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1 Introduction

Traditional condensed matter paradigms with weakly interacting quasiparticles are chal-

lenged by strongly correlated electron systems. One of the profound examples is the high

temperature superconductivity. The basic idea of the BCS theory, like the weak-coupling

mean field approximation and phonon-mediated electron pairing mechanism is no longer

applied without modifications. Therefore, to develop new theoretical framework and con-

cepts is desirable to understand those strongly coupled many-body systems. On the other

hand, holography [1–3], as a framework to access the strongly coupled regime of quan-

tum field theory by its gravity dual living in a spacetime with higher dimensionality, has

been useful in addressing the physical properties of strongly interacted condensed matter

systems, such as high Tc cuprates and heavy feimions. Within this context, models for

unconventional superconductors have been widely studied holographically. The first holo-

graphic superconductor, known as Abelian-Higgs model, has been introduced in ref. [4]

in terms of a charged scalar field in the bulk whose condensate corresponds to a s-wave

superconducting order. This gravity setup was soon generalised to holographic p-wave

models [5–7] and d-wave models [8, 9], see refs. [10–12] for good reviews.1

Josephson junctions possess very important features in both theoretical and practical

fields of superconductivity. A typical Josephson junction consists of two superconductors

separated by a week contact. Depending on the specimen of the constituent supercon-

ductors and the nature of the contact, there are various kinds of junctions. The contact

can be a normal conductor, an insulator, or a narrow superconductor. The correspond-

ing junctions are referred to as SNS, SIS and SS’S junctions, respectively. Moreover, the

1Holographic superconductors have been studied usually in the absence of dynamical electromagnetic

fields, thus in the limit in which they coincide with holographic superfluids. The dynamics of the electro-

magnetic field is very relevant for, such as, the Meissner effect and the exponential damping of the magnetic

field in vortices. The authors of ref. [13] explained for the first time how to introduce a dynamical gauge

field in holographic superconductors.
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coupled superconductors can be of different types. The authors of ref. [14] constructed a

holographic SNS junction by using the simplest holographic superconductor [4]. This junc-

tion exhibits the standard relation between the current J across the junction and the phase

difference γ of the condensate, i.e. J = Jmax sin(γ). The dependence of the maximum cur-

rent (or critical current) Jmax on the temperature and size of the junction also reproduces

familiar results. Soon after, this setup has been generalised to other types of Josephson

junctions [15–19] as well as superconducting quantum interference device (SQUID) [20, 21].

A distinctly different way to construct a holographic model of Josephson junctions based

on designer multi-gravity has been proposed in ref. [22] in which Josephson junction arrays

were discussed.2

The above studies focused on gravity duals with asymptotic AdS boundary, which

indicates that the dual theory is a relativistic conformal field theory. However, there exist

many scale-invariant systems without the Lorentz invariance especially near the critical

points [24, 25]. In particular, the electrons in real materials are in general non-relativistic,

thus it is natural to ask whether one can develop a similar model with non-relativistic

kinematics. The Lifshitz geometry as a dual gravity is a very natural candidate to describe

those non-relativistic theories. Lifshitz geometry is characterised by the so-called dynamical

critical exponent z which governs the anisotropy between spatial and temporal scaling

t→ λzt, ~x→ λ~x. The case z = 1 is nothing but the usual relativistic scaling. The Lifshitz

holography has been used to address various aspects of non-relativistic systems, such as

strange metal transport [26–28], thermalization [29], (non-)Fermi liquid [30–32] and so on.

The purpose of the present work is to investigate the Josephson junction of the non-

relativistic theory with the Lifshitz geometry as a dual gravity. We aim at the effects due

to the Lifshitz scaling in comparison with the relativistic case z = 1. More specifically, we

construct holographic junctions in the Lifshitz black branes with z = 1, 2 and 3. Follow-

ing ref. [14], we consider the Abelian-Higgs model for holographic superconductors with

inhomogeneous boundary conditions breaking translational invariance. This model typi-

cally require us to solve complicated coupled partial differential equations (PDEs). Taking

advantage of the Chebyshev spectral methods to solve those PDEs numerically, we find

that the famous sinusoidal relation between the current and the phase difference across the

weak link do exist no matter what z is. The condensate of the operator at zero current

in the middle of the link has an exponential decreasing relation with respect to the width

of the link `; meanwhile, the critical current Jmax also has an exponential decreasing rela-

tion to `. From the above exponential decreasing relations, one can extract the coherence

length ξ independently. In relativistic cases [14–18], the value of the coherence length ξ

fitted from critical current and condensate is consistent to each other within acceptable

errors. However, for general z 6= 1, this result is violated. A typical example exhibiting

this violation is the case with z = 3.

The paper is organised in the following: in section (2) we derive the equations of mo-

tions in the Lifshitz black brane background; we show our numerical technique for dealing

2Holographic Josephson junctions from D-branes have been considered in ref. [23] aiming at providing a

geometrical picture for the holographic dual. Through this way non-Abelian Josephson junctions and AC

Josephson effect have been naturally realized.
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with non-trivial boundary conditions and numerical results in section (3); in section (4),

we draw our conclusion and give some comments to the Lifshitz Josephson junction.

2 The gravity setup

We adopt the black brane background in d+2 dimensional spacetime as [33]

ds2 = L2

(
−r2zf(r)dt2 +

dr2

r2f(r)
+ r2

d∑
i=1

dx2i

)
, f(r) = 1− rz+d0

rz+d
, (2.1)

where z is the dynamical critical exponent, r0 is the radius of horizon, and d is the spacial

dimension of the boundary. The asymptotical Lifshitz boundary is located at r →∞. This

geometry for z = 1 is nothing but the AdS-Schwarzschild black brane, while it is a gravity

dual with the Lifshitz scaling as z > 1. The Hawking temperature of this black brane is

T =
z + d

4π
rz0. (2.2)

In the probe limit of the above background, we consider the model of a U(1) gauge

field Aµ coupled a charged scalar field ψ . The corresponding action reads

S =

∫
dd+2x

√
−g
[
−|∇ψ − iAψ|2 −m2|ψ|2 − 1

4
FµνF

µν

]
, (2.3)

in which Fµν is a U(1) gauge field strength with Fµν = ∂µAν − ∂νAµ. The equations of

motions (EoMs) can be obtained from the above action and the background as

0 = (∇µ − iAµ)(∇µ − iAµ)ψ −m2ψ, (2.4)

∇νF νµ = i[ψ∗(∇µ − iAµ)ψ − ψ(∇µ + iAµ)ψ∗]. (2.5)

We choose the ansatz of the fields as

ψ = |ψ|eiϕ, A = Atdt+Ardr +Ax1dx1, (2.6)

where |ψ|, ϕ,At, Ar, Ax1 are all real functions of r and x1. We would like to work with the

gauge-invariant combination Mµ = Aµ − ∂µϕ.

Substituting the Lifshitz black brane background (2.1) and the ansatz (2.6) into the

EoMs (2.4) and (2.5), we can obtain the following coupled PDEs:3

∂2r |ψ|+
1

r4f
∂2x|ψ|+(

d+ z + 1

r
+
f ′

f
)∂r|ψ|+

1

r2f
(
M2
t

r2zf
− r2fM2

r −
M2
x

r2
− L2m2)|ψ| = 0, (2.7a)

∂rMr +
1

r4f
∂xMx +

2

|ψ|
(Mr∂r|ψ|+

Mx

r4f
∂x|ψ|) + (

d+ z + 1

r
+
f ′

f
)Mr = 0, (2.7b)

∂2rMt +
1

r4f
∂2xMt +

d− z + 1

r
∂rMt −

2L2|ψ|2

r2f
Mt = 0, (2.7c)

∂2xMr − ∂x∂rMx − 2L2r2|ψ|2Mr = 0, (2.7d)

∂2rMx − ∂x∂rMr + (
f ′

f
+
d+ z − 1

r
)(∂rMx − ∂xMr)−

2|ψ|2

L2r2f
Mx = 0, (2.7e)

3For convenience, we will define x ≡ x1 in the following context.
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where a prime ′ denotes the derivative with respect to r. It is clear that the phase function

ϕ has been absorbed into the gauge invariant quantity Mµ. The second equation (2.7b)

is a constraint equation which can be obtained from the algebraic combinations of (2.7d)

and (2.7e) as 2r2|ψ|2 ×Eq.(2.7b) + ∂r[Eq.(2.7d)] + ∂r[Eq.(2.7e)] + [f ′/f + (d+ z − 1)/r]×
Eq.(2.7d) ≡ 0. Therefore, in fact there are four independent EoMs with four fields, i.e.,

|ψ|,Mt,Mr and Mx.

In order to solve the above coupled PDEs, we need to impose suitable boundary con-

ditions. First, we demand the regularity of the fields at the horizon. Since the metric

component gtt is zero at the horizon, the field Mt should be vanishing at the horizon, while

other fields are finite at the horizon.

Near the infinite boundary r → ∞, the fields |ψ|,Mr and Mx have the following

asymptotic expansions,

|ψ| = ψ(1)(x)

r(z+d−
√

(z+d)2+4m2)/2
+

ψ(2)(x)

r(z+d+
√

(z+d)2+4m2)/2
+O(

1

r(z+d+
√

(z+d)2+4m2)/2+1
),

Mr =
M

(1)
r (x)

rd+z−1
+O(

1

rd+z
),

Mx =ν(x) +
J(x)

rd+z−2
+O(

1

rd+z−1
).

(2.8)

However, the asymptotic behaviour of Mt is more sophisticated depending on the values

of z and d,

Mt =ρ(x)− µ(x)log(r) +O(
1

r
), for (d− z = 0),

Mt =µ(x)− ρ(x)

rd−z
+O(

1

rd−z+1
), for (d− z < 0 or 0 < d− z < 2),

Mt =µ(x)− ρ(x)

r2
+
∂2xµ(x)

2r2
log(r) +O(

1

r3
), for (d− z = 2),

Mt =µ(x)− ρ(x)

rd−z
+

∂2xµ(x)

2(d− z − 2)r2
+O(

1

rd−z+1
), for (d− z > 2).

(2.9)

The conformal dimension of the scalar field |ψ| is ∆± = (z + d ±
√

(z + d)2 + 4m2)/2.

In the following, we focus on the case ψ(1) ≡ 0, which means there is no source term of

the dual scalar operator. We will always regard µ as the chemical potential, although for

z > d it is not the largest mode near the boundary [26]. According to the holographic

dictionary, the coefficients ψ(2), ρ, ν and J correspond to the condensate of the dual scalar

operator 〈O〉, charge density, superfluid velocity and current in the boundary field theory,

respectively.4 Furthermore, the gauge invariant phase difference γ = ∆ϕ−
∫
Ax across the

weak contact can be recast as [14]

γ = −
∫ +∞

−∞
dx[ν(x)− ν(±∞)]. (2.10)

4We also notice that there is a relation ∂2
xM

(1)
r (x) + (d + z − 2)∂xJ(x) = 0, which can be used to set

J=const by imposing ∂xM
(1)
r = 0, in the numerical calculations in the next section.
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In order to mimic a SNS Josephson junction, we choose the profile of the chemical potential

µ(x) similar to that in ref. [14], which is given by

µ(x) = µ∞

{
1− 1− ε

2 tanh( `
2σ )

[
tanh(

x+ `
2

σ
)− tanh(

x− `
2

σ
)

]}
, (2.11)

where µ∞ = µ(+∞) = µ(−∞) is the chemical potential at x = ±∞, while `, σ and ε

control the width, steepness and depth of the junction, respectively.

Note that the coupled PDEs (2.7) exhibit the following scaling symmetry:

t→ λzt, xi → λxi, r → 1

λ
r, Mt →

1

λz
Mt, Mx →

1

λ
Mx, Mr → λMr, (2.12)

with λ an arbitrary constant. Following ref. [14], we define the critical temperature of

the junction Tc identical to the critical temperature of a homogenous superconductor with

vanishing current.5 Therefore, Tc is proportional to µ∞ = µ(+∞) = µ(−∞) corresponding

to the scaling symmetry (2.12):

Tc =
(z + d)rz0

4πµc
µ(∞), (2.13)

where µc is the critical chemical potential for a homogenous superconductor without cur-

rent at temperature T = z+d
4π r

z
0. Inside the junction, x ∼ (− `

2 ,
`
2), the effective critical

temperature reads

T0 =
(z + d)rz0

4πµc
µ(0). (2.14)

Therefore, for T0 < T < Tc, the in-between junction is in the normal metallic phase, while

the region outside the junction is in the superconducting phase. It is in this way one models

the SNS Josephson junction by holography.

3 Numerical results

We take advantage of the Chebyshev spectral methods [38] to numerically solve the

EoMs (2.7a)–(2.7e). We first set r0 = 1 by using of the scaling symmetry (2.12). For

the convenience, we also make the coordinate transformation in the following way u = 1/r

and y = tanh( x
4σ ), as well as

|ψ| → |ψ|

r(z+d−
√

(z+d)2+4m2)/2
, (3.1)

Mr →
Mr

rd+z−1
. (3.2)

In the following, we will consider the case with d = 2, but it can be straightforwardly

generalised to other dimensions. Specifically, we choose the dynamical critical exponent

z as z = 1, 2 and 3. It is well-known that z = 1 is no other than the relativistic dual

while z = 2 and z = 3 are for the non-relativistic theories. Physically, we would like to

5Lifshitz holographic superconductors in homogenous case have studied, for example, in refs. [34–37].
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investigate the properties of the Josephson junctions with the same conformal dimension

of each dual scalar operator, hence we set ∆+ = 3 as we vary z. Therefore, in this sense

the mass square are m2 = 0,−3 and −6 with respect to z = 1, 2 and 3.

The values of critical chemical potential µc (or in the sense of the critical temperature Tc
explained above) for the homogeneous superconductors are µc ≈ 7.5877, 9.0445 and 9.7667

with respect to (z,m2) = (1, 0), (2,−3) and (3,−6). Therefore, we choose a unified chemical

potential µ(x) for the junction with the parameters µ∞ = 10.5, σ = 0.7 and ε = 0.7. The

profile of the chemical potential would satisfy the requirement of the Josephson junctions

for the three cases.

Near the spacial boundary x = ±∞, we demand that all the fields are independent of

x because of the flat µ(x) near |x| → ∞. There is also a symmetry of the fields when we

flip the sign of x→ −x,

|ψ| → |ψ|, Mt →Mt, Mr → −Mr, Mx →Mx. (3.3)

Therefore, Mr is an odd function of x while others are even. Thus we can setMr(x = 0) = 0,

and other fields have vanishing first order derivative with respect to x at x = 0. From the

scaling symmetry (2.12) and the UV asymptotic expansions (2.8) and (2.9), it is easy to

see that the quantities J/T
(1+z)/z
c and 〈O〉/T 3/z

c are dimensionless.

3.1 The case of z = 1

For z = 1, the asymptotic expansion of Mt near the boundary is Mt ∼ µ(x)− ρ(x)
r . It can be

easily calculated as before [14]. The relation between the current and the phase difference

is shown in figure. (1). The blue dots are for the data from numerical calculations while

the red curve is fitted by the sinusoidal relation. We can read from the plots that

J/T 2
c ≈ 1.18436 sin(γ), for z = 1. (3.4)

For our choosing parameters in figure. (1) the critical current is Jmax/T
2
c ≈ 1.18436.

It has been uncovered in refs. [14–18] that for the asymptotic AdS geometry the relation

between the condensate within the barrier at zero current 〈O〉x=0 and the width of the

junction `, as well as the relation between the maximal current (or critical current) Jmax

and the width of the junction ` behave as

〈O〉x=0/T
3/z
c ≈ A1e

− `
2ξ , (3.5)

Jmax/T
(1+z)/z
c ≈ A0e

− `
ξ . (3.6)

Those behaviour is in good agreement with condensed matter physics [39], according to

which ξ is identified as the normal metal coherence length.

We indeed reproduce similar results. On the left panel of figure. (2), we plot the

relation of 〈O〉x=0/T
3/z
c and ` for z = 1 and find that they satisfy a decreasing exponential

relation as

〈O〉x=0/T
3
c ≈ 253.896× e

−`
2×1.49478 , for z = 1. (3.7)

– 6 –
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Figure 1. Relation between J/T
(1+z)/z
c and γ for z = 1. The dots are from the numerics while

the the red line is the fitted sin curves of these dots. We use µ∞ = 10.5, ` = 3, σ = 0.7 and ε = 0.7.
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Figure 2. 〈O〉x=0/T
3/z
c (left) and Jmax/T

(1+z)/z
c (right) as functions of ` for z = 1. The

parameters are µ∞ = 10.5, σ = 0.7, ε = 0.7 and 2 ≤ ` ≤ 4.4. The dots are from the numerics while

the red lines are the fitted curves.

The relation between Jmax/T
(1+z)/z
c and ` can be found on the right panel of figure. (2).

The fitting curve satisfy the following relation,

Jmax/T
2
c ≈ 11.2449× e

−`
1.30389 , for z = 1. (3.8)

We can find that for z = 1 the fitted value of ξ from the two relations (3.7) and (3.8) are

very close to each other, with the error of 12.77%.6

6 Due to the limitation of numerics, one can not choose a too steep profile for µ(x). Thus the normal and

superconducting phases in the junction are not cleanly separated. This is argued to justify the disagreement

between the two estimates of ξ [14].
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Figure 3. The behaviour of J/T
(1+z)/z
c as a function of γ for z = 2 (green dots) and z = 3 (black

dots). The parameters we use are µ∞ = 10.5, ` = 3, σ = 0.7 and ε = 0.7. The dots are from the

numerics while the the red lines are the best fit sin curves of these dots.

3.2 The case of z = 2

For z = 2, the asymptotic expansion of Mt near the boundary is Mt ∼ ρ(x)− µ(x) log(r).

For convenience of the numerical calculation, we make a transformation

Mt →
log(r)

1− 1/r
Mt, (3.9)

The reason for dividing (1 − 1/r) in the denominator is that at the horizon r0 = 1, we

need to impose the coefficients log(r)/(1− 1/r) be non-vanishing, thus the new fields Mt

at horizon can have a specific vanishing boundary condition. This step of scaling Mt is

crucial for the numerics, and we find it is much feasible for the codes.

The relation between the current and the phase difference can be found in figure. (3)

in which the green dots are from the numerics while the red line is the best fitted curve. In

this case, the asymptotic behaviour is much more different from the previous one. However,

we find that the famous sinusoidal relation between current and phase difference is still

satisfied very well. The numerical calculation shows that

J/T 3/2
c ≈ 0.02372 sin(γ), for z = 2. (3.10)

Let us consider the behaviour of the condensate at the centre of the contact at zero

current. As one can see in figure (4) that the condensate as a function of the length of the

link can be fitted very well by the exponential decreasing function, which reads

〈O〉x=0/T
3/2
c ≈ 11.6122× e−

`
2ξo , ξo ≈ 0.72835 for z = 2. (3.11)
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Figure 4. Relations between 〈O〉x=0/T
3/z
c at zero current and ` for Lifshitz scaling. The upper

curve and the lower curve correspond to z = 2 and z = 3, respectively. In both cases, the points

are from numerics and red lines are fitted curves. We choose µ∞ = 10.5, σ = 0.7 and ε = 0.7.

Compared to the relation (3.5), maybe with a little abuse of terminology, this result en-

courages us to identify ξo as the coherence length.7

The dependence of Jmax on ` is shown in figure (5). Once again, this cure can be fitted

by an the exponential decreasing relation

Jmax/T
3/2
c ≈ 1.10613× e−

`
ξj , ξj ≈ 0.782017 for z = 2. (3.12)

Comparing to (3.6), one may also consider ξj as the coherence length. We can see that

the discrepancy between the value of coherence length ξ obtained from (3.11) and (3.12)

is consistent with each other within the error 6.9%.

3.3 The case of z = 3

For z = 3, the asymptotic expansion of Mt near the boundary is Mt ∼ µ(x) − ρ(x)r. In

this case, we introduce a transformation

Mt → rMt, (3.13)

in our numerical calculation. Note that although now µ(x) is the subleading term in the

expansion, we can still regard it as the chemical potential according to the explanation in

ref. [26].

The relation between the current and the phase difference is again shown in figure. (3),

where the black dots are from the numerics while the red line is the best fitted curve using

sinusoidal function. It satisfies the relation as

J/T 4/3
c ≈ 0.01906 sin(γ), for z = 3. (3.14)

7A priori, Lifshitz case would be different form its AdS counterpart. To stress this issue, we use ξo and

ξj to denote different coherence lengths extracted form the condensate and critical current, respectively.
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Figure 5. Relations between Jmax/T
(1+z)/z
c and ` for Lifshitz scaling. The upper curve and the

lower curve correspond to z = 2 and z = 3, respectively. In both cases, the points come from

numerics and red lines are best fit curves. We use µ∞ = 10.5, σ = 0.7 and ε = 0.7 in the plot.

From above relation one can read off the maximum current Jmax ≈ 0.01906 for the choosing

parameters.

Meanwhile, the dependence of 〈O〉x=0 at zero current on ` as well as Jmax on ` can be

found in figure. (4) and figure. (5), respectively. Both can be fitted very well by exponential

decreasing functions and the final results read

〈O〉x=0/Tc ≈ 1.9632× e−
`

2ξo , ξo ≈ 0.740657 for z = 3, (3.15)

Jmax/T
4/3
c ≈ 0.110907× e−

`
ξj , ξj ≈ 1.73365 for z = 3. (3.16)

Surprisingly, we see that the values of ξo and ξj exhibit enormous discrepancy. This

large discrepancy can neither be explained by numerical error, nor by the disagreement

corresponding to the profile of µ(x) as commented in footnote (6). We shall discuss this

issue in the next section.

4 Conclusion and discussion

In this work, we holographically studied the properties of SNS Josephson junction in non-

relativistic case with Lifshitz scaling. It can be carried out in terms of the Abelian-Higgs

model [4] coupled with an asymptotic Lifshitz black brane solution in gravity side. Due

to the presence of the dynamical critical exponent z, the asymptotic expansions of the

fields behave distinctly from each other for different z. Therefore, it was expected that the

properties of the Josephson junctions would depend on z as well.

By virtue of the Chebyshev spectral methods, we could solve the coupled PDEs (2.7)

successfully. We found that the famous sinusoidal relations between the current J and
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phase difference γ across the weak link still exists for various z. Furthermore, our results

showed that there is indeed an exponential decreasing relation between the condensate 〈O〉
at the middle of the barrier with vanishing current and the width of the link `. Similar

relation also holds between the critical current Jmax and `. As a consistent check for our

numerics, let us consider the behaviour of the coefficient A1 form the relation (3.5) with

respect to z. Note that we set the same profile of the chemical potential µ(x) for various z

and the critical chemical potentials µc for a homogeneous superconductor would increase

with z increased. Therefore, the chemical potential at x = 0 in the link would be much

smaller compared to µc if z is much larger. Hence the condensate 〈O〉 at x = 0 would be

much smaller as z increases. This would in turn made A1 smaller when z becomes bigger.

This is nothing but we found in our numerical calculation.

In order to compare with the relativistic case z = 1, we also reproduced the holo-

graphic junction in AdS-Schwarzschild black brane. Similar to z = 1 case, we found that

for z = 2 the coherence length ξ obtained from the condensate within the link (see equa-

tion (3.11)) and the one from the critical current (see equation (3.12)) were close to each

other within acceptable error. However, for z = 3 the ξ’s got from the two relations were

no longer consistent. Although we calculated the case of z = 3 by using much higher pre-

cision, we still could not render the two ξ’s consistent. One should keep in mind that the

relations (3.11) and (3.12) are deduced form conventional superconductivity under some

additional approximations. In contrast, our holographic construction is, in principle, only

applicable for the superconductors at strong coupling, thus, a priori, would far deviate form

the conventional one which is weakly interacted. An instructive example is to consider the

well-known Abelian-Higgs model in AdS case. As the temperature decreases, there ex-

ists a gap frequency ωg from the optical conductivity in the superconducting phase, and

one can also read off the energy gap ∆g from the low temperature behaviour of normal

contribution to the DC conductivity. In a standard weak coupling picture of supercon-

ductivity, the gap ωg is understood as the energy required to break a Cooper pair into

its constitutive electrons and the energy of the constituent quasiparticles is given by ∆g.

In BCS theory ωg = 2∆g, while it does not hold in holographic setup [40, 41], indicating

that we are clearly not in a weak coupling regime and that such a quasiparticle picture is

not applicable. Therefore, we expect that our results for Josephson junctions with Lifshitz

scaling may suggest new mechanism compared to AdS case. It is desirable to understand

our results form condensed matter theory point view. It will be interesting to see whether

one can construct, for example, a Landau-Ginzberg like theory with Lifshitz scaling that

exhibits similar deviation in this paper.

Similar discussion can be straightforwardly generalized to include hyperscaling viola-

tion characterised by θ, another important exponent in low energy physics of condensed

matter system. In cases with general θ and z, the dual non-relativistic theory is not even

scale invariant, qualitatively different from its Lifshitz counterpart. Nevertheless, we ex-

pect that the main results would be similar to the Lifshitz geometry. There are various

kinds of junctions, and the properties of these junctions can be considerably different.

It is, however, known that a sinusoidal current-phase relation is only a special case in

Josephson tunneling, which is attainable only for such as temperatures sufficiently close to
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critical temperature or sufficiently high and wide potential barriers between two supercon-

ductors [42, 43]. So far, similar studies initiated from ref. [14] all produced the sinusoidal

relation between current and phase difference, including the case with Lifshitz scaling in

current paper. To obtain the non-sinusoidal relation, one is suggested to consider the case

with much lower temperatures. Therefore, it is natural to include the back reaction of

matter fields to the geometry [44]. It will be also interesting to extend similar study to

other types of junctions and to cases with competing orders. We hope to report related

issues in the future.
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