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Abstract: We consider the presence of an axion like particle, σ, with a generic CP violat-

ing axial coupling of the form (ασ/f)FF̃ , where Fµν is the gauge field strength of a generic

abelian U(1) gauge group, not necessarily associated with the standard electromagnetism,

and f is the decay constant of the axion. It has previously been demonstrated that if

the axion is identified with the inflaton, such an interaction can lead to measurable cos-

mological signatures (non-Gaussian modifications of the curvature perturbation spectrum)

depending on the parameter ξ = ασ̇/(fH). In the present paper we will show that the

generation of curvature perturbation at horizon crossing due to the axial coupling has a

universal form and remains unmodified in terms of the ξ parameter even if the axion, σ,

is not identified with the inflaton. As a consequence, it does not appear to be possible to

generate CMB tensor perturbations through this mechanism, larger than the vacuum ones,

without violating the observational constraints unless we combine this mechanism with a

curvaton or if the σ field becomes heavy and decays during inflation. Even in this last

case there are non-trivial constraints coming from the slow-roll evolution of the curvature

perturbation on super horizon scales which should be taken into account. We also com-

ment on implications for inflationary models where axions play an important role as, for

example, models of natural inflation where more than one axion are included and models

where the curvaton is an axion.
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1 Introduction

It is believed that pseudo-scalar axion-like particles might play a crucial role for our un-

derstanding of inflation (see [1–10] for some discussions of this point). In large field models

of inflation a slightly broken continuous shift-symmetry protects the flatness of the infla-

ton potential from being spoiled by large loop corrections. The axion is identified with

the Nambu-Goldstone boson of the spontaneously broken shift symmetry [1] . Topologi-

cal effects also explicitly break the shift symmetry and generate a periodic potential for

the axion. Axions will also couple to gauge fields, with a CP violating coupling of the

form [11, 12]

Lint = −ασ
4f
FµνF̃

µν . (1.1)

Notice this term in the Lagrangian is a total derivative if σ is time-independent. We

therefore expect all dynamical effects to be suppressed by time-derivatives of the axion.

On the other hand, if the axion is slowly rolling one would expect non-trivial effects of the

coupling in eq. (1.1).

In fact, it is well known that if the axion, σ, is identified with the slowly rolling

inflaton, the axial coupling above can have important observational implications due to the

generation of non-Gaussianity [13] and the enhancement of the gauge field [11]. Writing

the axion field in terms of an homogenous background part and a perturbation, σ(t, ~x) =
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σ(t) + δσ(t, ~x), and identifying σ with the inflaton, there will be a direct coupling of the

inflaton perturbation and the gauge field of the form1

LδσAA = −αδσ
4f

FµνF̃
µν . (1.2)

Therefore there will be one-loop effects with a gauge field running in the loops which are

enhanced by the resonant production of the gauge field parametrized by ξ = ασ̇/(fH), and

should be distinguished from the resonant non-Gaussianity also present in many models

of axion inflation due to superimposed fast oscillatory contributions to the axion potential

itself [15, 16].

Interestingly, it has been demonstrated that similar loop effect also leads to an en-

hancement of tensor modes [17]. It is intuitively simple to understand that this effect is

smaller. Tensor modes are only gravitationally coupled to the gauge field, and, therefore,

the contribution from the enhanced gauge field in the loops to tensor perturbations is sup-

pressed compared to the contribution to inflaton perturbations which couple directly to the

gauge field, if the inflaton is identified with the axion. In this type of models large contribu-

tions to tensor correlation functions are, thus, always associated with large non-Gaussian

contributions to the inflaton correlation functions.

On the other hand, we might easily expect many axions to be around during infla-

tion [18], and not all of them need to contribute to the background evolution. In the

case where the axion is not identified with the inflaton, but instead considered to be some

isocurvature field, then, given that the direct coupling of the inflaton perturbation with

the gauge fields in eq. (1.2) is absent, it seems to be possible to have a large enhance-

ment of tensor correlation functions without an associated large non-Gaussianity in the

inflaton correlation functions. This is an interesting idea, since this could imply that a

large B-mode in the CMB might not necessarily be related to the vacuum contribution to

the tensor modes, but instead be sourced by this mechanism [19].2 If this is the case, a

measurement of primordial B-modes would not be enough to determine the scale of infla-

tion. Since the tensor modes would be very non-Gaussian, it was also proposed as a way

of generating large tensor non-Gaussianities without scalar non-Gaussianities [22]. In this

light we revisit the cosmological signatures of axions present during inflation. We will show

that even if the inflaton is only gravitationally coupled to the gauge fields, the presence of

a sub-dominant axion coupled to the gauge field will still introduce a significant coupling

between the gauge field and the curvature perturbation which can only be erased if the

field decays quickly after the first observable modes become super horizon. This is because

the fluctuations of the inflation and the axion are not gauge invariant and the physical

gauge invariant curvature and entropy perturbations are, in general, linear combinations

of the inflaton and axion field fluctuations. Only in one gauge the entropy perturbation

can be directly associated with the axion field fluctuation, and we will show that even in

this gauge the curvature perturbation couples to the gauge fields in a universal fashion in

terms of the parameter ξ.

1Constraints on gauge field production from inflation with a scalar instead of a pseudo-scalar coupled

to gauge fields through the interaction λ(σ)FµνF
µν was studied thoroughly in [14].

2Other similar ideas has been proposed in [20, 21].
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One way to see the universal form of the coupling between the curvature perturbation

and the gauge field is to make the following observation. The axial coupling is a total

derivative unless σ̇ 6= 0. In this case the equations of motion of the gauge field are conformal

invariant, and to leading order one might therefore expect the gauge field only to be

sensitive to variations in the background through axial coupling, which we can expand in

variations of the background as [23]

σ = σ|δ ln a=0 +
dσ

d ln a

∣∣∣
δ ln a=0

δ ln a+ · · · = σ|ζ=0 +
dσ

d ln a

∣∣∣
ζ=0

ζ + . . . (1.3)

Using dσ/d ln a = σ̇/H, we have in the comoving gauge

LζAA =
ξ

4
ζFµνF̃

µν . (1.4)

This can also be understood more formally as a gauge transformation from the spatially flat

gauge to the comoving gauge. In the spatially flat gauge the spatial curvature fluctuation

vanishes (ζ = 0) and the adiabatic scalar fluctuation is instead given by the inflaton

perturbation φ(t, ~x) = φ0(t)+δφ(t, ~x), while the perturbation of the axion field is σ(t, ~x) =

σ0(t)+δσ(t, ~x). One can make then a transformation into the comoving gauge with δφ = 0

by employing the invariance under time reparameterizations. Under a time translation

given by the vector ξµ = (T, 0, 0, 0), the field perturbations transform as [24, 25]

δφ(xµ + ξµ) = δφ(xµ) +

∞∑
n=1

(ξµ∂
µ)n

n!
φ(xµ) , δσ(xµ + ξµ) = δσ(xµ) +

∞∑
n=1

(ξµ∂
µ)n

n!
σ(xµ) .

(1.5)

To linear order the choice T = −δφ/φ̇ will imply δφ(xµ + ξµ) = 0, while solving for the

spatial curvature perturbation gives ζ = HT , which implies that in the new gauge, we

can write

δσ(xµ + ξµ) = δσ(xµ) +
σ̇

H
ζ(xµ) + . . . (1.6)

which explains immediately how (1.4) is obtained from (1.2), and that when we go to the

comoving gauge we are making a space-time dependent change of the time variable, such

that σ is shifted like in eq. (1.3).

It is important to point out that only in the comoving gauge can we identify the

curvature perturbation, ζ, with the gauge invariant adiabatic curvature perturbation and

the axion perturbation δσ with the gauge invariant entropy peturbation. Below we will

verify eq. (1.4) in more details by deriving it directly in both the comoving and the flat

gauge, and show explicitly that the leading interaction between the curvature perturbation

and the gauge field has this form, independently of whether we identify the axion with the

inflaton or not, as the above intuitive argument is indicating.

This paper is organized as follows. In section 2 we review the mechanism by which

the gauge fields are resonantly enhanced due to the coupling with a pseudo-scalar while in

section 3 an estimate of the contribution to cosmological correlators is given. In section 4

we compute the relevant interaction terms at cubic order in two different gauges and in

section 5 we study the superhorizon evolution of the curvature perturbation. Finally,

in section 6 we discuss the cosmological implications of the universal coupling to scalar

curvature perturbations and we conclude in section 7.

– 3 –
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2 Gauge field production

In this section we review the mechanism by which gauge fields are resonantly enhanced.

The existence of a pseudo-scalar, σ, during inflation allows for the presence of an axial

coupling with strength α/f with a U(1) gauge field, where α is related to the coupling

of the axion to the gauge field and f is the decay constant. Therefore, the following two

terms in the Lagrangian are, possibly, of importance3

Lint = −ασ
4f
FµνF̃

µν and Lkin = −1

4
FµνFµν , (2.1)

where Fµν = ∂µAν − ∂νAµ is the EM field strength4 and F̃µν = 1
2
εµναβ√
−g Fαβ is its dual with

ε0123 = 1. Notice that σ could be the inflaton or any other pseudo-scalar.

For a FLRW space-time with metric

ds2 = a2(τ)
(
−dτ2 + d~r 2

)
, (2.2)

the background inflationary dynamics satisfies the equation

3H2 =
1

2
φ′2 − 1

2
(∇φ)2 + a2V (φ) +

a2

2

(
~E2 + ~B2

)
, ′ ≡ ∂

∂τ
(2.3)

where H ≡ a′/a and we denoted φ as the inflaton. We have also defined the electric and

magnetic fields in the standard way as, respectively, ~E = −a−2 ~A′ and ~B = a−2∇× ~A. The

equation of motion for the gauge field Aµ in the presence of the axial coupling is given by

∇µFµν +∇µ
(
ασ

f
F̃µν

)
= 0. (2.4)

If we choose the Coulomb gauge, where A0 = ~∇ · ~A = 0, and quantize Aµ in the basis of

the circular polarization vectors,5 the equation of motion becomes

A±(τ, k)′′ +

(
k2 ± 2kξ

τ

)
A±(τ, k) = 0, ξ ≡ ασ̇

2fH
=
α

f

√
εσ
2

(2.5)

where εσ ≡ σ̇2/(2H2). If σ is the inflaton then εσ = ε is the first slow roll parameter. We

will assume that the field σ rolls slowly and therefore we can neglect the time dependence

of ξ. Therefore, the results are accurate up to time variations of ξ. Assuming σ̇ > 0 and

τ < 0 during inflation, there is an enhancement of A+(τ, k) whenever −kτ < 2ξ.6 In [12],

an accurate solution for eq. (2.5) in the interval (8ξ)−1 <∼ − kτ <∼ 2ξ was found to be

A(τ, k) '
(
−τ

23kξ

)1/4

eπξ−2
√
−2ξkτ and A′(τ, k) '

(
−kξ
2τ

)1/4

eπξ−2
√
−2ξkτ . (2.6)

3We choose natural unities where Mp = 1.
4The gauge field Aµ can represent the EM field or a dark U(1) gauge field, although for simplicity we

refer to it as EM.
5The circular polarization vectors ~e± obey ~k · ~e±(~k) = 0,~k × ~e±(~k) = ∓ik~e±(~k), ~e±(−~k) = ~e±(~k)∗ and

are normalized to ~eλ(~k)∗ · ~eλ′(~k) = δλ,λ′ .
6Given that the A− component does not get excited we will neglect this component and, for simplicity,

refer to A as the (+) component.

– 4 –
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This time interval is of importance because it corresponds to the interval where the gauge

modes are effectively excited. After that time, when −kτ → 0, the gauge field saturates

to a constant value and therefore the EM energy density decreases with the scale factor

adiabatically, as a(τ)−4. Basically, the field gets an enhancement around the time of

horizon crossing.

This picture is consistent as long as the inflationary dynamics remains unchanged.

Therefore the energy stored in the gauge fields, which is given by [12]7

1

2
〈 ~E2 + ~B2〉 ' 1

2
〈 ~E2〉 =

1

4π2a4

∫
dk k2|A′+|2

' 1.4× 10−4 H
4

ξ3
e2πξ, for ξ & 1 (2.7)

should always be smaller than the total energy density ρt = 3H2. Another constraint ap-

pears when the pseudo-scalar is the inflaton.8 In that case the gauge fields could potentially

spoil the flatness of the potential through the term [12]

〈 ~E · ~B〉 = − 1

4π2a4

∫
dk k3 d

dτ
|A+|2,

= −2.4× 10−4 H
4

ξ4
e2πξ, for ξ & 1 (2.8)

which should be, in that case, much smaller than f/α |V ′(φ)|.

3 Estimate of loop effects

The enhancement of the gauge field leads also to an enhancement of the curvature and

tensor perturbations through one loop effects. Here we will, for pedagogical reasons, give

only a very crude estimate of these effects, since more detailed calculations has been carried

out elsewhere. From the action term
∫
dτd3x

√
−gLint, with a = −1/(τH), we obtain, using

eq. (1.4), the vertex factor

Vs ∝
1

H4
ξ , (3.1)

where the two-point correlation function of ζ receives a one-loop correction with two in-

sertions of this vertex and two propagators corresponding to ~E · ~B in the loop. Since the

gauge field is resonantly produced and can be treated on shell, let us assume that we can

replace the propagators with the classical expectation value
〈
~E · ~B

〉
. In this way we obtain

P2 = (H2/(2π|φ̇|)4 from the two external legs,
〈
~E · ~B

〉2
from the two propagators and

(ξ/H4)2 from the two vertex factors, which using eq. (2.8) gives, for the power spectrum

of scalar curvature perturbations,

Pone-loop
ζ = γs

P2

ξ6
e4πξ, (3.2)

7As discussed in [12, 26] the modes are in their vacuum state for −kτ & 2ξ and therefore that provides

a natural UV cutoff. On the other hand, although the integration converges in the IR it can be shown that

the integration peaks in the region (8ξ)−1 <∼ − kτ <∼ 2ξ, where we can use the approximate solutions.
8In addition it would also be interesting to explore the mixing of scalar and vector perturbations to check

if they given different bounds. We thank Nemanja Kaloper for pointing out this additional possible issue.
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Figure 1. Feynman diagrams associated with the one-loop contribution to the 2 and 3 point

function of the scalar curvature and to the 2 point function of the tensor curvature.

where the precise number γs needs to be computed from a more detailed evaluation, leading

to [13] γs ' 8×10−5. Similarly, by insertion of one more external leg, one more propagator,

one more vertex factor, and a momentum conserving delta-function, one finds for the three-

point function

〈ζk1ζk2ζk3〉
one-loop = (2π)3δ(3)

(∑
i

kI

)
f(k1, k2, k3)

P3

ξ9
e6πξ, (3.3)

where f(k1, k2, k3) is a momentum configuration dependent constant. A precise calculations

gives in the equilateral configuration

fone-loop
NL = γNG

P3

P2
ζ ξ

9
e6πξ, (3.4)

with γNG = 3× 10−7 [13].

In a similar way, we can use that gravitational waves couple to the energy momentum

tensor with strength 1/M2
p , so the vertex for the tensor modes is, in natural units,

Vt ∝
1

H4
, (3.5)

while the propagator in the loop is dominated by the term 〈(δij − ∂i∂j/4)EiEj〉 which

can be roughly estimated by
〈
~E2
〉
. Proceeding as above we find, using eq. (2.7),

Pone-loop
t = 16γt

(εP)2

ξ6
e4πξ, (3.6)

where a more precise calculation would give γt ' 3× 10−5 [17].

From this general estimates, we conclude that there could be a large effect on scalar and

tensor perturbations if gauge fields are produced during inflation, which would manifest

itself primarily through a very non-Gaussian contribution to the scalar perturbations. This

leads to strong constraints on gauge field production during inflation in this scenario.

4 Universal coupling of gravity

In order to see the problem with decoupling the effect of the gauge field production from

the curvature perturbation let us consider again the comoving gauge where there are no

perturbations in the inflaton. Then, from linearized gravity, we know that, by definition,

– 6 –
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the metric fluctuations are the term in the Hamiltonian that couples linearly to the energy

momentum tensor

HI ∝ Tµνδgµν . (4.1)

On this form it is clear that the coupling of the metric fluctuation is democratic, in the sense

that it couples universally to all species in the energy momentum tensor. Therefore, one

would also not expect the detailed form of the coupling between curvature perturbations

and the gauge field to depend on whether we identify the rolling axion in the coupling σFF̃

with the inflaton or some other field.

In order to see how this workout in more details, it is useful to use the ADM formalism

where the metric is written as

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt). (4.2)

The dynamic degrees of freedom are contained in hij while the lapse (N) and the shift (N i)

are determined by the constraint equations, which can be derived by inserting the ADM

decomposition of the metric into the background Lagrangian, leading to

L =
a3

2

[
NR(3) − 2NV +N−1(EjiE

i
j − (Eii)

2) +N−1(φ̇−N i∂iφ)2 −Na−2hij∂iφ∂jφ
]
,

(4.3)

where Eij = 1
2(ḣij − ∇iNj − ∇jNi) is the rescaled extrinsic curvature, V is the inflaton

potential, and R(3) is the curvature scalar of the three-metric hij . We consider the gauge

field as a perturbative quantitive and therefore the electromagnetic part of the Lagrangian

is only relevant at quadratic order. Furthermore, we are interested on interactions between

gauge fields and the comoving curvature perturbation. Therefore, in order to compute the

relevant interaction at cubic order it is enough to compute the lapse and the shift to linear

order. Below we compute this interaction in two different gauges.

4.1 Comoving gauge

In the comoving gauge, where δφ = 0 and hij = a2e2ζ [eγ ]ij ,
9 the relevant interaction

Hamiltonian for general matter can be written, in cosmic time, as [27, 28]

HI(t) =

∫
d3xa3

(
−1

2
Tµνδgµν +

αδσ

4f
FµνF̃

µν

)
, (4.4)

where Tµν is the full energy momentum tensor up to quadratic order. The second term

on the interaction Hamiltonian should be included whenever the field coupled to FµνF̃
µν

is not the inflaton but an isocurvature field (σ). In this gauge, δσ = σ̇Sσφ/H where Sσφ is

the gauge-invariant generalized entropy perturbation defined as

Sxy = H

(
δx

ẋ
− δy

ẏ

)
. (4.5)

9In this gauge ζ = −ψ where ψ is the gravitational potential.

– 7 –
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The first term in eq. (4.4), which is the contribution to the curvature perturbation, can be

simplified by noticing that [27]

−1

2
a3Tµνδgµν = a3

[
ζ̇

H
T 00 − ∂i

(
− ζ

H
+ εa2∇−2ζ̇

)
T 0i − a2ζT ii

]
(4.6)

and using the identity [27]

∇µTµ0 = a−3∂t
(
a3T 00

)
+ aȧT ii + ∂iT

i0. (4.7)

Therefore, the interaction with curvature perturbations term can be rewritten as

−a3

∫
d3x

1

2
Tµνδgµν =

∫
d3x

[
−a3 ζ

H
∇µTµ0 +

1

H
∂t
(
a3ζT 00

)]
(4.8)

up to leading order in slow-roll. The total time derivative can be canceled by a field

redefinition. Thus, we just need to compute the quantity ∇µTµ0 where the relevant energy

momentum tensor up to quadratic order is simply10

Tµν = FµβF νβ −
1

4
gµνFαβF

αβ. (4.9)

The conservation of momentum only holds for the total energy momentum tensor and not

for this part in isolation, hence, ∇µTµ0 6= 0. Using eq. (2.4) and the Bianchi identity we

find that

∇µTµν = F νβ∇µFµβ + Fµβ∇µF νβ −
1

2
Fαβ∇νFαβ

= −α
f
F νβ F̃

µβ∇µσ. (4.10)

Therefore, if we assume σ to be an homogeneous field,

∇µTµ0 = −ασ̇
f
~E · ~B. (4.11)

Finally, using the fact that FµνF̃
µν = −4 ~E · ~B we arrive at the interaction Hamiltonian

which, to leading order, gives

HI(τ
′) = −α

f

∫
d3x

a3σ̇

H
(−ζ + Sσφ) ~E · ~B = −2ξa3

∫
d3x (R+ Sσφ) ~E · ~B (4.12)

where R is the gauge-invariant comoving curvature perturbation.11

10The axial coupling does not contribute to the energy momentum tensor as δ
(√
−gFµν F̃µν

)
/δgµν =

δ
(
1/2Fµνε

µναβFαβ
)
/δgµν = 0.

11In fact ζ = −ψ ' −R + σ̇2

φ̇2 Sσφ. However, as the curvature perturbation is mainly adiabatic, σ̇ � φ̇,

and therefore the second term should be subdominant.

– 8 –
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4.2 Spatially flat gauge

Let us do the same approach as before but now in the spatially flat gauge where ψ = 0

and hij = a2 [eγ ]ij . In this case, the leading contribution at cubic order to the interaction

Lagrangian between curvature perturbations and the gauge fields is [26]12

S =
α

f

∫
dtd3x

(
a3δσ ~E · ~B

)
. (4.13)

If σ is the inflaton it is straightforward to get the leading interaction with gauge fields,

Lint = ασ̇/(fH)ζ ~E · ~B. If an isocurvature field couples to the EM sector then there is a term

in the interaction Hamiltonian equal to the second term in eq. (4.4). In the gauge where

ψ = 0 we identified this term as an isocurvature contribution to the curvature perturbation.

The same is not true is this gauge. Namely, if we use the two gauge invariant quantities R
and Sσφ, which in the spatially flat gauge are given by [29]

R = H
δφ

φ̇
and Sσφ = H

(
δσ

σ̇
− δφ

φ̇

)
, (4.14)

we can rewrite δσ in terms of these two quantities as

δσ =
σ̇

H
(Sσφ +R) . (4.15)

Therefore, in this gauge the interaction Hamiltonian becomes

S =
α

f

∫
dtd3x

(
a3δσ ~E · ~B

)
=
α

f

∫
dtd3x

a3σ̇

H
(R+ Sσφ) ~E · ~B

= 2ξ

∫
dtd3x a3 (R+ Sσφ) ~E · ~B (4.16)

which is in agreement with eq. (4.12). We verify then that the contribution to the curvature

perturbation should be exactly the same as a function of the interaction coefficient ξ,

independently of which pseudo-scalar field is coupled to FF̃ .

Of course one would expect that in the limit where σ is a pure isocurvature field, the

perturbations of the σ-field will decouple from the curvature perturbation. This is the

limit where the energy density in σ vanishes, which implies σ̇ → 0. Indeed it is true that

the coupling of the curvature perturbation with the gauge field in (4.13) vanishes in this

limit, where also ξ vanishes. However, this case is quite trivial as there is no gauge field

production either. One could also consider the case where σ̇ → 0 on super-horizon scales.

This scenario, mentioned in [30], seems to be a caveat to the previous reasoning, although,

as we show in next section, also in this case there are non-trivial constraints which need to

be satisfied in order for the final total curvature perturbation to be suppressed.

12As mentioned in [26] there are other cubic contributions coming from the lapse function but they are

parametrically
√
ε smaller than this term.

– 9 –



J
H
E
P
1
2
(
2
0
1
4
)
1
3
9

5 Superhorizon evolution of the curvature perturbation

In this section we will analyze the superhorizon evolution of curvature perturbation. The

analysis can be divided in two different cases depending on whether the σ field decays

before or after the end of inflation.

The curvature perturbation remains roughly constant during inflation if the field does

not decay. The same happens during radiation domination if the isocurvature field decays

quickly into radiation. If not, the field will become energetically more relevant which

will increase the of total value of curvature perturbation. Instead, if the field decays

into cold dark matter then isocurvature perturbations, which are strongly constrained by

Planck observations [31], are generated in addition. Therefore, if the field only decays after

reheating we can work under the conservative assumption that the curvature perturbation

remains at least constant at late times.

The other scenario is more delicate. In the case where the field decays during inflation,

curvature perturbation is similarly generated at horizon crossing through the coupling

with FF̃ , but its contribution to the total curvature perturbation is erased as soon as the

isocurvature field decays and only the inflaton perturbation remains [19]. The inflaton

perturbation is only coupled gravitationally to the gauge fields and therefore the final

sourcing of the total curvature perturbation becomes slow-roll suppressed compared to

the other scenarios. Nevertheless, even in this case there are some non-trivial constraints

coming from the slow-roll variation of Rφ on superhorizon scales due to the relation [32]

R′φ = −
(
σ̇

φ̇

)2

R′σ. (5.1)

In conformal time τ , it gives

Rφ(τ) = R∗φ −
∫ τf

τh.c.

(
σ̇

φ̇

)2

R′σ dτ, (5.2)

where the star denotes quantities evaluated at horizon crossing or, more precisely, as soon

as the source shuts down which is around the time of horizon crossing. In the case of Rφ
we assume it to be dominated by the vacumm contribution at those times. The integration

in the right hand side of eq. (5.2) can be divided in two stages, the first one where σ̇ ' σ̇0

is constant and a second stage where the σ becomes heavy, starts oscillating and decays as

σ̇ = σ̇0 cos(mσ(t− tosc))(aosc/a)3/2. The only unknown in the integrand is the value of R′σ.

One could expect that it would be proportional to the slow-roll parameters of σ, but that

is not the case due to the mixing of σ with the inflaton φ through the non-diagonal mass

mixing term of the form [33, 34]

Lδφδσ ⊃ 3Hφ̇σ̇δφδσ . (5.3)

Generically, if we have a set of scalar fields, φI , during inflation, their quantum fluctuations,

δφI , will satisfy the following equations of motion

¨δφI + 3H ˙δφI +
k2

a2
δφI +

∑
J

[
VIJ −

1

a3

d

dt

(
a3

H
φ̇I φ̇J

)]
δφJ = SI , (5.4)
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where the source term is given by

SI =

(
0

α
f
~E · ~B

)
, (5.5)

and VI = ∂V/∂φI . In our case the fields are the inflaton, φ, and an isocurvature field, σ,

which are only gravitationally coupled, hence we have Vφσ = 0. The equations of motion can

be simplified by defining uI = aδφI and by working in conformal time τ = −(1 + ε)/(aH).

This way eq. (5.4) becomes [35]

u′′I +

(
k2 − 2

τ2

)
uI −

3

τ2

∑
MIJuJ = a3SI , (5.6)

where MIJ contains the mixing terms and it is given, at first order in slow-roll, by

MIJ '

(
3εφ − ηφ 2θεφ

2θεφ εφ − ησ

)
, (5.7)

where we have defined θ ≡ σ̇/φ̇� 1. If both fields are in slow-roll, which is the case in the

first stage, the mixing matrix is approximately constant and we can obtain the eigenstates

{v1, v2} before σ starts to oscillate by diagonalizing MIJ , namely, by defining UIJ such

that

UIJ vJ = uI and UTMU = diag(λ1, λ2), (5.8)

where

λ1,2 '
1

2
(4εφ − ηφ + ησ ± |2εφ − ηφ + ησ|) (5.9)

are the eigenvalues of MIJ . Then, vI satisfies the decoupled system of equations

v′′I +

[
k2 − 1

τ2

(
µ2
I −

1

4

)]
vI = a3UTJISJ ≡ S̃I , (5.10)

where we have defined µI ≡ 3/2 +λI . The matrix UIJ is a rotation matrix of angle Θ such

that [35]

tan 2Θ =
4θεφ

2εφ − ηφ + ησ
. (5.11)

Under our assumptions Θ� 1 and therefore UIJ can be written as

UIJ '

(
1 −Θ

Θ 1

)
. (5.12)

Note that the source term is also rotated by UTIJ to

S̃I = a3α

f
~E · ~B

(
Θ

1

)
, (5.13)

hence, it will have a much stronger effect on the eigenstate v2 than on v1.
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While the fields are slowly rolling, the homogeneous solutions for the mass eigenstates,

v0
I , are the standard ones for quantum fluctuations of massive fields, which are approxi-

mately constant solutions at superhorizon up to slow-roll corrections embedded in λI . The

particular solutions, vpI of the equation of motion are directly related to the case where the

inflaton is coupled to FF̃ , which is defined as δφinv.dec. in [26]. In particular, as the source

term only acts around the time of horizon crossing we can write(
|vp1 |
|vp2 |

)
= a

∣∣∣δφinv.dec.∣∣∣(Θ

1

)
. (5.14)

If we now come back to the {δφ, δσ} basis we have

a δφ = v1 −Θ v2

a δσ = Θ v1 + v2 . (5.15)

In what concerns δσ, we assume that vp2 � v0
2 so we can safely say that δσ ' v2/a. On

superhorizon scales (−kτ → 0), the solution for v2 will be

v2 '
C√
k

(−kτ)−1−λ2 , (5.16)

where C is an integration constant which has to be fixed once the source is turned off.

Therefore, the time variation of Rσ at superhorizon scales during the first stage is given by

R′σ(τ∗ < τ < τosc) =
d

dτ

(
H
δσ

σ̇0

)
= R∗σ

(
H ′

H
+
δσ′

δσ

)
' −aHR∗σ (2 εφ − λ2) . (5.17)

In the second stage δσ and σ satisfy the same equation of motion therefore d(δσ/σ̇)/dτ = 0.

In this stage the variation of curvature perturbations will be given by

R′σ(τosc < τ) = −εφ aHR∗σ. (5.18)

So, now we are able to compute the integral in eq. (5.2) until the end of inflation which yields∫ τf

τ∗

(
σ̇

φ̇

)2

R′σ dτ =

∫ τosc

τ∗

(
σ̇

φ̇

)2

R′σ dτ +

∫ τf

τosc

(
σ̇

φ̇

)2

R′σ dτ

'
(
σ̇0

φ̇

)2

R∗σ

[
log
(τosc

τ∗

)
(2εφ − λ2)− εφ

∫ τf

τosc

(
σ̇

σ̇0

)2 dτ

τ

]
, (5.19)

As log (τ∗/τosc) = ∆N is the duration of the first stage in e-folds we get∫ τf

τ∗

(
σ̇

φ̇

)2

R′σ dτ ' −
(
σ̇0

φ̇

)2

R∗σ
[
∆N (2εφ − λ2) +

εφ
6

]
(5.20)

Finally, using eq. (5.2) we obtain the value of Rφ at the end of inflation which is given by

Rφ(τ) = R0 +

(
σ̇0

φ̇

)2

R∗σ
[
∆N (2εφ − λ2) +

εφ
6

]
. (5.21)
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For example, in the case of chaotic inflation with a quadratic potential and assuming

ησ � εφ the eigenvalue gives λ2 = εφ which means that

Rφ(τ) & ∆N εφ

(
σ̇0

φ̇

)2

R∗σ. (5.22)

This inequality remains true for any other inflationary model unless there is a precise

cancelation of the 2εφ − λ2 term. In particular, it becomes a very conservative lower

limit when ηφ � εφ. Although the sourcing of Rφ is parametrically suppressed by εφ the

slow-roll logarithmic corrections give a term proportional to duration of the first stage in

e-folds. If the first stage is long enough this term gives a very important contribution

to the curvature perturbation. Even if ∆N = 1 this contribution is still larger than the

direct sourcing of Rφ at horizon crossing. Thus, when the σ-field has decayed and the total

curvature perturbation is given simply by R ≈ Rφ we can write

Pζ ' P
(

1 + γs ∆N2ε2
P
ξ6
e4πξ

)
. (5.23)

If we compare with the effect on the tensor spectrum, which does not evolve on superhorizon

scales

PGW ' 16εP
(

1 + γt
εP
ξ6
e4πξ

)
, (5.24)

we see that if ∆N2 & 16 γt/γs the non-Gaussian contribution to the scalar perturbation

becomes larger than the tensor power spectrum. Thus, if one has sensitivity to observe

the tensor modes, one would also expect to have sensitivity to observe the non-Gaussian

scalar modes. Inserting the numbers, we see that the axion would have to decay within

two e-folds, ∆N ≈ 2.4, in order not to source a non-Gaussian contribution to the spectrum

larger than the tensor spectrum.

Similarly, the same effect is important when computing the 3-point function. The

result can be easily extrapolated because 〈ζφζφζφ〉 & ε3∆N3 〈ζσζσζσ〉 where the 3-point

function of ζσ is the same as the 3-point function in the case of axial coupling with the

inflaton, given in eq. (3.3).

6 The implications

The universal nature of the coupling between curvature perturbation and the gauge fields,

when written in terms of ξ, leads to the very generic result in eq. (3.2) independent of which

axion is contributing to ξ. In particular, if the observable CMB anisotropies come from

the curvature perturbation generated during inflation, then observations tells us P ' 10−9.

Requiring then Pone-loop
ζ � P, implies the generic constraint13

ξ <∼ 3 , (6.1)

13In the minimal scenario where we can assume by simple extrapolation that the dynamics of inflation is

known all the way from when the observable modes exit the horizon until the end of inflation, then, due to

the fact that the coupling ξ increases in time during inflation, more stringent constraints on ξ were derived

in the case where σ is the inflaton, based on departures from scale invariance [36] and the formation of

primordial black holes [37]. We believe that these bounds can similarly be generalized to the case where

σ is not the inflaton due the universal nature of the coupling between the curvature perturbation and the

gauge fields discussed above in the previous sections.

– 13 –



J
H
E
P
1
2
(
2
0
1
4
)
1
3
9

even if the axion is not identified with the inflaton. Only if the field decays during inflation

or the observed perturbations are generated later, like in the curvaton mechanism, such

that P � 10−9, the constraint (6.1) can be relaxed. We discuss some of these different

situations below.

6.1 Chiral gravitational waves

In the previous section it was shown that the interaction Lagrangian with adiabatic pertur-

bations remains exactly the same whether the pseudo-scalar coupled to FF̃ is the inflaton

or not. Therefore, the same constraints should apply in both cases, namely, the results

derived in [13, 17] for the power spectrum of scalar and tensor perturbations

Pζ ' P
(

1 + γs
P
ξ6
e4πξ

)
, (6.2)

PGW ' 16εP
(

1 + γt
εP
ξ6
e4πξ

)
, (6.3)

where γs,t are some numerical coefficients, P1/2 = H2/(2π|φ̇|) and we depreciated the

mild k dependence. This fact has strong consequences for the production of gravitational

waves by this mechanism. Namely, the tensor contribution to the power spectrum is

parametrically smaller by a factor of ε than the scalar contribution, when one compares

both to the vacuum production. Therefore, the only way gravitational waves could be

generated without spoiling the power-spectrum would be if γt � γs, which is not the case.

Thus, the generation of gravitational waves by this mechanism is smaller than the vacuum

contribution. Even if a curvaton generates the spectrum of scalar perturbations [38–40]14

the tensor to scalar ratio (r) would be given by

r =
16γt ε

2P2 e4πξ

ξ6

P obs
ζ

. (6.4)

However, the contribution for the scalar spectrum should still satisfy

γs
P2

ξ6
e4πξ < P obs

ζ ' 2× 10−9 ⇒ r < 16
γt
γs
ε2 ' 6 ε2 . (6.5)

An even stronger constraint appears from non-Gaussianity. In [13] non-Gaussianity in the

scalar power spectrum was computed and shown to peak in the equilateral shape. The

associated non-Gaussian parameter f eq
NL parameter was computed to be [13]

f eq
NL,σ ' γNG

P3(
P obs
ζ

)2

e6πξ

ξ9
, γNG = 3× 10−7. (6.6)

The current constraint is f eq
NL = −42± 75 [31]. Thus, this requires that

f eq
NL,σ < f eq

NL ⇒ P2

ξ6
e4πξ <

f eq
NL

(
P obs
ζ

)2

γNG


2/3

, (6.7)

14See also [41, 42] for some early related developments prior to the curvaton mechanism put forward

in [38–40].
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which then implies that the tensor to scalar ratio has to satisfy the upper bound

r < 16 γt ε
2

(
f eq

NL

γNG

)2/3 (
P obs
ζ

)1/3
' 10−2ε2

(
f eq

NL

)2/3
. (6.8)

Therefore, in order for the tensor modes generated through this mechanism to overcome the

vacuum production tensor, the tensor to scalar ratio cannot be larger than rmax ' O
(
10−5

)
.

This value is far below the recent claimed observation of primordial tensor modes from

BICEP2 [43] but also below any near-future observation.

Finally we look at the case where the field σ decays during inflation. As we verified

in the last section, although the curvature perturbation is generated at horizon crossing,

it is later erased when the σ field decays. Thus, in the end of inflation R ' Rφ where the

source effect in Rφ is slow-roll suppressed when compared to the one in Rσ. Nevertheless,

even in this case and due to the relation between Rφ and Rσ on superhorizon scales, we

derived in eq. (5.22) that there is a superhorizon enhancement proportional to the number

of e-folds since horizon-crossing of the mode until the decay of the field. In such a case the

scalar power spectrum is modified to

Pζ ' P
(

1 + γs ∆N2ε2
P
ξ6
e4πξ

)
. (6.9)

Therefore, although the contribution to the power spectrum is ε2 suppressed, the γs ∆N2

factor gives a significant contribution. Similarly, the associated non-Gaussian parameter

now becomes

f eq
NL,σ ' ε

3∆N3 γNG
P3(
P obs
ζ

)2

e6πξ

ξ9
. (6.10)

Even if ∆N ' 1 the non-Gaussian parameter derived here is 2 orders of magnitud larger

than the one associated only with the sourcing of Rφ at horizon crossing [30]. Imposing

f eq
NL,σ < f eq

NL implies the following upper bound

r <∼
10−2

∆N2

(
f eq

NL

)2/3
. (6.11)

The new contribution to the curvature perturbation derived here in the case where the σ

field decays during inflation has important implications for the models proposed in [19,

22, 44] where large CMB tensor modes, larger than the vacuum ones, can be generated

through this mechanism.

While our constraint in eq. (6.11) is an actual constraint, we can also compare it with

the forecast for the parameter X ≡ ε e2πξ/ξ3 < 5 · 105, derived in [45] from an analysis

on the tensor bispectrum signatures on the CMB due to the referred mechanism. Our

constraint becomes stronger than the forecasted constraint whenever ∆N & 1.2. Never-

theless, a tensor to scalar ratio r ' O(10−1) is still allowed if the field decays faster than

approximately 1.7 e-folds.
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6.2 Axion decay constants and Natural Inflation

Another important cosmological consequence of this analysis shows up in the context of

inflationary theories where axions play a role, like natural inflation [1] or its UV completed

versions [3, 4].15 Even though some of these proposals generate a super-Planckian effective

decay rate, one should be careful about the axial coupling to gauge fields. That can be

problematic because, as already mentioned in [13, 26] , generically, each axion (σi) couples

with a given gauge field(s) as αiσi/fiFF̃ where αi = g2
i /(2γi) and g, γi are, respectively,

the coupling constant to the gauge field and some numerical coefficient depending on the

precise coupling to fermions. Therefore, it is not expected that we can rearrange all the

axial couplings as Φ/fΦFF̃ where Φ is a collective state of axions with an effective super-

Planckian decay constant fΦ. Thus, in general, we need to deal with each term separately.

This is possibly interesting because, as derived in [13], non-Gaussian constraints imply

ξ <∼ 3. This constraint should be satisfied by all axial couplings

ξi <∼ 3 ⇒ fi &
αi
3

√
εi
2
Mp, (6.12)

where we defined a first slow-roll parameter εi associated with each axion. For example, if

the axial coupling is with the Standard Model U(1) gauge field, then, g2
i /(4π) = 1/137, and

for γi ' 1 we get the constraint fi & 5× 10−2√εiMp. In some specific scenarios where the

number of axions is very large, like N-flation, the constraint on fi could be even stronger

if all the axions couple to the same gauge field because then the condition
∑N

i=1 ξi < 3

should be satisfied. For instance, if we assume, for simplicity, αi = α, εi = ε and fi = f ,

then the constraint becomes f & Nα
√
εMp in this particular scenario.

In short, this is a very non-trivial lower bound which makes the theory constrained

both from above and from below.

6.3 The axion as a curvaton

As a final example, let us consider the case where the curvaton is an axion with potential

V (σ) = Λ4 [1− cos(σ/f1)] . (6.13)

We will, for simplicity, consider the case where all the observable curvature perturbation

comes from the curvaton fluctuation. The spectral index of the curvaton is given by

nσ − 1 = −2ε+
2V ′′(σ)

3H2
. (6.14)

In the pure curvaton case, the scale of inflation is typically low and ε � 1. We will,

therefore, neglect ε, and in order to have a red spectrum nσ − 1 < 0 consistent with

observations, we must require

V ′′(σ) = m2
σ cos(σ/f1) <∼ 0 , (6.15)

15See [46–52] for some related recent ideas.
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where m2
σ ≡ Λ4/f2

1 . This implies that we can assume σ ' f1. Assuming that the axion

couples to two different gauge groups with two different decay rates16 as (αiσ/fi)FiF̃i with

f1 > f2 , (6.16)

then approximate Gaussianity of the curvaton perturbation require ξ2
<∼ 1, which implies

f2 &
α2σ̇

2H
, (6.17)

while from the equation of motion in the slow-roll approximation we have

3Hσ̇ ≈ −V ′(σ) = −m2
σf1 sin(σ/f1) . (6.18)

Thus, assuming σ̇/H ' (m2
σ/H

2)f1, we obtain an interesting constraint on the second

decay constant

f2 &
α2

2

m2
σ

H2
f1 . (6.19)

7 Conclusion

In this work we discussed the role of the pseudo-scalars during inflation as possible sources

of cosmological signatures due to axial coupling(s) with U(1) field(s). If the inflaton, φ,

is itself a pseudo-scalar the sourcing of adiabatic scalar curvature perturbations puts non-

trivial constraints on the parameter ξ = αφ̇/(2Hf), where f is the decay rate of the

inflaton. Moreover, the same axial coupling can source gravitational waves. This has been

the focus of several recent papers [19, 22, 30, 44] where it was generally believed that if the

pseudo-scalar in the axial coupling is instead identified with an isocurvature field, then,

scalar perturbations would be suppressed by an ε2 factor when compared to the inflaton

case. As the gravitational wave production remains unaltered, this has been considered an

exciting new possibility of having a primordial gravitational wave spectrum dominated by

the axial coupling contribution without spoiling the CMB anisotropy constraints.

Here we proved in two different gauges that even if the pseudo-scalar is not identified

with the inflaton, the interaction Lagrangian between curvature perturbations and gauge

fields is exactly the same as in the inflaton case and, therefore, the constraints should apply

in the same way in both cases. This has implications, for example, for the maximal amount

of tensor modes generated by this mechanism, as seen from our eq. (6.8), which implies

r <∼ 0.01ε2(f eq
NL)2/3 ' 0.2ε2 with the present constraint on f eq

NL inserted. A possible caveat

to these constraints is the case where the field decays during inflation, as also mentioned

in [19]. However, even in this case we have demonstrated that there is a superhorizon

enhancement of the curvature perturbation proportional to the number of e-folds between

horizon crossing and the decay of the isocurvature field. This enhancement still severely

constraints this alternative mechanism of generating gravitational waves because a large

tensor perturbation is likely to be associated with a large non-Gaussian signal in the scalar

16Curvaton models, where the curvaton couples with different decay rates to two different gauge fields

have been considered in [53, 54].
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perturbations. Namely, from our eq. (6.11) we have r <∼ 0.01(f eq
NL)2/3/∆N2, which implies

that a large tensor-to-scalar ratio of order r ' 0.1 would require the axion to decay within

2 e-folds of super-horizon evolution (∆N <∼ 2). Another possible way to circumvent the

generic constraints derived in this paper is if we combine the mechanism with a curvaton

scenario. In such a case the constraint from non-Gaussianity implies the tensor to scalar

ratio to be smaller than O
(
10−5

)
.

There are other interesting consequences of this analysis, for instance in the context of

natural inflation and their UV complete generalizations. The axial coupling of each axion

to gauge field(s) could potential lead to observable non-Gaussianity. Therefore, one should

apply the non-Gaussian constraint separately to each axial coupling. This constraint turns

out to be non-trivial because it puts a lower bound, fi & αi
√
εiMp, on the decay rate of

the axion, where εi the is the first slow-roll parameter associated with each axion and αi
is a parameter related with the coupling of the axion to the gauge field.
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