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1 Introduction

The collision of two point-like particles at trans-Planckian energies should be well described

by General Relativity [3]. This problem is mostly of theoretical interest, to investigate

the phenomenon of black hole (BH) creation in ultra-high energy collisions. Since the

end of the XXth century, however, this problem also gained potential phenomenological

relevance, with the advent of TeV gravity scenarios, based on higher-dimensional brane-

world models [4–7]. These proposals led to suggestions of BH formation [8, 9], both in

realistic particle accelerators, namely at the LHC [10, 11], and in ultra-high energy cosmic

ray collisions [12–14]. Even though, so far, no signal of strong gravity has been found in
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the LHC data [15–18], it remains of interest to obtain the best possible phenomenological

description of such scenarios, as to produce reliable bounds on the fundamental Planck

scale (see e.g., the discussion in [19]).

A variety of analytical and numerical techniques have been used to model the collision

of two particles/compact objects at very high energies within D-dimensional General Rel-

ativity (see [20] for a review). A most used (semi-)analytical technique is to take the two

particles traveling precisely at the speed of light and model them as colliding Aichelburg-

Sexl shock waves [21]. Then, bounds for both the gravitational radiation emitted in the

collision, as well as for the production cross section for BH formation, can be obtained by

studying the formation of trapped surfaces in the collision of the two shock waves. This

method, originally due to Penrose in four spacetime dimensions, has been extended to D

dimensions and generalized in different directions over the last decade [10, 22–26]. We

remark that BH formation does not occur in the case of other colliding impulsive shock

waves, as in the classical example of Khan and Penrose [27, 28].

A more ambitious program is to compute the metric in the future light-cone of the

collision of the two Aichelburg-Sexl shock waves, from which estimates, rather than bounds,

can be obtained for the aforementioned observables. A perturbative framework for doing

so, in D = 4 and for a head-on collision, was constructed by D’Eath and Payne in a

remarkable series of papers [29–31], building on earlier work by D’Eath [32]. The outcome

of this program was the computation of the fraction of the total energy radiated away as

gravitational waves, i.e. the inelasticity, ǫ, in up to second order perturbation theory. Two

encouraging observations for the validity of this approach are: (i) to this order the pre-

collision exact solution of the Einstein equations is fully taken into account in the initial

data; (ii) the result obtained by D’Eath and Payne, ǫ2nd order = 0.164, agrees well with

recent results from numerical relativity simulations colliding BHs [33], as well as other

compact objects [34, 35], at near the speed of light.

In a series of papers [1, 2, 36], we have studied the head-on collision of two D-

dimensional Aichelburg-Sexl shock waves, with the aim of computing the inelasticity, using

an extension of the method of D’Eath and Payne to D dimensions. The second order

perturbation theory result still remains a technical challenge, and so far the main result

of our study was to obtain a remarkably simple formula for the inelasticity, in first order

perturbation theory :

ǫ1st order =
1

2
− 1

D
. (1.1)

This formula was obtained as an accurate numerical fit [2], since the integrals required to

obtain the inelasticity could not be solved analytically. As such an obvious question arose:

Q1: is the result (1.1) exact in first order perturbation theory?

The first main goal of this paper is to answer, affirmatively, this question; we shall de-

rive (1.1) by purely analytic means. Such analytic derivation is made possible through an

asymptotic analysis and the use of Fourier space. In fact this procedure allows all surface

term contributions to the inelasticity to be computed analytically.
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A central issue in the method of D’Eath and Payne is the relation between the per-

turbative expansion for the Einstein equations and a power series expansion for the inelas-

ticity’s angular power around the symmetry axis. In first order perturbation theory, for

instance, following [29], we have used in [1, 2] an isotropy assumption for the emission of

gravitational radiation. Although some partial justifications for this assumption could be

put forward, for instance from Smarr’s ‘zero frequency limit’ [37], a question remained:

Q2: is the isotropy assumption well justified, for first order perturbation theory?

The second main goal of this paper is to answer, again affirmatively, this question. Its

answer is actually anchored to a central result that we shall prove and which clarifies the

nature of the perturbative expansion in this method:

for an asymptotic “observer” at null infinity, the angular dependence of the

gravitational radiation signal factorizes order by order in perturbation theory,

as a result of a hidden symmetry.

As a consequence of the analytic expression of this result, cf. (4.8) and (4.21), we establish

a correspondence between the order of the perturbative expansion and the order of the

angular expansion of the metric close to the axis; in particular this allows us to answer Q2.

The structure of the paper is the following. We start by reviewing the perturbative

setup and some of its general properties in D dimensions. Thus, in section 2 we write

down the formal solution to the perturbative series, decomposed in a suitable basis of

functions, and in section 2.1 we introduce the (spectrally decomposed) inelasticity. In

section 3 we extend the CL symmetry found in [30] to D dimensions, which allows for

a partial separation of variables and reduction to two dimensions. In section 4 we prove

the central result of the paper, quoted above. In section 5 we compute all surface terms,

analytically, which exist up to second order in perturbation theory, at null infinity. In

section 6 we present some final remarks. Many of the details of the calculations are left to

the appendices.

2 General setup and formal solution

In previous papers [1, 2, 36], we have shown that the metric in the future light-cone of the

head-on collision of two D-dimensional Aichelburg-Sexl shock waves can be constructed

perturbatively with the ansatz

gµν = ηµν +

∞
∑

k=1

h(k)µν , ηµνdx
µdxν = −2dudv + δijdx

idxj . (2.1)

Here and throughout, the superscript index (k) will be used to denote the order of the

spacetime perturbation theory used to compute the given object. In particular, observe

that for objects which are not linear in the metric perturbations, this does not correspond

to the perturbation theory order of the object itself.

The ansatz (2.1) is subject to boundary data on a null hypersurface of the background

Minkowski space, u = 0, which contains all the information about the pre-collision geometry
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and is exact at second order (cf. (3.2)–(3.6) in [1]). This construction is made in Brinkmann

coordinates, adapted to one of the shocks. In particular, this means that perturbation

theory is valid around one particular end of the collision axis — the negative z axis,

corresponding to θ = π in the discussion below and also in [1], cf. figure 1 therein (see

also [38] for an alternative argument for the validity of perturbation theory). Thus this

perturbative expansion breaks the manifest Z2 symmetry of the problem (reflexions around

θ = π/2). This breakdown will manifest itself in the discussion below.

The vacuum Einstein field equations for the ansatz (2.1) are written (in de Donder

gauge) as a tower of wave equations with sources (cf. (2.5) in [36])

�h(k)µν = T (k−1)
µν

[

h
(j<k)
αβ

]

, (2.2)

to be solved in the future light-cone of the collision. The right hand side source is gen-

erated, at each order, by the lower order perturbations which are assumed to have been

computed already. This provides an iterative method to solve Einstein’s equations order

by order. The general solution of (2.2), at each order, using the Green’s function method

(see theorem 6.3.1 of [39]), is

h(k)µν (y) = F.P.

∫

u′>0
dDy′G(y, y′)

[

T (k−1)
µν (y′) + 2δ(u′)∂v′h

(k)
µν (y

′)
]

. (2.3)

Here F.P. denotes the finite part of the integral, y = {u, v, xi} and we have used the fact

that the source only has support in u > 0. We call the first (second) type of terms in (2.3),

volume (surface) terms. Volume terms exist in second and higher order perturbation theory.

Surface terms exist only in first and second order perturbation theory.

In [36] we have made use of a basis of tensorial irreducible representations of the axial,

SO(D − 2), isometry, constructed from xi and δij . A convenient choice is (ρ2 ≡ xix
i)

Γi ≡
xi
ρ
, δij , ∆ij ≡ δij − (D − 2)ΓiΓj , (2.4)

where the last tensor is traceless. Then the metric perturbations, in de Donder coordinates,

are decomposed into seven functions of (u, v, ρ), here denoted A,B,C,E, F,G,H, as follows:

huu ≡ A = A(1) +A(2) + . . . hui ≡ B Γi = (B(1) +B(2) + . . .)Γi

huv ≡ C = C(1) + C(2) + . . . hvi ≡ F Γi = (F (1) + F (2) + . . .)Γi (2.5)

hvv ≡ G = G(1) +G(2) + . . . hij ≡ E∆ij +H δij = (E(1) + . . .)∆ij + (H(1) + . . .)δij .

The terms A(k), B(k), C(k), E(k), F (k), G(k), H(k) denote the kth order contribution, in per-

turbation theory, to the given function.

A similar decomposition can be applied to the sources T
(k−1)
µν . In particular, for the

radiative components,

T
(k−1)
ij = T

(k−1)
H (u, v, ρ)δij + T

(k−1)
E (u, v, ρ)∆ij . (2.6)

In what follows we denote a generic metric function projection (such as any of the functions

in (2.5)) by F (u, v, ρ). Similarly, its associated source, i.e. the corresponding projection of
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T
(k−1)
µν with the same basis tensor, is denoted by T (u, v, ρ). Then, after contracting (2.3)

with the corresponding basis tensor, one obtains

F (k)(u, v, ρ) = F.P.

∫

u′>0
dDy′G(y, y′)Λm

(

x · x′
ρρ′

)

[

T (k−1)(u′, v′, ρ′)+2δ(u′)∂v′F
(k)(0, v′, ρ′)

]

,

(2.7)

where the projection scalars can take three possible forms,

Λm(z) ≡
{

1, z, (D − 3)−1
(

(D − 2)z2 − 1
)}

, (2.8)

respectively for m = {0, 1, 2}. Here and below m is the rank of the basis tensor multiplying

F in the contribution to the metric perturbation (and similarly for T ). Thus, m = 0 for

A,C,G,H, m = 1 for B,F and m = 2 for E, as can be observed in (2.5).

In the following we denote by S the sum of both volume and surface sources:

S(k)(u, v, ρ) ≡ T (k−1)(u, v, ρ) + 2δ(u)∂vF
(k)(0, v, ρ) . (2.9)

2.1 The inelasticity from a Fourier representation

In [36], we have derived a formula for the inelasticity of the collision, i.e. the percentage of

the initial centre-of-mass energy that is radiated away as gravitational waves, using a D-

dimensional generalisation of the Bondi mass loss formula [40, 41]. The Bondi coordinates

(r, τ, θ) used in the derivation relate to (u, v, ρ) through1

√
2u = τ + r(1− cos θ) ,

√
2v = τ + r(1 + cos θ) , ρ = r sin θ , (2.10)

and the inelasticity, denoted by ǫ, was shown to be (cf. (2.21) in [36])

ǫ =

∫ 1

−1

d cos θ

2
ǫ(θ) ≡

∫ 1

−1

d cos θ

2

∫

dτ Ė(τ, θ)2. (2.11)

ǫ(θ) is the inelasticity’s angular distribution; the inelasticity’s angular power Ė(τ, θ) shall
be called wave form or, following the traditional nomenclature in D = 4, the news function.

It reads

Ė(τ, θ) = lim
r→∞

d

dτ
E(r, τ, θ) , (2.12)

E(r, τ, θ) =
√

(D − 2)(D − 3)

4
rρ

D−4
2
(

E(u, v, ρ) +H(u, v, ρ)
)

, (2.13)

in terms of the functions introduced in (2.5).

In section 4 we will find it convenient to work in Fourier space. Defining the Fourier

transform of the wave form

ˆ̇E(ω, θ) =
∫

dτ Ė(τ, θ) e−iωτ , (2.14)

1Strictly speaking, the metric in de Donder gauge, when written in (r, τ, θ) coordinates, is only in Bondi

gauge at null infinity, i.e. in the limit r → ∞.
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the angular distribution ǫ(θ) can be expressed as a spectral integral using Plancherel’s

theorem

ǫ(θ) =
1

2π

∫

dω | ˆ̇E(ω, θ)|2 = 1

π

∫ ∞

0
dω ˆ̇E(ω, θ) ˆ̇E(−ω, θ) . (2.15)

The last equality follows from the reality of Ė(τ, θ).
In practice, since we are working within a perturbative framework, (2.13) will be

computed at each order from the corresponding E and H at that order,

E(k)(r, τ, θ) =

√

(D − 2)(D − 3)

4
rρ

D−4
2
(

E(k)(u, v, ρ) +H(k)(u, v, ρ)
)

. (2.16)

The corresponding perturbative expansion for ǫ(θ) is slightly different since, from (2.11),

ǫ(θ) is quadratic in the wave form. Introducing the perturbative expansion for the wave

forms, we have

ǫ(θ) =

∫

dτ Ė(τ, θ)2 =
∫

dτ
∞
∑

k=1

Ė(k)(τ, θ)
∞
∑

k′=1

Ė(k′)(τ, θ) , (2.17)

so we see that the perturbative expansion for ǫ(θ) takes the form

ǫ(θ) =

∞
∑

N=1

ǫ(N)(θ) , (2.18)

where

ǫ(N)(θ) =

N
∑

k=1

∫

dτ Ė(k)(τ, θ)Ė(N+1−k)(τ, θ) . (2.19)

Thus, knowledge of the metric perturbations to O(k) in spacetime perturbation theory

allows us to consistently determine terms for the inelasticity’s angular distribution (and

hence to the inelasticity) up to O(k) in the series (2.18). For instance, in first order

perturbation theory we determined Ė(1) and thus ǫ(1)(θ); but ǫ(2)(θ) requires also knowledge

of Ė(2).

3 The CL symmetry

The head-on collision of two Aichelburg-Sexl shock waves contains, besides the SO(D − 2)

isometry, a very useful extra symmetry, first pointed out in D = 4 by D’Eath and

Payne [30], which we now generalise to D > 4. This allows for a partial separation of

variables and a reduction to two dimensions.

3.1 One shock wave

Recall the metric of one Aichelburg-Sexl shock wave in Rosen coordinates (cf. (2.5) in [1]),

ds2 = −dūdv̄ +

(

1 + κ
ūθ(ū)

2
Φ′′(ρ̄)

)2

dρ̄2 + ρ̄2
(

1 + κ
ūθ(ū)

2ρ̄
Φ′(ρ̄)

)2

dΩ̄2
D−3 , (3.1)
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where the profile function, as defined in [1], is

Φ(ρ) =







−2 ln(ρ) , D = 4
2

(D − 4)ρD−4
, D > 4 .

(3.2)

It is well known that the only effect of a Lorentz transformation along the direction of the

shock wave’s motion is to rescale the energy parameter κ. Physically this is because such

a transformation can only blue/red-shift the particle traveling at the speed of light. Since

the energy is the only scale of the geometry, we can undo the Lorentz transformation, up

to an overall conformal factor, by a further scaling of the coordinates. For concreteness, let

L be the Lorentz transformation (ū, v̄, x̄i)
L−→ (e−βū, eβ v̄, x̄i) and C the conformal scaling

(ū, v̄, x̄i)
C−→ e−

1
D−3

β(ū, v̄, x̄i). Then, under CL,

(ū, v̄, x̄i)
CL−−→

(

e−
D−2
D−3

βū, e
D−4
D−3

β v̄, e−
1

D−3
βx̄i
)

, (3.3)

gµν(X)
CL−−→ e

2
D−3

βgµν(X
′) , (3.4)

so that the metric of a single shock wave simply scales by an overall constant factor under

this transformation. Thus, this is a one parameter conformal isometry of the background.

One can then find spacetime coordinates adapted to the orbits of this conformal isometry.

Such orbits naturally foliate the spacetime into (D − 1)-dimensional leaves, which are left

invariant by the action of the conformal symmetry. A suitable set of coordinates on such

leaves are {p, q, φi}, with
p ≡ v̄ρ̄D−4, q ≡ ūρ̄2−D, (3.5)

and where φi are the angles on the transverse plane. The coordinate along the orbits of

the conformal symmetry, on the other hand, is simply ρ̄, which transforms as ρ̄ → ρ̄′ =

e−
1

D−3
β ρ̄.

Let us pause momentarily to remark that the presence of the ρ̄ coordinate in (3.5) is

encouraging. Even though the problem has “only” axial symmetry, the conformal symme-

try relates different ρ̄ = constant cylinders, albeit at different ū, v̄. This symmetry plays a

central role in the construction that follows in the next section, for which the first step is

to understand the role of the CL symmetry in a spacetime with two colliding shock waves.

3.2 Two colliding shock waves

For the collision of two shock waves with energy parameters λ and ν, one can show,

following [30], that under CL the perturbative expansion remains the same except for

λ → λe−2β . Thus, in the centre-of-mass frame, the expansion (2.1) becomes

gµν(X)
CL−−→ gµν(X

′) = e
2

D−3
β

[

ηµν +
∞
∑

k=1

e−2kβh(k)µν (X
′)

]

. (3.6)

The metric functions h
(k)
µν used in the perturbative expansion are the same, except that

they are evaluated on the transformed coordinates on the right hand side, i.e. before CL

(X, left) and after CL (X ′, right), respectively. On the other hand, a general coordinate

– 7 –
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transformation obeys gµν(X) = ∂xµ′

∂xµ
∂xν′

∂xν gµ′ν′(X
′). In the present case ∂xµ

′

/∂xµ is the

coordinate transformation operated by CL; thus, inserting in (3.6), we conclude that

h(k)µν (X
′) = e(2k+Nu−Nv)βh(k)µν (X) , (3.7)

where Nu and Nv are the number of u-indices or v-indices.2 Changing back to Brinkmann

coordinates adapted to one of the shock waves,3 the coordinates p, q read

p =
(
√
2v − Φ(ρ)

)

ρD−4, q =
√
2uρ−(D−2). (3.8)

In these new CL-adapted coordinates {ρ, p, q, φi} only ρ transforms, i.e. ρ
CL→ ρ′ = e−

1
D−3

βρ.

This implies a separation of the ρ variable in the form

h(k)µν (p, q, ρ, φi) =
f
(k)
µν (p, q, φi)

ρ(D−3)(2k+Nu−Nv)
, (3.9)

which can be checked by inserting (3.9) in (3.7) on either side.

Next, and as in (2.5), we can separate the (transverse plane) angular dependence by

defining scalar functions analogous to A(k)(u, v, ρ), E(k)(u, v, ρ), . . . for f
(k)
µν . We define such

functions using the separation property (3.9), which implies that, for each such function,

generically denoted by F as before,

F (k)(u, v, ρ) =
f (k)(p, q)

ρ(D−3)(2k+Nu−Nv)
. (3.10)

Similarly, for the respective source S(k)(u, v, ρ), one shows that (using the scaling of the

d’Alembertian operator under the symmetry in (2.2))

S(k)(u, v, ρ) =
Σ(k)(p, q)

ρ(D−3)(2k+Nu−Nv)+2
. (3.11)

The bottom line is that, in these CL-adapted coordinates, the problem becomes two-

dimensional order by order in perturbation theory, due to the factorization of the ρ depen-

dence. This is a computational advantage in the evaluation of both the surface and volume

terms in (2.7), since one can factor out the ρ′ integrations and remove the ρ dependence

altogether from the integral. There is, however, another consequence of this symmetry

which only reveals itself at null infinity and that will be discussed in the next section.

4 Asymptotic metric functions and the news function

Building on the previous section, we now derive two key results:

1. We prove that the angular dependence of all asymptotic metric functions factors out

order by order in perturbation theory if we change to a new time coordinate, as a

consequence of the CL symmetry at null infinity.

2For example hu′u′ = e(2k+2)(D−3)βhuu, hv′v′ = e(2k−2)(D−3)βhvv and hi′j′ = e2k(D−3)βhij .
3These are the coordinates in which the perturbative calculation in de Donder gauge is set up, cf.

section 2 — see [1] for the explicit coordinate transformation.
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2. Then we obtain an expression for the inelasticity’s angular distribution ǫ(θ) as an

angular series in powers of sin2 θ. Consequently, we show that there is a clear cor-

respondence between the order of the terms in the angular series and the order of

the perturbative expansion. This relation was previously claimed without rigorous

proof [29–31, 36].

4.1 Asymptotic factorization of the angular dependence

We saw in section 2.1 that the computation of the inelasticity is done over a sphere at null

infinity, i.e. it requires taking the limit r → ∞ (cf. (2.12)). Using (2.10) and (3.8), the

coordinates p, q are related to (r, τ, θ) through

p =
(

τ + r(1 + cos θ)− Φ(r sin θ)
)

(r sin θ)D−4, q =
(

τ + r(1− cos θ)
)

(r sin θ)−(D−2).

(4.1)

In the asymptotic limit, they behave as q → 0 and p → ∞. It is reasonable to

expect that the finite, non-trivial dependence of the wave form should be given in terms

of combinations of p, q that remain finite and non-trivial at null infinity. An appropriate

choice is p̂, q̂ given by

p̂ ≡















pq − 1

q
+ 2 log q , D = 4

pq − 1

q
1

D−3

, D > 4 ,
q̂ ≡ q

1
D−3 . (4.2)

This coordinate transformation, (p, q) → (p̂, q̂), has a constant Jacobian determinant, D−3,

hence it is well defined everywhere. When r → ∞,

p̂ → 2τ̄(τ, θ) +O(r−1) , q̂ → (1− cos θ)
1

D−3 (sin θ)−
D−2
D−3

r
+O(r−2) , (4.3)

where we have defined a new time coordinate

τ̄(τ, θ) =















τ

1− cos θ
+ log

(

1− cos θ

sin θ

)

, D = 4

τ

(1− cos θ)
1

D−3

(sin θ)−
D−4
D−3 , D > 4 .

(4.4)

Recall that we had already factored out the ρ dependence, leaving only a function of (p, q)

to compute. But since τ̄ is the only surviving quantity in the asymptotic limit, we expect

the wave form to become effectively one-dimensional at null infinity: besides the trivial

dependence on θ coming from the known powers of r and ρ, it must be a function of τ̄(τ, θ)

only. From the definitions (2.16) and (3.10),

Ė(k)(r, τ, θ) = (sin θ)
D−4
2

−2k(D−3) × d

dτ

[

r
D−2
2

−2k(D−3)f̂ (k)(p̂, q̂)
]

, (4.5)

where f̂ (k) contains the relevant contribution from E(k) and H(k), as a function of (p̂, q̂).

If the quantity inside brackets is to remain finite at null infinity, then necessarily

f̂ (k)(p̂, q̂) ≃ α(k)(p̂) q̂
D−2
2

−2k(D−3) + . . . , (4.6)
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where . . . denotes higher powers of q̂ and α(k)(p̂) is some (yet) unknown function of p̂.

Thus, after taking the limit r → ∞,

Ė(k)(τ, θ) =
1

1− cos θ

(

1 + cos θ

1− cos θ

)k−1+ 1
4

D−4
D−3 dτ̄

dτ
(θ)

d

dτ̄
α(k)(2τ̄) . (4.7)

The function α(k)(2τ̄) can be given in terms of the wave form by evaluating the previous

expression at θ = π
2 and noting that τ̄

(

τ, π2
)

= τ . Then, we get

Ė(k)(τ, θ) =

(

1

1− cos θ

)2(1 + cos θ

1− cos θ

)k−1− 1
4

D−4
D−3

Ė(k)

(

τ̄(τ, θ),
π

2

)

. (4.8)

This proves the advertised factorization of the angular part of the wave form at null infinity,

when the latter is written in terms of the new time coordinate τ̄ .

Inserting (4.8) in the inelasticity power series (2.19), and changing the integration

variable from τ to τ̄ , we conclude that

ǫ(N)(θ) =

(

1

1− cos θ

)3(1 + cos θ

1− cos θ

)N−1

ǫ(N)

(

π

2

)

. (4.9)

Thus it suffices to compute the inelasticity’s angular distribution on the symmetry plane.

The whole series reads

ǫ(θ) =
∞
∑

N=1

ǫ(N)(θ) =

(

1

1− cos θ

)3 ∞
∑

N=1

(

1 + cos θ

1− cos θ

)N−1

ǫ(N)

(

π

2

)

. (4.10)

Two comments are in order. First, each term in this series is not invariant under the

original Z2 symmetry of the problem, i.e. θ → π − θ. Second, and in particular, each

term diverges as θ → 0. We believe both these issues originate from the perturbative

setup in Brinkmann coordinates adapted to one of the shocks; thus the perturbative setup

formulation does not have the Z2 symmetry explicitly, and is well defined around θ = π.

The symmetry, however, must be recovered when the whole series is summed. As such,

writing cos θ = −
√

1− sin2 θ one must be able to expand (4.10) in a sin2 θ series (without

divergent terms):

ǫ(θ) ≡
∞
∑

n=0

ǫn(sin θ)
2n. (4.11)

One can then check (using eq. (4.10)) that

ǫ0 =
1

8
ǫ(1)
(

π

2

)

,

ǫ1 =
1

32

[

3ǫ(1)
(

π

2

)

+ ǫ(2)
(

π

2

)]

,

ǫ2 =
1

128

[

9ǫ(1)
(

π

2

)

+ 5ǫ(2)
(

π

2

)

+ ǫ(3)
(

π

2

)]

, (4.12)

and so on. Thus, a consistent truncation of the angular series (4.11) at some order O(n)

requires the knowledge of ǫ(n+1) and, from section 2.1, this requires knowledge of the metric
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perturbations up to O(n + 1). This observation clarifies the meaning of the perturbative

expansion (2.1) — it is an angular expansion off the axis of the collision — and makes

explicit the correspondence between the coefficients of the two series. Then the inelasticity,

in terms of the ǫn, is

ǫ =
∞
∑

n=0

ǫn

∫ 1

−1

d cos θ

2
(sin θ)2n,

=
∞
∑

n=0

2nn!

(2n+ 1)!!
ǫn (4.13)

= ǫ0 +
2

3
ǫ1 + . . . .

Finally, an obvious corollary is that in first order perturbation theory one can only

compute the expansion (4.11) to zeroth order, i.e. ǫ1st order = ǫ0. In other words, no θ

dependence should be considered. This justifies the isotropy assumption used in first order

perturbation theory in [1, 2].

4.2 Simplification of the integrals in Fourier space

We shall now obtain simplified expressions for the integrals which provide the asymptotic

metric functions that contribute to the news function (and hence to the inelasticity). By

working in Fourier space with respect to the retarded time τ , we shall also confirm, ex-

plicity, that the coordinate transformation (4.2) factorizes the angular dependence out of

the integrals (asymptotically). As this section describes a long and technical computation,

we have moved a considerable amount of details to appendix A. In this way we hope that

the reader can grasp the main steps of the computation without getting distracted by the

(many) details — which are nevertheless provided in the appendix.

We start from the generic solution (2.7), where F is now taken to represent either

of the radiative metric functions H or E appearing in (2.13), at some order k in space-

time perturbation theory. In appendices A.1–A.2 we simplify the (asymptotic) wave form,

defined as

Ḟ (τ, θ) ≡ lim
r→∞

rρ
D−4
2

d

dτ
F (u, v, ρ) . (4.14)

In such derivation it is crucial to work in Fourier space through the definition

ˆ̇F (ω, θ) =

∫

dτ Ḟ (τ, θ)e−iωτ . (4.15)

The simplified result is

ˆ̇F (ω, θ) = −i
D−2
2

+mω

∫ ∞

0
dρ ρ

D−2
2 JD−4

2
+m(ωρ sin θ)Ŝ

(

ω
1+cos θ

2
, ω

1−cos θ

2
; ρ

)

, (4.16)

where Jν is the Bessel function of the first kind and Ŝ is the (double) Fourier transform of

the source:

Ŝ(x, y; ρ) =
1

2

∫

du

∫

dv e−i
√
2uxe−i

√
2vy S(u, v, ρ) . (4.17)
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We now confirm the factorization of the angular dependence proved in section 4.1.

First, let us define a new frequency space in Ω by transforming ω to

ω → Ω ≡ ωD−3

(

sin θ

2

)D−4 1− cos θ

2
, (4.18)

together with a new wave form

F̂(Ω, θ) ≡
√

ω′(Ω) ˆ̇F
(

ω(Ω), θ
)

, (4.19)

such that
∫

dω | ˆ̇F (ω, θ)|2 =
∫

dΩ |F̂(Ω, θ)|2. (4.20)

Applying this transformation to (4.16) and after some lengthy, but straightforward, manip-

ulations detailed in appendix A.3 (where the CL symmetry is used) we obtain (cf. (A.30))

F̂(Ω, θ) =

(

1

1− cos θ

)
3
2
(

1 + cos θ

1− cos θ

)k−1

F̂
(

Ω,
π

2

)

, (4.21)

where the angular dependence is now completely factored out of the integral. Observe the k-

dependent exponent, and hence the dependence on the order of the spacetime perturbation

theory. The (new) Fourier space wave form evaluated at θ = π
2 , which we shall abbreviate

to F̂(Ω) ≡ F̂
(

Ω, π2
)

, is then given by

F̂(Ω) ≡ −
√

8

D − 3
i
D−2
2

+mΩ2k−1

∫ ∞

0
dRR

D−2
2 JD−4

2
+m(2R)Ŝ(Ω−1,Ω;R) . (4.22)

This formulation in the new Fourier space will allow us to compute the surface terms,

analytically, in section 5.

Now that the angular dependence has been factored out, we can invert the transfor-

mation (4.18) at θ = π
2 , i.e.

Ω → ω̄ ≡ 2Ω
1

D−3 , F̂(Ω) →
√

Ω′(ω̄)F̂
(

Ω(ω̄)
)

. (4.23)

The net relationship between ω and ω̄ is

ω̄ = ω × (1− cos θ)
1

D−3 (sin θ)
D−4
D−3 , (4.24)

which is equivalent, in real space, to a transformation of the time coordinate

τ → τ̄(τ, θ) = τ × (1− cos θ)−
1

D−3 (sin θ)−
D−4
D−3 . (4.25)

Apart from a θ-dependent shift in D = 4 (indeed an example of a supertranslation [36]) τ̄

is exactly the same as in (4.4).
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5 Analytic evaluation of the surface terms

We are now ready to evaluate the surface terms, which exist only at first and second order

in perturbation theory, and are generically given by the second term of (2.7).

The surface term contributions to the wave form consist of the propagation of the initial

data from u = 0 to an observation point with the Green function. In [1] we have shown

that these boundary conditions have the general form (cf. (3.3)–(3.6) therein; k = 1, 2 for

each order)

F (k)(0, v, ρ) = f(ρ)
(
√
2v − Φ(ρ)

)k
θ
(
√
2v − Φ(ρ)

)

. (5.1)

The functions f(ρ) are explicitly given in [1] and the relevant terms will also be quoted in

the next subsections; Φ(ρ) is given in (3.2).

In appendix B.1, we show that the factored out wave form (4.22) simplifies to a single

integral

F̂(Ω) = −
√

8

D − 3
k!i

D−2
2

+m−kΩk−1

∫ ∞

0
dRR

D−2
2 JD−4

2
+m(2R)f(R)e−iΩΦ(R). (5.2)

Then, to proceed, it is convenient to Fourier transform again,

F(t) =

∫

dΩ

2π
F̂(Ω)eiΩt, (5.3)

to a time coordinate t which is not proportional to τ (except in D = 4), given the non-

linear relationship between ω and Ω, (4.18). F is, for all practical purposes, an equivalent

representation of the wave form. This transformation is not necessary to compute the

inelasticity, but it is another useful representation of the wave form which can be written

in closed form (cf. (B.6)):

F(t) =

√

8

D−3
(−1)kk!i

D−4
2

+m

[

1

Φ′(R)

d

dR

]k−1
(

Φ′(R)−1R
D−2
2 JD−4

2
+m(2R)f(R)

)

, (5.4)

where R = Φ−1(t). To summarize, for each E(k), H(k) one must compute the corresponding

F via (5.4). They will be denoted, respectively,

FE(k)(t) , FH(k)(t) .

Then, from (2.13) and (2.19) we obtain an expression for ǫ(N)(θ), which, by virtue of (4.9)

and (4.21), yields a workable formula for ǫ(N)(π/2): the contribution to the inelasticity

ǫ(N)(π/2), at some order N (which can only be N = 1, 2, 3 for surface terms), is

ǫ(N)

(

π

2

)

=
(D − 2)(D − 3)

4

N
∑

k=1

∫

dt
[

FE(k)(t) + FH(k)(t)
][

F̄E(N+1−k)(t) + F̄H(N+1−k)(t)
]

.

(5.5)

Moreover, from (5.4), we have, for instance,
∫

dtFH(k)(t)F̄E(N+1−k)(t) =

∫ ∞

0
dR |Φ′(R)|FH(k)

(

Φ(R)
)

F̄E(N+1−k)

(

Φ(R)
)

, (5.6)

and similarly for the other contributions. Thus we arrive at the striking conclusion that all

surface integral contributions to the inelasticity are given by integrals over Bessel functions.
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5.1 First order contribution

The first order estimate for the inelasticity is obtained by truncating the expansion (4.13)

at leading order:

ǫ1st order = ǫ0 =
1

8
ǫ(1)
(

π

2

)

. (5.7)

To compute ǫ(1)
(

π
2

)

we first observe that the trace H(1) = 0, so the initial data are speci-

fied by

E(1) : k = 1 , m = 2 , f(ρ) = −Φ′(ρ)

ρ
= − 2

ρD−2
. (5.8)

Inserting in (5.4) we get for the only non-trivial term

FE(1)(t) = −i
D
2

√

8

D − 3

(

R
D−4
2 JD

2
(2R)

)

R=Φ−1(t)
; (5.9)

using this expression in (5.5) and making use of (5.6), together with

∫ ∞

0
dR

1

R
JD

2
(2R)2 =

1

D
, (5.10)

yields the result

ǫ(1)
(

π

2

)

=
4(D − 2)

D
. (5.11)

Thus, from (5.7)

ǫ1st order =
1

2
− 1

D
. (5.12)

This proves (1.1), that was found in [2] as an accurate numerical fit.

5.2 Second order contributions

At O(2) the initial data are specified by

E(2) : k = 2 , m = 2 , f(ρ) = −(D − 4)
Φ′(ρ)2

4ρ2
= −(D − 4)ρ−2(D−2) (5.13)

H(2) : k = 2 , m = 0 , f(ρ) = (D − 3)
Φ′(ρ)2

4ρ2
= (D − 3)ρ−2(D−2). (5.14)

The contribution of these terms to the inelasticity is computed in appendix B.2. The

precise expression is of limited interest without the volume terms that also contribute at

second order. Furthermore, some of the integrals do not converge for all D ≥ 4 which is

potentially worrisome. To understand why, let us consider the late time behaviour of F(t).

The far future t → ∞ corresponds to R → 0 since

Φ−1(t) ∝
{

e−
t
2 , D = 4

t−
1

D−4 , D > 4 .
(5.15)

The asymptotic behaviour of the wave forms is

FE(1)(t) ≃ RD−2, FE(2)(t) ≃ RD−2, FH(2)(t) ≃ RD−6, (5.16)
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N Term Contribution to ǫ(N)
(

π
2

)

1 FE(1)FE(1) 8
(

1
2 − 1

D

)

2 2FE(1)FE(2) −32
(

1
2 − 1

D

)

D−4
D+2

2FE(1)FH(2) −32
(

1
2 − 1

D

)

D−3
D−4

3 FE(2)FE(2) 64
(

1
2 − 1

D

) (D−4)2

(D+2)(D+4)

2FE(2)FH(2) 64
(

1
2 − 1

D

) (D−3)
(D+2)

FH(2)FH(2) 64
(

1
2 − 1

D

) (D−3)2

(D−4)(D−8)

Table 1. Surface integral contributions in (5.5) to the angular series used to compute the inelas-

ticity.

which means that FH(2) grows exponentially with et in D = 4. Indeed, only for D > 8 does

it decay faster than t−1 which is the condition for integrability. This is in agreement with

the findings of D’Eath and Payne [31] in D = 4: both the surface and volume terms have

non-integrable, exponentially growing tails at late times, but their sum is well behaved and

integrable. In appendix B.3 we trace the origin of these tails to the Green’s function and

show that they are generic. In particular, we confirm that the volume terms of E(2) and

H(2) have the same behaviour as their surface counterparts above. Therefore we expect

(though without proof) a similar cancellation in D > 4.

In table 1, we summarise all the surface integral contributions which arise from first

and second order spacetime perturbations. The angular dependence was suppressed since

it has already been factorized and identified. We have checked a very good agreement

between all these results — in the domain of D where the integrals are convergent, i.e. the

tails die off fast enough — and the numerical code we have developed previously for the

surface integrals, which consisted of a completely different approach [1, 2, 36]. They agree

with a relative error of less than 10−4.

6 Conclusions

In this paper, we have considered the collision of two D-dimensional Aichelburg-Sexl shock

waves, following our previous work [1, 2, 36] (see also the summaries in [42–44] and the

lecture notes in [38]), extending the perturbative framework of D’Eath and Payne to higher

dimensions.

Our first result was to demonstrate that the CL symmetry, which is a conformal isom-

etry of the geometry of two colliding shock waves — order by order in perturbation theory

— implies that the angular dependence factorizes at null infinity. Note that this is a purely

kinematical result, not depending on the equations of motion. Moreover, that dependence

has a simple form at all orders, both for surface and volume terms. As a byproduct, we clar-

ified the meaning of perturbation theory — it can be seen as an angular expansion around

the symmetry axis. Finally, and perhaps our main result here, we computed the inelastic-
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ity in first order perturbation theory by purely analytic means, thus demonstrating (1.1),

which was derived in [2] as a numerical fit.

Our treatment also demonstrated that both surface and volume terms at second order

may contain non-integrable tails (unless D > 8). There is a realistic hope that they will

cancel one another in higher D as they do in D = 4 [31]. To obtain the inelasticity in

second order perturbation theory for arbitrary D remains the outstanding challenge in this

research program.
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A The asymptotic wave form and its Fourier transform

A.1 The asymptotic wave form

The Green’s function for the d’Alembertian operator � in D dimensions is given by (see

appendix A in [1])

G(xµ) = −1

2

1

π
D−2
2

δ(
D−4
2 )(χ) , χ ≡ ηµνx

µxν . (A.1)

Inserting this in the general solution (2.7) and integrating over the angles φi on the trans-

verse plane, we get

F (u, v, ρ)=−ΩD−4

2π
D−2
2

∫

du′
∫

dv′
∫

dρ′ ρ′D−3S(u′, v′, ρ′)

∫ 1

−1
dx (1−x2)

D−5
2

+mΛm(x)δ(
D−4
2 )(χ) .

(A.2)

Here Ωn is the volume of the n-sphere

Ωn =
2π

n+1
2

Γ
(

n+1
2

) , (A.3)

and we recall that Λm was defined in (2.8).

Using the scaling properties of the delta function and defining x′ through

χ = 2(u− u′)(v − v′)− (ρ2 + ρ′2 − 2ρρ′x)

≡ 2ρρ′(x− x′) , (A.4)

this becomes

F (u, v, ρ) = − 1

2ρ
D−2
2

∫

du′
∫

dv′
∫

dρ′ ρ′
D−4
2 S(u′, v′, ρ′)ID,0

m (x′) , (A.5)
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where

ID,N
m (z) ≡ ΩD−4

(2π)
D−2
2

∫ 1

−1
dxΛm(x)(1− x2)

D−4
2

− 1
2 δ(

D−4
2

−N)(x− z) . (A.6)

We are actually interested in the asymptotic form of the time derivative of F , (4.14).

To compute it let x̄ be the asymptotic form of x′,4

lim
r→∞

x′ =
1

ρ′ sin θ

(

− τ +
√
2u′

1 + cos θ

2
+
√
2v′

1− cos θ

2

)

≡ x̄ . (A.7)

Noting that (ID,N
m )′ = −ID,N−1

m , we get

Ḟ (τ, θ) =
1

2 sin θ

∫

du′
∫

dv′
∫

dρ′ ρ′
D−4
2 S(u′, v′, ρ′)ID,−1

m (x̄)
dx̄

dτ
. (A.8)

A.2 Fourier transform

Let the Fourier transform of Ḟ (τ, θ) with respect to the retarded time τ be defined by (4.15).

By inverting the function x̄(τ) to τ(x̄), we can switch the integration variable,

∫ +∞

−∞
dτ

dx̄

dτ
(τ)ID,−1

m

(

x̄(τ)
)

e−iωτ =

∫ −∞

+∞
dx̄ID,−1

m (x̄)e−iωτ(x̄) = −
∫

dx ID,−1
m (x)e−iωτ(x).

(A.9)

The x integration in (A.9) is essentially

∫

dx ID,−1
m (x)eizx, z = ωρ′ sin θ . (A.10)

From the definition (A.6), this is

ΩD−4

(2π)
D−2
2

∫

dy eiyz
∫ 1

−1
dxΛm(x)(1− x2)

D−4
2

− 1
2 δ(

D−2
2 )(x− y) (A.11)

=
ΩD−4

(2π)
D−2
2

∫

dy eiyz
∫ 1

−1
dxλm∂(m)(1− x2)

D−4
2

+m− 1
2 δ(

D−2
2 )(x− y) (A.12)

=
ΩD−4

(2π)
D−2
2

(iz)
D−2
2 λm

∫ 1

−1
dx ∂(m)(1− x2)

D−4
2

+m− 1
2 eixz (A.13)

=
ΩD−4

(2π)
D−2
2

(iz)
D−2
2

+m(−1)mλm

∫ 1

−1
dx (1− x2)

D−4
2

+m− 1
2 eixz, (A.14)

where

λ0 = 1 , λ1 = −(D − 3)−1, λ2 = (D − 3)−1(D − 1)−1. (A.15)

One recognizes in (A.14) the Poisson integral representation of the Bessel function of the

first kind,

Jν(z) =
1√

πΓ
(

ν + 1
2

)

(

z

2

)ν ∫ 1

−1
ds (1− s2)ν−

1
2 eisz. (A.16)

4Note that limr→∞ ∂τx
′ = ∂τ limr→∞ x′.
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We get
∫

dx ID,−1
m (x)eizx = i

D−2
2

+mzJD−4
2

+m(z) . (A.17)

The final expression is thus (4.16). The ρ integral therein can actually be cast as a (D−2)-

dimensional Hankel transform, with argument ω sin θ. This is not surprising since the

Hankel transform arises whenever a Fourier transform is made of a function with spherical

symmetry.

A.3 Factorization of the angular dependence

Starting with (4.16), we make the following transformations

ρ → R ≡ 1

2
ωρ sin θ , (A.18)

and (4.18). Moreover we define a new transformed wave form (4.19). We get

F̂(Ω, θ) = − i
D−2
2

+m

√
D − 3

(

2

sin θ

)2(1− cos θ

2

)
1
2

× Ω−1

×
∫ ∞

0
dRR

D−2
2 JD−4

2
+m(2R)Ŝ

(

ω
1+cos θ

2
, ω

1−cos θ

2
;

2R

ω sin θ

)

ω=ω(Ω)

. (A.19)

Now the CL symmetry comes in handy. From section 3, we know that if F is O(k),5

S(u, v, ρ) = ρ−2k(D−3)−2Σ(p, q) , (A.20)

where

p =
(
√
2v − Φ(ρ)

)

ρD−4, q =
√
2uρ−(D−2). (A.21)

Therefore, and using 2dudv = ρ2dpdq,

Ŝ(x, y; ρ) =
1

4
ρ−2k(D−3)e−iyΦ(ρ)

∫

dp

∫

dqΣ(p, q) e−ixqρD−2
e−iypρ−(D−4)

. (A.22)

Now we have

ρ−2k(D−3) = (ω sin θ)2k(D−3)(2R)−2k(D−3), (A.23)

yΦ(ρ) = ΩΦ(R) , (A.24)

xρD−2 = Ω−1RD−2, (A.25)

yρ−(D−4) = ΩR−(D−4). (A.26)

Thus,

Ŝ

(

ω
1+cos θ

2
,ω

1−cos θ

2
;

2R

ω sin θ

)

=
1

4

(ω sin θ)2k(D−3)

(2R)2k(D−3)

∫

dp

∫

dqΣ(p, q) e−iqRD−2

Ω e
−iΩ

(

Φ(R)+ p

RD−4

)

, (A.27)

5Note that here F is either E or H so Nu = Nv = 0 in (3.11).
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and finally,

F̂(Ω, θ) = − i
D−2
2

+m

√
D − 3

×
(

1 + cos θ

1− cos θ

)k−1( 2

1− cos θ

)
3
2

× Ω2k−1

× 1

4

∫ ∞

0
dRR

D−2
2

−2k(D−3)JD−4
2

+m(2R)

×
∫

dp

∫

dqΣ(p, q) e
−iqRD−2

Ω
−iΩ

(

Φ(R)+ p

RD−4

)

. (A.28)

At this point, the p, q coordinates are not necessarily advantageous since the R integration

cannot be done as it is. So we might as well go back to

√
2u = qRD−2,

√
2v = pR−(D−4) +Φ(R) , (A.29)

and rewrite (A.28) as

F̂(Ω, θ) = − i
D−2
2

+m

√
D − 3

(

2

1− cos θ

)
3
2
(

1 + cos θ

1− cos θ

)k−1

× Ω2k−1

∫ ∞

0
dRR

D−2
2 JD−4

2
+m(2R)Ŝ(Ω−1,Ω;R) . (A.30)

B Computation of surface terms

B.1 Introducing the source

The source for the surface terms is

S(k)(u, v, ρ) = 2δ(u)∂vF
(k)(0, v, ρ) , F (k)(0, v, ρ) = f(ρ)

(
√
2v − Φ(ρ)

)k
θ
(
√
2v − Φ(ρ)

)

,

(B.1)

where k = {1, 2} and f(ρ) ∝ ρ−k(D−2) for E and H. Then, using the definition (4.17),

we get

Ŝ(Ω−1,Ω;R) =
k!

(iΩ)k
f(R)e−iΩΦ(R). (B.2)

Inserting in (4.22) we find (5.2). As explained in the main text we then Fourier transform

again, cf. (5.3), back to a time coordinate t. This new wave form is not exactly the original

Ḟ (τ, θ). To perform this integral, we change the integration variable in (5.2) from R to

T = Φ−1(R), i.e.

∫ ∞

0
dR ≃

∫ Φ(∞)

Φ(0)
dT Φ′(R)−1, R = Φ−1(T ) . (B.3)

Then the Ω integral is

1

2π

∫

dΩΩk−1e−iΩ(T−t) = ik−1δ(k−1)(T − t) , (B.4)
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yielding

F(t) = −
√

8

D−3
k!i

D−4
2

+m

∫ Φ(∞)

Φ(0)
dT Φ′(R)−1R

D−2
2 JD−4

2
+m(2R)f(R)δ(k−1)(T − t) ,

(B.5)

=

√

8

D−3
(−1)kk!i

D−4
2

+m

[

1

Φ′(R)

d

dR

]k−1
(

Φ′(R)−1R
D−2
2 JD−4

2
+m(2R)f(R)

)

,

(B.6)

where R = Φ−1(t).

B.2 Surface terms contribution to the inelasticity

When considering the integrated product of (Ė + Ḣ)( ¯̇E + ¯̇H) (the bar denotes complex

conjugation), we have at each order

O(2) : Ė(1) ¯̇E(1), (B.7)

O(3) : 2Re
[

Ė(1) ¯̇E(2)
]

+ 2Re
[

Ė(1) ¯̇H(2)
]

, (B.8)

O(4) : Ė(2) ¯̇E(2) + Ḣ(2) ¯̇H(2) + 2Re
[

Ė(2) ¯̇H(2)
]

. (B.9)

Below we list the integrals involving Bessel functions that arise for each of the above
terms.

Ė(1) ¯̇E(1) :

∫

∞

0

dR
1

R
JD

2

(2R)2 =
1

D
, D > 0 ,

2Re
[

Ė(1) ¯̇E(2)
]

:

∫

∞

0

dR
1

R2
JD

2

(2R)JD

2
+1(2R) =

2

D

1

D+2
, D > 0 ,

2Re
[

Ė(1) ¯̇H(2)
]

:

∫

∞

0

dR
1

R3
JD

2

(2R)
(

JD−4

2

(2R)+RJD−2

2

(2R)
)

=
2

D

1

D−4
, D > 4 ,

Ė(2) ¯̇E(2) :

∫

∞

0

dR
1

R3
JD

2
+1(2R)2 =

8

D

1

(D+2)(D+4)
, D > 0 ,

Ḣ(2) ¯̇H(2) :

∫

∞

0

dR
1

R4
JD

2
+1(2R)

(

JD−4

2

(2R)+RJD−2

2

(2R)
)

=
4

D

1

(D−4)(D+2)
, D > 4 ,

2Re
[

Ė(2) ¯̇H(2)
]

:

∫

∞

0

dR
1

R5

(

JD−4

2

(2R)+RJD−2

2

(2R)
)2

=
8

D

1

(D−4)(D−8)
, D > 8 .

Their contributions to ǫ
(

π
2

)

can be found in table 1.

B.3 The late time tails

Following the strategy of section 5 for the surface terms, we perform an inverse Fourier

transform from Ω to a new time coordinate t. The relevant integral is

1

2π

∫

dΩΩ2k−1e−iΩP−iQΩ−1
= (−i∂t)

2k−1 1

2π

∫

dΩ e−iΩP−iQΩ−1
, (B.10)

where

P = Φ(R) + pR−(D−4) − t , Q = qRD−2. (B.11)
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This integral simplifies to

i−2k−1∂
(2k)
t θ(X)J0(2

√
X) , X ≡ PQ . (B.12)

Therefore, we get

F(t, θ) ∝
∫

dp

∫

dqΣ(p, q)G(p, q; t) , (B.13)

where G(p, q; t) is essentially the asymptotic (i.e. for an observer at null infinity) Green’s

function in p, q coordinates and for the new time t:

G(p, q; t) =

(

d

dt

)2k ∫ ∞

0
dRR

D−2
2

−2k(D−3)JD−4
2

+m(2R)θ(X)J0(2
√
X) , (B.14)

where

X ≡ PQ = qRD−2

(

(

p+
2

D − 4

)

R−(D−4) − t

)

. (B.15)

The action of the 2k derivatives distributes as

(qRD−2)2k
2k
∑

j=0

(

2k

j

)

(−1)j

j!X
j
2

δ(2k−j−1)(X)Jj
(

2
√
X
)

(B.16)

=

[ 2k−1
∑

j=0

(

2k

j

)

(−qRD−2)j

j!
δ(2k−j−1)(P )

]

+
(qRD−2)2k

(2k)!Xk
θ(X)J2k

(

2
√
X
)

.

(B.17)

The R integral in (B.14) can be readily done for all but the very last term. So the contri-

bution of the series inside the square brackets for G(p, q; t) is

2k−1
∑

j=0

(

2k

j

)

qj
(

D−4
2 p+ 1

)2k−j

(

1

Φ′(T )

d

dR

)2k−j−1
(

R
D−2
2

−2k(D−3)+j(D−2)

Φ′(R)
JD−4

2
+m(2R)

)

,

(B.18)

where

R =











Φ−1(t− p) , D = 4

Φ−1

(

t

(

D − 4

2
p+ 1

)−1
)

, D > 4 .
(B.19)

Late times t ≫ 1 correspond to R ≪ 1. Thus we can study the late-time tails by making

a series expansion of (B.18) for R ≃ 0. The most relevant term is j = 0, since it has the

highest powers of R (indeed, for k = 1 this is the only surviving term because of the δ(q) in

Σ(p, q)). The wave form will only be square-integrable if its tail decays at least with t−1.

We recover the results of section 5.2: E(1) and E(2) are square integrable for all D ≥ 4,

but H(2) is not: it grows exponentially in D = 4 and with t−α for higher D. The condition

α ≥ 1 is only true for D > 8.
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