
J
H
E
P
1
2
(
2
0
1
4
)
0
8
6

Published for SISSA by Springer

Received: November 21, 2014

Accepted: November 25, 2014

Published: December 11, 2014

FQHE on curved backgrounds, free fields and large N

Frank Ferraria and Semyon Klevtsovb
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1 Introduction

In this paper we study the expansion of the free energy of the Laughlin state on compact

Riemann surfaces in a large magnetic field. As is well known, the Laughlin state [27]

describes the ground state wave function for the integer and fractional quantum Hall effect.

We are specifically interested in the way the free energy depends on the choice of the

Riemannian metric. The study of the free energy was initiated in the work of Wiegmann-

Zabrodin [42, 44], who studied large N expansion of the Dyson gas, or β-ensemble, on the

complex plane with an arbitrary magnetic field. They derived the first three terms in the

expansion, including the boundary terms, using the method of loop equations.

Interestingly, the analog of the quantum Hall free energy appears naturally in the

context of the Yau-Tian-Donaldson program in Kähler geometry. Namely, Donaldson [12]

defined and studied the large k expansion of the determinant of the Hilbk-map on any

compact Kähler manifold, thus including the case of Riemann surfaces. A similar object was

also studied by Berman in [6, 7]. The Donaldson’s expansion follows from the asymptotic

expansion of the Bergman kernel, see refs. [45] and [10, 28, 29], and corresponds to the

free-fermion, or β = 1 case. Physically, the Bergman kernel expansion can be understood

as an expansion of the density of states on the lowest Landau level (LLL), for the particle

in a large magnetic field with flux k, on a Kähler manifold. Its physical derivation, using

quantum-mechanical path integral methods, can be found in [13].

The relation between the expansions of Wiegmann-Zabrodin and Donaldson was re-

cently understood in [26]. The determinant of the Hilbk-map of [12] corresponds to the

partition function of free fermions on LLL on Kähler manifold with arbitrary metric and
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constant magnetic field. This object corresponds to β = 1, or to the case of integer quan-

tum Hall effect. For any compact Riemann surface, the first five terms of the expansion

were computed in [26] (the first two terms were already obtained in [12]). Subsequently, the

first three terms in the expansion of the free energy of the Laughlin states on the sphere for

any β were derived in [8, 9], generalizing the loop equation method of ref. [44] to this case.

In this paper we derive the free energy expansion for the fractional quantum Hall

case by a different and more direct argument. Our method here is not based on Bergman

kernel nor on loop equations, but rather on the free field representation of the Laughlin

state, and on transformation properties of the Green function under changes of the metric,

proved in [16]. The free field representation of the quantum Hall states is well-known

and goes back to the seminal work [31]. From this point of view, the derivation of the

first three terms of the large magnetic flux k expansion amounts to the calculation of the

gravitational effective action in a field theory softly breaking conformal invariance, which

can be done straightforwardly along the lines of ref. [16]. We also obtain a new path integral

representation of the remainder terms, starting from order 1/k.

Now we briefly explain our main result. We consider the Laughlin state on the surface

with the constant scalar curvature metric g0, and the same state on the surface with an

arbitrary metric g, parameterized by the Kähler potential φ as gzz̄ = g0zz̄ + ∂z∂̄z̄φ. The

number of the states on the lowest Landau level is Nk = k+χ(M)/2 on a surface with the

Euler characteristic χ(M). We define the free energy as a logarithm of the ratio of norms

of the Laughlin state in the metrics g and g0. Here we quote our main result (4.15) for the

free energy expansion

Fβ [g0, φ] =− 2πβkNkSAY (g0, φ) + β
k

2
SM (g0, φ)−

1− 3β

24π
SL(g0, φ) +R[g0, g]. (1.1)

The first three terms here correspond to the Aubin-Yau, Mabuchi and Liouville functionals.

The Liouville functional is well-known due to relation to the gravitational anomaly; the

first two functionals also appear as gravitational effective actions in two-dimensions [16],

when conformal invariance is broken. The remainder of the series R[g0, g] contains the

terms of order 1/k and less. We derive its path integral representation in section 5. We

also generalize our method to the case when particles have a gravitational spin; in this case

the expansion was derived in [9] using loop equation.

In conformal field theories on curved backgrounds the coefficient in front of the Liouville

action is the central charge. The corrections to the free energy (1.1) can also be associated

with the various parameters of the quantum Hall system. The coefficient in front of the

Aubin-Yau action is the inverse conductance. The Mabuchi term is responsible for the

homogeneous part of the anomalous Hall viscosity, see e.g. [5, 8, 23, 34, 35, 37, 41] and

ref. [21] for a comprehensive review and complete list of references. The coefficient of

Liouville term in this case is conjecturally related to the heat conductance [1, 2]. Let us

point out that the effective actions for the quantum Hall system have been also studied

recently from the 2+ 1 dimensional perspective, see e.g. refs. [3, 4, 18, 22, 36] for a partial

list of references. The scaling limit of Laughlin states in the free field representation on

the plane and round sphere and its relation to the Wiegmann-Zabrodin expansion was
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previously discussed in ref. [14]. The geometric response of the quantum Hall effect was

first studied in [17, 40].

Strictly speaking, our calculation here applies to the case of the sphere only, since we

study only one Laughlin state, and there are more than one state on the torus [20] and on

the higher-genus surfaces [24, 31, 39]. The method we develop here can be generalized to

Riemann surfaces of any genus, where the new feature is the dependence of the states on

the complex structure moduli. We will address this question in future investigation.

The paper is organized as follows. After defining the free field theory on curved back-

grounds and computing a relevant correlator of vertex operators in section 2, we show that

it reproduces the Laughlin state on a round sphere in section 3. In section 4 we define the

free energy and use the transformation properties of the Green function in order to derive

the main result, quoted above. In section 5 we discuss the large k limit of the free energy,

and show that the path integral indeed produces the remainder terms starting from order

1/k. In section 6 we generalize our method to the case of the conformal spin and in section 7

we derive some a priori properties of the free energy, which follow from the mathematical

formulation of the Laughlin state, using sections of a holomorphic line bundle.

2 Free field and vertex operators on curved backgrounds

Consider a compact Riemann surface M , equipped with a metric g = 2gzz̄|dz|2 with the

area normalized as A = 2π. Consider now a free field theory on (M, g) with the action

given by the sum of the usual Coulomb-gas term and an additional linear term

S(g, σ) =

∫

M

(

2∂zσ∂̄z̄σ + ibσR
√
g + 2ibkσ

√
g
)

d2z, (2.1)

where b is a real number. We use the scalar Gaussian curvature defined by R =

−g−1
zz̄ ∂z∂̄z̄ log

√
g and

√
g = 2gzz̄. The relation to the standard Ricci scalar curvature

RR is R = RR/2.

The extra linear term in the action1 is proportional to the parameter k, which has the

dimension length−2 (magnetic length is defined as l2 = ~/ek and we use e = ~ = 1 units).

Due to the presence of the dimensional parameter one could say that this term “softly”

breaks the conformal invariance. As we will see now, compared to the pure Coulomb gas

case, the only role of this term is in modifying the neutrality condition.

Consider the following non-normalized correlator of some number Nk of vertex opera-

tors, inserted at points z1, . . . , zNk
, which we write using the path integral representation as

Z
(

g, {zj}
)

=

∫

eib
∑Nk

j=1 σ(zj)e−
1
4π

S(g,σ)Dgσ. (2.2)

This correlator is known to be related to the Laughlin states for the fractional quantum

Hall effect, this observation goes back to [31]. The relation between parameters Nk and k

1In [31] it appears as an insertion in the correlation function, the difference in the normalization of the

linear term here and in [31] is explained by the fact that in the present set-up on a compact surface we fix

the total area to 2π.
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is fixed by the usual neutrality condition as follows. We split the field into the zero-mode

part and its orthogonal complement

σ = σ0 + σ̃,

∫

M
σ̃
√
gd2z = 0, (2.3)

and require that the coefficient in front of the zero mode part in the exponent vanishes:

bNk − 1
2bχ(M)− bk = 0. Thus we obtain the following relation between Nk and k,

Nk = k +
χ(M)

2
, (2.4)

where χ(M) = 1
2π

∫

M R
√
gd2z is the Euler characteristic of M . This being said, we can in-

tegrate out the zero mode σ0 and work with a field σ satisfying the constraint
∫

σ
√
gd2z=0.

The Gaussian path integral (2.2) can be easily computed using standard techniques in

free field theory, see e.g. [11, 38]. To this end, we introduce the standard Green function

2g−1
zz̄ ∂z∂̄z̄G

g(z, y) = −2πδ(z − y) + 1, (2.5)
∫

M
Gg(z, y)

√
gd2y = 0, (2.6)

and the Green function at coinciding point,

Gg
R(z, z) = lim

z→y

(

Gg(z, y) + log dg(z, y)
)

, (2.7)

where dg(z, y) is the geodesic distance between the points. Then the path integral (2.2)

can be put into standard Gaussian form, shifting σ̃ by

σ̃(z) → σ̃(z) +

∫

M
Gg(z, y)j(y)

√
gd2y,

j(y) = 2ib

Nk
∑

j=1

δ(y − zj)−
ib

2π
R(y), (2.8)

and then evaluated. The shift above preserves the orthogonal decomposition (2.3) due to

the property (2.6). The result can be written as

Z
(

g, {zj}
)

=

[

det′∆g

2π

]−1/2

exp

(

− b2

16π2

∫∫

M
R
√
g|zGg(z, y)R

√
g|yd2z d2y

)

· (2.9)

exp





b2

2π

Nk
∑

j=1

∫

M
Gg(zj , z)R

√
g|zd2z − b2

Nk
∑

j 6=m

Gg(zj , zm)− b2
Nk
∑

j=1

Gg
R(zj , zj)



 ,

where det′∆g is the regularized determinant of the Laplacian in the metric g without

including the zero mode.
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3 Laughlin state on the round sphere

Now, let us consider a case when M = S2 is two-dimensional round sphere with metric of

total area 2π

g0zz̄ =
1

(1 + |z|2)2 . (3.1)

The scalar curvature equals R0 = 2 in our conventions. In this case the Green function

reads

Gg0(z, y) = − log
|z − y|

√

(1 + |z|2)(1 + |y|2)
− 1

2
, (3.2)

and the regularized Green function (2.7) is just a constant. Equation (2.9) then yields

Z
(

g0, {zj}
)

= C0 · |∆(z)|2b2
Nk
∏

j=1

(1 + |zj |2)−b2k, (3.3)

where the number of particles Nk = k + 1 on the sphere, ∆(z) =
∏

i<j(zi − zj) is Vander-

monde determinant, and C0 is the inverse square root of the regularized determinant of

Laplacian, evaluated for the round metric. After identifying

β = b2 (3.4)

one can recognize in (3.3) the absolute value squared

|ΨL

(

g0, {zj}
)

|2 = |∆(z)|2β
Nk
∏

j=1

(1 + |zj |2)−βk. (3.5)

of the Laughlin state [27] for the filling fraction ν = 1/β, first constructed in the case of

the sphere with the round metric and constant magnetic field in ref. [21].

Let us briefly discuss what happens in the higher-genus case. In this case one shall

begin with a compactified boson [38], and the Laughlin wave functions will have the Green

function part and an extra metric-independent factor, depending on the center-of-mass of

the system. However, this extra factor will depend on complex structure moduli and on the

solenoid phases. In this paper we will be concerned with the dependence on metric only,

but our method works in the higher-genus case as well with the appropriate modifications.

4 Transformation of the metric

As was already pointed out in [26], for the Laughlin states on curved backgrounds the

Kähler parameterization of the metric is more convenient, than the usual conformal param-

eterization. For the metrics g and g0 on M their respective Kähler forms ω0 = ig0zz̄dz∧dz̄

and ωφ = igzz̄dz∧dz̄ differ by a ∂∂̄ of a globally defined scalar function φ, called the Kähler

potential,

ωφ = ω0 + i∂z∂̄z̄φ dz ∧ dz̄, (4.1)
√
g =

√
g0(1 + g−1

0zz̄∂z∂̄z̄φ). (4.2)
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Since the metric is everywhere positive on M , the Kähler potential must be a subharmonic

function, i.e. g−1
0zz̄∂z∂̄z̄φ > −1.

We would like to derive the relation between the path integrals Z
(

g0, {zj}
)

and

Z
(

g, {zj}
)

. This is precisely the problem of computing a gravitational effective action

in a theory with a soft breaking of conformal invariance, a problem that we studied in

details in [16]. We can thus straightforwardly follow the strategy used in this reference.

We begin with the formula (2.9) for Z
(

g, {zj}
)

and transform it to the new metric, using

standard transformation formulas. The determinant of the Laplacian transforms as follows

det′∆g

det′∆0
= e−

1
12π

SL(g0,g), (4.3)

where SL(g0, g) is the Liouville action. The terms involving the Green function transform as

Gg(z, y)−Gg0(z, y) =
1

2
(φ(y) + φ(z))− 2πSAY (g0, φ), (4.4)

Gg
R(z)−Gg0

R (z) =
1

2
log

√
g

√
g0

|z + φ(z)− 2πSAY (g0, φ), (4.5)

∫

M
Gg(zj , z)R

√
gd2z −

∫

M
Gg0(zj , z)R0

√
g0d

2z =

= π log

√
g

√
g0

|zj + πχ(M)φ(zj)− πSM (g0, φ)− 2π2χ(M)SAY (g0, φ). (4.6)

The action functionals here will be defined in a moment. These formulas follow from the

definitions (2.5) and (2.7), see [16] for the derivation. The first two formulas here can also

be found e.g. in [11, 38], when restricting to the Kähler parametrization of the metric.

Finally, we have the following relation

∫∫

M
R
√
g|zGg(z, y)R

√
g|yd2z d2y −

∫∫

M
R0

√
g0|zGg0(z, y)R0

√
g0|yd2z d2y =

= 2πSL(g0, φ)− (2π)2χ(M)SM (g0, φ), (4.7)

which was derived in [16]. The Aubin-Yau, Mabuchi and Liouville actions have the follow-

ing form

SAY (g0, φ) =
1

(2π)2

∫

M

(

1

2
φ∂z∂̄z̄φ+ φ

√
g0

)

d2z, (4.8)

SM (g0, φ) =
1

2π

∫

M

(

χ(M)

2
φ∂z∂̄z̄φ

√
g0 + φ

(

χ(M)−R0

)√
g0 +

√
g log

√
g

√
g0

)

d2z, (4.9)

SL(g0, φ) =

∫

M

(

− log

√
g

√
g0

∂z∂̄z̄ log

√
g

√
g0

+R0
√
g0 log

√
g

√
g0

)

d2z =

=

∫

M

(

−4η ∂z∂̄z̄η + 2ηR0
√
g0
)

d2z, (4.10)

where we also wrote the Liouville action using the conformal parameterization of the metric√
g = e2η

√
g0. Since g is uniquely defined by g0 and φ as in (4.1), we use interchangeable

notation for metric dependent objects S(g0, g) := S(g0, φ) throughout the paper. The only
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exception is the Aubin-Yau functional, which is not invariant under the constant shifts of

φ, and thus is truly a functional of φ, not g. The Mabuchi action was defined in [30] and

plays a prominent role in Kähler geometry, see e.g. [32] for a review.

Let us now assume that g0 is a metric of constant scalar curvature, R0 = χ(M). The

above transformation formulas then immediately yield

log
Z
(

g0, {zj}
)

Z
(

g, {zj}
) = βk

Nk
∑

j=1

φ(zj)− 2πβkNkSAY (g0, φ) + β
k

2
SM (g0, φ) +

3β − 1

24π
SL(g0, φ),

(4.11)

where β is defined in (3.4). Let us now use these results to derive our fundamental formula

for the Laughlin wave function. For simplicity, we restrict our discussion to the case where

M is topologically a sphere. As usual, g0 is the round metric and g an arbitrary metric.

The absolute value squared of Laughlin wave function, coupled to the metric g, has the

following form, see refs. [26] and [8], when expressed in terms of the Kähler potential

|ΨL(g0, φ, {zj})|2 = |∆(z)|2β
Nk
∏

j=1

(1 + |zj |2)−βke−βk
∑Nk

j=1 φ(zj), (4.12)

where in case of the sphere Nk = k + 1. To compute the norm of this state, we integrate

this expression over the positions of the points with the volume form in the metric g,

Zβ [g0, φ] =

∫

MNk

|ΨL(g0, φ, {zj})|2
Nk
∏

j=1

√
g|zjd2zj . (4.13)

Now we define the free energy as the logarithm of the ratio, of this norm and the norm of

the Laughlin state (3.5) for the round metric

Fβ [g0, φ] = log
Zβ [g0, φ]

Zβ [g0, 0]
. (4.14)

The choice of the sign is unconventional, because this object can also be interpreted as a

generating functional for the density correlation functions in FQHE. They can be obtained

by taking variations of Fβ with respect to φ. Note that at β = 1 we have Zβ [g0, 0] = const,

hence Fβ [g0, φ] coincides with the one defined in [26].

Using (4.11) we obtain the following exact formula

Fβ [g0, φ] =− 2πβkNkSAY (g0, φ) + β
k

2
SM (g0, φ)−

1− 3β

24π
SL(g0, φ)+

+ log

∫ (∫

M
ei
√
βσ(z)√gd2z

)Nk

e−
1
4π

S(g,σ)Dgσ−

− log

∫ (∫

M
ei
√
βσ(z)√g0d

2z

)Nk

e−
1
4π

S(g0,σ)Dg0σ, (4.15)

By construction the path integral in the second line depends only on the metric g and the

path integral in the third line depends only on g0.
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At this point let us take a pause to discuss this result. Note that eq. (4.15) holds

for any k, including finite k. If we set k = 0, the free field action (2.1) becomes the

standard conformal field theory. In this case the left hand side and the first two terms on

the right in (4.15) vanish and the rest of the formula reduces to the classical result [33]

for the conformal anomaly in the CFT with the central charge c = 1− 3b2. As we already

mentioned, adding the extra linear term in the action (2.1) breaks the conformal invariance

on the level of the zero modes, modifying the neutrality condition. This adds an extra

dimensional parameter k to the problem. In the next section we will take k large and

generate the expansion in powers of 1/k in eq. (4.15).

5 Large k limit

Now we want to study the large k limit in the formula (4.15) for the free energy. The

first three terms are already organized in the form of the large k expansion, and the result

coincides precisely with the result in ref. [8], obtained by the loop equation method. We

also have an explicit formula for the remainder terms, of the form

R[g0, g] = logZ[g]− logZ[g0] , (5.1)

where we have defined

Z[g] =

∫ (∫

M
ei
√
βσ(z)√gd2z

)Nk

e−
1
4π

S(g,σ)Dgσ . (5.2)

We believe that this explicit path integral representation of the remainder terms could be

very useful to actually compute the 1/k corrections, but such a detailed analysis is beyond

the scope of the present paper and will be presented elsewhere [15]. Here, we limit ourselves

to show that the representation (5.2) immediately implies that the 1/k corrections will be

of the expected form, with terms of order 1/kp given by an integral of a local polynomial

in curvature invariants of dimension 2p+ 2.

An elementary way to understand this is to rewrite (5.2) as

Z[g] =

∫

e−
1
4π

S(g,σ)+Nk log
∫
M

ei
√

βσ(z)√gd2zDgσ =

∫

e−
1
4π

Seff(g,σ)Dgσ . (5.3)

The effective action having a term proportional to k at large k, it is natural to consider

the expansion around its critical point σc, which can be found order by order in 1/k,

σc = 0+
1

2i
√
βk

(R− χ) +
1

k2

(

− 1

2(i
√
β)3

∆R− 1

8i
√
β

(

R2− 1

2π

∫

M
R2√gd2z

)

)

+O(1/k3) .

(5.4)

Here ∆ is one half of the usual Riemannian Laplacian. Now, we expand the effective action

around the critical point up to quadratic fluctuations

Seff(g, σc + σ̃) =Seff(g, σc) +

∫

M

(

−σ̃∆σ̃ + βkσ̃2 +
β

2
Rσ̃2

)√
gd2z

− β

8πk

(∫

M
σ̃R

√
gd2z

)2

+O(σ̃3) . (5.5)
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Note that the fluctuating field does not contain zero modes:
∫

M σ̃
√
gd2z = 0. The value of

the effective action at the critical point is

Seff(g, σc) =
1

4k

(∫

M
R2√gd2z − 2πχ2

)

+O(1/k2) . (5.6)

This contributes to the order 1/k term in the free energy. Of course, we also find quantum

corrections to the free energy, with contributions from diagrams with arbitrarily many

loops at each fixed order in 1/k. But the crucial point to note on (5.5) is that the quantum

fluctuating field σ̃ has a mass squared of order βk. At large k, the contributions from any

loop diagram will then reduce to a local integral of a polynomial in curvature invariants,

whose dimension is fixed by power counting; at order 1/kp, we find curvature invariants of

dimension 2p + 2. For example, the one-loop diagrams come from the determinant of the

quadratic term in (5.5), whose large mass expansion can be straightforwardly derived from

the usual heat kernel expansion and which automatically has the expected form. A similar

standard analysis can be performed at any loop order.

The locality of the large k expansion of Z[g] implies that terms of order k must be

proportional to the area, which is fixed and thus metric-independent; terms of order k0 = 1

must be proportional to the Euler characteristic, which is also metric-independent; terms

of order 1/k must be of the form

c(β)

2πk

∫

M
R2√gd2z , (5.7)

for some function c(β) of the parameter β; etc. The form of this general expansion, valid for

any β, is of course consistent with the case β = 1, which was studied in [26]. In particular,

the value of c(1) was computed in [26].

Computing c(β), for any β, is currently under investigation. Note that due to the form

of the term (5.7), we can actually perform the calculation on a round sphere, for which a

very explicit formula for Z is known. Another interesting remark is to note that eZ[g] is

the analytic continuation at s = −Nk of the holomorphic function

1

Γ(s)

∫ ∞

0
dt ts−1

∫

e−
1
4π

S(g,σ)−t
∫
M

ei
√

βσ(z)√gd2zDgσ , (5.8)

which is expressed in terms of a standard path integral with the local action functional,

reminiscent of the Liouville theory.

6 Extension to conformal spin

Now we extend our derivation to the case when particles have a non-trivial conformal spin.

In this case the absolute value squared of the (unnormalized) Laughlin wave function on

the sphere with the metric g has the following form

|Ψs
L

(

g0, φ, {zj}
)

|2 = |∆(z)|2β
Ñk
∏

j=1

(1+ |zj |2)−βk
Ñk
∏

j=1

(√
g0
)s
e
−βk

∑Ñk
j=1 φ(zj)+s

∑Ñk
j=1 log

√
g

√
g0 (6.1)

– 9 –
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On the mathematical language (see the next section for more details) it means that the

Laughlin wave function is now a section of Ñk copies (one for each coordinate zj) of the line

bundle (Lk)⊗β ⊗K−s
M , where K−1

M is anticanonical line bundle.2 The number of particles

Ñk, or equivalently, the dimension of the space of holomorphic sections H0(M,Lk⊗K
−s/β
M )

in this case (see e.g. [29]) is given by

Ñk = k +
χ(M)

2β
(β + 2s). (6.2)

To treat this generalization, we use the following modified version of the free field

action (2.1),

Sq(g, σ) =

∫

M

(

−2σ∂z∂̄z̄σ + iqσR
√
g + 2ibλσ

√
g
)

d2z, (6.3)

where the appropriate choice of parameters b, q is

b2 = β, q =
β + 2s√

β
. (6.4)

As before, the value of λ is fixed to be

λ = Ñk −
χ(M)

2

q

b
= k (6.5)

so that the neutrality condition holds for the correlation function

Zs

(

g, {zj}
)

=

∫

eib
∑Ñk

j=1 σ(zj)e−
1
4π

S(g,σ)Dgσ. (6.6)

This path integral can be computed as before,

Zs

(

g, {zj}
)

=

[

det′∆g

2π

]−1/2

exp

(

− q2

16π2

∫∫

M
R
√
g|zGg(z, y)R

√
g|yd2z d2y

)

· (6.7)

exp





bq

2π

Nk
∑

j=1

∫

M
Gg(zj , z)R

√
g|zd2z − b2

Nk
∑

j 6=m

Gg(zj , zm)− b2
Nk
∑

j=1

Gg
R(zj , zj)



,

to be compared with (2.9). The transformation property (4.11) now reads

Zs

(

g0, {zj}
)

=Zs

(

g, {zj}
)

· eβk
∑Ñk

j=1 φ(zj)−s
∑Ñk

j=1 log
√
g

√
g0

|zj

· e−2πβkÑkSAY (g0,φ)+(β+2s) k
2
SM (g0,φ)+

3(β+2s)2−β

24πβ
SL(g0,φ). (6.8)

Denoting the norm of the Laughlin wave function with the spin as

Zβ,s[g0, φ] =

∫

MÑk

|Ψs
L(g0, φ, {zj})|2

Ñk
∏

j=1

√
g|zjd2zj . (6.9)

2this is the sign choice for the sphere; for genus g > 1 the sign of s is usually switched and canonical

line bundle is used instead.

– 10 –
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we obtain the generalization of eq. (4.15),

Fβ,s[g0, φ] =− 2πβkÑkSAY (g0, φ) +
(

β + 2s
)k

2
SM (g0, φ)−

β − 3(β + 2s)2

24πβ
SL(g0, φ)+

+ log

∫ (∫

M
ei
√
βσ(z)√gd2z

)Ñk

e−
1
4π

Sq(g,σ)Dgσ−

− log

∫ (∫

M
ei
√
βσ(z)√g0d

2z

)Ñk

e−
1
4π

Sq(g0,σ)Dg0σ, (6.10)

The first three terms here coincide with the loop equation result of ref. [9].

7 General form of the free energy

In previous sections we computed the first three terms of the expansion of the free energy

and gave a path integral representation for the remainder terms of the expansion. Our

arguments there depend on the choice of the background metric g0, which we have chosen

to be the constant scalar curvature metric. In this section we would like to show that the

result actually holds for an arbitrary choice of the background metric g0. As we will see,

this will follow from certain cocycle conditions, satisfied by the free energy.

So we do not assume any condition on the background metric, and g0 and g will be two

arbitrary metrics in the same Kähler class. Also, the arguments in this section apply not

only to the Riemann surface case, but to higher-dimensional compact Kähler manifolds

of complex dimension n, where the lowest Landau level (LLL) wave functions [13] and

Quantum Hall partition function [26] can also be defined. Quantum Hall effect in higher-

dimensions was also considered in [25].

Recall that the single particle LLL wave functions on (M, g) are associated with the

sections sj(z) of the positive holomorphic line bundle Lk (the argument below is also valid

for the tensor product with the canonical line bundle K−s
M ). For a choice of the background

metric g0, the magnetic field is given by the (1, 1)-form kg0zz̄ = −∂z∂̄z̄ log h
k
0, where hk0 is

the Hermitian metric on Lk. Consider an orthonormal basis of the wave functions with

respect to the background metric

1

2π

∫

M
s̄i(z̄)sj(z)h

k
0(z, z̄)

√
g0d

2z = δij . (7.1)

Following [6, 7, 12, 26] consider the following partition function

Zβ [g0, g] := Zβ [g0, φ] =

∫

MNk

| det si(zj)|2β
Nk
∏

j=1

hβk0 (zj)e
−βk

∑
j φ(zj)

∏√
g|zjd2zj . (7.2)

In particular on S2 we have sj(z) =
√

NkC
j−1
k zj−1 and j = 1, . . . , Nk = k + 1. Thus the

partition function above coincides with the norm of the Laughlin wave function (4.13) for

M = S2, up to an inessential numerical constant. At β = 1 the integral above admits a

determinantal representation [12], and therefore satisfies the cocycle condition, i.e. for any

– 11 –
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three metrics g0, g and g1 in the same Kähler class (in two dimensions, of the same area)

we have [26],

Z1[g0, g]Z1[g, g1] = Z1[g0, g1]. (7.3)

Now we show that the following combination

Zβ [g0, g]
(

Z1[g0, g]
)β

(7.4)

is in fact independent of g0, i.e. background independent. To this end, let us construct

another basis of sections, tj(z), orthonormal with respect to the metric gzz̄ = − 1
k∂z∂̄z̄ log h

k,

where hk = hk0e
−kφ is the corresponding Hermitian metric on the line bundle Lk,

1

2π

∫

M
t̄i(z̄)tj(z)h

k(z, z̄)
√
gd2z = δij . (7.5)

There exists a linear transformation between the bases

si = Aijtj . (7.6)

From the definition (7.2), it follows that

Zβ [g0, g]
(

Z1[g0, g]
)β

=
(detA†A)βZβ [g, g]

(detA†A)β
(

Z1[g, g]
)β

= Zβ [g, g], (7.7)

and the latter is, by construction, independent of the background metric g0. Let us stress,

that the background independent partition function Zβ [g, g] has the following natural mean-

ing. It is constructed starting from the one-particle states, which are normalized with re-

spect to the metric g, and not g0 as Zβ [g0, g]. From the expansion (4.15) it follows that the

background independent partition function satisfies the following transformation formula

log
Zβ [g, g]

Zβ [g0, g0]
= −1− β

24π
SL(g0, g) +O(1/k). (7.8)

At infinite k this formula becomes exact and coincides with the confromal anomaly of a

CFT with the central charge c = β − 1.

Now we show that the normalized partition function constructed in (4.14),

Z̃β [g0, g] =
Zβ [g0, g]

Zβ [g0, g0]
, (7.9)

also satisfies the cocycle condition

Z̃β [g0, g]Z̃β [g, g1] = Z̃β [g0, g1] . (7.10)

Using the background independence of (7.4), and the cocycle condition at β = 1 (7.3),

we get

Z̃β [g0, g]Z̃β [g, g1] =
Zβ [g0, g]

Zβ [g0, g0]

Zβ [g, g1]

Zβ [g, g]
=

Zβ [g0, g]

Zβ [g0, g0]

Zβ [g, g1]

Zβ [g0, g]
(Z1[g0, g])

β =

=
Zβ [g, g1]

Zβ [g0, g0]
(Z1[g0, g])

β =
1

Zβ [g0, g0]

Zβ [g, g1]

(Z1[g, g1])β
(Z1[g, g1]Z1[g0, g])

β =

=
1

Zβ [g0, g0]

Zβ [g0, g1]

(Z1[g0, g1])β
(Z1[g, g1]Z1[g0, g])

β =
Zβ [g0, g1]

Zβ [g0, g0]
= Z̃β [g0, g1].

– 12 –
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This generic result has two important consequences, First, if the expansion of the modified

free energy exists, it has the form

log Z̃β [g0, g] =
∞
∑

m=0

k2−mSm(g0, g), (7.11)

where the functionals Sm(g0, g) satisfy additive cocycle identity

Sm(g0, g1) = Sm(g0, g) + Sm(g, g1). (7.12)

This is known to be true for the Aubin-Yau, Mabuchi and Liouville actions, see e.g. [26]

and references therein. It also holds trivially for the corrections of the type (5.7), which

are differences of the local density of curvature invariants.

Second, the expansion (4.15), that we obtained under the assumption that g0 is the

round metric on the sphere, is valid verbatim if g0 is an arbitrary metric of the same area.

This follows directly form (7.12).

8 Discussion

In this paper we develop a new method to derive large magnetic flux expansion of the

norm of Laughlin state, based on the free field representation and on the transformation

properties of the correlation functions, derived in [16]. We derived the first three terms in

the expansion, which agree with the loop equation result [8]. We also propose a new repre-

sentation of the remainder terms in the expansion, as a path integral in certain interacting

field theory.

Much remains to be done. Our observation opens several intriguing possibilities. The

method here can be applied in the higher-genus case. We expect the pure metric-dependent

terms in the expansion to be the same, but deriving the moduli-dependent terms will be

of particular interest. The scaling limits of other quantum Hall states, such as the Pfaffian

state [31], could potentially be tackled by our method. Various correlation functions in

quantum Hall admit free field representation and thus could be within the reach of our

approach.
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pg. 1.

[11] E. D’Hoker and D.H. Phong, The Geometry of String Perturbation Theory,

Rev. Mod. Phys. 60 (1988) 917 [INSPIRE].

[12] S.K. Donaldson, Scalar curvature and projective embeddings. II,

Quart. J. Math. 56 (2005) 345 [math/0407534].

[13] M.R. Douglas and S. Klevtsov, Bergman Kernel from Path Integral,

Commun. Math. Phys. 293 (2010) 205 [arXiv:0808.2451] [INSPIRE].

[14] J. Dubail, N. Read and E.H. Rezayi, Edge state inner products and real-space entanglement

spectrum of trial quantum Hall states, Phys. Rev. B 86 (2012) 245310 [arXiv:1207.7119]

[INSPIRE].

[15] F. Ferrari and S. Klevtsov, FQHE on curved backgrounds, free fields and large N. II, in

preparation.

[16] F. Ferrari, S. Klevtsov and S. Zelditch, Gravitational Actions in Two Dimensions and the

Mabuchi Functional, Nucl. Phys. B 859 (2012) 341 [arXiv:1112.1352] [INSPIRE].
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