
J
H
E
P
1
2
(
2
0
1
4
)
1
2
0

Published for SISSA by Springer

Received: August 11, 2014

Revised: October 21, 2014

Accepted: November 17, 2014

Published: December 17, 2014

Searching for sterile neutrinos at the ESSνSB

Mattias Blennow,a Pilar Colomab and Enrique Fernandez-Martinezc,d

aDepartment of Theoretical Physics, School of Engineering Sciences,

KTH Royal Institute of Technology, AlbaNova University Center,

106 91 Stockholm, Sweden
bCenter for Neutrino Physics, Physics Department, Virginia Tech,

850 West Campus Dr, Blacksburg, VA, 24061 U.S.A.
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Abstract: The ESSνSB project is a proposed neutrino oscillation experiment based on

the European Spallation Source with the search for leptonic CP violation as its main aim.

In this letter we show that a near detector at around 1 km distance from the beamline is not

only very desirable for keeping the systematic errors affecting the CP search under control,

but would also provide a significant sensitivity probe for sterile neutrino oscillations in

the region of the parameter space favored by the long-standing LSND anomaly. We find

that the effective mixing angle θµe can be probed down to sin2(2θµe) ' 2(8) · 10−3 at 5σ

assuming 15% bin-to-bin (un)correlated systematics.
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1 Introduction

Since the first evidence for neutrino oscillations in 1998, the experimental progress in the

field has been remarkable. Today the standard three-flavor paradigm of neutrino oscilla-

tions is well tested and most of the parameters it contains are known to high precision [1].

This framework includes six parameters out of which three are mixing angles, two are inde-

pendent mass squared differences and one is a, yet unknown, CP violating phase. However,

there are a number of experimental anomalies that do not fit into this picture. The obser-

vation of an excess of ν̄e events at 3.8σ at the LSND experiment [2] could be explained by

introducing one or more additional sterile neutrino states, with an additional mass squared

difference of ∆m2
41 ∼ O(eV2) in order to allow for νµ → νe oscillations in the observed

range of L/E. However, KARMEN did not observe any signal for similar values of L/E [3].

The dedicated MiniBooNE experiment [4–6] has to this day not confirmed or disproved the

LSND anomaly. On the other hand, νe [7–10] and ν̄e [11–13] disappearance experiments

seem to observe a deficit which would be compatible with sterile neutrino oscillations in

the eV2 range, while no deficit at all has been observed in any of the νµ disappearance

experiments [14, 15]. Overall, global analyses show strong tension between different data

sets [16–18] and further experimental input will be needed to clarify the situation.

The European Spallation Source ν-Beam [19, 20] (ESSνSB) is a proposal for a neu-

trino oscillation experiment based upon the accelerator facilities of the future European

Spallation Source (ESS) and optimized for the goal of a high significance search for CP

violation. The relatively large value of θ13 recently discovered [21–25] guarantees a compar-

atively high signal, which implies that the bottleneck of CP violation searches for the next

generation of neutrino oscillation facilities will typically be systematics errors rather than

statistics or backgrounds. The effect of such systematic uncertainties can be alleviated in

two ways. If the statistics is high enough, placing the detector close to the second oscil-

lation maximum enhances the relative importance of the CP-violating component of the

oscillation probability, increasing the sensitivity of the facility and reducing the impact of

systematic errors [26]. Indeed, the optimization of the ESSνSB showed a clear preference

for this location which was adopted as its baseline design. The second way of controlling
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the negative impact of systematic uncertainties on the CP violation search is the inclusion

of a near detector. The idea is that the two detectors would observe the same flux in

absence of oscillations, thus reducing the impact of flux uncertainties. The optimal way

to do this is to place the near detector at a non-negligible distance of the neutrino source

(such as 1 or 2 km), since otherwise the geometric acceptance of the detector would make

the observed flux very different from the one expected at the far detector. However, even

though the primary goal of a near detector at the ESSνSB facility would be the cancellation

of systematic errors, it could also be used to test for new physics in the neutrino sector.

Indeed, since the neutrino flux at the ESSνSB would be peaked in the O(0.2 GeV) range,

a near detector placed at a baseline of 1 km would be ideal for testing oscillations of sterile

neutrinos in the parameter range indicated by the LSND anomaly. Furthermore, the high

power of the beam (5 MW) would enable the possibility to test very small values of the

oscillation probability with a very high significance.

In the following we will study the sensitivity of the ESSνSB setup, using only a near

detector placed at 1 km from the source, to oscillations in the νµ → νe appearance chan-

nel. In order to do so, we will adopt a phenomenological approach where the oscillation

probability reads

P (νµ → νe) = sin2(2θµe) sin2

(
∆m2

41L

4E

)
. (1.1)

Here, θµe is an effective mixing angle, ∆m2
41 ≡ m2

4 −m2
1 is the active-sterile squared mass

difference, L is the distance from the source, and E is the neutrino energy. This approach

is a reasonable approximation as long as we are dealing with small enough values of L/E

such that the active-active neutrino oscillations have not developed significantly yet.

In the following we will investigate the sensitivity of the ESSνSB in two separate

scenarios,

Case I: no active — sterile mixing and

Case II: 3 · 10−3 . sin2(2θµe) . 1 · 10−2, 0.2 eV2 . ∆m2
41 . 1.2 eV2.

Case I corresponds to a scenario without steriles (as suggested by νµ disappearance ex-

periments) while Case II corresponds to a situation in which the active-sterile oscillation

parameters take values which are close to the allowed regions shown in figure 7 of ref. [16],

where a global analysis of several νµ → νe and ν̄µ → ν̄e experiments was performed. It

should be stressed again that a mixing angle sin2 2θµe = 0.01 may be in some tension with

the results from νµ and ν̄µ disappearance experiments.

2 Setup and simulation details

The GLoBES software [27, 28] has been used in order to simulate the ESSνSB experiment.

Since the flux peak would be located around 250 MeV, a distance to the detector of 1 km

would be needed in order to match the maximum of the oscillation, assuming a squared mass

splitting ∆m2
41 ∼ O(1 eV) (as LSND [2] and MiniBooNE [4–6] results seem to indicate).

Since the main goal of the ESSνSB experiment would be the search for CP violation, we
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have considered the same detector technology as for the far detector. This choice would

minimize the effect of systematic errors coming from neutrino interaction cross sections

and detector performance, which would be the primary purpose of the near detector at the

ESSνSB. Therefore, we consider a 1 kt water Cherenkov detector and we assume it to be

identical to the far detector in terms of efficiencies and background rejection capabilities.

The response of the detector has been simulated using migration matrices, signal and

background rejection efficiencies from ref. [29].

Neutrino fluxes have been explicitly simulated for a near detector placed at 1 km from

the source [30]. A beam power of 5 MW and 1.7 × 107 operating seconds per year with

2.5 GeV protons, as for the long baseline experiment [20], is assumed. In order to respect the

configuration of the long baseline experiment (which is optimized for CP violating searches)

we keep the same ratio of neutrino (2 years) and antineutrino (8 years) running times.1

In absence of oscillations, this would yield a total of 4.00×106 (2.29×106) unoscillated νµ
(ν̄µ) events at the detector during a 10 year life-time of the experiment, where efficiencies

have already been accounted for.

On the other hand, we find that the expected total number of background events in

the νe and ν̄e channels would be ∼ 34400 and ∼ 23100, respectively, assuming identical

background rejection capabilities as in refs. [20, 29]. The largest contributions to the back-

ground event rates would come from νµ mis-identified as νe, and from neutral current (NC)

events mis-identified as charged-current (CC) events. In principle, if a sterile neutrino ex-

ists and has sizable mixing with the active sector, the background rates should also be

affected by oscillations. Nevertheless, we find the impact of this effect on the sensitivity

of the setup to be negligible, and therefore oscillations have not been considered for the

background rates in our analysis.

In a similar fashion, a sterile neutrino would have an observable effect in the νµ → νµ
and ν̄µ → ν̄µ channels. The sensitivity to a sterile neutrino through disappearance data

would be strongly limited by systematic errors, however. In fact, the results for our setup

using only the νµ → νµ and ν̄µ → ν̄µ disappearance channels would just be able to slightly

improve current bounds on the effective mixing angle in this channel, θµµ. A second

possibility could be to combine appearance and disappearance data, since the effects in the

two channels should be partially correlated. However we have numerically checked that,

for the proposed setup and within a 3+1 oscillation framework, where the two oscillation

probabilities can be expressed in terms of one mass splitting and two mixing angles, the

addition of disappearance data does not yield an observable improvement over the results

obtained using only the appearance channels. Therefore, the νµ disappearance channels

will not be considered in this work.

The neutrino fluxes at the ESSνSB will be peaked within a relatively narrow energy

range, see ref. [20]. The energy resolution for a water Cherenkov detector would limit the

size of the energy bins to ∼ 100 MeV, implying that only a few energy bins would contain

a sizable number of events. However, we have found that the sensitivity of the setup would

1We note, however, that in order to optimize the experiment to search for a sterile neutrino, a different

ratio may be desirable, in particular taking into account the different size of neutrino and antineutrino cross

sections. See also ref. [31] for optimizations to standard oscillation physics.
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be compromised if the analysis was done as a counting experiment only (without energy

bin separation). The main reason for this is that the signal and background spectra show

a different dependence with neutrino energy, which implies that different energy bins will

have a different signal-to-background ratio. Therefore, we compute a binned χ2 in neutrino

energy, with nine 100 MeV bins between 0.1 and 1 GeV.

Given the high statistics at the near detector, the performance will be limited by sys-

tematics. Thus, we will show our results in two scenarios with a different implementation of

systematic errors. For the more optimistic option an overall 15% uncertainty, uncorrelated

between the different channels and between the signal and background components but

fully correlated among the bins of each channel, is considered. For the more conservative

option, on the other hand, we allow uncorrelated systematics among the different energy

bins in each channel, so as to account for uncertainties in the shape of the fluxes and cross

sections. However, in order to accommodate an overall normalization shift for the signal

in this case, we would be effectively multiplying the penalty in terms of χ2 by the number

of bins with respect to the more optimistic case. Therefore, in this conservative scenario

we also add an additional 15% normalization uncertainty which is correlated among all

bins in order to avoid this behaviour. A modified version of the GLoBES software as in

ref. [32] was used for this implementation of the systematics. A pull-term corresponding to

each uncertainty is added to the χ2, and the result is then marginalized over the nuisance

parameters to search for the minimum. The procedure is then repeated for all points in

the (sin2(2θµe),∆m
2
41) parameter space, and contours for equal values of the χ2 are drawn.

Finally, since in this work we are mainly interested in the performance of the ESSνSB

with regard to sterile neutrino oscillations, the far detector is not considered in our simu-

lations. The presence of sterile neutrinos of the type considered here is also not likely to

adversely affect the ESSνSB measurement of CP-violation at the far detector. Since the

sterile neutrino oscillations would be averaged out at the far detector and no additional

CP violating phases in the 3+1 scenario considered here can play a role, the effect of the

sterile neutrinos would be similar in the neutrino and antineutrino channels and would

manifest as an increase in the expected νe and ν̄e backgrounds, since part of the origi-

nal νµ and ν̄µ will oscillate through the sterile state. Thus, a resulting tension with the

expected background level could presumably be accommodated in the fit by varying the

values of θ13 and/or θ23, but would not affect the value of the CP violating phase in the fit.

Therefore, the CP violating discovery potential would remain unaffected, while the values

of the mixing angles may be slightly modified. We do not expect this modification to be

very significant. Indeed, we have estimated that for sin2(2θµe) = 1 · 10−2 this additional

background would be of the same order than the intrinsic beam contamination and, as can

be seen in ref. [20], while this represents the dominant source of background at the ESSνSB

the signal to background ratio is rather large and the experiment is statistics, rather than

background, limited.

3 Results

The left panel of figure 1 shows the expected 3 and 5σ exclusion limits of the ESSνSB under

the assumption of no active-sterile neutrino mixing (Case I). As expected from the baseline
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Figure 1. Left: the 3 and 5σ exclusion contours for totally correlated and totally uncorrelated bin-

to-bin systematics of 15%. The no-systematics limit is also shown. The shaded region corresponds

to the allowed region at 99% CL obtained from a global fit to νe disappearance and νµ → νe
appearance experiments, taken from figure 7 of ref. [16]. Right: the expected confidence regions for

several possible choices of active-sterile neutrino oscillation parameters (Case II) at 3 σ. Results

are shown for correlated bin-to-bin systematics of 15% and for the case where the systematic

uncertainties are completely switched off in the analysis, as indicated in the legend.

length of 1 km and typical neutrino energy of ∼ 0.3 GeV, the best sensitivity is achieved

around ∆m2
41 ' 0.3 eV2. Below this value, the sensitivity in sin2(2θµe) quickly deteriorates

as the oscillations do not have sufficient time to develop. On the other hand, for larger

values of the mass splitting the oscillations enter the averaged regime. For comparison

with the current experimental situation, the allowed region at 99% CL from a global fit

to νe disappearance and νµ → νe appearance experiments is also shown, see ref. [16]. As

seen in the figure, the final results will be dominated by systematic errors. Assuming bin-

to-bin correlated 15% systematic errors the currently allowed region could be completely

excluded at 5σ from this measurement alone, while the sensitivity in the more conservative

scenario of completely uncorrelated errors is somewhat more limited. However, we find

that also in this scenario most of the preferred region, including the best fit, is covered

with 5σ significance. Finally, we also show in this panel that in the limit of no systematic

uncertainties values of sin2(2θµe) down to ∼ 10−4 could be probed.

The right panel of figure 1, on the other hand, shows the expected 3σ confidence regions

under the assumption of active-sterile neutrino mixing with oscillation parameters close to

the allowed confidence regions found in ref. [16] for a combined fit to ν̄e disappearance

and νe and ν̄e appearance (Case II). In this case, results are only shown for the case with

no systematics and the case with 15% bin-to-bin correlated systematic errors, for which a

great precision can be achieved in most cases for both variables. In the case of bin-to-bin

uncorrelated systematic errors, we find the following results: (i) in the case of small mixing

angles, sin2 2θµe < 10−2, the confidence regions are compatible with θµe = 0 (as can be

extracted from the sensitivity contours shown in the left panel in the same figure); (ii) for
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larger values of the mixing angle (sin2 2θµe ∼ 0.01) the confidence regions are no longer

compatible with θµe = 0, but multiple solutions appear at different values of ∆m2
41.

4 Summary and conclusions

In this letter we have discussed the possibility of using a near detector at the recently

proposed ESSνSB neutrino oscillation experiment in order to look for active-sterile neutrino

oscillations in the range indicated by the LSND anomaly, ∆m2
41 ∼ 1 eV2 and sin2 2θµe ∼

10−2. Our study is based on the performance of a 1 kt near water Cherenkov detector at

a distance of 1 km from the source. Under the assumption of no active-sterile neutrino

mixing, we find that the ESSνSB setup would be able to completely exclude the currently

allowed region from a global fit to νe disappearance and νµ → νe appearance data with

a confidence of 5σ, assuming bin-to-bin correlated systematical errors at the 15% level.

Even in the more conservative scenario of fully uncorrelated bin-to-bin systematics, most

of the preferred region would also be covered with 5σ significance. On the other hand, if

active-sterile mixing takes place with oscillation parameters in the range currently favored

by global analyses, the ESSνSB experiment would be able to pinpoint their values with

extremely good accuracy.

Finally it should also be noted that, in order not to interfere with the main goal of the

ESSνSB (i.e., the discovery of leptonic CP violation), no optimization for sterile neutrino

searches has been performed in this work. Therefore, if a signal of the existence of sterile

neutrinos was to be found, some room for improvement over the results obtained here may

be possible.
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