can consider two separate cases:

G+
−1/2|U〉 6= 0 , G−1/2|U〉 = 0 , or G+

−1/2|U〉 = 0 , G−1/2|U〉 6= 0 . (4.18)

In other words, |U〉 remains primary but is no longer chiral, or it remains chiral but fails to

be primary. The first case corresponds to an F-term obstruction, where at ε = 0 we have

two chiral primary superfields (U ,F) with qU = 1 and qF = 2 and h = 1, while for ε > 0

we find a complex long multiplet with lowest component |U〉 and G+
−1/2|U〉 =

√
ε|F〉.15 The

second case corresponds to a D-term obstruction, where at ε = 0 we have chiral primary

superfields U , its anti-chiral conjugate U , and a Kac-Moody current J ; for ε > 0 we obtain

a long real multiplet with lowest component J and descendants G+
−1/2|J〉 =

√
ε|U〉 and

G−−1/2|J〉 =
√
ε|U〉.

In particular, we see that there are no F-term obstructions if the undeformed theory

has no chiral primary operators with q = 2 and h = 1. This is the case, for instance,

in every (2,0) SCFT with c < 6. If there are also no left-moving Kac-Moody symmetries

then every (2,0) marginal deformation must remain exactly marginal. In appendix A we

mention a simple example illustrating an F-term obstruction at c = 9.

Kähler geometry of the moduli space. One can use the same reasoning as in [27]

to argue that the space of truly marginal deformations of a (2,0) SCFT must be a Kähler

manifold. This is because the D-term constraints and the quotient by global symmetries

lead to a toric quotient on the space of marginal couplings, while the F-term constraints are

manifestly holomorphic constraints, restricting the truly marginal directions to a Kähler

subvariety of the toric variety. In heterotic compactification this can of course be argued

either from the space-time heterotic supergravity or by using additional assumptions of a

(2,0) SCFT with integral charges [31]. The argument given here is more direct and general.

Application to (2,2) theories. The case of a (2,2) SCFT and its (2,2)-preserving

deformations is much simpler. There are two types of superpotential deformations: the

chiral and the twisted chiral. The former corresponds to deformations by chiral primary

(c,c) ring operators, while the latter by the (a,c) ring operators. Supersymmetry implies

that twisted chiral parameters can never show up in the renormalized chiral superpotential

and vice-versa. Moreover, the OPE of the (c,c) and (a,c) chiral primaries with themselves

is non-singular, so that neither potential is corrected — there are no F-term obstructions

to marginality. Hence, all marginal (c,c) and (a,c) symmetry-preserving deformations are

truly marginal. This is again a familiar story in string applications [26, 32] .

15In a c = 9 theory with spectral flow there is a canonical F for every U in the theory. Indeed, as observed

in [26, 29, 30], the F (2,0) superfields can be used to construct vertex operators for the space-time auxiliary

fields residing in chiral multiplets of the associated four-dimensional theory.
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Accidents beyond field redefinitions. We can now see that the field redefinitions of

(0,2) LG theories do not describe all accidents. It is not the case that every direction

transverse to field redefinition orbits corresponds to a marginal deformation of the IR

theory. This is due to the possibility that marginal deformations of a (0,2) theory can turn

out to be marginally irrelevant. In (0,2) LG theories this is due to D-term obstructions

where a U(1) symmetry is broken by turning on operators with a definite sign of the U(1)

charge. We give an example of this phenomenon in a well-known heterotic vacuum in

appendix B.

4.3 Deformations and left-moving abelian currents

As a final application of the preceding results, we consider the interplay between deforma-

tions of a (2,0) SCFT and left-moving currents.

A (2,0) SCFT may possess a KM algebra on the SUSY side of the world-sheet in

addition to the U(1)L current JL in the N = 2 multiplet. Such structures are familiar

from heterotic compactifications preserving 8 space-time supercharges in four dimensions

— when realized geometrically these correspond to geometries π : X → K3 — principal

T 2 fibrations over a base K3 [33, 34]. In each such case we can use a Sugawara-like de-

composition to decompose the N = 2 world-sheet superconformal algebra (SCA) into two

commuting sets of generators, one associated to the KM algebra, and the other correspond-

ing to the remaining degrees of freedom.

Suppose we have an abelian current algebra U(1) with current J1. There are two ways

that the decomposition can work. If J does not belong to a multiplet of the Ac SCA, then

we must have a decomposition

Ac = A′c′ ⊕A′′c′′ , (4.19)

where c = c′ + c′′, and the lowest components of the N=2 multiplets of A′ and A′′ are

obtained by appropriate linear combinations of JL and J1. We are familiar with such

examples from above: this happens whenever the LG theory decomposes into a product of

two non-interacting theories.

If J does belong to a multiplet of A, then it must be accompanied by a second U(1)

Kac-Moody current J2, as well as weight h = 1/2 operators ψ1 and ψ2. Together these

arrange themselves into a well-known c = 3 unitary representation of N = 2:

JL =: ψψ : , G+ =
√

2ψ , G− =
√

2ψ , , T =:  : −1
2(: ψ∂ψ : + : ψ∂ψ :) ,

(4.20)

where ψ and  have the free-field OPEs

ψ(z)ψ(w) ∼ (z − w)−1, (z)(w) ∼ (z − w)−2. (4.21)

This is equivalent to the holomorphic sector of a T 2 (1,0) non-linear sigma model, and we

will call it Afree
3 .

There is a key difference between these two generalizations. In the first case, there are

generally deformations that can break the extra left-moving symmetry — in (2,2) LG this
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happens when we move away from a Gepner point to a more generic theory. In the second

case such breaking is impossible. To see this, we just need to apply what we learned about

the structure of SUSY deformations in conformal perturbation theory. Since our algebra

splits as

Ac = A′c−3 ⊕Afree
3 , (4.22)

a marginal deformation has a similar decomposition

U = U ′ + Sψ , (4.23)

where U ′ is a chiral primary operator with h = 1 and q′ = 1, while S is a (0,1) current.

The deformation of the action is then

G−−1/2 · U = G′−−1/2 · U
′ +
√

2S . (4.24)

This is neutral with respect to JL,  and . More generally, any relevant deformation must

be of the form U = U ′ with q′ < 1.

5 Toric geometry of the deformation space

In the previous sections we saw that accidental symmetries play an important role in (0,2)

Landau-Ginzburg theories, and more generally, in (0,2) SCFTs. In this section we will

describe a conjecture that allows us to account for these accidents in a certain class of (0,2)

LG theories. In that context our goal is to describe the moduli spaceM of IR fixed points

corresponding to a class of UV data determined by a choice of charges qi and QA which

have the expected central charge

c = 3(n−N + r) , r = −
∑
A

QA −
∑
i

qi . (5.1)

To do so, we need to perform two steps:

1. decompose the UV parameter space into orbits under the action of field redefinitions;

2. determine which orbits contribute to M.

The result is expected to be a (typically singular) Kähler space. In general these are rather

formidable tasks. The group of field redefinitions is rather large and the space of orbits

is non-separable. A reasonable geometry can only emerge after implementing the second

task. This involves excluding two types of orbits:

• Along a discriminant locus ∆ in parameter space, the superpotential is singular. The

discriminant will clearly be invariant under field redefinitions, and orbits contained

in ∆ will not contribute to M.

• For some non-singular values of the parameters, the theory will have accidental sym-

metries in the IR. As we have seen, in some cases these symmetries will mix nontriv-

ially with the R-symmetry and the central charge of the IR fixed point will be larger

than c. Thus, these orbits as well need to be excluded from M.
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In general, the second step is difficult even if one restricts attention to symmetries which

act diagonally on the UV fields. Detecting the basin of attraction of some component of

the IR moduli space with central charge c′ > c requires a determination of the R-symmetry

along each such component to find which deformations away from this locus are in fact

irrelevant.

5.1 The toric conjecture

There is a simpler version of both of these problems that may be tractable. The group

of field redefinitions always contains an abelian subgroup, the complexification of the

U(1)n × U(1)N subgroup of the global symmetry of the free kinetic terms, that corre-

sponds to rescaling the chiral fields of the theory. In particular, if we write the most

general superpotential in our class as

W =
∑
A

ΓA
∑
m∈∆A

αAm
∏
i

Φmi
i , (5.2)

where

∆A = {m ∈ Zn |
∑

imiqi = −QA} (5.3)

describes the lattice points in the Newton polytope for JA, then the field redefinitions

Φi 7→ tiΦi , ΓA 7→ τAΓA (5.4)

lead to a TC = (C∗)N−n+1 action16 on the space of UV parameters Y = C
∑

A |∆A|

αAm 7→ τA
∏
i t
mi
i × αAm . (5.5)

We will refer to these as toric field redefinitions.

We now restrict attention to these toric actions in both of the tasks listed above.

Namely, we decompose the parameter space into TC orbits and exclude those orbits that

either lie in ∆ or exhibit accidental symmetries contained in TC and lead to c′ > c. The

result, which we will call MT , will in some cases be equivalent to M, but in general the

two will differ. We will comment on this further below.

The action of the compact torus T ⊂ TC , given by restricting to |t| = |τ | = 1 ,

determines a moment map µ = (λ; Λ) : Y → RN+n with

λi =
∑
A

∑
m∈∆A

mi|αAm|2 , ΛA =
∑
m∈∆A

|αAm|2 . (5.6)

Quasi-homogeneity of W implies that the image lies in the hyperplane∑
i

qiλi +
∑
A

QAΛA = 0 . (5.7)

The image of µ is the intersection of this hyperplane with a cone, determined by the charges,

inside the positive orthant in RN+n. This intersection is itself a cone Σ̂, of dimension

16The rank of the C∗ action is reduced by 1 due to the quasi-homogeneity of W.
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N + n − 1. The level sets of µ determine a selection of orbits: generic orbits will be

N + n − 1 dimensional, but the action will degenerate along points with a non-trivial

stabilizer subgroup, leading to orbits of smaller dimension.17 More precisely, the cone Σ̂

can be subdivided into a fan Σ, such that the collection of orbits containing a point for

which µ(α) = µ∗ is determined by the cone of Σ that contains µ∗. This is the secondary

fan for the T action. We now have enough structure to state our conjecture.

Conjecture. The toric moduli space MT is the complement of the discriminant subva-

riety ∆ in a toric variety

V = µ−1(λ∗,Λ∗)/T , (5.8)

where

λ∗i = 1− qi , Λ∗A = 1 +QA . (5.9)

This is a rather strong statement, and we will not provide a complete proof but rather

some evidence for it. Some ideas on a possible derivation are discussed in section 5.4. We

will motivate the conjecture by combining our results and observations from above with

some facts about toric varieties.

We should note a few important points. First, V may turn out to be empty. Second,

while we claim that V \∆ describesMT as a variety, we do not make any statement about

the relation between the Zamolodchikov metric on the space of marginal couplings and the

metric on V obtained by the Kähler quotient. Finally, in this paper we will be concerned

with orbits of continuous field redefinitions. In general there will be additional discrete

quotients that identify points in MT .

Combinatorics of the secondary fan. Codimension-one cones in Σ are associated

with orbits containing a point at which a single C∗ ⊂ TC is unbroken. More precisely,

G(q′,Q′) = C∗ ⊂ TC acting with charges q′i, Q
′
A on the chiral superfields will fix points at

which

|αAm|2
(
Q′A +

∑
imiq

′
i

)
= 0 for all A, m ∈ ∆A . (5.10)

The µ-image of the TC orbits of such points will lie in a cone σ(q′,Q′) generated by the

charge vectors of the αAm fixed by G(q′,Q′). Thus, the codimension-one cones of Σ are

determined by one-dimensional subgroups for which σ(q′,Q′) has dimension N + n− 2 and

lies in the hyperplane ∑
A

Q′AΛA +
∑
i

q′iλi = 0 . (5.11)

In terms of W the codimension-one cones of Σ correspond to subgroups for which we can

write a (possibly singular) family of models fixed precisely by (C∗)2. Cones of higher

17There are orbifold singularities when the subgroup is discrete; we will focus on continuous stabilizer

subgroups.
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codimension in the fan are boundaries of these cones and arise at the intersections of these

hyperplanes.18 Points in the interior of some cone of the fan (of any codimension) lie in the

image of a collection of orbits determined by that cone. Our conjecture is thus equivalent to

the statement that the µ-image of the TC orbits of models with central charge c intersects

the cone σ∗ containing µ∗ in its interior.

A cone σ ∈ Σ can be specified by its relation to the codimension-one cones σ(q′,Q′). For

each of these, σ either lies inside σ(q′,Q′), in which case µ ∈ σ satisfy (5.11), or it lies on one

side or the other, meaning (5.11) is satisfied as a strict inequality for all µ ∈ σ. To prove

our claim we thus need to show that orbits of points in parameter space corresponding to

models with central charge c are precisely those containing in their image points satisfying

the inequalities satisfied by µ∗. To do this we must consider all codimension-one cones of

Σ. We classify these by the nature of the models exhibiting the enhanced symmetry.

5.2 Enhanced toric symmetries

Symmetries realized by a non-singular potential. Consider first the case of one-

parameter subgroups of TC for which the generic point in the locus they fix corresponds

to a nonsingular model with a U(1)2 global symmetry. The IR R-symmetry can then be

determined by c-extremization as

q̂i = tqi + sq′i , Q̂A = tQA + sQ′A , (5.12)

where

L

(
t− 1

s

)
=

(
0∑

i q
′
iλ
∗
i +

∑
AQ

′
AΛ∗A

)
. (5.13)

L is the negative-definite 2×2 matrix defined in (2.11) and (q,Q) are normalized as in (2.6).

We now distinguish two situations.

1. c′ = c. If ∑
i

q′iλ
∗
i +

∑
A

Q′AΛ∗A = 0 , (5.14)

then the IR symmetry is given by (q;Q), and the TC orbit of the model with enhanced

symmetry is a point in V . In this case, we can apply conformal perturbation theory

to deformations of this theory. The symmetry-breaking couplings αAm (those van-

ishing on the locus exhibiting enhanced symmetry) parameterize classically marginal

deformations away from the symmetric theory. The analysis of section 4 shows that

in fact some of these will be marginally irrelevant, and the moduli space is given to

first order in the symmetry-breaking couplings by the vanishing of the D-term for

18Note that this does not imply that cones of higher codimension correspond to models with larger

unbroken symmetry: values of µ at the intersection of two codimension-one cones can be in the image of

two distinct TC orbits, each of which is fixed by a different subgroup.
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the broken symmetry. We can write this explicitly here as

D =
∑

A,n∈∆A

(Q′A +
∑
i

miq
′
i)|αAm|2

=
∑
i

q′iλi +
∑
A

Q′AΛA . (5.15)

This holds at leading order in conformal perturbation theory about the symmetric

point, and our conjecture amounts here to the statement that higher order corrections

do not qualitatively modify the structure of the symplectic quotient that leads to the

variety V : while the metric may be modified, which orbits are kept and which are

excluded is not changed by higher order corrections. This implies that points in V

are TC orbits containing points whose image under µ lies in the cone σ(q′,Q′). We see

from (5.14) that this condition is satisfied by µ∗.

2. c′ > c. If (5.14) is not satisfied, the central charge c′ determined by extremization will be

larger than c, and the TC orbit of the model with enhanced symmetry is not a point

of V . Moreover, the symmetry-breaking parameters αAm are not marginal couplings

in this theory. Solving (5.13) we find

s = − r

detL

(∑
i

q′iλ
∗
i +

∑
A

Q′AΛ∗A

)
. (5.16)

Without loss of generality we can choose the sign of (q′, Q′) so that s is negative. Since

by construction all our couplings are invariant under (q;Q), and by assumption L is

negative definite, the sign of the charge under the IR R-symmetry is then the opposite

of the charge under (q′, Q′). Thus, couplings αAm for which Q′A+
∑

imiq
′
i > 0 will be

relevant deformations of the model with enhanced symmetry, while couplings with

the opposite charge will be irrelevant; couplings preserving the enhanced symmetry

are marginal. The TC orbits of points in parameter space corresponding to irrelevant

deformations of the symmetric model will not be points in V : as discussed above

they will exhibit an accidental symmetry in the IR and a central charge c′. Orbits

for which at least one relevant coupling is nonzero are characterized precisely by the

fact that they contain points for which the moment map satisfies∑
i

q′iλi +
∑
A

Q′AΛA > 0 . (5.17)

This specifies one side of the hyperplane associated to the enhanced symmetry, and,

as we have shown, this is the side on which the point µ∗ lies.

Symmetries without a smooth realization. If every enhanced symmetry were real-

ized by a non-singularW the discussion above would suffice. In general, however, there are

codimension-one cones in Σ associated to one-parameter subgroups of TC for which it is

not possible to construct a non-singularW exhibiting the symmetry. In these cases the RG

trajectories exhibiting the enhanced symmetry along the flow are singular, and we cannot

use their properties to determine the local structure of the moduli space.
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A simple example of this is given by the symmetry acting as ΓA → τΓA for some A with

all the other fields invariant. This fixes the locus JA = 0 which will in general be singular

(it will always be singular when n = N). In this case, the corresponding hyperplane is

ΛA = 0, and the associated codimension-one cone lies on the boundary of Σ̂.

More interesting is the case of a codimension-one cone in the interior of Σ̂ to which

the methods of the previous section do not apply. Our conjecture here is that whenever

the enhanced symmetry does not satisfy (5.14), non-singular models will only exist when

at least one symmetry-breaking coupling whose charge under the broken symmetry is in

accord with the sense of the inequality is non-zero. In parallel with the second discussion

in the previous subsection, TC orbits associated to points in V will be those containing

points whose image under µ lies on the side of the hyperplane which contains the point µ∗.

There will also be codimension-one cones in Σ associated to one-parameter subgroups

for which there is no non-singular model exhibiting the symmetry, but which satisfy (5.14).

Here as well we can classify the symmetry-breaking couplings by their charge under the

broken symmetry. In this case, we conjecture that non-singular models will have nonzero

values for at least one coupling of each sign. Restricting to models with non-zero couplings

of only one sign (as well as the neutral couplings) will produce a singular model. The space

of TC orbits associated to points in V in this case will not be toric. It can, however, be

described as the complement of the symmetric locus (a component of ∆) in a (singular)

toric variety. This contains orbits containing points whose image under µ lies in the cone

σ(q′,Q′). When we exclude the singular symmetric locus here, we find precisely orbits that

have nonzero symmetry-breaking couplings with both signs of the broken charge. The

point µ∗ clearly lies in this hyperplane.

5.3 Examples

A few examples may be helpful at this point. We proceed from a simple example for

which our methods produce correctly the actual moduli space to models demonstrating

their limitations.

A plain model. Consider first the class of models with n = N = 2 and charges

Φ1 Φ2 Γ1 Γ2

q 1
4

1
6 −3

4 −
5
6

(5.18)

and c/3 = r = 1 + 1
6 . The most general superpotential is

W = Γ1
(
α11φ

3
1 + α12φ1φ

3
2

)
+ Γ2

(
α21φ

5
2 + α22φ

2
1φ

2
2

)
, (5.19)

and the discriminant is

∆ = α11α21 (α11α21 − α12α22) . (5.20)

This is an example of what we call a plain model: the torus TC includes all field redefinitions

consistent with the symmetry, so our toric considerations will in fact generate the moduli

space M itself.
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The torus T = U(1)3 action on C4 is characterized by the charges and moment map

components

D α11 α12 α21 α22

λ1 3 1 0 2

λ2 0 3 5 2

Λ1 1 1 0 0

Λ2 0 0 1 1

(5.21)

where the latter satisfy

3λ1 + 2λ2 = 9Λ1 + 10Λ2 . (5.22)

There are six codimension-one cones in Σ. Only two of these are realized by non-singular

models; the remaining four comprise the boundaries of Σ̂ given by Λ1 > 0 and Λ2 > 0, as

well as λ2 − 2Λ2 > 0 and λ1 − Λ1 > 0.

There are two codimension-one cones in the interior of Σ̂. Consider first the sym-

metry (q′;Q′) = (1, 0;−3, 0), which satisfies (5.14). The non-singular models realizing

this symmetry have α12 = α22 = 0. In fact the model reduces to a product of two

(2,2) minimal models and, as expected, the central charge is c. The symmetry deter-

mined by (q′, Q′) = (−1, 1;−2, 0), for which
∑

i q
′
iλ
∗
i +

∑
AQ

′
AΛ∗A < 0, fixes models with

α11 = α22 = 0.19 Under the broken symmetry, α11 is negatively charged and α22 positively

charged. We see from (5.20) that, in accordance with the conjecture, non-singular models

require a non-zero value for the negatively charged coupling.

The moduli space M is thus determined. We can fix two of the generators of TC
by setting α11 = α21 = 1, and the remaining couplings parameterize the toric variety

V = C with invariant coordinate z = α12α22. The moduli space is M = V \ ∆̃ where the

discriminant reduces in these coordinates to 1− z.

A non-plain model. We can also consider the model with n = N = 2 and charges

given by

Φ1 Φ2 Γ1 Γ2

q 46
471

115
471 −

460
471 −

230
471

(5.23)

with c/3 = r = 1 + 58
471 . The most general superpotential invariant under this symmetry is

W = Γ1(α11Φ10
1 + α12Φ5

1Φ2
2 + α13Φ4

2) + Γ2(α21Φ5
1 + α22Φ2

2) , (5.24)

and the discriminant is

∆ = α11α
2
22 − α12α21α22 + α13α

2
21 . (5.25)

19Note that this symmetry leads a 2×2 L matrix that is not negative-definite; however, the corresponding

superpotential is singular.
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The torus T = U(1)3 action on C5 is characterized by the charges and moment map

components

D α11 α12 α13 α21 α22

λ1 10 5 0 5 0

λ2 0 2 4 0 2

Λ1 1 1 1 0 0

Λ2 0 0 0 1 1

(5.26)

where the latter satisfy

2λ1 + 5λ2 = 20Λ1 + 10Λ2 . (5.27)

The cone Σ̂ is the intersection of this with the positive orthant. This is bounded, in this

case, by the coordinate hyperplanes. There are four codimension-one cones in the interior

of Σ̂ here, none of which satisfy (5.14).

The symmetries acting with charges (q′;Q′) = (1, 0;−5,−5) and (q′, Q′) = (1, 0,−5, 0)

are preserved by singular models, and non-singular models, as per the conjecture, lie in

orbits containing points for which λ1 − 5Λ1 − 5Λ2 < 0 < λ1 − 5Λ1. The symmetry acting

with charges (q′, Q′) = (1, 0;−10, 0) fixes the locus α12 = α13 = α21 = 0 where we find a

product of (2,2) minimal models: up to a rescaling

W1 = Γ1Φ10
1 + Γ2Φ2

2 , (5.28)

with central charge c1/3 = 1 + 5
33 > r. At this point, the operators associated to α12 and

α13 are irrelevant but the operator associated to α21 is relevant. We conclude that models

with α11α22 6= 0 and α21 = 0 flow to this IR fixed point and orbits containing such models

do not contribute to V . Orbits that do contribute have a point for which λ1 > 10Λ1.

The symmetry acting with charges (q′, Q′) = (0, 1;−4, 0) fixes the locus α11 = α12 =

α22 = 0 where we find a product of (2,2) minimal models: up to a rescaling

W2 = Γ1Φ4
2 + Γ2Φ5

1 , (5.29)

with central charge c2/3 = 1 + 4
15 > c1/3. At this point, the operators associated to α11

and α12 are irrelevant but the operator associated to α22 is relevant. We conclude that

models with α13α21 6= 0 and α22 = 0 flow to this IR fixed point and orbits containing

such models do not contribute to V . The orbits that do contribute have a point for which

λ2 > 4Λ1.

Our toric model V of the moduli space is thus determined here by the cone

λ1 > 10Λ1 , λ2 > 4Λ1 , Λ1 > 0 . (5.30)

Applying (5.9) we find that, as expected, the point

µ∗ = (435
471 ,

356
471 ; 11

471 ,
241
471) (5.31)
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lies in this cone. Points in the preimage of this have α21 and α22 both non-zero. We can

use two of our rescalings to fix α21 = α22 = 1, and under the remaining symmetry the

three coefficients in J1 transform homogeneously, so we have V = P2. Of course, this is

an overparametrization. This is not a plain model, and we can use the remaining field

redefinitions Γ2 → Γ2 +Γ1(aΦ5
1 +bΦ2

2) to show that these theories flow to a unique IR fixed

point. Not unrelated to this is the fact that there is no discriminant here: any point in P2

corresponds to a non-singular model.

A model with N > n. The model discussed in section 3.3 shows more of the limitations

of toric methods. Here we have Y = C9 and TC = (C∗)4 acts on the couplings. Σ̂ is the

intersection of λ1 + 3λ2 = 6(Λ1 + Λ2 + Λ3) with the positive orthant. There are a total

of 18 codimension-one cones in the interior of Σ̂. Proceeding with our method we find a

five-dimensional toric variety V determined by the moment map values µ∗ = (6
7 ,

4
7 ; 1

7 ,
1
7 ,

1
7).

This is a puzzle, since we found previously that there are no models in this class with c = 3.

The resolution is that the model

W ′3 = Γ1Φ6
1 + Γ2Φ2

2 + Γ3Φ2
2 , (5.32)

which is in the inverse image under µ of the point µ∗, is fixed by a U(1) rotation in the

Γ2,3 plane that is not contained in TC. This is a symmetry which arises as an accidental

symmetry for all points in V , and is manifest for W ′3. This mixes with the IR R-symmetry

leading to the central charge found above. This phenomenon in which a Fermi field is in

fact free in the IR can occur in non-plain models with N > n. For models with N = n a

model with a free Fermi field will be singular.

5.4 Summary and further thoughts

We have provided evidence for a strong conjecture on the structure of the space of TC orbits

contributing to V . For models in which these are the only field redefinitions consistent with

the UV symmetry this produces the moduli space M of SCFTs with central charge c. By

analogy with studies of (0,2) GLSM parameter spaces [35, 36], we call these plain models.

For models with larger groups of field redefinitions, our discussion is partial in two ways:

we have overparametrized the moduli space, and we have failed, in general, to exclude the

basins of attraction of models in which a symmetry in the complement of TC mixes with

the IR R-symmetry.

Our evidence, while suggestive, falls short of a derivation of the result. The key diffi-

culties in a proof are twofold. First, the consequences of enhanced symmetries that are only

realized by singular superpotentials are difficult to grasp, since we do not have conformal

perturbation theory as a guide. For these our evidence is based on the analysis of many

examples that all turned out to be consistent with the conjecture. The second difficulty

lies in extending the leading order conformal perturbation theory result for enhanced sym-

metry loci with c′ = c. It may be possible to improve this by a more detailed study of the

combinatorial structures involved.

A more satisfactory derivation can be imagined, which proceeds by constructing a c

function along the RG flow and showing that this can be written in terms of α through the

– 28 –



J
H
E
P
1
2
(
2
0
1
4
)
1
5
7

combinations forming (λ; Λ), along the lines of [37–39].20 In that work, global symmetries

broken by couplings were incorporated into a-maximization in four-dimensional theories

by imposing constraints on the space of symmetries over which one maximized a trial a-

function. The Lagrange multipliers implementing the constraints could then be used to

parameterize the flow. In our case the symmetry-breaking couplings are the superpotential

couplings which break the global symmetry U(1)N+n of the (free) UV theory to U(1)

and one can introduce Lagrange multipliers to constrain the symmetries over which c is

extremized. Of course, imposing N + n − 1 constraints is a formal procedure, because

this is tantamount to specifying the outcome. However, if one proceeds formally, one finds

an expression for c in terms of the Lagrange multipliers and the values of these at the

extremum — which reproduces (2.7) — are precisely the values of the moment map given

by (5.9). The relation between this formal result and the values of the moment map is not

clear to us.

6 Outlook

This project began as an attempt to classify IR fixed points of (0,2) LG theories — a

generalization of the results obtained for (2,2) LG theories in [22, 23] . This beautiful work

shows that for fixed c = c there is a finite set of families of superpotentials W (X1, . . . , Xn),

or equivalently charges q(Xi) that lead to a non-singular (2,2) SCFT of desired central

charge. Having the (0,2) generalization would be very useful: we would have a new class

of heterotic vacua and more generally (0,2) SCFTs with many properties computable in

terms of the simple UV description. These would naturally fit into the class of (0,2) gauged

linear sigma models and could be used to produce a large class of hybrid models along the

lines of [40].

What we learned is that, in contrast to the (2,2) case, it is not enough to classify non-

singular (0,2) potentials realizing a particular set of U(1)L ×U(1)R charges. For instance,

the model studied section 3.3 would naively realize a c = 4, c = 3 (0,2) SCFT that could

correspond to some rather exotic 8-dimensional heterotic vacuum. In fact no such IR fixed

point is obtained for any choice of the UV parameters. This is a general lesson for building

UV models of (0,2) SCFTs: a check of UV R-symmetry anomalies is not enough, and while

the UV theory may well flow somewhere (i.e to an SCFT with c > 0), it may wind up far

(i.e. at infinite distance) from the expectations of the model builder. We expect this to be

a general lesson applicable to the wider class of gauged linear sigma models. In exploring

that latter point it should be interesting to study in detail GLSMs with LG phases that

exhibit accidents and extrapolate their consequences to large radius geometries.

For a class of models — the plain LG theories — we were able to obtain a compelling

conjecture for a global description of the (0,2) moduli space M realizing the expected

central charge. While the resulting combinatorial structure is consistent with a case-by-

case analysis of field redefinitions and their orbits in examples, we were not able to prove

it in generality. Progress on both testing and proving the conjecture could be made by

20A conversation with D. Kutasov, in which he suggested this idea, was instrumental in leading us to the

results of this section.
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developing a better understanding of the combinatorial structure of quasi-homogeneous

(0,2) superpotentials, as well as developing Lagrange multiplier techniques and trial c

functions. A classification of plain LG theories seems achievable; this would yield a large

playground to explore LG RG flows and could give hints to the more general classification

problem. Finally, it should be illuminating to relate our work to studies of RG flows with

redundant couplings, e.g. [41].
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A An F-term obstruction

In this section we give an example, taken from [42], that illustrates both D-term and

F-term obstructions to marginal couplings. The setting is a (2,2) LG orbifold (LGO)

compactification of the heterotic string with a superpotential

W = X4
0 +X4

1 +X4
2 +X8

3 +X8
4 + ψX0X1X2X3X4 + ε∆W . (A.1)

Here ψ and ε are parameters and ∆W is a generic polynomial with q = 1. Marginal (2,0)

deformations of the LGO correspond to massless E6-neutral space-time chiral multiplets.

We can compute the massless spectrum exactly as a function of the complex parameters

in the superpotential using the technique developed in [43]. This leads to the following

results.

1. Setting ψ = ε = 0 leads to a U(1)4 right-moving Kac-Moody algebra and 298 marginal

(2,0) deformations. We now turn on the (2,2)-preserving ψ and ε deformations and

investigate what happens to the remaining (2,0) deformations. From above we know

that at worst the marginal (2,0) deformations can become marginally irrelevant.

2. With ψ 6= 0 but ε = 0 the U(1)4 symmetry is broken, and the number of marginal

(2,0) deformations is 298 − 4 − 6 = 288. While 4 of the 10 marginally irrelevant

deformations are associated to the broken symmetries the 6 others are not.

3. Finally, turning on ε 6= 0 does not break any continuous symmetries, but the number

of marginal (2,0) deformations decreases to 288− 6 = 282.
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Note however, that all the singlets lifted by F-terms correspond to twisted sectors of the

LGO. This is consistent with there being no F-term obstructions in pure LG theories.

B A D-term obstruction in a heterotic vacuum

Consider now the (2,2) quintic LG theory coupled to a free left-moving fermion with

W =
5∑
i=1

ΓiJi(Φ) =
5∑
i=1

Γi(Φ4
i + ψ

∏
j 6=i

Φj) + Γ6 × 0 . (B.1)

The interacting fields have their usual U(1)L charges qi = 1/5 and Qi = −4/5, and for

ψ 6= 0 there are no extra U(1) symmetries in addition to U(1)L × U(1)R × U(1)6, where

U(1)6 is the symmetry associated to the free Γ6. This flows to a conformal field theory

with r = 4 and c = 9, and we can now consider deformations of the IR theory from the

general perspective of deforming by chiral primary operators. In the (2,2) theory we have a

good understanding of the map between the IR chiral primary marginal operators and the

UV data, so we can identify the marginal deformations of the IR theory with the space of

possible W modulo field redefinitions. If we keep Γ6 free, we find a 301-dimensional space

of deformations.

We can also include deformations of the form Γ6J6, where J6 is some generic degree 5

polynomial. Although these break the U(1)6 symmetry, they preserve the central charge

and the U(1)L ×U(1)R quantum numbers of the fields. In particular, Γ6 has the quantum

numbers of a free field. Including these J6 deformations yields a 402-dimensional space of

marginal deformations away from the (2,2) r = 4 c = 9 fixed point.

Are all of these 402 marginal deformations exactly marginal? While all of the 301

deformations of the Ji are truly marginal, the 101 extra deformations associated to J6 6= 0

are marginally irrelevant. This is completely clear from the conformal perturbation theory

discussion we gave in the text. All of these break the U(1)6 symmetry, and every symmetry-

breaking coupling has the same sign of U(1)6 charge. Let us now see how the same result

is recovered from a heterotic space-time perspective.

Heterotic insights. The Z5 orbifold of the LG theory just described, combined with an

appropriate heterotic GSO projection leads to a well-understood heterotic vacuum: the LG

point in the moduli space of the quintic compactification with standard embedding. The

massless fields of the resulting space-time N=1 d = 4 supergravity theory consist of the

supergravity multiplet, the axio-dilaton chiral multiplet, the e6⊕ e8 vector multiplets, 326

gauge-neutral chiral multiplets, and a e6 charged chiral spectrum 27 ⊕ 27
⊕101

. The 301

deformations of the Ji described above correspond to e6-preserving marginal deformations

in the untwisted sector of the orbifold. These remain truly marginal for any value of the

Kähler modulus (itself in a twisted sector), and at large radius they are the 101 complex

structure deformations of the CY quintic, as well as 200 of the 224 deformations of the

tangent bundle. As reviewed in [44], there are many arguments for why these deformations

are truly marginal.
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The 101 deformations associated with the J6 couplings also have a simple space-time

interpretation: they correspond to so(10)-singlet components of the 27
⊕101

. Turning on

these deformations corresponds to Higgsing e6 → so(10). This makes it obvious that the

deformations are marginally irrelevant. Under the decomposition of e6 ⊃ so(10) ⊕ u(1),

we have

27 = 16−1/2 ⊕ 101 ⊕ 1−2 . (B.2)

The so(10) singlets all have charge −2 under the broken u(1), and hence have a D-term

space-time potential. This is an example of a “D-term” obstruction to a marginal coupling

being exactly marginal.

Since the deformation only involves world-sheet fields in untwisted sector of the orb-

ifold, it is clear by the orbifold inheritance principle that this obstruction to marginality

lifts to the un-orbifolded quintic LG model and matches the conformal perturbation theory

result. In the orbifold theory it is possible to find exactly marginal deformations that Higgs

e6 → so(10) [45], but they involve an interplay between marginal couplings in twisted and

untwisted sectors [44].
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