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Abstract: We study the low energy effective theory of two sets of D3-branes overlapping

in 1+1 dimensions, recently considered by Mintun, Polchinski, and Sun. In the original

treatment by MPS, by studying the properties of magnetic solitons, the low energy effective

field theory was found to require some ultraviolet completion, possibly involving full string

dynamics. Recently in a companion paper, it was shown that by scaling the angle between

the D3-branes and the D3′-branes in the zero slope limit in specific way, one can find

simpler effective field theory which consists of a single tower of Regge trajectory states and

yet is ultraviolet complete and non-singular. In this article, we study this model by further

studying a limit which recovers the MPS dynamics from this non-singular construction.

We approach this issue from a holographic perspective, where we consider a stack of N

D3-branes overlapping with a single D3′-brane, and treat that D3′-brane as a probe in

the AdS5 × S5 dual. In general, the D3′-brane probe supports a magnetic monopole as a

non-singular soliton configuration, but in the limit where the MPS dynamics is recovered,

the soliton degenerates. This is consistent with the idea that the effective dynamics in

the MPS setup is incomplete, but that it can be completed with a single tower of Regge

trajectory states.
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1 Introduction

Recently, Mintun, Polchinski, and Sun studied a simple intersecting D-brane system con-

sisting of a D3-brane intersecting a D3′-brane [1]. The 3-branes were oriented as follows:

0 1 2 3 4 5 6 7 8 9

D3 ◦ ◦ ◦ ◦
D3′ ◦ ◦ ◦ ◦

(1.1)

In other words, they are overlapping in 1+1 dimensions along the x0 and x3 directions.

The D3-branes were also arranged to be separated by a finite distance of order α′V along

the x6 direction. The low energy spectrum arising from the open strings in such a setup
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is easy to infer. We expect to find N = 4 U(1) Yang-Mills theory on the world volume of

the D3, and another N = 4 U(1) Yang-Mills theory on the world volume of the D3′. In

addition, one expects to find a N = 2 d = 3 + 1 hypermultiplet fields B and C charged

as a bifundamental in U(1) × U(1) with mass m2 = V 2, dimensionally reduced to 1+1

dimensions. These fields are then coupled to the U(1) fields along a defect in such a way

to preserve a total of eight supercharges [2]. One is more or less led to a unique low energy

effective action following this procedure [1].

A natural question considered by [1] is whether such an action defines a complete

dynamical system as a quantum theory, arising as a systematic α′ → 0 limit of the brane

construction outlined above. One diagnostic for this issue is whether the magnetic duals

of the B and C fields, which should arise as a D-string stretching between the D3 and the

D3′ branes, would exist as a BPS soliton of the candidate decoupled theory. The existence

of such a soliton would be expected since the brane configuration which we started from

is manifestly S-duality invariant, and we expect that property to survive the α′ → 0 limit

since both the fundamental string and the D-string stretching between the D3 and the D3′

have finite mass in the scaling limit.

It therefore came as somewhat of a surprise when the conclusion of [1] to this question

was negative. The naive candidate Lagrangian failed to support a soliton with the required

property. With some effort, [1] proposed a modification to the candidate effective theory

so that a soliton can be supported. This involved generalizing the metric on the field space

of B and C fields to a broader Kähler class. While [1] reported some success with this

approach, their ultimate conclusion was that they are unable to avoid a singularity in their

metric, signaling that some ultraviolet completion is required in order to fully regulate the

dynamics.

More recently a simple generalization of the intersecting D3 system was studied [3].

The generalization consisted of slight change in the scaling of the angle between the D3

and the D3′ brane. Instead of configuring the branes to be perpendicular in the 14 and 25

planes, one can set the orientation as follows:

D3 : 0 (1
4)−γ(2

5)γ 3

D3′ : 0 (1
4)γ(2

5)−γ 3
(1.2)

and scale γ so that

tan γ = α′a (1.3)

where a is a parameter with dimension of mass squared.

Schematically, the brane intersection of [3] is identical to that of [1]. In both con-

structions, the brane overlap along 1+1 dimensions. The main difference, however, stems

from the spectrum of the 33′ states. When the angle is scaled according to (1.3), the 33′

spectrum will consist of a tower of states with mass

m2 ∼ V 2 + an , n = 0, 1, 2, . . . (1.4)

which remains finite in the α′ → 0 limit. This basic feature was observed originally in [4].

With the angle scaled according to (1.3), the system can be compactified and T-dualized
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to an ordinary SU(2) gauge theory with a non-vanishing non-abelian flux. The spectrum

of small fluctuations around this background was worked out by van Baal in [5]. The tower

states is essentially the Landau-level in response to the constant non-abelian magnetic field.

In the limit a→ 0, these states become momentum modes of the off-diagonal components

of the SU(2) gauge fields.

In other words, the scaling (1.3) gives rise to a more conventional field theory de-

scription of the intersecting brane configuration compared to the case when the branes

are arranged to be perpendicular as was done in [1]. It is natural then to consider if the

magnetically charged solitons that [1] sought exists in the effective theory with a tower of

states (1.4). That was the question which was addressed in [3]. It should not come as a

big surprise that the answer to this question is positive, i.e. a magnetic monopole soliton

does exist for this system. An explicit form of the soliton solution is not known as of yet.

Nonetheless, an explicit existence proof was presented in [3].

Assuming that the soliton exists and is perfectly well behaved in the scaling (1.3),

the interesting issue to contemplate is what happens when we take the limit a → ∞. In

this limit, all but the n = 0 state in the tower (1.4) decouples. The U(1) × U(1) degrees

of freedom also survives. In other words, we recover the spectrum of states originally

considered by [1]. So, if the conclusion that the soliton is absent in [1] is correct, the soliton

found in the scaling (1.3) should somehow degenerate in the a→∞ limit. Unfortunately,

without the explicit form of the soliton solution, it is difficult to study if and how this is

happening.

In this article, we will probe this issue from a holographic perspective. The idea is to

consider a stack of N D3-branes, which we describe as a gravity background, and treat the

D3′ as a probe. In other words, we will orient our branes as follows:

N D3 : 0123

D3′ : 0 (1
4)γ(2

5)−γ 3
(1.5)

Then, we will scale1

tan γ = R2c =
√
λα′c (1.6)

and take the de-coupling limit α′ → 0. At this point, our problem becomes that of em-

bedding a D3′-brane in AdS5× S5. We will be interested in a particular embedding where

there will be a unit of magnetic charge on the D3′ world volume. In the following sections,

we will outline the steps needed to study such an embedding. We will then conclude by

describing how the soliton behaves as the limit c→∞ is taken.

2 D3′-brane embedding

In this section, we will review the basic setup for describing the embedding of a D3′-brane

probe in AdS5 × S5 geometry.

1The c here is related to the a of [3] via tan−1(R2c) = 2 tan−1(2πα′a). Some factors of λ enter in these

relations for notational convenience.
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2.1 Supergravity background

Let us begin by reviewing the AdS5×S5 geometry to setup our notations and conventions.

The background geometry and flux is given by

ds2 = R2

(
u2ηµνdx

µdxν +
du2

u2
+ dΩ2

5

)
(2.1)

F5 = 4R4(1 + ∗)dΩ5

R is the AdS radius

R4 = 4πgsN(α′)2 ≡ λα′2 (2.2)

and

λ = 4πgsN = 2g2
YMN (2.3)

is the ’t Hooft coupling from the SU(N) field theory perspective. In order for the semi-

classical treatment of the D3′-brane probe to be effective, we take λ to be large but finite.

2.2 DBI action for the D3′-brane probe

The D3′-brane probe will be arranged to be extended along the 0123 directions, and em-

bedded non-trivially in the 456789 directions. We can therefore use xµ with µ = 0, 1, 2, 3

as the world volume coordinate for the D3′-brane probe. Because of the symmetry, it will

also turn out to be convenient to use cylindrical world volume coordinates (t, ρ, ϕ, x3).

We will parameterize the transverse coordinates coordinates x4 . . . x9 into which the

D3′-brane is embedded in polar coordinates as follows:

x6 = r cos θ (2.4)

x4 = r sin θ cosφ

x5 = r sin θ sinφ cosα1

x7 = r sin θ sinφ sinα1 cosα2

x8 = r sin θ sinφ sinα1 sinα2 cosα3

x9 = r sin θ sinφ sinα1 sinα2 sinα3 .

For our purposes it will be sufficient to truncate to x7,8,9 = 0. In other words, we restrict

our attention to the case where α1 = α2 = α3 = 0. Thus, the dynamical variables are

x4,5,6, or, equivalently, r, θ, and φ.

In taking the near horizon limit, we will scale

r = R2u (2.5)

and keep u fixed as α′ → 0.2

2Note that this differs by a factor of
√
λ from the scaling convention where U = r/α′ is kept fixed,

e.g., in [6]. Since λ is kept large but finite, this is strictly speaking the same scaling, though some care is

necessary in keeping track of quantities being kept fixed when analyzing large λ asymptotics.
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When treating the transverse scalars as fields via the AdS/CFT correspondence we

will adopt the notation:

Φi =
xi

R2
=

xi√
λα′

, (i = 4, 5, 6) . (2.6)

A static D3′-brane embedding is now parameterized by u(ρ, ϕ, x3), θ(ρ, ϕ, x3), and

φ(ρ, ϕ, x3). The cylindrical symmetry immediately allows one to solve

φ = ϕ (2.7)

and treat u(ρ, x3) and θ(ρ, x3) as being independent of ϕ. Our task now is to find the

equation of motion for the static embedding.

For this, we consider the DBI action. By explicitly computing the pullback metric and

the 4-form potential, we find

ID3 = IDBI + IWZ (2.8)

IDBI = −T3

∫
d4x e−Φ

√
−det(gij + Fij) (2.9)

= −T3

∫
d4x

(
u4
(
4π2(F 2

ϕ3 + Fρϕ)2 + u4ρ2 + u2 sin2 θ
)

+ 4π2
(
(∂3u)2(Fϕ3 + Fρϕ)2 + (∂ρθFϕ3 + ∂3Fρϕ)2u2

)
+ u4

(
2(∂3u)2 +

(
(∂3θ)

2 + (∂ρθ)
2
))
ρ2

+ u2
(

2(∂3u)2 +
(
(∂3θ)

2 + (∂ρθ)
2
)
u2
)

sin2 θ

− 1

2
(∂3u)2(∂3θ − ∂ρθ)2(−1 + 2u2ρ2 + cos 2θ)

)1/2

IWZ = T3

∫
eF ∧ C (2.10)

= T3

∫
d4xR4u4,

where F = B+2πα′F , F is the world volume field strength, and B = 0 in our background.

All that remains to be done, then, is to analyze the equation of motion for the embed-

ding fields u(ρ, x3) and θ(ρ, x3).

2.3 Constraints due to supersymmetry

The action as written in (2.8) gives rise to a rather formidable set of equations of motion.

It would be a prohibitive task to analyze our problem that way. Fortunately, the static con-

figuration we seek is expected to preserve four supercharges. Generally, Born-Infeld action

restricted to supersymmetric configurations exhibit dramatically simpler behavior [7]. In-

deed, following the analysis of κ-symmetry for D3-branes embedded in AdS5×S5 originally
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carried out in [8], we infer.3

2πα′Fϕ3 = R2(u sin2 θ − ρ∂ρu) sec θ (2.11)

2πα′Fρϕ = − R
2

u2ρ
(u2ρ2 + sin2 θ)∂3u sec θ

∂ρθ =
u− ρ∂ρu

uρ
tan θ

∂3θ = −1

u
tan θ∂3u .

The last two equations (2.11) can be integrated to read

u sin θ = cρ (2.12)

where c is an integration constant. Recalling that we have already constrained φ = ϕ, we

find that

Φ4 + iΦ5 = u sin θeiϕ = cρeiϕ (2.13)

we see that the integration constant c that appear here is precisely the same as the one

parameterizing the scaling (1.6).

The remaining constraint from the first two equations in (2.11) takes a simple form

when parameterized in terms of

Φ6 =
x6

R2
= u cos θ . (2.14)

They take the form

2πα′Fϕ3 = −R2ρ∂ρΦ6 (2.15)

2πα′Fρϕ = R2ρ

(
1 +

c2(
(cρ)2 + Φ2

6

)2
)
∂3Φ6 .

Since the F ’s appearing on the left hand side of (2.15) are a U(1) field strength, they

must satisfy the Bianchi identity, which constrains Φ6 to satisfy

1

ρ
∂ρ(ρ∂ρΦ6) + ∂3

(
1 +

c2(
(cρ)2 + Φ2

6

)2
)
∂3Φ6 = 0 . (2.16)

This is a second order, non-linear, partial differential equation governing the embedding

of D3′-brane in AdS5. This is the main equation which we will refer to as the full embedding

equation. However, since the analysis leading up to the derivation of this equation (2.16)

was somewhat involved, it would be useful to subject it to some simple tests. We will

perform a few such tests in the remainder of this section, and continue with the analysis

of (2.16) in the next section.

3See appendix A for details.
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2.4 Tests of the full embedding equation

2.4.1 BPS energy formula

One feature of the supersymmetric configuration of the Born-Infeld system is that the

argument of the square root becomes a perfect square, making the action rational. This is

indeed the case. If we substitute the constraints (2.12) and (2.15) into the full action (2.8),

we find

L = − λ

8π3gs

(
ρc2 + ρ

(
(∂3Φ6)2 + (∂ρΦ6)2 + c2

(
(∂3Φ6)2(

(cρ)2 + Φ2
6

)2
)))

. (2.17)

As expected, the final expression does not involve any square roots. It should be stressed,

however, that variation of (2.17) with respect to Φ6 will not give rise to (2.16). The

reason is that Φ6 was constrained through (2.15) and can not varied as if it were an

unconstrained field. Applying suitable Lagrange multipliers to respect the constraint will

give rise to (2.16).

The utility of (2.17) rests in the fact that it provides the measure of energy density.

The term ρc2 gives rise to a uniform energy density that can be attributed to the tension

of an ordinary tilted brane. Subtracting this divergent piece would leave

E =
λ

8π3gs

∫
dρdϕdx3 ρ

(
(∂3Φ6)2 + (∂ρΦ6)2 + c2

(
(∂3Φ6)2(

(cρ)2 + Φ2
6

)2
))

(2.18)

which can be used to compute the energy of a soliton solving the full embedding equa-

tion (2.16).

2.4.2 Tilted brane

One simple solution to (2.16) is the plane tilted brane embedding. The solution is

Φ6 = v (2.19)

some constant v parameterizing the distance ∆x6 = R2v of the D3′ probe from the horizon

at its point of closest separation, but with the understanding that the constraint (2.12)

is applied with non-vanishing c so that the brane is tilted relative to the horizon. The

energy (2.18) for this configuration is identically zero.

2.4.3 Magnetic monopole on untilted D3′-brane

The final diagnostic example we will consider is to set c = 0, so that the D3′-probe is

interpreted as describing the U(1) component of the dynamics in the Coulomb branch

SU(N + 1)→ SU(N)×U(1)

The simplicity of the c = 0 case is obvious from looking at the full embedding equa-

tion (2.16), which reduces to the Laplace equation

1

ρ
∂ρ(ρ∂ρΦ6) + ∂2

3Φ6 = 0 (2.20)

– 7 –
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Φ=vHorizon Boundary

throat

u

r’

r’

Figure 1. Schematic form of the D3′-brane embedding corresponding to a magnetic monopole

soliton in N = 4 SYM in Coulomb branch U(N + 1) → U(N) × U(1). The U(1) component is

manifested as a D3′-probe embedded in AdS5 × S5 in Poincare patch. The vertical axis is r′ and

the horizontal axes is the radial coordinate u. The D3′-probe melts into the horizon at u = 0.

which is solved by

Φ6 = v − q

r′
(2.21)

where r′ =
√
ρ2 + (x3)2. Precisely this solution was discussed in a recent paper by

Schwarz [9]. Here, v describes the asymptotic value of Φ6(ρ, x3) away from the monopole.

The value of q is determined by charge quantization. Using (2.15), we have∫
Fθ′ϕ = 2α′qR2 = 2q

√
λ = 2πk (2.22)

where k must take on integer values because of the Dirac quantization condition. So,

q =
πk√
λ
. (2.23)

We will set k = 1 to describe a singly charged monopole.

The solution is cut-off at Φ6 = 0 where the D3′ hits the horizon. This happens at

r′throat =
π√
λv

. (2.24)

The schematic form of this embedding is illustrated in figure 1. Note that even though the

throat has finite coordinate size r′throat, its geodesic size is zero.

The energy of this monopole can be computed from (2.18) for c = 0 which reads

Emon =
λ

(2π)3gs

∫ ∞
rthroat

dr′4πr′2(∂r′Φ6)2 =
λ

2π2gs

∫ v

0
qdΦ6 =

1

2πgs

√
λ v (2.25)

where the form of the solution (2.21) was used in one of the steps. The energy is precisely

that of a D1-string stretched over a distance

∆x6 = R2v . (2.26)
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Using g2
YM = 2πgs this may finally be written as:

Emon =
1

g2
YM

√
λ v . (2.27)

A factor of λ may seem unfamiliar, but that is because we defined

R2v = α′V (2.28)

and so in terms of V , we recover the more familiar looking expression

Emon =
1

g2
YM

V (2.29)

that one finds, for instance, in [10].

3 Magnetic monopole soliton solution on a tilted brane

In this section, we describe solutions to the full embedding equation (2.16) corresponding

the magnetic monopole soliton on a tilted D3′-brane (with non-vanishing c) in AdS5 × S5.

Unfortunately, the full non-linear form of (2.16) is rather formidable to analyze in closed

form. Fortunately, most of the interesting features can be extracted from a linearized

approximation where we expand Φ6 around its asymptotic background value v. In the

following we will summarize this approximation and describe the scope of its validity.

3.1 Linearization

If we substitute

Φ6 = v + δΦ6 (3.1)

into (2.16) and only keep the terms linear in δΦ6, we obtain an equation

1

ρ
∂ρ(ρ∂ρδΦ6) +

(
1 +

c2(
(cρ)2 + v2

)2
)
∂2

3δΦ6 = 0 (3.2)

which is much more manageable than (2.16). This equation can be understood as a Laplace

equation for the metric

ds2 = −dt2 + (dx3)2 +

(
1 +

c2(
v2 + (cρ)2

)2
)

(dρ2 + ρ2dφ2) (3.3)

which is conformally equivalent to the pull-back of the flat tilted brane described in sec-

tion 2.4.2.

From simply examining the form of the metric (3.3), we see that there are features

at scales ρ = v/c and ρ = 1/
√
c. Let us take v2/c � 1 to keep these scales separated

parametrically. Then, our geometry (3.3) can be divided into three distinct regions where

the metric simplifies locally.

– 9 –



J
H
E
P
1
2
(
2
0
1
4
)
1
2
8

• Region I : ρ� 1/
√
c

This is the large radius asymptotic region. In this limit, the metric (3.3) is flat.

ds2 = −dt2 + (dx3)2 + dρ2 + ρ2dφ2. (3.4)

• Region II : v/c� ρ� 1/
√
c

In this region the metric is approximately:

ds2 = −dt2 + (dx3)2 +
1

c2ρ4
(dρ2 + ρ2dφ2) . (3.5)

Under the change of variables ρ = 1/(cy) this becomes flat:

ds2 = −dt2 + (dx3)2 + y2dφ2 + dy2. (3.6)

• Region III : ρ� v/c

Finally, in this small ρ region, the metric is once again flat but the (ρ, φ) plane is

rescaled.

ds2 = −dt2 + (dx3)2 +

(
c2

v4

)
(dρ2 + ρ2dφ2) . (3.7)

In order for all of these regions to exist, we must set v2/c� 1. This is the limit that is

interesting when taking the large c limit. In the opposite, small c limit, region II disappears

and the metric in region III becomes instead

ds2 = −dt2 + (dx3)2 +

(
1 +

c2

v4

)
(dρ2 + ρ2dφ2) (3.8)

which is essentially the same as the flat space metric in region I with a minor rescaling in

the (ρ, φ) plane.

3.2 General features of the linearized solution

At this point, it is rather straightforward to argue that a solution to the Laplace equation

with a point-like source on metric (3.3) will generically exist. The background metric

is locally smooth and asymptotically flat. The only remaining issue is how this solution

behaves in the limit that c is taken to be large, keeping v and λ fixed. In order to address

this issue, let us further explore the behavior of the solution to (3.2) with a suitably

normalized point-like source at the origin for small v2/c.

One way to proceed is to separate variables

δΦ6(x3, ρ) =

∫
dk

2π
cke

ikx3ψk(ρ) (3.9)

and then re-combine ψk along the lines of [11]. We will perform some part of this analysis

in the next section, but it turns out to be a rather cumbersome exercise in light of the fact

that the equation for ψk(ρ) is still rather complicated.

– 10 –
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IIIIII

qv/c v/c 1/c q/v 1/v1/2

ρ

q/vd

Figure 2. Logarithmic plot of q/vd vs. ρ. For this plot, q = π/
√
λ = 10−4 and v2/c = 10−12. Re-

gions I, II, and III are indicated with using different background colors. The point where q/vd = 1

is where the Φ6 = 0. The shaded box is the region where the corrections to the linearized approxi-

mation are expected to be important. The dotted line is the untilted solution (2.21).

Fortunately, one can gain some intuition by studying the behavior of geodesic distance

from the origin where a localized source is placed. On flat space,

δΦ = v − q

d
(3.10)

where d is the geodesic distance, is the correct exact solution. Analyzing the same quantity

for the metric (3.3) and subjecting it to some tests can provide quite a bit of intuition on

the behavior of the solution we are trying to study.

Let us consider the geodesic as a function of ρ where x3 is fixed to zero. Then,

d(ρ) =

∫ ρ

0
dρ′
√

1 +
c2(

v2 + (cρ′)2
)2 . (3.11)

It is not too difficult to compute this numerically for some fixed c and v. In order to

illustrate all the hierarchically separated scales, it is convenient to display the potential in

a log-log plot, of

log

(
1− δΦ

v

)
= log

(
q

vd

)
(3.12)

as a function of

log

(
cρ

v

)
. (3.13)

The result of such analysis is illustrated in figure 2.

Several features are notable in the plot illustrated in figure 2. First of all, q/vd exhibits

a ρ−1 scaling behavior in region III, but becomes approximately flat in region II. That

approximatly flat behavior continues into region I, but then the curve bends and asymptotes

again into a homogeneous ρ−1 scaling behavior. All of these features are consistent with

a more careful analysis which we will describe in greater detail in the next section. This

bending in region I can be viewed, from the perspective of observers at large ρ, as the
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charge being effectively smeared along the x3 direction. The extent that this is happening

will be further discussed in the next section.

This plot also highlights how one should think about the limit c → ∞ keeping v and

q = π/
√
λ fixed. The plot simply gets wider in the horizontal direction. On the other

hand, when λ is increased keeping v and c fixed, the entire plot in figure 2 simply slides

downward. The features illustrated in figure 2 become more reliable when λ is taken to be

large.

3.3 Soliton energy

Let us now consider the energy contained in the monopole solution. The solution to the

Laplace equation (which we have not found in explicit form) will have a definite energy

density when substituted back into (2.18) in the linearized approximation. A convenient

way to parameterize the D3′-brane probe world volume is in terms of contours of fixed δΦ6.

Then, just as was the case for the untilted monopole (2.25), the energy can be computed as

E =

√
λ

2πgs
∆Φ6 (3.14)

so as long as the fixed Φ contour from Φ = 0 and Φ = v covers the region of the D3′-probe

outside the horizon, we would get the expected BPS energy for the solitons. The state-

ment (3.14) can also be generalized to the fully non-linear case for the soliton solving (2.16)

and applied to the energy formula (2.18).

3.4 Validity of the linearized approximation

There is one subtlety we must confront in the linearized treatment of the embedding equa-

tion (2.16). Unlike in the untilted case where the entire embedded brane coincided with

the horizon when Φ6 = 0, for the tilted brane,in the configuration illustrated in figure 2,

this is not exactly the case. This is because at ρ ≈ qv/c, the embedded D3′ is separated

from the horizon by distance R2cρ ≈ α′v. Strictly speaking, this is a substringy scale, but

so is everything separated in the typical radial positions in AdS5 × S5.

There is, however, a way out of this dilemma. The linearized approximation was set

up in such a way that Φ6 is close to its background value v. It is precisely this assumption

that breaks down near Φ6 = 0, illustrated by a shaded region in figure 2.

Presumably, the full non-linear solution to (2.16) will arrange itself so that the Φ6 = 0

contour is coincident with the horizon. Unfortunately, carrying out such an analysis is

beyond our immediate capabilities. One possible approach is to supplement the expansion

Φ6 = v + δΦ6 by a different expansion near Φ = 0. Such an analysis indeed suggests that

Φ6 = 0 is coincident with the horizon. What is not trivial is to conclusively argue that the

solutions obtained by linearizing at different points actually connect smoothly in the full

solution. It would be interesting to investigate these issues further.

With these disclaimers, however, we seem to be able to infer the basic structure of the

soliton solution from the embedding equation (2.16). This can be viewed as a holographic

confirmation of the basic existence of these solitons established previously in [3] for the

case when N = 1, as long as c is finite.

– 12 –



J
H
E
P
1
2
(
2
0
1
4
)
1
2
8

The interesting tension with the conclusion of [1], however, has to do with understand-

ing how these solitons behave in the limit c→∞. If our soliton continues to exist in that

limit, we contradict the conclusions of [1].

What we will show, in the next section, is that the embedding equation (3.2) degen-

erates in the limit c → ∞. From this, we conclude that 1) the system of [1] is singular

without some UV completion, and that 2) while full string dynamics can serve as a UV

completion as was suggested in [1], the integer tower of states (1.4) is just as good as an

alternate, economical, UV completion.

4 The fate of the solitons in the c → ∞ limit

In this section, we will examine how the soliton solution is behaving in the limit that c

is taken to be large, keeping v and λ fixed. It is useful to begin by looking closely again

at (3.2) and figure 2. The large c limit is stretching the flat part of the graph in regions I

and II.

We can zoom into the boundary of regions I and II by setting v = 0 in (3.2). Suppose

we also separate variables and write

δΦ6 = eikx3ψk(ρ) . (4.1)

What one finds then is an equation of the form

1

ρ
∂ρ(ρ∂ρψk)− k2

(
1 +

1

c2ρ4

)
ψk = 0 (4.2)

which is actually Mathieu’s equation [12]. The c → ∞ limit then corresponds to the

decoupling between ρ� 1/
√
c region and ρ� 1/

√
c region precisely in a manner analogous

to how the asymptotically flat region and the near horizon region decoupled in the original

formulation of AdS/CFT correspondence [6].

Let us examine this decoupling a little bit more closely. Let us define a parameter

ε =
v2

c
(4.3)

rescale to dimensionless coordinates

ρ =
v

c
x , x3 =

1

v
z (4.4)

and separate variables

δΦ6 =

∫
dk

2π
cke

ikzψk(x) . (4.5)

Then, the equation for ψk(x) reads

1

x
∂x(x∂xψk)− k2

(
ε2 +

1

(1 + x2)2

)
ψk = 0 . (4.6)

In these coordinates, for finite ε, region I is x � 1/
√
ε whereas regions II and III are

x� 1/
√
ε.
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In region I, we can approximate the equation as

1

x
∂x(x∂xψ)− ε2k2ψ = 0 (4.7)

which is solved by Bessel functions

ψk(x) = K0(εkx) (4.8)

where we select the solution decaying at large x.

In regions II and III, the equation truncates to

1

x
∂x(x∂xψk)−

k2

(1 + x2)2
ψk = 0 (4.9)

which also admits a closed solution in terms of the Legendre functions

ψk(x) =

∫
dk

2π

(
akPλk

(
− 1 +

x2

1 + x2

)
+ bkQλk

(
− 1 +

x2

1 + x2

))
(4.10)

with

λk =
1

2

(
− 1 +

√
1− k2

)
. (4.11)

For small ε, the solutions in regions I and the solutions in regions II/III have overlapping

regimes of validity in the region

k < x <
1

εk
(4.12)

giving rise to a matching procedure, along the lines of [13, 14], which relate ak, bk, and ck.

One can construct a reasonable approximation to the solution of (3.2) by imposing a

boundary condition for ψk in regions II/III so that it corresponds to a point-like source near

x = 0 and to a decaying solution (4.8) at x ≈ 1/
√
ε. Carrying out this analysis numerically

to reproduce the features in figure 2 is rather cumbersome, but one can identify basic

features emerging in this type of an analysis.

One sign that the ε → 0 limit is pathological can be seen by noting that in the strict

limit, flux in regions II/III can no longer spread into region I. This can be confirmed in

the solution matching analysis outlined above, or can be thought of as the consequence of

decoupling. In this limit, flux in regions II/III can only escape in the x3 direction, giving

rise to a linearly growing potential

δΦ6 = qv|z| . (4.13)

Such a solution is problematic in that 1) it does not asymptote to v away from the source,

and 2) has uniform energy density and can not exist as a finite energy soliton. This is

precisely the kind of “confining” behavior also encountered by [1]. In other words, by

taking a strict large c/small ε limit, we have forced the solution, in region II/III, to change

its asymptotic behavior. The absence of a solution with the prescribed asymptotic behavior

is a statement of the non-existence of the soliton solution. From our point of view, we see

the decoupling of the states (1.4) that provided the necessary ultra-violet completion is
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manifesting itself as the decoupling of the soliton. It is quite gratifying to see similar

pathologies arise from very different perspectives.

One can then interpret the small but finite ε as allowing the flux of the monopole to

eventually escape into region I. Once the flux escapes into region I, one can assess the

“effective charge distribution” that can be inferred by probing the fields far in region I.

That analysis leads to the conclusion that the charge source is smeared by scale set by

∆x3 =

√
| log ε|
v

. (4.14)

This can be confirmed, for example, by computing the width of the ck distribution com-

puted using the matching procedure outlined above. In particular, we find the ck, expanded

in k, has the form

ck ∼ −
qv

π

(
1 +

1

2
ln(ε)k2 +O(k4)

)
(4.15)

for some very small ε. Such logarithmic dependence in ε arises because the expansion of

the Bessel function (4.8),

K0(εkx) =

(
− log(x)− γ − log

(
εk

2

))
+O(x1) . (4.16)

One can think of having a small ε suppressing the penetration of the flux from re-

gion II/III into region I by a factor of

1√
| log ε|

(4.17)

which is small in the strict ε → 0 limit, but only logarithmically so. However, if we take

the strict ε → 0 limit while insisting on Φ6 → v asymptotic behavior, the soliton diffuses

in the x3 direction and ceases to exist as a localized object.

This is precisely the sense in which the consistency between the conclusion of [1] and [3]

is maintained.

5 Conclusion

In this and companion article [3], we revisited the issue of the decoupling of effective field

theories on D3 and D3′ brane overlapping along 1+1 dimensions originally raised by [1].

In the original formulation, the angle between the D3 and the D3′-brane was arranged to

be perpendicular as outlined in (1.1). In such a setup, [1] found that it was not possible to

consistently decouple stringy states and obtain a closed dynamical system.

One main lesson from the work of [3] and this article is that by scaling the angle

between the D3 and the D3′-branes (1.3), one does arrive at a consistent decoupled system.

The difference between fixing the angle and fixing a manifested in a tower of 33′ string

states (1.4) surviving the α′ → 0 limit, so there are more states than were envisioned in [1].

These states appear to complete the UV dynamics so that the dynamics is closed and
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compatible with S-duality. These are not so exotic either, having been studied previously

in various contexts [4, 5].

In this article, we continued the work of [3] by tracking how the soliton degenerates

in the limit that a ∼ c → ∞. This is the limit where all but the massless state in the

tower (1.4) become infinitely massive, and the spectrum of light states approaches that

which was considered in [1]. In order to make this analysis tractable, we generalized to the

setup (1.5) where the number N of D3s is taken to be large so that it can be described

holographically, and studied the D3′-brane as a probe being embedded into AdS5 × S5.

What we found is that in the large c limit, the soliton delocalizes and disappears as a

state.

As an exercise in holographic embedding, one could have just as easily started with

the 90 degree embedding (1.1) and reached a similar conclusion. Consider, first, the super-

gravity solution for the full D3-brane prior to taking the near horizon limit

ds2 = f−1/2(−dt2 + d~x2) + f1/2(dr2 + dΩ2
5) , f = 1 +

R4

r4
(5.1)

and embed a D3 oriented on t, x3, x4, and x5. Using polar coordinates (ρ, ϕ) to parame-

terize the (x4, x5) plane, the embedding equation takes the form

1

ρ
∂ρ(ρ∂ρΦ6) + ∂3

(
1 +

R4

(ρ2 +R4Φ2
6)2

)
∂3Φ6 = 0 . (5.2)

This equation is identical to (2.16) upon substituting c = 1/R2. The act of taking the

α′ ∼ R2 → 0 is having the same effect of decoupling the near horizon and the asymptotic

region as was seen in the c → ∞ limit, and in the process, a soliton that would have

existed for finite R2 is also decoupling. The disadvantage of working with a fixed angle

like this, however, is that one misses the possibility of finding the tower of states (1.4) as

an economic alternative to invoking string dynamics in regulating the dynamics.

In this article, we mainly focused on the magnetic soliton, but it is just as straightfor-

ward to analyze DBI embedding corresponding to an electric source. The supersymmetry

and the resulting constraint will take on slightly different form, but we arrive at the same

embedding equation (2.16). The only difference for the electric case as opposed to the

magnetic case is the normalization of charge. Instead of (2.23), we find

q =
πkgs√
λ
. (5.3)

Strictly speaking, in the ’t Hooft limit where N →∞ keeping λ fixed, this approaches zero.

This is simply the reflection of the fact that when gs is small, the fundamental string is

less tense than a D-string. When considering the case were N is large but finite, however,

there will be some bending of the D3′-brane due to the tension of the fundamental string.

Our analysis then implies that states with electric charges, i.e. the B and the C fields,

are delocalizing and decoupling in the c → ∞ limit, and in the setup of [1]. This is not

surprising in light of the fact that the system under consideration is S-dual. If the magnetic

state is decoupling, so must its electric dual.
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Ultimately, we are finding that the effective field theory in the c → ∞ limit in terms

of U(N)×U(1) fields and bifundamentals ceases to exist because both the magnetic duals

of the bifundamental fields, and the bifundamental fields themselves, decouple from the

spectrum. That does not mean that an effective dynamical description do not exist. After

all, an embedding of D3′ in AdS5×S5 does exist, and there are some effective dynamics for

the 3′3′ strings which couples non-trivially to bulk states in AdS5 × S5. All that we have

shown is that the system does not admit 33′ state in the electric or the magnetic sector.

It should be noted, however, that in such a holographic setup, the asymptotic behavior of

open strings ending on the D3′ is modified drastically, in the sense that the D3′ brane hits

the boundary of AdS5×S5. It is possible that a similar change in the asymptotic behavior

should be expected in the U(N) sector when N is of order one. It is not clear how one

would describe such a system in terms of field theory. One possible scenario is that the

effective dimension of the D3′-brane dynamics becomes 1+1 dimensional in light of being

confined inside a finite AdS box, and as such, experience strong quantum fluctuation and

flow essentially to a D1-D5 conformal field theory in the IR. It would be very interesteing

to understanding this issue better.

One of the most notable features of the system oriented as (1.2) and scaled as (1.3) is

the tower of states (1.4) which appears to be playing an indispensable role in regulating

the UV dynamics. This tower can also be thought of as a single Regge trajectory. Unlike

string theory which regulates the UV dynamics (say, of gravity) with an infinite set of

Regge trajectories, here we achieve regularity with a single trajectory. To the best of our

knowledge, this is the first time such a regularization has been seen at work. The signal

that the theory is sick was extracted from subtle non-perturbative features encoded in

soliton dynamics. It would be interesting to find a perturbative manifestation of these

singularities and to better understand how a tower like (1.4) is regulating it. Perhaps one

can find some hints by analyzing charge renormalization or photon vacuum polarization

for the electric theory. We hope to address these questions in the near future.
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A Supersymmetry conditions

In this appendix we will show more explicitly how the BPS conditions (2.11) are derived.

The basic strategy is as follows. For a supersymmetric D-brane embedding, the supersym-

metry generator, ε must obey a κ projection condition, written as:

Γ(Φi, F )ε = ε . (A.1)

The supersymmetry generator ε must also be a generator for the supersymmetry of the

ambient AdS space localized to the brane. If we are given a brane embedding specified by Φi

and Fµν then the κ projector may be used to determine which spinors are supersymmetry
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generators. On the other hand, if we know the supersymmetry generators in advance,

then the equation Γ(Φi, F )ε = ε may be viewed as a constraint on the fields Φi and Fµν .

Since ε is 16 dimensional, in principle we have 16 (complex) constraints for each preserved

supersymmetry. Our goal then, is to first determine which supersymmetries should be

preserved by the tilted monopole solution and then to view the κ projection condition as

a set of equations to solve for the embedding coordinates and fluxes. On general grounds,

one expects that the allowed generators for the tilted monopole lie in the intersection of the

supersymmetry generators for a pure tilted brane (no monopole) and a pure monopole (no

tilt). We must therefore analyze these two cases separately and look for supersymmetry

generators preserved by both.

We begin by reviewing kappa symmetry in AdS5, following [8]. The basic definition of

the kappa projector, Γ, is:

d4ξΓ = −e−ΦL−1
DBIe

F ∧X|vol (A.2)

with

X ≡ ⊕nΓ(2n)K
nI (A.3)

Γ(n) ≡
1

n!
dξin ∧ . . . ∧ dξi1Γi1...in

where K acts as complex conjugation and Iψ = −iψ. Unless stated otherwise, we will use

the following basis for gamma matrices

Γµ = Ruγµ µ = 0 . . . 3

Γρ = Ruγ1

Γϕ = Ruργ2

Γu = Ru−1γ4

Γφ = R sin θγ5

Γθ = Rγ6 . (A.4)

The condition for a supersymmetric embedding is that there exist a Weyl spinor ε such

that Γε = ε and where ε satisfies the background Killing spinor equations in AdS5 × S5.(
DM +

i

2
γ01234ΓM

)
ε = 0 . (A.5)

A full set of background supersymmetry generators satisfying (A.5) was found in [15].

Following the notation of [8] we may write the solutions as

ε+ = −u−1/2γ4h(θ)η2 (A.6)

ε− = u1/2h(θ)(η1 + x · γη2)

where η1, η2 are spinors of negative and positive chirality underr the (3 + 1)d chirality

operator. A complete expression for h(θi) was provided in [8]. Here, we have truncated to

x7,8,9 = 0 and will only need the following formula:

h(θi) = e
1
2
θγ46e−

1
2
φγ56 . (A.7)
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It will be useful to further decompose ηi into real spinors, λ, η as follows:

η1 = λ− iγ0123λ (A.8)

η2 = η + iγ0123η .

The generator parameterized by η corresponds to superconformal generators and these

are generically broken for the solutions we are interested in. We will thus only consider

supersymmetries generated by λ in what follows.

The kappa projector in its general form (A.2) suffers from the drawback that it depends

upon LDBI, which cannot be written in a usable form without knowing the solution ahead

of time. To work around this, we will derive a simplified form of (A.2) that does not depend

on LDBI. Although we will apparently lose some of the information while doing this, we

will find that our simplified condition still has enough constraints to determine the BPS

conditions uniquely.

We start by expanding (A.2)

Γ = −L−1
DBI

(
Γ(4)K

2I + 2πα′F2 ∧ Γ(2)KI
)
. (A.9)

When acting on ε we may decompose into real and imaginary parts and then subtract the

two. The real equation is

L−1
DBI

(
Γ(4) + 2πα′F2 ∧ Γ(2)

)
(hγ0123λ) = hλ (A.10)

and the imaginary equation is:

L−1
DBI

(
Γ(4) − 2πα′F2 ∧ Γ(2)

)
(hλ) = −hγ0123λ . (A.11)

Now we multiply both sides of the second equation above, (A.11), by γ0123 remembering

that (γ0123)2 = −1 and that we must anticommute past the x · ~γ. Let us also define

Γ̃4 = −γ0123Γ4γ
0123 (A.12)

Γ̃2 ∧ F2 = −γ0123Γ2 ∧ F2γ
0123.

Equation (A.11) then becomes

L−1
DBI

(
Γ̃(4) − 2πα′ ˜F2 ∧ Γ(2)

)
(hγ0123λ) = hλ . (A.13)

Now we subtract equation (A.13) from (A.10). This will give us our main equation((
Γ(4) − Γ̃(4)

)
+ 2πα′

(
F2 ∧ Γ(2) + ˜F2 ∧ Γ(2)

))
hγ0123λ = 0 . (A.14)

We have thus succeeded in eliminating LDBI. The task is now to determine which λ’s must

be annihilated by the operator appearing above. Once we know this, then (A.14) may be

looked at as a set of algebraic constraints on the various fields living inside of Γ(4), Γ(2)

and F2. These will be our BPS conditions. Note that since, in principle, the equation

above only contains half the constraints of the original kappa projector we will be obliged

to check that our final solutions still satisfy the full set of constraints. Indeed, we will find

that this holds in all cases. We must now determine the appropriate set of λ’s by looking

at the monopoles and tilted brane separately.
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A.1 Magnetic monopole on untilted brane

In the case of a single monopole with no tilt one expects that θ = 0 and that the solution

is a function of (world volume) radius only. The only non-trivial variables is u, which in

this case is equal to Φ6. The kappa symmetry analysis gives the BPS conditions(
R2 sin(θ′)(r′)2∂r′u γ1234 + 2πα′Fθ′ϕ

)
hγ0123λ = 0 . (A.15)

Since the eigenvalues of γ1234 are ±1, the above equation can only have a solution if:

γ1234hγ
0123λ = ±hγ0123λ (A.16)

2πα′Fθ′ϕ = ∓R2 sin θ′(r′)2∂r′u .

Without loss of generality, we will choose the upper sign. The condition on λ may be

rewritten as

h−1γ1234hλ = λ . (A.17)

Plugging θ = 0 into expression (A.7) (as is appropriate for a brane with no tilt) one finds

that this is equivalent to:

γ1234λ = λ . (A.18)

This is the final condition that we will need.

A.2 Tilted brane

We now repeat the procedure above for tilted branes with no monopole. Assuming F = 0

and θ = π/2 one finds the BPS conditions:

(ρu′γ42 − uγ15)hγ0123λ = 0 . (A.19)

Again, relying on the fact that γ1245 has eigenvalues of ±1, this leads to the following BPS

conditions:

γ1245hγ
0123λ = ±hγ0123λ (A.20)

ρu′ = ±u .

In this note, we will be interested in the + sign solution, which leads to tilted brane

solutions of the form u = cρ. (The minus sign embeding of the form u = cρ−1 which was

interpreted as surface operators in in [16].) Recalling also that u =
√

(x4)2 + (x5)2/R2 we

can get an expression for the tilt angle as:

tan γ = R2c . (A.21)

Finally, we need to determine the appropriate condition on λ. Using the formula (A.7)

when θ = π/2 we find that the first condition in (A.20) becomes

γ1256λ = −λ . (A.22)
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A.3 Magnetic monopole on tilted brane

For this case, we impose conditions (A.18) and (A.22) simultaneously. This applied

to (A.14) will give rise to the supersymmetry constraint (2.11).

A.4 Electric monopole

With minor modification, the above analysis can be extended to the case of an electric

monopole and show that it has the properties consistent with S-duality. The general

spinor condition (A.20) from the tilting of the D3′ is the same as the magnetic monopole

case. The presence of an electric charge, on the other hand, gives rise to a constraint

γ04λ = λ (A.23)

2πα′F0r′ = R2∂r′u .

Requiring that spinors satisfy both (A.22) and (A.23) and then reading off the supersym-

metry condition from (A.14) gives the electric analogue of (2.11),

2πα′F0ρ = R2

(
∂ρu−

u

ρ
sin2 θ

)
sec θ

2πα′F03 = R2∂3u sec θ .

As in the magnetic case, the θ equations imply that u sin θ = cρ, and therefore that the

equations above may be written as

F0ρ =
R2

2πα′
∂ρΦ6 (A.24)

F03 =
R2

2πα′
∂3Φ6 .

Now it is clear that the Bianchi identity dF = 0 will be trivial. One may also check that

the equation of motion for F obtained by varying the full action will give precisely the

equation of motion derived previously in the magnetic case, i.e., (2.16). However, as was

noted previously, one cannot obtain the full equations of motion by varying the action

obtained after substituting in the BPS ansatz. In the electric case, substituting the ansatz

back into (2.8) rise to the following trivial Lagrangian,

L = − λ

8π3gs
ρc2, (A.25)

but the Hamiltonian has the form (2.17) identical to the one encountered earlier in the

magnetic case.
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